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HIGH ORDER RECOMBINATION AND AN APPLICATION TO
CUBATURE ON WIENER SPACE

BY C. LITTERER1 AND T. LYONS2

Imperial College London and University of Oxford

Particle methods are widely used because they can provide accurate de-
scriptions of evolving measures. Recently it has become clear that by stepping
outside the Monte Carlo paradigm these methods can be of higher order with
effective and transparent error bounds. A weakness of particle methods (par-
ticularly in the higher order case) is the tendency for the number of particles
to explode if the process is iterated and accuracy preserved. In this paper we
identify a new approach that allows dynamic recombination in such methods
and retains the high order accuracy by simplifying the support of the inter-
mediate measures used in the iteration. We describe an algorithm that can be
used to simplify the support of a discrete measure and give an application to
the cubature on Wiener space method developed by Lyons and Victoir [Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004) 169–198].

1. Introduction. In pricing and hedging financial derivatives, as well as in
assessing the risk inherent in complex systems, we often have to find approxima-
tions to expectations of functionals of solutions to stochastic differential equations
(SDE). We consider a Stratonovich stochastic differential equation

dξt,x = V0(ξt,x) dt +
d∑

i=1

Vi(ξt,x) ◦ dBi
t , ξ0,x = x,

defined by a family of smooth vector fields Vi and driven by Brownian motion. It
is well known that computing PT −t f := E(f (ξT −t,x)) corresponds to solving a
parabolic partial differential equation (PDE). High dimension and hypo-ellipticity
are common obstacles that arise when one calculates these quantities numerically.
When facing these obstacles some classical computational methods become unsta-
ble and/or intractable.

There are many settings where one is interested in tracking the evolution of a
measure over time in an effective numerical fashion. One example is the numerical
approximation to the solution of a linear parabolic PDE. In this case, one tracks the
evolution of the heat kernel measure associated to the PDE. Another example is the
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filtering problem where one wishes to approximate the unnormalized conditional
distribution of the signal, which is governed by a stochastic partial differential
equation known as the Zakai equation.

An evolving measure can be viewed as a path in the space of measures. Thus,
even if the underlying state space is finite dimensional, we potentially face an
infinite-dimensional problem. Particle approximations can, in many cases, provide
good descriptions of evolving measures (see, e.g., the survey articles [2, 3]). Higher
order methods may allow us to take far fewer time steps than classical methods in
the approximations. An example of a higher order particle method may be found
in Kusuoka [6]. Although effective in practice (compare Ninomiya [13] and Ni-
nomiya and Victoir [14]), these methods have the drawback that the number of
particles can explode exponentially if the process is iterated and accuracy pre-
served (see, e.g., Lyons and Victoir [12]).

Sometimes the essential properties of a probability measure we care about can
accurately be described and captured by the expectations of a finite set of test func-
tions. If we can find such a family of test functions we can replace the original mea-
sure with a simpler measure with smaller support that integrates all test functions
correctly and hence, still has the right properties, provided, of course, the number
of test functions is small compared to the cardinality of the support of the original
measure. We will also insist that the reduced measure μ̃ has supp(μ̃) ⊆ supp(μ).
This condition ensures that feasibility constraints imposed on the measure μ will
also be satisfied by μ̃. For a finite Borel measure μ on a polish space � and a set
of integrable functions {p1, . . . , pn}, we can show that such a reduced measure μ̃

always exists with card(supp(μ̃)) ≤ n + 1.
In this paper we present a simple algorithm that can be used to compute reduced

measures for discrete measures μ. The runtime is polynomial in the size of the
support of the measure μ. The algorithm relies on the observation that if P is
the Rn valued random variable P(x) := (p1(x), . . . , pn(x)) and μP the law of P

under the measure μ, then finding a reduced measure μ̃ is equivalent to finding
μ̃P a discrete measure on Rn with card(supp(μ̃P )) = n+ 1 and the same center of
mass (CoM) as μP .

We describe an application to the Kusuoka–Lyons–Victoir (or KLV cuba-
ture on Wiener space) method developed by Lyons and Victoir [12], following
Kusuoka [6]. It provides higher order approximations to E(f (ξT ,x)) if the test
function f is Lipschitz and the vector fields satisfy Kusuoka’s UFG condition
(see [7]) which is weaker than the usual Hörmander condition. The expectation
E(f (ξT ,x)) might be viewed as an infinite-dimensional integral against Wiener
measure. The authors construct discrete cubature measures QT = ∑n

i=1 λiδωi,T

supported on continuous paths of bounded variation that approximate Wiener mea-
sure in the sense that they integrate iterated integrals up to a fixed degree correctly.
The expectation of a Wiener functional f (ξT ,x) against the discrete cubature mea-
sure may be obtained by computing the endpoints of the solution of the SDE along



STEPPING OUTSIDE THE MONTE CARLO PARADIGM 1303

the paths in the support of QT . Thus the KLV method might be viewed as a dis-
crete Markov kernel taking discrete measures on RN to discrete measures on RN .
More explicitly we have

KLV(δx, T ) =
n∑

i=1

λiδξT,x(ωi,T )

and

EQT
f (ξT ,x) = EKLV(δx,T )f.

The bound on the error when replacing the Wiener measure with a cubature mea-
sure is given in terms of higher order derivatives of f , so in general will not be
small as f is only assumed to be Lipschitz. The results in Kusuoka and Stroock
[8] and Kusuoka [7] show that Ptf will be smooth, at least in the direction of the
vector fields Vi . This is resolved by applying the method iteratively over a partition
of the time interval [0, T ]. The operator corresponding to the iterated application
of the KLV method is Markov and hence, the error of the approximation of PT f

on the global time interval [0, T ] is the sum of the error of the approximations over
the subintervals of the partition. So considering an uneven partition of the global
time interval [0, T ] with time steps getting smaller toward the end, we can itera-
tively apply the cubature method over the subintervals and reduce the error in the
approximation to any accuracy. If m is the degree of the cubature formula, we can
find a partition such that the error in the weak approximation is uniformly bounded
by

Ck−(m−1)/2‖∇f ‖∞,

where k is the number of time steps in the partition and C a constant independent
of k and f .

The iterated KLV method might be viewed as a particle system on RN where
the particles branch in an n-ary tree. Hence, the number of ODEs to solve grows
exponentially in the number of iterations. In this paper we add recombination to
the KLV method. After each application of the KLV operation we replace the in-
termediate measures by reduced measures. The property of the KLV measure we
are targeting is to integrate Ptf , the heat kernel applied to f , correctly. We have
identified a finite set of test functions that ensures that the bound on the overall er-
ror of the approximation of PT f is only increased by a constant factor and hence,
the modified method has the same convergence properties. Moreover, we can show
that under the Hörmander condition for bounded vector fields the number of test
functions required grows polynomially in the number of iterations.

We finish the paper with a toy numerical example that illustrates how one blends
the methods of this paper together in a concrete example to compute a solution of
a one-dimensional PDE to high accuracy when the boundary data is piecewise
smooth and the discontinuities are not known to the PDE solver.
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We believe that the combination of the two ideas—higher order particle meth-
ods to describe the evolution of a measure on the one hand and simplifying the
support of the measures used in the description, by characterizing essential prop-
erties of a measure using the expectations of a finite set of test functions on the
other hand—have more general applications than investigated so far. Applications
to the stochastic filtering problem appear to be particularly promising (see Litterer
and Lyons [10, 11] for an outline).

2. A reduction algorithm for the support of a discrete measure. Let us
start the precise description of the reduction problem. The notation in this section
is independent of the notation used in the description of the cubature method in
the following sections. Consider a finite set of test functions Pn = {p1, . . . , pn} on
(�,μ), a measure space with μ a finite discrete measure

μ =
n̂∑

i=1

λiδzi
, λi > 0, zi ∈ �,

with large support. By this we mean that n̂ is at least of order n2. In the following
we assume that μ is a probability measure, that is, the weights add up to one.

DEFINITION 1. We will call a discrete probability measure μ̃ a reduced mea-
sure with respect to μ and Pn if it satisfies the following three conditions:

(1) supp(μ̃) ⊆ supp(μ).
(2) For all p ∈ Pn ∫

p(x)μ̃(dx) =
∫

p(x)μ(dx).

(3) card(supp(μ̃)) ≤ n + 1.

The first condition is more important than it looks as it ensures that feasibility
constraints imposed on samples drawn from μ will also be satisfied by μ̃. We wish
to construct effective algorithms to compute the reduced measure.

Let P be the Rn-valued random variable P := (p1, . . . , pn) defined on (�,μ).
Then the law μP of P is the discrete measure on Rn

μP =
n̂∑

i=1

λiδxi
, xi = (p1(zi), . . . , pn(zi))

T ∈ Rn.(1)

The center of mass (CoM) for the measure μP is given by

CoM(μP ) =
n̂∑

i=1

λixi .(2)



STEPPING OUTSIDE THE MONTE CARLO PARADIGM 1305

To find a reduced measure we articulate an equivalent problem in terms of μP .
The problem becomes finding a subset xik of the points xi and positive weights
λ̃ik to produce a new probability measure μ̃P such that CoM(μ̃P ) = CoM(μP ).
A reduced measure μ̃ is then easily obtained from μ̃P by taking

μ̃ = ∑
λ̃ik δzik

with zik ∈ supp(μ) satisfying P(zik ) = xik .
Note that given any subset xik there exist suitable weights λ̃ik if and only if

CoM(μP ) is contained in the convex hull of these points. Caratheodory’s theorem
implies that in principle one can always find μ̃P with support having cardinality
at most n + 1 and the algorithm explained below provides a constructive proof to
that.

By considering xi − CoM(μP ) in place of the xi , we may assume without loss
of generality that CoM(μP ) is at the origin. We may also assume that the xi are all
distinct, as we can otherwise eliminate points xi from the original measure μ by
sorting and combining them.

A first algorithm (Algorithm 1), communicated to us by Victoir [15], sequen-
tially eliminates particles from the support of the measure. It is well known
and has, for example, been used in constructive proofs of Tchakaloff’s theorem
(Davis [5]).

Given any n + 2 points, the system given by

n+2∑
i=1

uixki
= 0,(3)

n+2∑
i=1

ui = 0

is a linear system with n + 2 variables, but only n + 1 constraints. Therefore, it
has a nontrivial solution, which may, for example, be determined using Gaussian
elimination. Thus we may either add

min
ui<0

(
−λi

ui

) n+2∑
j=1

ujxkj

to (2) or subtract

min
ui>0

(
λi

ui

) n+2∑
j=1

ujxkj

from (2) leaving all weights in the result nonnegative and their overall sum un-
changed. In either case, by construction, the coefficient of some xj vanishes. We
now have obtained a new probability measure with the same center of mass and at
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least one point less in the support. Applying the procedure iteratively until there are
only n + 1 points left, we obtain a reduced measure. Clearly the method requires
no more than n̂ iterations of the above procedure.

REMARK 2. If ñ is the dimension of the lowest-dimensional (affine) subspace
of Rn containing the set {(p1(y), . . . , pn(y))|y ∈ supp(μ)}, we can continue to
apply the elimination procedure described in Algorithm 1 until card(supp(μ̃)) ≤
ñ + 1.

For improving the order of the overall algorithm we now look at suitable linear
combinations instead of points.

To describe the algorithm we define an abstract procedure A that takes a dis-
crete probability measure ν with 2(n + 1) particles in its support and returns an-
other discrete probability measure ν̃ with (n + 1) particles in its support satisfying
CoM(ν) = CoM(ν̃) and supp(ν̃) ⊆ supp(ν). Procedure A may, for example, be
realized by n + 1 applications of the reduction procedure of Algorithm 1.

Main reduction algorithm (Algorithm 2): (1) Partition the support of μP =∑n̂
i=1 λiδxi

into 2(n + 1) sets of as near equal size as possible. Let these sets be
denoted by Ij , 1 ≤ j ≤ 2(n + 1).

(2) Compute the probability measure ν = ∑2(n+1)
i=1 νiδx̃i

where

x̃j = EμP
(x|x ∈ Ij ) = ∑

xi∈Ij

λixi

ν
j

and νj = μP (Ij ) = ∑
i : xi∈Ij

λi .

(3) Apply procedure A to compute a measure ν̃ = ∑n+1
j=1 ν̃ij δx̃ij

with CoM(ν) =
CoM(ν̃).

(4) Repeat (1)–(3) with

μ′
P =

n+1∑
j=1

∑
xk∈Iij

ν̃ij

λk

νij

δxk

for μP until n + 1 particles are left in the support of μP .

PROPOSITION 3. Given μ and Pn, the algorithm described above requires

lg(n̂/n)� iterations of procedure A to compute a reduced measure.

PROOF. We might interpret the points x̃j as the respective center of masses of
the individual subsets Ij .

It is clear that μ′
P has positive weights and support contained in the support

of μP . Hence, we only need to show that CoM(μ′
P ) = CoM(μP ).
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We have

CoM(μ′
P ) =

n+1∑
j=1

ν̃ij

∑
xk∈Iij

λkxk

νj

=
n+1∑
j=1

ν̃ij x̃ij

= CoM(ν̃) = CoM(ν) =
2(n+1)∑
j=1

νj x̃j =
2(n+1)∑
j=1

νj

∑
xi∈Ij

λixi

νj

= CoM(μP ).

As n̂ ≤ n2
lg(n̂/n)�, we may assume without loss of generality that n̂ = n2
lg(n̂/n)�.
It is obvious that each iteration halves the number of particles in the support of μP

and we require exactly 
lg(n̂/n)� iterations. �

COROLLARY 4. Using the main reduction algorithm we can compute a re-
duced measure with respect to μ and Pn in

O
(
nn̂ + n log(n̂/n)C(n + 2, n + 1)

)
steps where C(n + 2, n + 1) represents the number of steps required to solve a
system of linear equations with n + 2 variables and n + 1 constraints.

PROOF. To compute the intermediate measures ν, we need to calculate n-
dimensional linear combinations. The number of steps required for these additions
is bounded above by the series

n

∞∑
i=0

n̂2−i = 2nn̂.

The procedure A may be realized by n+ 1 applications of the reduction procedure
used in Algorithm 1 described above. �

REMARK 5. Note that the linear systems of equations we need to solve in
the algorithm are singular. Hence, for a practical implementation we have used
a method based on the singular value decomposition (SVD) to avoid numerical
instability.3

If the support of the measure μ we wish to target is particularly large or possibly
even infinite, we can consider a different approach. If we can find a subset of points
that with a reasonably high probability contains the CoM in its convex hull, we
may use linear programming to check if a given set of points contains the CoM in

3A dll with an implementation of a version of the algorithm and a Visual Studio project with a sim-
ple example for its use can currently be found at http://www.maths.ox.ac.uk/~tlyons/Recombination/
reduce_dist_01_paper.zip.

http://www.maths.ox.ac.uk/~tlyons/Recombination/reduce_dist_01_paper.zip
http://www.maths.ox.ac.uk/~tlyons/Recombination/reduce_dist_01_paper.zip
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its convex hull and reconstruct the weights. The results in Wendel [16] imply, for
example, that a collection of k uniform i.i.d. random variables on the unit sphere
in RN contains the origin with probability

PN,k = 1 − 2−k+1
N−1∑
j=0

(
k − 1

j

)
.

In particular this yields PN,2N = 1/2.

3. Outline of the cubature algorithm. We describe the cubature method
developed by Lyons and Victoir [12]. Throughout the paper, C is a constant
that may change from line to line; specific constants, however, will be indexed
C1,C2, . . . . Let C∞

b (RN,RN) denote the smooth bounded RN valued functions
whose derivatives of any order are bounded. Then Vi ∈ C∞

b (RN,RN),0 ≤ i ≤ d ,
may be regarded as vector fields on RN . We define a partial differential operator
L = V0 + 1

2(V 2
1 +· · ·+V 2

d ) and consider the following parabolic partial differential
equation (PDE)

∂u

∂t
(t, x) = −Lu(t, x),

(4)
u(T , x) = f (x)

for a given Lipschitz function f . The aim is to find an approximation of u(0, x)

for a given x. Consider the probability space (C0
0([0, T ],Rd), F ,P), where

C0
0([0, T ],Rd) is the space of Rd valued continuous functions starting at 0, F

its usual Borel σ -field and P the Wiener measure. Define the coordinate map-
ping process Bi

t (ω) = ωi(t) for t ∈ [0, T ], ω ∈ �. Under Wiener measure, B =
(B1

t , . . . ,Bd
t ) is a Brownian motion starting at zero. Furthermore, let B0

t (t) = t . Let
ξt,x , t ∈ [0, T ], x ∈ RN be a version of the solution of the Stratonovich stochastic
differential equation (SDE)

dξt,x =
d∑

i=0

Vi(ξt,x) ◦ dBi
t , ξ0,x = x,(5)

that coincides with the pathwise solution on continuous paths of bounded variation.
In this case, classical theory tells us that u(t, x) = E(f (ξT −t,x)) is the solution
to (4).

We define the Itô functional 
T,x :C0
0([0, T ],Rd) → RN by


T,x(ω) = ξT ,x(ω).(6)
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Denote by Rm[X1, . . . ,Xd ] the space of polynomials4 in d variables having degree
less or equal to m. Let μ be a positive Borel measure on Rd . A discrete measure μ̃

μ̃ =
n∑

i=1

λiδxi

with x1, . . . , xn contained in supp(μ) satisfies a cubature formula of degree m if
and only if for all polynomials P ∈ Rm[X1, . . . ,Xd ],∫

Rd
P (x)μ(dx) =

∫
Rd

P (x)μ̃(dx) =
n∑

i=1

λiP (xi).

It is well known that if all moments of μ up to degree m exist we can always
find such a measure with

card(supp(μ)) ≤ dim(Rm[X1, . . . ,Xd ]) + 1

(see, e.g., Bayer and Teichmann [1]). More generally we have the following
lemma, which we state without proof.

LEMMA 6. Let � be a polish space, F its Borel sets and μ a Borel proba-
bility measure on (�, F ). Let f1, . . . , fn be a finite sequence of real-valued Borel
measurable functions on the probability space (�, F ,μ) with E(|fi |) < ∞ for
1 ≤ i ≤ n. Moreover, suppose that D is a Borel set with μ(D) = 1. Then there
exist points w1, . . . ,wn+1 ∈ D and a discrete measure

μ̃ =
n+1∑
i=1

λiδwi

such that

Eμ(fi) = Eμ̃(fi)

for 1 ≤ i ≤ n.

In other words, μ admits a reduced measure μ̃P with respect to any finite set
P of integrable functions. In connection with the use of the Taylor formula, a cu-
bature measure provides an effective tool for integration over finite-dimensional
spaces.

One can formulate an analogous condition to identify cubature measures on
Wiener space. Here the role of polynomials is taken by iterated integrals of the
form ∫

0<t1<···<tk<T
◦dB

i1
t1

· · · ◦dB
ik
tk

.

4Any finite-dimensional space of integrable and continuous functions could be used to define cu-
bature. This extension can be helpful.
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We identify this iterated integral by the multi-index (i1, . . . , ik).
Define the set of all multi-indices A by

A =
∞⋃

k=0

{0, . . . , d}k

and let α = (α1, . . . , αk) ∈ A be a multi-index. Furthermore, we define a degree on
a multi-index α by ‖α‖ = k + card(j :αj = 0) and let

A(j) = {α ∈ A :‖α‖ ≤ j}.
Moreover, define A1 by A1 = A \ {∅, (0)} and let A1(j) = {α ∈ A1 :‖α‖ ≤ j}.

It follows from the scaling property of Brownian motion that∫
0<t1<···<tk<T

◦dB
α1
t1

· · · ◦dB
αk
tk

equals, in law,

T ‖α‖/2
∫

0<t1<···<tk<1
◦dB

α1
t1

· · · ◦dB
αk
tk

.(7)

DEFINITION 7. Fix a finite set of multi-indices Ã ⊆ A. We say that a discrete
measure QT assigning positive weights λ1, . . . , λn to paths

ω1, . . . ,ωn ∈ C0
0,bv([0, T ],Rd)

is a cubature measure if for all (i1, . . . , ik) ∈ Ã,

E

(∫
0<t1<···<tk<T

◦dB
i1
t1

· · · ◦dB
ik
tk

)
=

n∑
j=1

λj

∫
0<t1<···<tk<T

dω
i1
j (t1) · · ·dω

ik
j (tk),

where the expectation is taken under Wiener measure. If Ã = A(m) we say that

QT =
n∑

j=1

λjδωj

is cubature measure of degree m.

In [12], the authors show that one can always find a cubature measure supported
on, at most, card(Ã) continuous paths of bounded variation. More importantly,
they give an explicit construction of a degree 5 cubature formula with O(d3) paths
in its support.

Suppose paths ω1, . . . ,ωn and weights λi define a cubature measure for T = 1.
It follows immediately from (7) that the measure supported on paths ωT,i given by

ω
j
T,i = √

T ω
j
i (t/T ), j = 1, . . . , d,(8)
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and unchanged weights λi defines a cubature measure for general T . From now on
suppose that the measure Q := Q1 is a cubature measure of degree m.

The following proposition, taken from [12], is the key step in estimating the
error ET when one approximates the expectation of f (ξT ,x) under the Wiener
measure by its expectation against Q.

PROPOSITION 8.

ET := sup
x∈Rn

∣∣∣∣∣Ef (ξT,x) −
n∑

i=1

λif (
T,x(ωT,i))

∣∣∣∣∣
≤ C

m+2∑
j=m+1

T j/2 sup
(α1,...,αi)∈A(j)\A(j−1)

‖Vα1 · · ·Vαi
f ‖∞,

where C is a constant that only depends on d , m and Q1.

In general, the right-hand side of the inequality in Theorem 8 is not sufficient
to directly obtain a good error bound for the approximation of the expectation, in
particular if f is only assumed to be Lipschitz, the estimate appears useless. So,
instead of approximating

PT f (x) := E(f (ξT ,x))

in one step, one considers a partition D of the interval [0, T ]
t0 = 0 < t1 < · · · < tk = T

with sj = tj − tj−1 and solves the problem over each of the smaller subintervals
by applying the cubature method recursively. If τ and τ ′ are two path segments,
we denote their concatenation by τ ⊗ τ ′. For the approximation, we consider all
possible concatenations of cubature paths over the subintervals, that is, all paths of
the form ωs1,i1 ⊗ · · · ⊗ ωsk,ik . We define a corresponding probability measure ν by

ν =
n∑

i1,...,ik=1

λi1 · · ·λikδωs1,i1⊗···⊗ωsk,ik
.

The following theorem taken from Lyons and Victoir [12] is the main error esti-
mate for the iterated cubature method, which we in the following also refer to as
the Kusuoka–Lyons–Victoir (KLV) method.

THEOREM 9. The total error ED for the approximation

ED := sup
x∈RN

|PT f − Eν(f (ξT ,x))|

= sup
x∈RN

∣∣∣∣∣PT f (x) −
n∑

i1=1

· · ·
n∑

ik=1

λi1 · · ·λikf
(

T,x(ωs1,i1 ⊗ · · · ⊗ ωsk,ik )

)∣∣∣∣∣
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is bounded by

C1(T )‖∇f ‖∞
(
s

1/2
k +

m+1∑
j=m

k−1∑
i=1

s
(j+1)/2
i

(T − ti)j/2

)
,(9)

where C1(T ) is a constant independent of f and k, the number of time steps in the
partition of the time interval [0, T ].

To compute the expectation with respect to the measure ν exactly requires one
to solve

nk+1 − 1

n − 1

inhomogeneous ODEs (each corresponding to a path ωs1,i1 ⊗ · · · ⊗ ωsk,ik ) where
n denotes the number of paths in the support of the cubature measure Q and k the
number of subintervals in the partition. Hence, the number of ODEs to solve grows
exponentially in the number of iterations.

Following Kusuoka [7], we define for multi-indices α = (α1, . . . , αk), β =
(β1, . . . , βl) ∈ A a multiplication by

α ∗ β = (α1, . . . , αk, β1, . . . , βl).

We inductively define a family of vector fields indexed by A by taking

V[∅] = 0, V[i] = Vi, 0 ≤ i ≤ d,

V[α∗i] = [
V[α],Vi

]
, 0 ≤ i ≤ d,α ∈ A.

The main ingredients used when obtaining the bound (9) are Proposition 8 and
the following regularity result due to Kusuoka and Stroock [8] and Kusuoka [7],
which says that even if f is not smooth, Psf is smooth in the directions of the
vector fields Vi . Let f be Lipschitz and α1, . . . , αk ∈ A1, then for all t ∈ (0,1],

∥∥V[α1] · · ·V[αk]Ptf
∥∥∞ ≤ Ct1/2

t (‖α1‖+···+‖αk‖)/2 ‖∇f ‖∞(10)

provided the vector fields satisfy the UFG condition defined below.
Following Kusuoka [7] we introduce a condition on the vector fields.

DEFINITION 10. The family of vector fields Vi , i = 0, . . . , d , is said to satisfy
the condition (UFG) if the Lie algebra generated by it is finitely generated as a
C∞

b left module, that is, there exists a positive k and uα,β ∈ C∞
b satisfying for all

α ∈ A1,

V[α] = ∑
β∈A1(k)

uα,βV[β].(11)
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The bounds for the error of the KLV method derived in Theorem 9 (see Lyons
and Victoir [12] for details) assume that the system of vector fields Vi , i = 0, . . . , d ,
satisfies the UFG condition.

DEFINITION 11. We define the (formal) degree of a vector field V[α], α ∈ A,
denoted by dα to be the minimal integer k such that V[α] may be written as

V[α] = ∑
β∈A1(k)

uα,βV[β]

with uα,β ∈ C∞
b .

Note that for α ∈ A1 we always have dα ≤ ‖α‖. It was pointed out in Crisan
and Ghazali [4] that the analysis in Lyons and Victoir [12] for the bound in (9)
requires V0 to have formal degree at most 2. If the formal degree of V0 is greater,
the bound in (12) changes and all bounds in the paper will change accordingly. For
sake of simplicity we will in the following assume that V0 has formal degree 2. The
bounds can be improved in an obvious way if the degree is 1 or 0. For a generalized
error estimate based on Kusuoka’s ideas [6] that does not require this additional
condition, see Litterer [9].

A trivial generalization of Corollary 18 in Crisan and Ghazali [4] allows us to
state a version of the Kusuoka and Stroock estimate in terms of the formal degree
of a vector field. Let f be as above and α1, . . . , αk ∈ A then for all t ∈ (0,1]

∥∥V[α1] · · ·V[αk]Ptf
∥∥∞ ≤ Ct1/2

t (dα1+···+dαk
)/2 ‖∇f ‖∞.(12)

For the remainder of the paper, when we consider recombination, we are going to
assume the following uniform Hörmander condition.

DEFINITION 12. We say that a collection of smooth vector fields Vi , i =
0, . . . , d , satisfies the uniform Hörmander condition (UH) if there is an integer
p such that

inf
{ ∑

α∈A1(p)

〈
V[α](x), ξ

〉2;x, ξ ∈ RN, |ξ | = 1
}

:= M > 0.

Note that the uniform Hörmander condition implies the UFG condition. Under
this stronger assumption it is straightforward to show that, in addition, Ptf is a
smooth function on RN with explicit bounds on its derivatives. We outline an ar-
gument below that follows Kusuoka [7] and gives bounds on the regularity of Ptf ,
which we will use in the following section when we apply recombination to the
cubature method.
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Following Kusuoka [7], let F(x) ∈ C∞
b (RN ;RN ⊗ RN) be given by

F(x) = ∑
α∈A1(p)

V[α](x) ⊗ V[α](x), x ∈ RN,

and λ0 :RN → [0,∞) be the continuous function

λ0(x) = inf{〈F(x)y, y〉;y ∈ RN, |y| = 1}, x ∈ RN.

Note that

〈F(x)y, y〉 = ∑
α∈A1(p)

〈
V[α](x), y

〉2
and hence, under the Hörmander condition (UH), we have λ0(x) ≥ M > 0 for all
x ∈ RN . As in Kusuoka [7], let ei = {δij }N1 and aα,i :RN → R, α ∈ A1(p), i =
1, . . . ,N , be given by

aα,i(x) = 〈
ei,F (x)−1V[α](x)

〉
, x ∈ RN,(13)

and observe that
∂

∂xi

= ∑
α∈A1(p)

aα,iV[α].(14)

The following lemma may be found in Kusuoka [7], page 274.

LEMMA 13. Let α ∈ A1(p), i, i1, . . . , ik ∈ {1, . . . ,N}. Then aα,i defined as in
(13) satisfies∣∣∣∣ ∂k

∂xi1 · · · ∂xik

aα,i(x)

∣∣∣∣ ≤ CNλ0(x)−(k+1) ≤ CN max
(
M−(k+1),1

)
(15)

for all x in RN .

The lemma shows that the functions aα,i are in C∞
b (RN). Together with (14)

this immediately implies that the vector fields ∂
∂xi

, i = 1, . . . ,N , have finite formal
degree no greater than p. Just like identity (12), the following corollary is a trivial
generalization of Corollary 18 in [4], the result is also implicit in Kusuoka [7],
Proposition 14.

COROLLARY 14. Suppose the vector fields (Vi, i = 0, . . . , d) satisfy the uni-
form Hörmander condition. Then for any j ≥ 1 there is a constant C2 > 0 inde-
pendent of f and t such that

sup
i1,...,ij∈{1,...,N}

∥∥∥∥ ∂

∂xi1

· · · ∂

∂xij

Ptf

∥∥∥∥∞
≤ C2t

−(j−1)p/2‖∇f ‖∞

for all t ∈ (0,1], f ∈ C∞
b (RN).

We point out that the constant C2 does (via the constant M in the Hörmander
condition) depend on the underlying family of vector fields Vi .
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4. Application to cubature on Wiener space.

4.1. The reduction operation. In the iterated KLV method (Section 3), the to-
tal error ED over the interval of approximation [0, T ] is bounded by the sum of
the individual errors Esi over smaller time intervals. The KLV method is sequen-
tial. Starting with a unit mass particle at a single point in space time, the measures
evolve through time by replacing each particle at time ti with a family of parti-
cles at time ti+1. Together these new particles have the same mass as their parent
particle and are carefully positioned to provide a high order approximation to the
diffusion of the underlying SDE. The algorithms introduced in Section 2 can be
used very effectively to perform a global redistribution of the mass on the particles
alive at time ti so that an essentially minimal number of particles has positive mass.
At the same time we do not increase the one step errors Esi significantly or affect
the order of the approximation. In this way we obtain (see Section 4.2) a global
error bound over [0, T ] for this algorithm that is of the same order (in the number
of time steps) as the unmodified KLV method. On the other hand, the blow up in
the number of particles is radically reduced.

The property of the intermediate measures we are targeting is to integrate Ptf

correctly. To approximate the integral of a smooth function such as Ptf with re-
spect to a discrete measure, we need to find uniform functional approximation
schemes that apply to smooth functions on the support of this measure. By defini-
tion, smooth functions can always be well approximated on balls by polynomials.
However, only after one has set a fixed error bound ε and a degree for the poly-
nomials, the size of the balls on which the approximation holds becomes clear.
The main idea will be to localize the intermediate particle measures Q into mea-
sures Qi , where each Qi has its support in such a good ball. We then replace
(using the algorithms of Section 2) the measures Qi by reduced measures Q̃i that
integrate polynomial test functions of degree at most r correctly. In that way one
knows that for a smooth function g∑

i

∫
g dQ̃i

is a good approximation to
∫

g dQ. We subsequently prove that we can choose the
localization of the measure Q in a way that ensures that we increase the overall
bound on the error of the approximation only by a constant factor and examine
how well we can cover the support of the intermediate measures Q by balls for the
localization.

A main idea for estimating ε is to consider Taylor expansions of the function
Ptf . We define p to be the minimal integer k such that the vector fields {Vα,α ∈
A1(k)} uniformly span RN at each point of x ∈ RN (as in the UH condition). For
g a smooth function on RN let dg :RN → Hom(RN,R) denote the full derivative
of g. The second order derivative d2g is then mapping

RN → Hom(RN,Hom(RN,R)) ∼= Hom(RN ⊗ RN,R).
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The higher order derivatives can similarly be regarded as sections of

Hom((RN)⊗k,R).

We define the r th degree Taylor approximation of g centered at x0 ∈ RN to be

T ayr(g, x0)(y) =
r∑

i=0

(dig)(x0)
(y − x0)

⊗i

i!(16)

and the remainder Rr(g, x0)(y) by

Rr(g, x0)(y) = g(y) − T ayr(g, x0)(y).

It is clear that the r th degree Taylor approximation centered at x0 is a polynomial
of degree at most r . Given u > 0 and y ∈ RN let B(y,u) denote the Euclidean ball
of radius u > 0 centered at y. Our estimate for the remainder of the polynomial
approximation is the following.

LEMMA 15. Let t ∈ (0,1]. The remainder function Rr(Ptf, x0)(y) is uni-
formly bounded on B(x0, u), that is,

∥∥Rr(Ptf, x0)|B(x0,u)

∥∥∞ ≤ C4
ur+1

t rp/2 ‖∇f ‖∞,

where C4 = C2C3 is a constant independent of f , u and t .

PROOF. By Taylor’s theorem we have for y ∈ B(x0, u)

|Rr(Ptf, x0)(y)| ≤ ‖dr+1g‖∞
(r + 1)! ‖y − x0‖r+1

and we note that

‖dr+1g‖∞ ≤ C3(r,N) sup
i1+···+iN=r+1

∥∥∥∥ ∂i1

∂x
i1
1

· · · ∂iN

∂x
iN
N

Ptf (y)

∥∥∥∥∞

for some constant C3 that only depends on r and N . From Corollary 14 we see
that

sup
i1+···+iN=r+1

∥∥∥∥ ∂i1

∂x
i1
1

· · · ∂iN

∂x
iN
N

Ptf

∥∥∥∥∞
≤ C2t

−rp/2‖∇f ‖∞,

where C2 is the constant from Corollary 14 and the claim follows. �

The bound on the remainder of the Taylor expansion of Ptf implies that cuba-
ture measures which integrate polynomials up to degree r correctly provide good
approximations provided the support of the measure we are targeting is contained
in a sufficiently small patch.
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PROPOSITION 16. Suppose the uniform Hörmander condition is satisfied.
Let t ∈ (0,1] and μ be a positive measure on RN with finite mass v satisfying
supp(μ) ⊆ B(x0, u) for some u > 0, x0 ∈ RN . Suppose a measure μ̃ is a degree r

cubature measure for μ (a reduced measure with respect to μ and the polynomials
of degree at most r). Then

|EμPtf − Eμ̃Ptf | ≤ C4v
ur+1

t rp/2 ‖∇f ‖∞,

where C4 is the constant from Lemma 15 and independent of t , f, x0 and u.

PROOF. We have

EμPtf − Eμ̃Ptf = (Eμ − Eμ̃)(T ayr(Ptf, x0))

+ EμRr(Ptf, x0) − Eμ̃Rr(Ptf, x0).

Since μ̃ is a cubature measure and integrates polynomials of degree at most r cor-
rectly, the first term of the sum vanishes. Lemma 15 gives us the required bounds
on the remaining terms. �

Let μ be a discrete probability measure on RN and (Uj )
�
j=1 be a collection of

balls of radius u on RN that covers the support of μ. Then there exists a collec-
tion of positive measures μj , 1 ≤ j ≤ � such that μi ⊥ μj for all i �= j (i.e., the
measures have disjoint support),

μ =
�∑

i=1

μi

and supp(μj ) ⊆ Uj ∩ supp(μ). We call such a collection (Uj ,μj ) a localization
of μ to the cover (Uj )

�
j=1 and say u is the radius of the localization.

DEFINITION 17. We say that a measure μ̃ is a reduced measure with respect
to the localization (Uj ,μj )

�
j=1 and a finite set of integrable test functions P if

there exists a localization (Uj , μ̃j )
�
j=1 of μ̃ such that for 1 ≤ j ≤ � the measures

μ̃j are reduced measures (see Definition 1) with respect to μj and P .

Note that the localization of the reduced measure μ̃ is with respect to the same
cover as the original measure μ. It is trivial to show that reduced measures μ̃ exist
for any localization (Uj ,μj )

�
j=1 of a discrete probability measure μ and any finite

set of integrable test functions P . Moreover, the number of particles in the support
of μ̃ is bounded above by (card(P )+1)�. The following corollary is an immediate
consequence of Proposition 16. Let P in the following be a basis for the space of
polynomials on RN with degree at most r .
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COROLLARY 18. Let t < 1, μ be a discrete probability measure on RN and
(Uj ,μj )

�
j=1 a localization of radius u. If μ̃ is a reduced measure with respect to

(Uj ,μj )
�
j=1 and P , we have

|EμPtf − Eμ̃Ptf | ≤ C4
ur+1

t rp/2 ‖∇f ‖∞,

where C4 is the constant from Lemma 15 and independent of t , f , u and the local-
ization of radius u.

We define the Kusuoka–Lyons–Victoir transition (KLV) over a specified time
interval [0, s], based on the cubature on Wiener space approach and already used
in the iterative method in Section 3. The transition KLV takes discrete measures on
RN to discrete measure on RN and may be interpreted as a discrete Markov kernel.
Given a measure μ = ∑l

i=1 μiδxi
on RN the new measure is obtained by solving

differential equations along any path in the support of the cubature measure

n∑
i=1

λiδωi

starting from any particle in the support of μ. We define

KLV(μ, s) =
l∑

j=1

n∑
i=1

μjλiδ
s,xj
(ωi).

We are ready to consider recombination for the iterated KLV method. Let D be
a k step partition t0 = 0 < t1 < · · · < tk = T of [0, T ] the global time interval of
the approximation and recall that sj = tj − tj−1. We also let u = (u2, . . . , uk−1) ∈
Rk−2 where each uj > 0. Let P be a basis for the space of polynomials on RN

with degree at most r . For each time step sj we first apply the KLV method to
move particles forward in time to a measure Q. We then localize the measure Q

and use the algorithm of Section 2 to compute a reduced measure with respect to
the localized measure and replace Q by this reduced measure. The uj determine
the radius of the balls in the localization of the measure in the j th iteration of the
method. The polynomials in P serve as the test function in the reduction.

More precisely, we define two interrelated families Q
(i)
D,u(x) and Q̃

(i)
D,x(x) of

measures. As base case we have the measures obtained by applying twice the KLV
operation starting from the point mass at x.

Q
(1)
D,u(x) := KLV(δx, s1), Q

(2)
D,u(x) := KLV

(
Q

(1)
D,u(x), s2

)
.(17)

For the recursion, the measure Q̃
(i)
D,u(x) is defined to be a reduced measure with

respect to any fixed localization (Uj ,Q
(i)
D,u(x)j ) of the measure Q

(i)
D,u(x) with ra-

dius uj and the set of test functions P (polynomials of degree at most r). We define
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Q
(i+1)
D,u (x) by the relation

Q
(i+1)
D,u (x) := KLV

(
Q̃

(i)
D,u(x), si+1

)
(18)

for all i = 2, . . . , k −1. Note that we do not recombine after the first and last appli-
cation of the KLV operation. The reduced measures Q̃

(i)
D,u(x) are not unique even

after we fix a localization of Q
(i)
D,u(x) and a reduced measure may be computed

using the reduction algorithms of Section 2.
The main result of the section is the following theorem.

THEOREM 19. For any choice of localizations (Uj ,Q
(i)
D,u(x)j ) with radius

ui and any reduced measures Q̃
(i)
D,u(x) with respect to (Uj ,Q

(i)
D,u(x)j ) and test

functions P , 2 ≤ i ≤ k − 1, we have

ED,k := sup
x

∣∣PT f (x) − E
Q

(k)
D,u

(x)
f

∣∣

≤
(
C1(T )

(
s

1/2
k +

k−1∑
i=1

m+1∑
j=m

s
(j+1)/2
i

(T − ti)j/2

)
(19)

+ C5(T )

k−1∑
i=2

ur+1
i

(T − ti)rp/2

)
‖∇f ‖∞,

where C1(T ) and C5(T ) are constants independent of f and the choice localiza-
tions with radius ui . The constant C5(T ) can be taken equal to C4 if T − t1 ≤ 1.

PROOF. The global error is bounded by∣∣PT f (x) − E
Q

(k)
D,u

(x)
f

∣∣ ≤ ∣∣PT f (x) − E
Q

(1)
D,u

(x)
PT −t1f

∣∣
+ ∣∣E

Q
(1)
D,u

(x)
PT −t1f − E

Q
(2)
D,u

(x)
PT −t2f

∣∣

+
k−1∑
j=2

∣∣E
Q

(j)

D,u
(x)

PT −tj f − E
Q̃

(j)

D,u
(x)

PT −tj f
∣∣

+
k−1∑
j=2

∣∣E
Q̃

(j)

D,u
(x)

PT −tj f − E
Q

(j+1)

D,u
(x)

PT −tj+1f
∣∣.

The first two terms and the terms in the second sum are the errors introduced by
the KLV operation and can be bounded as in the proof of Theorem 9.

The terms in the first sum may each be bounded by using Corollary 18. �

The bounds for the error derived in this section assume that the function f is
Lipschitz. If f has more regularity, it is clear different estimates can be applied
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to estimate the derivatives of Ptf giving alternate bounds for ED,k . Clearly, a
smaller number of balls in the localizations of the measures Q

(j)
D,u(x) reduces the

computational complexity of the method. We have not discussed yet how to choose
the localization and the degree r in the reduction to optimize the computational
complexity of the method (see Section 4.3).

4.2. Examples for the rate of convergence of the recombining KLV method. In
this subsection we consider some particular choices of parameters for the recom-
bining KLV method and examine their rate of convergence. We first fix for the
remainder of this section (a family of) partitions D for the time interval [0, T ]. We
recall a family of uneven partitions from Lyons and Victoir [12] which has smaller
time steps toward the end and is given by

tj = T

(
1 −

(
1 − j

k

)γ )
.(20)

For γ > m − 1 the results in [12] (see also Kusuoka [6]) show that

s
1/2
k +

k−1∑
i=1

m+1∑
j=m

s
(j+1)/2
i

(T − ti)j/2 ≤ C6(m,γ )T 1/2k−(m−1)/2,(21)

while for the case 0 < γ < m − 1 one obtains

s
1/2
k +

k−1∑
i=1

m+1∑
j=m

s
(j+1)/2
i

(T − ti)j/2 ≤ C7(m,γ )T 1/2k−γ /2.

In the following two examples we work with the partition defined in (20) and the
notation of Theorem 19. Using this particular choice of partitions ensures that the
bound on the KLV error is of high order in the number of iterations k.

EXAMPLE 20. Let γ > m − 1, r = 
m/p� and uj = s
p/2−a
j , where a :=

p−1
2(
m/p�+1)

≥ 0. Then

sup
x

∣∣PT f (x) − E
Q

(k)
D,u

(x)
f

∣∣

≤
(
C1(T )

(
s

1/2
k +

k−1∑
i=1

m+1∑
j=m

s
(j+1)/2
i

(T − ti)j/2

)

(22)

+ C5(T )

k−1∑
i=2

s
(
m/p�p+1)/2
i

(T − ti)
m/p�p/2

)
‖∇f ‖

≤ C8k
−(m−1)/2T 1/2‖∇f ‖∞,

where C8 = C6(m,γ )(C1(T ) + C5(T )).
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Note that 0 ≤ p/2 − a ≤ p/2 for all positive integers p and m and that for
sj ≤ 1 we have uj ≥ s

p/2
j . In the next example we choose the radius of the balls

in the reduction operation such that at each step in the iteration the bound on the
recombination error matches the bound on the KLV error.

EXAMPLE 21. Let γ > m − 1,m = r , that is, the degree of the polynomi-
als used in the reduction operation equals the degree of the cubature in the KLV
method. Let uj , j = 2, . . . , k − 1 be given by

uj =
( sm+1

j

(T − tj )m−rp

)1/(2(r+1))

.

Then

sup
x

∣∣PT f (x) − E
Q

(k)
D,u

(x)
f

∣∣

≤
(
C1(T )

(
s

1/2
k +

k−1∑
i=1

m+1∑
j=m

s
(j+1)/2
i

(T − ti)j/2

)

(23)

+ C5(T )

k−1∑
i=2

s
(m+1)/2
i

(T − ti)m/2

)
‖∇f ‖

≤ C9k
−(m−1)/2T 1/2‖∇f ‖∞,

where C9 = C6(m,γ )(C1(T ) + C5(T )).

As before, if T − t1 < 1, the constants C8 and C9 can be taken to be
C6(m,γ )(C1(1) + C4). The parameters chosen in the above examples guarantee
high order convergence, but are not necessarily computationally optimal. In the
following section we examine how, for a fixed error ε, the choice of r and u can
be varied to be closer to the optimal computational effort in the recombination
operation.

4.3. An optimization. This paper establishes stable higher order particle ap-
proximation methods where the computational effort involved grows polynomially
with the number of time steps when the number of steps is large and the underlying
system remains compact (see Section 4.4). In concrete examples, an optimization
of the different aspects of this algorithm, under the constraint of fixed total error,
leads to even more effective approaches; although we expect that different prob-
lems would benefit from different distributions of the computational effort. For
example, there is a trade-off between the degree of the polynomials that are used
as test functions and the size of the balls used to define the localization of the mea-
sure for the recombination (smaller patches if we use higher degree polynomials
in the test functions and we fix the error of the approximation).
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Specifically, suppose we are given a discrete measure μ and the property we
care about is the integral of μ against a smooth function g. As in our application to
the KLV method we consider a reduced measure μ̃ (Definition 1) with respect to
the polynomials of degree at most r and a localization of μ with radius at most δ.
The number of balls of radius δ required to cover the support of μ is at most
of order (D

δ
)N , where D is the diameter of supp(μ). Let ε be the error of the

approximation of
∫

g dμ by
∫

g dμ̃.
Note that

ε = δr+1cr+1

(r + 1)!
for some cr+1 ≤ ∑

i1+···+iN=r+1‖ ∂i1

∂x
i1
1

· · · ∂iN

∂x
iN
N

g‖∞. Fixing the error ε gives a sim-

ple relation for δ and r

δ =
(

ε(r + 1)!
cr+1

)1/(r+1)

.(24)

Let n̂ be the number of particles in the support of μ. The computational complexity
of the recombination operation as a function of δ, n̂ and r is at most of order(

D

δ

)N (
r + N

N

)4
log n̂ + n̂

(
r + N

N

)

which may be optimized subject to the constraint (24).
Note that in our application to cubature on Wiener, μ corresponds to Q

(j)
D,u(x)

and the function g is given by PT −tj f . The calculation above also allows us to
decide after each step of the iteration if it is of computational benefit to carry out a
(full) recombination operation.

4.4. Simple bounds on the number of test functions; covering the support of
the particle measures. In this section we obtain upper bounds for the number of
ODEs required to solve in the recombining KLV method with k iterations. For this,
it is sufficient to bound the number of balls in the cover of the localizations of the
particle measures uniformly for all k iterations. We first find a large ball B(x,ρ)

that covers supp(Q
(j)
D,u(x)), j = 1, . . . , k−1, and then estimate the number of balls

that are required to cover B(x,ρ). The balls in the covers of the localizations will
have to be sufficiently small to preserve the high order accuracy of the method.
We can show that under the assumption that the vector fields Vi are bounded and
satisfy the UH condition, we have a high order method and the computational
complexity is polynomial in k the number of iterations. Similar results can be
obtained if the underlying system remains compact.

The following theorem demonstrates that we can achieve the same rate of con-
vergence in the number of iterations k as in Kusuoka’s algorithm and the vanilla
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KLV method, but control the complexity of the method by an explicit polynomial
in k. This compares to exponential growth in the vanilla KLV method without
recombination, which despite its exponential growth leads to numerically highly
effective algorithms (see, e.g., Ninomiya and Victoir [14]). The estimates in this
section are not designed to be optimal and can be improved. Closer to optimal
choices for the radius ui and degree r in the reduction operation have been dis-
cussed in Section 4.3 and may be used to decide if it is computationally efficient
to recombine the particle measure at time ti .

THEOREM 22. Suppose the uniform Hörmander condition is satisfied and the
vector fields Vi are uniformly bounded by some constant M ′ > 0. We can achieve

ED,k = sup
x∈RN

∣∣PT f (x) − E
Q

(k)
D,u

(x)
f

∣∣ ≤ C8k
−(m−1)/2T 1/2‖∇f ‖∞,(25)

while the number of test functions in the reduction operation, and hence the num-
ber of elementary ODEs to solve grows polynomially in k.

PROOF. Let m > 0 be the degree of the cubature in the KLV method. Fix the
partition D to (20) for some γ > m − 1. As in Example 20, let r = 
m/p� and
uj = s

p/2−a
j , a = p−1

2(
m/p�+1)
≥ 0 in the reduction operation. We note that the error

ED,k satisfies (25) and it remains to show that the number of particles in support of
the measures Q

(k)
D,u(x) grows polynomially in k, which is equivalent to the number

of balls in the localizations growing polynomially in k.
Note that if ω ∈ C0

0([0,1],Rd) is a continuous path of bounded variation of
length L, we have

|x − 
1,x(ω)| ≤ M ′L,

where 
 is the Itô functional defined in (6), that is, 
1,x(ω) is the point we obtain
by solving the equation (5) along the path ω starting at x. Let L be given by
L = maxi=1,...,nlength(ωi), the maximum of the lengths of the paths in the support
of the degree m cubature formula on Wiener space over the unit time interval.
Observe that by construction any particle in the support of Q

(j)
D,u(x) [compare the

definition of the measures in (18)] may be written as


∑j
i=1 si ,x

(ωs1,i1 ⊗ · · · ⊗ ωsj ,ij )

some i1, . . . , ij ∈ {1, . . . , n}, the ωs,i are the rescaled paths defined in (8) and ⊗
denotes to the concatenation of paths. For k sufficiently large we may assume
si < 1 and we deduce that

supp
(
Q

(j)
D,u(x)

) ⊆ B

(
x,M ′L

j∑
i=1

s
1/2
i

)
⊆ B(x,M ′LkT 1/2).
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In the reduction operations we consider a basis of the polynomials of degree at
most 
m/p� and the measure is localized by balls of radius uj which need to cover

supp(Q
(j)
D,u(x)). For sj < 1, that is, for k sufficiently large, we have uj ≥ s

p/2
j and

for our uneven family of partitions minj=2,...,k−1 s
p/2
j < s

p/2
k = (T /kγ )p/2. Thus,

the number of particles in each of the reduced measures is uniformly bounded
above by

(
m/p�+N
N

)
times the number of balls of radius (T /kγ )p/2 required to

cover the ball B(x,M ′LkT 1/2) in N -dimensional space, which is a polynomial of
degree at most N(γp/2 + 1) in k. �

Similarly, we can derive a result analogous to Theorem 22 if the underlying
system remains compact.

APPENDIX: A NUMERICAL TOY EXAMPLE

We consider a linear one-dimensional problem. The boundary data is Lipschitz,
piecewise smooth, and the locations of the discontinuities in the derivatives are not
known to the program. The answer is required to high accuracy. In our test case
we applied the approximation method to the heat equation with boundary data

f (x) = max(1 − ex,0),

which corresponds to the calculation of a Black–Scholes put option at logarith-
mic scale. We considered a time horizon of T = 1 and various initial conditions
X0 ∈ [−4,4]. We set our goal to achieve an accuracy of 10−10. This example
is particularly suitable as a test example because the solution to the equation is
known in closed form in terms of well known special functions which can be used
to determine the precise error in the approximation.

We applied a modified form of the KLV method with recombination introduced
in this paper. For θ < 1 consider a geometrically converging partition of the unit
time interval given by

1 − tj = (1 − θ)(1 − tj−1), j = 1, . . . , k − 1,

t0 = 0 and tk = 1. Note that the length of the time steps sj in the partition is
given by sj = θ(1 − tj−1). In our particular example we chose θ to be 0.4. To
achieve the required accuracy we used a 15 point Gaussian quadrature which we
had previously computed to high accuracy. For the heat equation, the particles
of the cubature approximation are given by the Gaussian quadrature and we do
not require to solve ODEs. As described in Section 4.1 we used polynomial test
functions of degree m and localized the support of intermediate particle measures
in the approximation. We then used a heuristic based on the information provided
by the W 1,1 norm of f to determine, as outlined in Section 4.3, the degree of
polynomial approximation that minimizes the computational complexity of the
overall reduction process subject to achieving the required accuracy.
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TABLE 1
Absolute error and computational effort for the approximation of u(x,1) for different values of x

X0 −4 −3 −2 −1

Absolute error ε 3.186E–11 1.01E–11 4.962E–11 1.2014E–10
Evaluations at the boundary 1,410,075 1,416,600 1,426,050 1,432,350
Particles 94,005 94,440 95,070 95,490

X0 0 1 2 3 4

ε 3.612E–11 4.173E–12 2.52E–11 5.47E–11 5.62E–12
Evaluations 1,430,775 1,425,600 1,424,700 1,417,725 1,418,175
Particles 95,385 95,040 94,980 94,515 94,545

In addition, we modified the algorithm to make use of the piecewise smooth
nature of the boundary data. The algorithm compares for each particle a two step
KLV with a one step KLV estimate to the boundary. If both approximates agree
to the error tolerance, the algorithm immediately leaps to the boundary. As the
required accuracy is close to machine precision, false positives are very unlikely.
Recombination is then performed on the remaining particles.

In order to achieve an accuracy of 10−10 we chose m = 8 and a radius for the lo-
calization that was proportional to

√
1 − t and covered the surviving measure with

approximately 13 nonempty components in the localization. The runtime of our
single threaded C++ code5 was between 0.5 and 0.6 s. The parameter restricting
the maximal depth of the approximation tree was set to 28. Table 1 and Figure 1
summarize the absolute error of the approximation, the number of reduced parti-
cles inside the domain and the total number of evaluations of the cubature at the
boundary for various values of X0. Note that the number of particles compares to
∼1527 internal particles for the vanilla cubature algorithm and even if combined
with a partial sampling scheme such as the tree based branching algorithm one
could not hope to compute an approximation to ten digit accuracy.

Even though the problem we have considered is merely a toy example, comput-
ing the solution to high accuracy with a vanilla off the shelf PDE solver appears to
be nontrivial. However, a fair comparison must involve at least adaptive methods;
we were afraid to do this ourselves as it would not carry much weight because we
do not have the computational expertise to get good outcomes from these packages.
So we were very grateful that our colleague Kathryn Gillow in Oxford was willing
to give it a quick spin on adaptive software she had developed with Endre Suli.

She says: “I’ve now tried a few approaches to solving your problem but can’t get
results even close to yours in terms of accuracy achieved in such a small amount of

5As measured on a Lenovo Thinkpad x201t notebook computer. We used intel mkl for the lapack
support and this might use omp internally.
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FIG. 1. Absolute error for the approximation of u(x,1) for different values of x.

CPU time. In all cases I’ve solved the heat equation on the spatial interval −9.9 <

x < 10.1 (so that with a coarse uniform mesh the point x = 0 was not a node). Then
to look at the error I have computed the solution at time 1 and for x integer between
−5 and 5 as you suggest. The first approach I took was to do an adaptive finite
element solution with the adaptivity geared toward getting an accurate solution at
time t = 1. The mesh can change at every timestep which is obviously less than
ideal as you then need to keep recomputing the matrices. The code is taking about
30 seconds and giving accuracy of between 10−4 and 10−7 depending on which
integer you look at. It actually turns out to be more efficient to do something a
bit more naive, namely, to adapt the mesh to resolve the initial condition well and
then use that mesh for the rest of the computation. As expected, this clusters the
nodes around x = 0 and the mesh is fairly coarse elsewhere. The advantage of
this is that you just solve the same matrix problem at every time-step. This speeds
things up a lot without degrading the accuracy for this problem. So here I’m getting
accuracy of between 10−4 and 10−6 in about 1 second. Then, finally, I gave Nick
Trefethen et al’s Matlab package Chebfun a go. In order to solve the heat equation
which exploits the fact that the problem is linear so you can write the solution at a
given time t as exp(t ∗ L)u0 where L is the spatial operator (including boundary
conditions) and u0 is the initial condition. It seems that Chebfun struggles when
u0 is not smooth and it actually turns out to be more efficient to compute the
solution at time t = 1 in two stages, namely, u(x, dt) = exp(dt ∗ L)u0, u(x,1) =
exp((1 − dt) ∗ L) ∗ u(x, dt). The best accuracy using this approach is 5 ∗ 10−6

taking 6.5 seconds. Chebfun does a lot better when you have smooth initial data.
Then it can solve the same type of problem in 0.1 s giving errors of 10−7.”

No doubt the approach we take tries to do less than that taken by our colleagues,
(it only computes the solution at the required points, etc.) and we have tried to pol-
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ish the code for our problem but still we find it encouraging evidence that this paper
is putting ideas together in a novel way. The linear algebra we do is numerically
really heavy, but it seems to pay.
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