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A NEW CHARACTERIZATION OF TALAGRAND’S
TRANSPORT-ENTROPY INEQUALITIES AND APPLICATIONS

BY NATHAEL GOZLAN, CYRIL ROBERTO1 AND PAUL-MARIE SAMSON

Université Paris-Est Marne-la-Vallée

We show that Talagrand’s transport inequality is equivalent to a restricted
logarithmic Sobolev inequality. This result clarifies the links between these
two important functional inequalities. As an application, we give the first
proof of the fact that Talagrand’s inequality is stable under bounded pertur-
bations.

1. Introduction. Talagrand’s transport inequality and the logarithmic Sobolev
inequality are known to share important features: they both hold for the Gaussian
measure in any dimension, they enjoy the tensorization property and they imply
Gaussian concentration results. We refer to [1, 15, 18, 30] for surveys about these
notions. Otto and Villani [25] proved that the logarithmic Sobolev inequality im-
plies, in full generality, Talagrand’s transport inequality (see also [5]) and under a
curvature condition, that the converse also holds (see also [14]). However, since
the work by Cattiaux and Guillin [8], it is known that the two inequalities are not
equivalent, in general.

In this paper, we prove that Talagrand’s transport inequality is actually equiv-
alent to some restricted form of the logarithmic Sobolev inequality. Our strategy
easily generalizes to other transport inequalities. As a byproduct, we obtain an el-
ementary and direct proof of the fact that transport inequalities can be perturbed
by bounded functions.

In order to present our main results, we need some definitions and notation.

1.1. Definitions and notation. In all what follows, c : Rk → R
+ is a differen-

tiable function such that c(0) = ∇c(0) = 0. Let μ and ν be two probability mea-
sures on R

k ; the optimal transport cost between ν and μ (with respect to the cost
function c) is defined by

Tc(ν,μ) := inf
π

{∫ ∫
c(x − y)dπ(x, y)

}
,

where the infimum is taken over all the probability measures π on R
k × R

k with
marginals ν and μ. Optimal transport costs are used in a wide class of problems,

Received December 2009; revised June 2010.
1Supported by the European Research Council through the “Advanced Grant” PTRELSS 228032.
MSC2010 subject classifications. 60E15, 60F10, 26D10.
Key words and phrases. Concentration of measure, transport inequalities, Hamilton–Jacobi equa-

tions, logarithmic-Sobolev inequalities.

857

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/10-AOP570
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


858 N. GOZLAN, C. ROBERTO AND P.-M. SAMSON

in statistics, probability and PDE theory, see [30]. Here, we shall focus on the
following transport inequality.

DEFINITION 1.1 [Transportation-cost inequality (Tc(C))]. A probability
measure μ on R

k satisfies (Tc(C)), with C > 0, if

Tc(ν,μ) ≤ CH(ν|μ) ∀ν ∈ P(Rk),(Tc(C))

where

H(ν|μ) =
⎧⎨
⎩

∫
log

dν

dμ
dν, if ν � μ,

+∞, otherwise,

is the relative entropy of ν with respect to μ and P(Rk) is the set of all probability
measures on R

k .

The inequality (Tc(C)) implies concentration results as shown by Marton [20],
see also [6, 18] and [15] for a full introduction to this notion.

The quadratic cost c(x) = |x|2/2 (where | · | stands for the Euclidean norm)
plays a special role. In this case, we write (T2(C)) and say that Talagrand’s trans-
port, or the quadratic transport, inequality is satisfied. Talagrand proved in [29],
among other results, that the standard Gaussian measure satisfies (T2(1)) in all di-
mensions. In turn, inequality (T2(C)) implies dimension free Gaussian concentra-
tion results. Recently, the first author showed that the converse is also true, namely
that a dimension free Gaussian concentration result implies (T2(C)) [14].

Now, we introduce the notion of restricted logarithmic Sobolev inequalities. To
that purpose, we need first to define K-semi-convex functions.

DEFINITION 1.2 (K-semi-convex function). A function f : Rk → R is K-
semi-convex (K ∈ R) for the cost function c if for all λ ∈ [0,1], and all x, y ∈ R

k

f
(
λx + (1 − λ)y

) ≤ λf (x) + (1 − λ)f (y) + λKc
(
(1 − λ)(y − x)

)
(1.3)

+ (1 − λ)Kc
(
λ(y − x)

)
.

As shown in Proposition 5.1 below, for differentiable functions, (1.3) is equiva-
lent to the condition

f (y) ≥ f (x) + ∇f (x) · (y − x) − Kc(y − x) ∀x, y ∈ R
k.

The reader might see the semi-convexity as an answer to the question: how far is
the function f from being convex? The quadratic case c(x) = 1

2 |x|2 is particularly
enlightening since a function f is K-semi-convex if and only if x 
→ f (x)+ K

2 |x|2
is convex. Note that the semi-convexity can be related to the notion of convexity-
defect, see, for example, [3] and references therein where it is largely discussed
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and used. Note also that our definition differs from others, such as [30], Defini-
tion 10.10, or [10], Lemma 3 in Chapter 3, page 130.

Dealing only with semi-convex functions leads to the following definition.

DEFINITION 1.3 [Restricted (modified) logarithmic Sobolev inequality]. A
probability measure μ on R

k verifies the restricted logarithmic Sobolev inequality
with constant C > 0, in short (rLSI(C)), if for all 0 ≤ K < 1

C
and all K-semi-

convex f : Rk → R,

Entμ(ef ) ≤ 2C

(1 − KC)2

∫
|∇f |2ef dμ,(rLSI(C))

where Entμ(g) := ∫
g logg dμ − ∫

g dμ log
∫

g dμ. More generally, a probability
measure μ on R

k verifies the restricted modified logarithmic Sobolev inequality
with constant C > 0 for the cost c, in short (rMLSI(c,C)), if for all K ≥ 0, η > 0
with η + K < 1/C and all K-semi-convex f : Rk → R for the cost c,

Entμ(ef ) ≤ η

1 − C(η + K)

∫
c∗

(∇f

η

)
ef dμ,(rMLSI(c,C))

where c∗(u) := suph∈Rk {u · h − c(h)} and u · h is the usual scalar product in R
k .

Note that (rMLSI(c,C)) reduces to (rLSI(C)) for c(x) = c∗(x) = 1
2 |x|2, opti-

mizing over η.
Without the restriction on the set of K-semi-convex functions, the first in-

equality corresponds to the usual logarithmic Sobolev inequality introduced by
Gross [16] (see also [27]). For the second one (without the restriction), we recog-
nize the modified logarithmic Sobolev inequalities introduced first by Bobkov and
Ledoux [7], with c∗(t) = 2|t |2/(1 − γ ) for |t | ≤ γ and c∗(t) = +∞ otherwise,
t ∈ R, in order to recover the celebrated result by Talagrand [28] on the concen-
tration phenomenon for products of exponential measures. Gentil, Guillin and Mi-
clo [11] established modified logarithmic Sobolev inequalities for products of the
probability measures dνp(t) = e−|t |p/Zp , t ∈ R and p ∈ (1,2), with c∗(t) that
compares to max(t2, |t |q) where q = p/(p − 1) ∈ (2,∞) is the dual exponent
of p. In a subsequent paper [12], they generalized their results to a large class
of measures with tails between exponential and Gaussian (see also [4] and [13]).
In [11], the authors also prove that the modified logarithmic Sobolev inequality
[without the restriction, and with c∗(t) that compares to max(t2, |t |q)] implies the
corresponding transport inequality (Tc(C)).

Our results below show that the functional inequalities (rMLSI(c, ·)) and
(Tc(·)) are equivalent (up to universal factors in the constants). To give a more
complete description of this equivalence, let us consider yet another type of loga-
rithmic Sobolev inequalities that we call inf-convolution logarithmic Sobolev in-
equality.
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DEFINITION 1.4 (Inf-convolution logarithmic Sobolev inequality). A proba-
bility measure μ on R

k verifies the inf-convolution logarithmic Sobolev inequal-
ity with constant C > 0, in short (ICLSI(c,C)), if for all λ ∈ (0,1/C) and all
f : Rk → R,

Entμ(ef ) ≤ 1

1 − λC

∫
(f − Qλf )ef dμ,(ICLSI(c,C))

where Qλf : Rk → R denotes the infimum-convolution of f :

Qλf (x) = inf
y∈Rk

{f (y) + λc(x − y)}.

1.2. Main results. Our first main result is the following.

THEOREM 1.5. Let α : R → R
+ be a convex symmetric function of class C1

such that α(0) = α′(0) = 0, α′ is concave on R
+. Define c(x) = ∑k

i=1 α(xi) and
let μ be a probability measure on R

k . The following propositions are equivalent:

(1) There exists C1 > 0 such that μ verifies the inequality (Tc(C1)).
(2) There exists C2 > 0 such that μ verifies the inequality (ICLSI(c,C2)).
(3) There exists C3 > 0 such that μ verifies the inequality (rMLSI(c,C3)).

The constants C1, C2 and C3 are related in the following way:

(1) ⇒ (2) ⇒ (3) with C1 = C2 = C3,

(3) ⇒ (1) with C1 = 8C3.

The typical example of function α satisfying the setting of Theorem 1.5 is a
smooth version of α(x) = min(x2, xp), with p ∈ [1,2].

The first part (1) ⇒ (2) ⇒ (3) actually holds in a more general setting (see
Theorem 2.1), it is proven in Section 2. Moreover, the inequality (ICLSI(c,C))
has a meaning even if R

k is replaced by an abstract metric space X. The proof
of the second part (3) ⇒ (1) is given in Section 3. It uses the Hamilton–Jacobi
approach of [5] based on explicit computations on the sup-convolution semi-group
(Hopf–Lax formula). An alternative proof of (3) ⇒ (1), with a worst constant,
is given in the subsequent Section 4 in the particular case of the quadratic cost
c(x) = |x|2/2. We believe that such an approach may lead to further developments
in the future and so that it is worth mentioning it.

In order to keep the arguments as clean as possible and to go straight to the
proofs, we decided to collect most of results on semi-convex functions, and most
of the technical lemmas, in an independent section (Section 5).

Finally, we present some extensions and comments in Section 6. We first give
an extension of our main Theorem 2.1 to Riemannian manifolds verifying a certain
curvature condition (see Theorem 6.6). Then, in Section 6.2, we show that other
types of logarithmic Sobolev inequalities can be derived from transport inequali-



A NEW CHARACTERIZATION OF TALAGRAND’S INEQUALITIES 861

ties (see Theorem 6.7). The last Section 6.3 is a discussion on the links between
Poincaré inequality and (restricted) modified logarithmic Sobolev inequality.

Let us end this Introduction with an important application of Theorem 1.5. It
is well known that many functional inequalities of Sobolev type are stable under
bounded perturbations. The first perturbation property of this type was established
by Holley and Stroock in [17] for the logarithmic Sobolev inequality.

THEOREM 1.6 (Holley–Stroock). Let μ be a probability measure verifying
the logarithmic Sobolev inequality with a constant C > 0 [LSI(C) for short]:

Entμ(f 2) ≤ C

∫
|∇f |2 dμ ∀f.

Let ϕ be a bounded function; then the probability measure dμ̃ = 1
Z

eϕ dμ verifies

LSI with the constant C̃ = eOsc(ϕ)C, where the oscillation of ϕ is defined by

Osc(ϕ) = supϕ − infϕ.

A longstanding open question was to establish such a property for transport
inequalities. We have even learned from Villani that this question was one of the
initial motivations behind the celebrated work [25]. The representation furnished
by Theorem 1.5 is the key that enables us to give the first bounded perturbation
property for transport inequalities. The following corollary is our second main
result.

COROLLARY 1.7. Let α be a convex symmetric function of class C1 such that
α(0) = α′(0) = 0, α′ is concave on R

+. Let c(x) = ∑k
i=1 α(xi) and μ be a proba-

bility measure on R
k . Assume that μ verifies (Tc(C)). Let ϕ : Rk → R be bounded

and define dμ̃(x) = 1
Z

eϕ(x) dμ(x), where Z is the normalization constant. Then μ̃

verifies (Tc(8CeOsc(ϕ))) where Osc(ϕ) = supϕ − infϕ.

PROOF. The proof below is a straightforward adaptation of the original proof
of Theorem 1.6. Using the following representation of the entropy

Entμ(g) = inf
t>0

{∫ (
g log

(
g

t

)
− g + t

)
dμ

}

with g = ef , we see that [since g log(
g
t
) − g + t ≥ 0]

Entμ̃(g) ≤ esupϕ

Z
Entμ(g).

From the first part of Theorem 1.5, it follows that for all K ≥ 0, η > 0, with η +
K < 1/C and all K-semi-convex functions f for the cost c,

Entμ̃(ef ) ≤ esupϕ

Z

η

1 − C(η + K)

∫
c∗

(∇f

η

)
ef dμ

≤ ηeOsc(ϕ)

1 − C(η + K)

∫
c∗

(∇f

η

)
ef dμ̃.
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Let u = eOsc(ϕ) and cu(x) := uc(x/u), x ∈ R
k . Let f be a K-semi-convex func-

tion for the cost cu. Since u ≥ 1 the convexity of α yields cu(x) ≤ c(x), x ∈ R
k .

Hence, f is a K-semi-convex function for the cost c. Observing that c∗
u(x) =

uc∗(x), x ∈ R
k , from the above inequality, it follows that μ̃ verifies the inequal-

ity (rMLSI(cu,C)). Then, the second part of Theorem 1.5 implies that μ̃ verifies
(Tcu(8C)). From point (i) of the technical Lemma 5.4, one has uc(x/u) ≥ c(x)/u

for u ≥ 1, x ∈ R
k . This inequality completes the proof. �

REMARK 1.8. After the preparation of this work, we have learned from
E. Milman that he has obtained in [23] new perturbation results for various func-
tional inequalities on a Riemannian manifold equipped with a probability measure
μ absolutely continuous with respect to the volume element. His results also cover
transport inequalities but are only true under an additional curvature assumption.
To be more precise, suppose that μ verifies say (T2(C)) and consider another prob-
ability measure of the form dμ̃(x) = e−V (x) dx such that

Ric + HessV ≥ −κ,

for some κ ≥ 0. Then if C > κ
2 and if μ and μ̃ are close in some sense to each other,

then μ̃ verifies (T2(C̃)) for some C̃ depending only on C, κ and on the “distance”
between μ and μ̃. Actually, the curvature assumption above makes possible to
go beyond the classical Holley–Stroock property and to work with measures μ̃

which are more serious perturbations of μ. Proofs of these results are based on
the remarkable equivalence between concentration and isoperimetric inequalities
under curvature bounded from below, discovered by Milman in [22].

2. From transport inequalities to restricted modified logarithmic Sobolev
inequalities. In this section, we prove the first part (1) ⇒ (2) ⇒ (3) of Theo-
rem 1.5. As mentioned in the Introduction, this implication holds in a more general
setting as we explain now.

Let X denote a Polish space equipped with the Borel σ -algebra. Then the op-
timal transport cost between two probability measures μ and ν on X, with cost
c :X × X → R

+ is

Tc(ν,μ) := inf
π

∫ ∫
c(x, y) dπ(x, y),

where the infimum is taken over all probability measures π on X × X with mar-
ginals ν and μ. Assume c is symmetric so that Tc(ν,μ) = Tc(μ, ν). The transport
inequality (Tc(C)) is defined accordingly as in Definition 1.1. For f :X → R and
λ > 0, the inf-convolution Qλf :X → R is given by

Qλf (x) = inf
y∈X

{f (y) + λc(x, y)}.

The first part of Theorem 1.5 will be a consequence of the following general result.
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THEOREM 2.1. Let c :X × X → R
+ be a symmetric continuous function. Let

μ be a probability measure on X satisfying (Tc(C)) for some C > 0. Then for all
functions f :X → R and all λ ∈ (0,1/C), it holds

Entμ(ef ) ≤ 1

1 − λC

∫
(f − Qλf )ef dμ.

Assume moreover that c(x, y) = c(x − y), x, y ∈ R
k , where c : Rk → R

+ is a dif-
ferentiable function such that c(0) = ∇c(0) = 0. Then μ verifies the inequality
(rMLSI(c,C)).

PROOF. Fix f :X → R, λ ∈ (0,1/C), and define dνf = ef∫
ef dμ

dμ. One has

H(νf |μ) =
∫

log
(

ef∫
ef dμ

)
ef∫

ef dμ
dμ =

∫
f dνf − log

∫
ef dμ

≤
∫

f dνf −
∫

f dμ,

where the last inequality comes from Jensen inequality. Consequently, if π is a
probability measure on X × X with marginals νf and μ

H(νf |μ) ≤
∫ ∫ (

f (x) − f (y)
)
dπ(x, y).

It follows from the definition of the inf-convolution function that f (x) − f (y) ≤
f (x) − Qλf (x) + λc(x, y), for all x, y ∈ X. Hence,

H(νf |μ) ≤
∫ ∫ (

f (x) − Qλf (x)
)
dπ(x, y) + λ

∫ ∫
c(x, y) dπ(x, y),

and optimizing over all π with marginals νf and μ

H(νf |μ) =
∫

(f − Qλf )dνf + λTc(νf ,μ)

≤ 1∫
ef dμ

dμ

∫
(f − Qλf )ef dμ + λCH(νf |μ).

The first part of Theorem 2.1 follows by noticing that (
∫

ef dμ)H(νf |μ) =
Entμ(ef ). Then the proof of Theorem 2.1 is completed by applying Lemma 2.2
below. �

LEMMA 2.2. Let c : Rk → R
+ be a differentiable function such that c(0) =

∇c(0) = 0 and define c∗(x) = supy{x · y − c(y)} ∈ R ∪ {+∞}, x ∈ R
k . Then, for

any K-semi-convex differentiable function f : Rk → R for the cost c, it holds

f (x) − QK+ηf (x) ≤ ηc∗
(
−∇f (x)

η

)
∀x ∈ R

k,∀η > 0.

PROOF. Fix a K-semi-convex differentiable function f : Rk → R. Also fix
x ∈ R

k and η > 0. By Proposition 5.1 and the Young inequality X · Y ≤ ηc∗(X
η
) +
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ηc(Y ), we have

f (x) − f (y) − Kc(y − x) ≤ −∇f (x) · (y − x) ≤ ηc∗
(
−∇f (x)

η

)
+ ηc(y − x).

Hence, for any y ∈ R
k ,

f (x) − f (y) − (K + η)c(y − x) ≤ ηc∗
(
−∇f (x)

η

)
.

This yields the expected result. �

3. From restricted modified logarithmic Sobolev inequalities to transport
inequalities—I: Hamilton–Jacobi approach. In this section, we prove the sec-
ond part (3) ⇒ (1) of Theorem 1.5. The proof is based on the approach of Bobkov,
Gentil and Ledoux [5], using the Hamilton–Jacobi equation. We will use the fol-
lowing notation: given a convex function α : R → R

+ with α(u) �= 0 for u �= 0, we
define

ωα(x) = sup
u>0

α(ux)

α(u)
∀x ∈ R.(3.1)

PROOF OF (3) ⇒ (1) OF THEOREM 1.5. Let f : Rk → R be a bounded con-
tinuous function. For x ∈ R

k and t ∈ (0,1), define

Ptf (x) = sup
y∈Rk

{
f (y) − tc

(
x − y

t

)}
.

It is well known that ut = Ptf verifies the following Hamilton–Jacobi equation
(see, e.g., [10]): for almost every x ∈ R

k and almost every t ∈ (0,+∞),{
∂tut (x) = c∗(−∇ut(x)),

u0 = f.

To avoid lengthy technical arguments, we assume in the sequel that Ptf is contin-
uously differentiable in space and time and that the equation above holds for all t

and x. We refer to [19], proof of Theorem 1.8, or [30], proof of Theorem 22.17,
for a complete treatment of the problems arising from the nonsmoothness of Ptf .
Defining Z(t) = ∫

e(t)P1−t f dμ, where  is a smooth nonnegative function on R
+

with (0) = 0 that will be chosen later, one gets

Z′(t) =
∫ (

′(t)P1−t f + (t)
∂

∂t
P1−t f

)
e(t)P1−t f dμ

=
∫

′(t)P1−t f e(t)P1−t f dμ − (t)

∫
c∗(∇P1−t f )e(t)P1−t f dμ.

On the other hand,

Entμ
(
e(t)P1−t f

) = (t)

∫
P1−t f e(t)P1−t f dμ − Z(t) logZ(t).
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Therefore provided ′(t) �= 0,

Entμ
(
e(t)P1−t f

) = (t)

′(t)
Z′(t) − Z(t) logZ(t)

(3.2)

+ (t)2

′(t)

∫
c∗(∇P1−t f )e(t)P1−t f dμ.

By Lemma 5.3 [with A = (t)(1− t) and B = 1− t], the function g = (t)P1−t f is
K(t) semi-convex for the cost function c(x) = ∑k

i=1 α(xi), x ∈ R
k , where K(t) =

4(t)(1 − t)ωα( 1
2(1−t)

). Hence, we can apply the restricted logarithmic Sobolev

inequality to get that for any η > 0, any t ∈ (0,1) such that K(t) + η < 1/C3,2

Entμ
(
e(t)P1−t f

) ≤ η

1 − (K(t) + η)C3

∫
c∗

(
(t)∇P1−t f

η

)
e(t)P1−t f dμ

≤ ηωα∗((t)/η)

1 − (K(t) + η)C3

∫
c∗(∇P1−t f )e(t)P1−t f dμ,

since c∗(x) = ∑k
i=1 α∗(xi), x ∈ R

k . Combining this bound with (3.2) leads to

(t)

′(t)
Z′(t) − Z(t) logZ(t)

≤
(

ηωα∗((t)/η)

1 − (K(t) + η)C3
− (t)2

′(t)

)∫
c∗(∇P1−t f )e(t)P1−t f dμ.

Our aim is to choose the various parameters so that to have the right-hand side of
the latter inequality nonpositive. We will make sure to choose  so that (t)/η < 1;

then by Lemma 5.4 below K(t) ≤ (t)/(1 − t) and ωα∗((t)
η

) ≤ 2(t)

η2 . Setting v =
1 − C3η, one has 0 < v < 1,

C3
(
K(t) + η

) ≤ (1 − v)

(
(t)

η(1 − t)
+ 1

)
(3.3)

and
(

ηωα∗((t)/η)

1 − (K(t) + η)C3
− (t)2

′(t)

)

(3.4)

≤ 2(t)

(
1

ηv − (1 − v)(t)/(1 − t)
− 1

′(t)

)
.

We choose (t) = η((1− t)1−v − (1− t)), t ∈ (0,1), so that (0) = 0 and the right-
hand side of (3.4) is equal to zero. Furthermore ′(t) = η(1 − 1−v

(1−t)v
) ≥ 0,∀t ∈

2Note that this condition is not empty since K(0) = 0.
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[0,1 − (1 − v)1/v]. As assumed earlier, (t) is nonnegative and (t)/η < 1 on
(0,1). Let us observe that[

logZ(t)

(t)

]′
= ′(t)

Z(t)2(t)

[
(t)

′(t)
Z′(t) − Z(t) logZ(t)

]
.

Let T = T (v) := 1−(1−v)1/v , since ′(t) > 0 on (0, T (v)), the above inequalities
imply that on that interval [ logZ(t)

(t)
]′ ≤ 0 provided C3(K(t) + η) < 1. By (3.3),

this is indeed satisfied for t ∈ [0, T (v)]. This gives that the function t 
→ logZt

(t)
is

nonincreasing on (0, T ]. Hence, we have∫
e(T )PT f dμ = ZT ≤ exp

(
(T ) lim

t→0

logZt

(t)

)
= e(T )

∫
P1f dμ.

In other words, since PT f ≥ f , then for all bounded continuous functions g =
(T )f , ∫

eg dμ ≤ e
∫

P̃ g dμ

with

P̃ g(x) = sup
y∈Rk

{g(y) − (T )c(x − y)}.

According to the Bobkov and Götze sup-convolution characterization of transport
inequalities (which for the reader’s convenience we quote below as Theorem 3.1),
this implies that μ verifies (Tc(1/(T ))). One has (T ) = ηv(1 − v)(1/v)−1 and
C3(T ) = v(1 − v)1/v . Hence, μ verifies (Tc(K)) with

K = C3

supv∈(0,1) v(1 − v)1/v
≤ 7,7C3.

The proof of (3) ⇒ (1) is complete. �

THEOREM 3.1 [6]. Let μ be a probability measure on R
k , λ > 0 and c defined

as in Theorem 1.5. Then, the following two statements are equivalent:

(i) μ satisfies (Tc(1/λ));
(ii) for any bounded function f : Rk → R it holds∫

ef dμ ≤ exp
{∫

sup
y∈Rk

{f (y) − λc(x − y)}
}

dμ.

Note that Theorem 3.1 holds in much more general setting, see [30].

4. From the restricted logarithmic Sobolev inequality to T2—II: An alter-
native proof. In this section, we give an alternative proof of the second part
(3) ⇒ (1) of Theorem 1.5. The final result will lead to a worst constant, so we
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will present our approach only in the particular case of the quadratic cost func-
tion c(x) = 1

2 |x|2. More precisely, we will prove that (rLSI(C)) ⇒ (T2(9C))
[leading, for the quadratic cost, to the implication (3) ⇒ (1) of Theorem 1.5 with
C1 = 9C3]. We believe that this alternative approach may lead to other results in
the future and so that it is worth mentioning it.

The strategy is based on the following recent characterization of Gaussian di-
mension free concentration by the first author.

THEOREM 4.1 [14]. A probability measure μ on R
k verifies the inequality

(T2(C/2)) if and only if there are some ro ≥ 0 and b > 0 such that for all positive
integer n and all subset A of (Rk)n with μn(A) ≥ 1/2, the following inequality
holds

μn(A + rB2) ≥ 1 − be−(r−ro)
2/C ∀r ≥ ro,

where B2 is the Euclidean unit ball of (Rk)n.

So, in order to get that (rLSI(C)) ⇒ (T2(9C)) it is enough to prove that the
dimension free Gaussian concentration inequality holds with −(r − ro)

2/(18C) in
the exponential.

First, let us observe that the restricted logarithmic Sobolev inequality tensorizes.

PROPOSITION 4.2. If a probability measure μ on R
k verifies (rLSI(C)) for

some C > 0, then for all positive integer n the probability μn verifies (rLSI(C)).

PROOF. If f : (Rk)n → R is K-semi-convex, then for all i ∈ {1, . . . , n} and
all x1, . . . , xi−1, xi+1, . . . , xn ∈ R

k the function fi : Rk → R defined by fi(x) =
f (x1, . . . , xi−1, x, xi+1, . . . , xn) is K-semi-convex. According to the classical ad-
ditive property of the entropy functional (see, e.g., [1], Chapter 1)

Entμn(ef ) ≤
∫ n∑

i=1

Entμ(efi ) dμn.

Applying to each fi the restricted logarithmic Sobolev inequality completes the
proof. �

The next proposition uses the classical Herbst argument (see, e.g., [18]).

PROPOSITION 4.3. If μ verifies the restricted logarithmic Sobolev inequality
(rLSI(C)) then for all f : Rk → R which is 1-Lipschitz with respect to the Euclid-
ean norm and K-semi-convex with K ≥ 0 one has∫

eλ(f (x)−∫
f dμ) dμ(x) ≤ exp

(
2λ2C

1 − λKC

)
∀λ ∈ (

0,1/(CK)
)
.

PROOF. Let us denote H(λ) = ∫
eλf dμ, for all λ ≥ 0. The function λf is λK

semi-convex, so if 0 ≤ λ < 1/(CK), one can apply the inequality (rLSI(C)) to the
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function λf . Doing so yields the inequality

λH ′(λ) − H(λ) logH(λ) = Entμ(eλf ) ≤ 2Cλ2

(1 − λKC)2

∫
|∇f |2eλf dμ

≤ 2Cλ2

(1 − λKC)2 H(λ),

where the last inequality comes from the fact that f is 1-Lipschitz. Consequently,
for all 0 ≤ λ < 1/(CK),

d

dλ

(
logH(λ)

λ

)
≤ 2C

(1 − λKC)2 .

Observing that logH(λ)/λ → ∫
f dμ when λ → 0 and integrating the differential

inequality above gives the result. �

Now let us show how to approach a given 1-Lipschitz function by a 1-Lipschitz
and K-semi-convex function.

PROPOSITION 4.4. Let f : Rk → R be a 1-Lipschitz function. Define

Ptf (x) = sup
y∈Rk

{
f (y) − 1

2t
|x − y|2

}
∀x ∈ R

k,∀t > 0.

Then:

(i) For all t > 0, Ptf is 1-Lipschitz.
(ii) For all t > 0, Ptf is 1/t-semi-convex.

(iii) For all t > 0 and all x ∈ R
k , f (x) ≤ Ptf (x) ≤ f (x) + t

2 .

PROOF. (i) Write Ptf (x) = supz∈Rk {f (x − z) − 1
2t

|z|2}. For all z ∈ R
k , the

function x 
→ f (x − z) − 1
2t

|z|2 is 1-Lipschitz. So Ptf is 1-Lipschitz as a supre-
mum of 1-Lipschitz functions.

(ii) Expanding |x − y|2 yields Ptf (x) = supy∈Rk {f (y) − 1
2t

|y|2 + 1
t
x · y} −

1
2t

|x|2. Since a supremum of affine functions is convex, one concludes that x 
→
Ptf (x) + |x|2

2t
is convex, which means that Ptf is 1/t-semi-convex.

(iii) The inequality Ptf (x) ≥ f (x) is immediate. Since f is 1-Lipschitz,

Ptf (x) − f (x) = sup
y∈Rk

{
f (y) − f (x) − 1

2t
|x − y|2

}

≤ sup
y∈Rk

{
|y − x| − 1

2t
|x − y|2

}

= sup
r≥0

{
r − r2

2t

}
= t

2
. �

We are now ready to complete the proof.
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PROOF OF (rLSI(C)) ⇒ (T2(9C)). Let n ≥ 1. Consider a 1-Lipschitz func-
tion g on (Rk)n and define Ptg(x) = supy∈(Rk)n{g(y)− 1

2t
|x − y|2}, t > 0. Thanks

to Proposition 4.4, the function Ptg is 1-Lipschitz and 1/t-semi-convex, so ac-
cording to Propositions 4.2 and 4.3, for all 0 ≤ λ < t/C, one has

∫
eλ(Ptg(x)−∫

Ptg dμn) dμn(x) ≤ exp
(

2λ2C

1 − λC/t

)
.

Moreover, according to point (iii) of Proposition 4.4, Ptg(x)−∫
Ptg dμn ≥ g(x)−∫

g dμn − t
2 , for all x ∈ (Rk)n. Plugging this in the inequality above gives

∫
eλ(g(x)−∫

g dμn) dμn(x) ≤ exp
(

λt

2
+ 2λ2C

1 − λC/t

)
.

For a given λ ≥ 0, this inequality holds as soon as t > Cλ. Define ϕ(t) = λt
2 +

2λ2C
1−λC/t

, t > 0. It is easy to check that ϕ attains its minimum value at tmin = 3Cλ

(which is greater than Cλ) and that ϕ(tmin) = 9Cλ2/2. Consequently, we arrive at
the following upper bound on the Laplace transform of g:

∫
eλ(g(x)−∫

g dμn) dμn(x) ≤ e9Cλ2/2 ∀λ ≥ 0.

From this, we deduce that every 1-Lipschitz function g verifies the following de-
viation inequality around its mean

μn

(
g ≥

∫
g dμn + r

)
≤ e−r2/(18C) ∀r ≥ 0.

Let ro be any number such that e−r2
o /(18C) < 1/2, then denoting by m(g) any me-

dian of g, we get
∫

g dμn + ro ≥ m(g). Applying this inequality to −g, we con-
clude that |m(g)− ∫

g dμn| ≤ ro. So the following deviation inequality around the
median holds

μn(
g ≥ m(g) + r

) ≤ e−(r−ro)
2/(18C) ∀r ≥ ro.

Take A ⊂ (Rk)n with μn(A) ≥ 1/2, and define gA(x) = d2(x,A) where d2 is the
usual Euclidean distance. Since 0 is a median of gA, the preceding inequality ap-
plied to gA reads

μn(A + rB2) ≥ 1 − e−(r−ro)
2/(18C) ∀r ≥ ro.

According to Theorem 4.1, this Gaussian dimension free concentration property
implies (T2(9C)). �
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5. Some technical results. In this section, we collect some useful results on
semi-convex functions.

In the case of differentiable functions, it is easy to rephrase the definition of
semi-convexity, in the following way.

PROPOSITION 5.1. Let c : Rk → R
+ be a differentiable function with c(0) =

∇c(0) = 0. Then, a differentiable function f : Rk → R is K-semi-convex for the
cost function c if and only if

f (y) ≥ f (x) + ∇f (x) · (y − x) − Kc(y − x) ∀x, y ∈ R
k.(5.1)

PROOF. Suppose that f is K-semi-convex; according to the definition, for all
x, y ∈ R

k and λ ∈ [0,1], the following holds

f (y) ≥ f (x) + f (λx + (1 − λ)y) − f (x)

1 − λ

− K
λ

1 − λ
c
(
(1 − λ)(x − y)

) − Kc
(
λ(y − x)

)
.

Letting λ → 1 and using c(0) = ∇c(0) = 0 one obtains (5.1). Let us prove the
converse; according to (5.1),

f (x) ≥ f
(
λx + (1 − λ)y

) − (1 − λ)∇f
(
λx + (1 − λ)y

) · (y − x)

+ Kc
(
(1 − λ)(y − x)

)
and

f (y) ≥ f
(
λx + (1 − λ)y

) + λ∇f
(
λx + (1 − λ)y

) · (y − x) + Kc
(
λ(y − x)

)
.

This gives immediately (1.3). �

LEMMA 5.2. If α : R → R
+ is a convex symmetric function of class C1 such

that α(0) = α′(0) = 0 and α′ is concave on R
+, then the following inequality holds

α(u + v) ≤ α(u) + vα′(u) + 4α(v/2) ∀u, v ∈ R.(5.2)

In particular, the function −c(x) = −∑k
i=1 α(xi), x = (x1, . . . , xk) ∈ R

k , is 4-
semi-convex for the cost x 
→ c(x/2).

Note that (5.2) is an equality for α(t) = t2.

PROOF OF LEMMA 5.2. Since α(v) = α(−v), it is enough to prove the
inequality (5.2) for u ≤ 0 and v ∈ R. Let us consider the function G(w) :=
α(u + w) − α(u) − wα′(u). For w ≥ 0, using the concavity of α′ on R

+, either
u + w ≥ 0 and one has

G′(w) = α′(u + w) − α′(u) = α′(u + w) + α′(−u) ≤ 2α′(w/2),
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or u + w ≤ 0 and one has

G′(w) = α′(−u) − α′(−u − w) ≤ α′(w) ≤ 2α′(w/2),

since w ≥ 0 and

α′(w/2) − α′(0)

w/2
≥ α′(w) − α′(0)

w
≥ α′(w) − α′(−u − w)

2w + u

≥ α′(−u) − α′(−u − w)

w
.

Similarly, if w ≤ 0, from the convexity of α′ on R
−, G′(w) ≥ α′(w) ≥ 2α′(w/2).

The proof is complete integrating the above inequalities between 0 and v either for
v ≥ 0 or for v ≤ 0.

The second part of the lemma is immediate. �

The next lemma gives some conditions on α under which the sup-convolution
semi-group Pt transforms functions into semi-convex. Let us recall that ωα is de-
fined by

ωα(x) = sup
u>0

α(ux)

α(u)
∀x ∈ R.

LEMMA 5.3. Let α : R → R
+ be a convex symmetric function of class C1

such that α(0) = α′(0) = 0 and α′ is concave on R
+. Let f : Rk → R, u > 0 and

define g(x) = Puf (x) = supy∈Rk {f (y)−uc((y −x)/u)} with c(x) = ∑k
i=1 α(xi),

x ∈ R
k . Then g is 4uωα( 1

2u
)-semi-convex for the cost function c.

PROOF. By Lemma 5.2, the function −c is 4-semi-convex with the cost func-
tion x 
→ c(x/2). Consequently, for all y ∈ R

k , the function x 
→ f (y) − uc((y −
x)/u) is 4-semi-convex with the cost function x 
→ uc(x/(2u)). From the def-
inition (1.3), we observe that a supremum of K-semi-convex functions remains
K-semi-convex. Consequently, by definition of ωα , we finally get

g(y) ≥ g(x) + ∇g(x) · (y − x) − 4uc

(
y − x

2u

)

≥ g(x) + ∇g(x) · (y − x) − 4uωα

(
1

2u

)
c(y − x). �

LEMMA 5.4. Let α be a convex symmetric function of class C1 such that
α(0) = α′(0) = 0, α′ is concave on R

+. Denote by α∗ the conjugate of α. Then:

(i) For any u ∈ (0,1), x ∈ R, α(x/u) ≤ α(x)/u2.
(ii) For any u ∈ (0,1), ωα(1/u) ≤ 1/u2.

(iii) For any u ∈ (0,1), ωα∗(u) ≤ u2.
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PROOF. Point (i). Let x ≥ 0, by concavity of α′ on R
+, α′(x) ≥ uα′(x/u) +

(1−u)α′(0) = uα′(x/u). The result follows for x ≥ 0 by integrating between 0 and
x and then for x ≤ 0 by symmetry. Point (ii) is a direct consequence of point (i).

Point (iii). Observing that (α∗)′ = (α′)−1, it follows that (α∗)′ is convex on R
+

and (α∗)′(0) = α∗(0) = 0. Then the proof is similar to the proof of point (ii). �

6. Final remarks. In this final section, we state some remarks and extensions
on the topic of this paper.

6.1. Extension to Riemannian manifolds. Otto–Villani theorem holds true on
general Riemannian manifolds [25]. Furthermore, efforts have been made recently
to extend the Otto–Villani theorem to spaces with poorer structure such as length
spaces [2, 19] or general metric spaces [14]. This section is an attempt to extend
our main result to spaces other than Euclidean spaces. We will focus our attention
on the inequality (T2) on a Riemannian manifold.

In all what follows, X will be a complete and connected Riemannian manifold
equipped with its geodesic distance d:

d(x, y) = inf
{∫ 1

0
|γ̇s |ds;γ ∈ C 1([0,1],X), γ0 = x, γ1 = y

}

(6.1)
∀x, y ∈ X.

A minimizing path γ in (6.1) is called a minimal geodesic from x to y; in
general it is not unique. It is always possible to consider that minimal geodesics
are parametrized in such a way that

d(γs, γt ) = |s − t |d(x, y) ∀s, t ∈ [0,1],
and this convention will be in force in all the sequel.

A function f :X → R will be said K-semi-convex, K ≥ 0 if for all x, y ∈ X

and all minimal geodesics γ between x and y, the following inequality holds

f (γs) ≤ (1 − s)f (x) + sf (y) + s(1 − s)
K

2
d2(x, y) ∀s ∈ [0,1].

When f is of class C 1 this is equivalent to the following condition:

f (y) ≥ f (x) + 〈∇f (x), γ̇0〉 − K

2
d2(x, y) ∀x, y ∈ X,(6.2)

for all minimal geodesics γ from x to y (see, e.g., [30], Proposition 16.2). If f is
semi-convex, then it is locally Lipschitz [30]. According to Rademacher’s theorem
(see, e.g., [30], Theorem 10.8), f is thus almost everywhere differentiable. So the
inequality (6.2) holds for almost all x ∈ X and for all y ∈ X. A function f will be
said K-semi-concave if −f is K-semi-convex.
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LEMMA 6.1. If f is K-semi-convex, then for almost all x ∈ X, the inequality

f (y) ≥ f (x) − |∇f |(x)d(x, y) − K

2
d2(x, y),

holds for all y ∈ X.

PROOF. Since the geodesic is constant speed, |γ̇0| = d(x, y). Applying
Cauchy–Schwarz inequality in (6.2) yields the desired inequality. �

With this inequality at hand, the proofs of Lemma 2.2 generalizes at once, and
we get the following half part of our main result.

PROPOSITION 6.2. Suppose that an absolutely continuous probability mea-
sure μ on X verifies the inequality (T2(C)), then it verifies the following re-
stricted logarithmic Sobolev inequality: for all 0 ≤ K < 1

C
and all K-semi-convex

f :X → R,

Entμ(ef ) ≤ 2C

(1 − KC)2

∫
|∇f |2ef dμ.

The generalization of the second half part of our main result is more delicate.
We have seen two proofs of the fact that the restricted logarithmic Sobolev inequal-
ity implies (T2): one based on the Hamilton–Jacobi equation and the other based
on dimension free concentration. The common point of these two approaches is
that we have used in both cases the property that the sup-convolution operator
f 
→ Ptf transforms functions into semi-convex functions (see Proposition 4.4
and Lemma 5.3). Let us see how this property can be extended to Riemannian
manifolds.

LEMMA 6.3. Suppose that there is some constant S ≥ 1, such that the in-
equality

d2(γs, y) ≥ (1 − s)d2(x, y) + sd2(z, y)
(6.3)

− s(1 − s)S2d2(x, z) ∀s ∈ [0,1],
holds for all x, y, z ∈ X, where γ is a minimal geodesic joining x to z. This
amounts to say that for all y ∈ X, the function x 
→ d2(x, y) is 2S2-semi-concave.

Then for all f :X → R and all u > 0 the function

x 
→ Puf (x) = sup
y∈X

{
f (y) − 1

2u
d2(x, y)

}
(6.4)

is S2/u-semi-convex.
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PROOF. Under the assumption made on d2, for all y ∈ X, the function x 
→
f (y) − 1

2u
d2(x, y) is S2/u-semi-convex. Since a supremum of S2/u semi-convex

functions is S2/u-semi-convex, this ends the proof. �

Let us make some remarks on condition (6.3). This condition was first intro-
duced by Ohta in [24] and Savare in [26] in their studies of gradient flows in the
Wasserstein space over nonsmooth metric spaces. The condition (6.3) is related
to the Alexandrov curvature of geodesic spaces which generalizes the notion of
sectional curvature in Riemannian geometry.

The first point is a classical consequence of Toponogov’s theorem [9]. The sec-
ond point in the following proposition is due to Ohta [24], Lemma 3.3.

PROPOSITION 6.4. Let X be a complete and connected Riemannian mani-
fold.

(1) The condition (6.3) holds with S = 1 if and only if the sectional curvature of
X is greater than or equal to 0 everywhere.

(2) Suppose that the sectional curvature is greater than or equal to κ , where κ ≤ 0,
then for all x, y, z ∈ X and every geodesic γ joining x to z, one has

d2(γs, y) ≥ (1 − s)d2(x, y) + sd2(z, y)
(6.5)

−
(
1 + κ2 sup

t∈[0,1]
d2(γt , y)

)
(1 − s)sd2(x, z).

In particular, if (X,d) is bounded, then (6.3) holds with

S = (
1 + κ2 diam(X)2)1/2

.

In particular, the case of the Euclidean space, studied in the preceding sections,
corresponds to the case where the sectional curvature vanishes everywhere.

Now, let us have a look to Hamilton–Jacobi equation. The following theorem
comes from [30], Proposition 22.16 and Theorem 22.46.

THEOREM 6.5. Let f be a bounded and continuous function on X, the func-
tion (t, x) 
→ Ptf (x) defined by (6.4) verifies the following: for all t > 0 and
x ∈ X,

lim
h→0+

Pt+hf (x) − Ptf (x)

h
= |∇−(−Ptf )|2(x)

2
,

where the metric sub-gradient |∇−g| of a function g is defined by

|∇−g|(x) = lim sup
y→x

[g(y) − g(x)]−
d(y, x)

∀x ∈ X.
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Under the condition (6.3), x 
→ Ptf (x) is semi-convex, and so differentiable
almost everywhere, so for all t and almost all x ∈ X,

lim
h→0+

Pt+hf (x) − Ptf (x)

h
= |∇Ptf |2(x)

2
.

THEOREM 6.6. Suppose that the Riemannian manifold X verifies condition
(6.3) for some S ≥ 1; if an absolutely continuous probability measure μ on X

verifies the following restricted logarithmic Sobolev inequality: for all 0 ≤ K < 1
C

and all K-semi-convex f :X → R,

Entμ(ef ) ≤ 2C

(1 − KC)2

∫
|∇f |2ef dμ,

then it verifies (T2(8CS2)).

PROOF. Setting CS = CS2, by assumption, for all KS2 semi-convex functions
f :X → R with 0 ≤ K < 1

CS
,

Entμ(ef ) ≤ 2C

(1 − KS2C)2

∫
|∇f |2ef dμ

≤ 2CS

(1 − KCS)2

∫
|∇f |2ef dμ,

where the last inequality holds since S ≥ 1. As mentioned in the Introduction, it
is still equivalent to (rMLSI(c,CS)) where c is the quadratic cost function: for all
K ≥ 0, η > 0, with η + K < 1/CS , and all KS2 semi-convex functions f

Entμ(ef ) ≤ η

1 − CS(η + K)

∫
c∗

( |∇f |
η

)
ef dμ,(6.6)

with c∗(h) = h2/2, h ∈ R. The end of the proof exactly follows the proof of Theo-
rem 1.5 (3) ⇒ (1) by replacing C by CS . There is an additional technical problem
due to the right derivatives; as in the proof of Theorem 1.5, we refer to [19, 30]
where this difficulty has been circumvented. Therefore, by Theorem 6.5, we as-
sume that Ptf satisfies the Hamilton–Jacobi equation ∂tPtf (x) = c∗(|∇Ptf (x)|)
for all t > 0 and all x ∈ X. Moreover, by Lemma 6.3 Puf is S2/u semi-convex (for
the cost c(x, y) = d2(x, y)/2). Then the continuation of the proof is identical to
the one of Theorem 1.5 by applying the inequality (6.6) to the K(t)S2 semi-convex
function (t)P1−t f . �

To conclude this section, let us say that the proof presented in Section 4 can
also be adapted to the Riemannian framework. Essentially, all we have to do is to
adapt the first point of Proposition 4.4: the fact that Ptf is 1-Lipschitz when f is
1-Lipschitz. A proof of this can be found in the proof of [2], Theorem 2.5(iv).
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6.2. From transport inequalities to other logarithmic Sobolev type inequalities.
Following the ideas of Theorem 2.1, we may simply recover other types of loga-
rithmic Sobolev inequalities. These new forms of inequalities should be of interest
for further developments. Let X denote a Polish space equipped with the Borel
σ -algebra. Given Borel functions c :X ×X → R and f :X → R, define for λ > 0,
x ∈ X,

P λf (x) = sup
y∈X

{f (y) − λc(x, y)}.

By definition, one says that a function f :X → R is K-semi-concave for the cost
c if −f is K-semi-convex for the cost c.

THEOREM 6.7. Let c :X × X → R
+ be a symmetric Borel function. Let μ

be a probability measure on X satisfying (Tc(C)) for some C > 0. Then for all
λ ∈ (0,1/C), and all function f :X → R,

Entμ(ef ) ≤ 1

1 − λC

∫
(P λf − f )dμ

∫
ef dμ.(6.7)

Assume moreover that c(x, y) = c(x − y), x, y ∈ R
k , where c : Rk → R

+ is a dif-
ferentiable symmetric function with c(0) = ∇c(0) = 0. Then for all K ≥ 0, η > 0
with η + K < 1/C and all K-semi-concave differentiable function f : Rk → R,

Entμ(ef ) ≤ η

1 − C(η + K)

∫
c∗

(∇f

η

)
dμ

∫
ef dμ.(6.8)

PROOF. Following the proof of Theorem 2.1, one has for every probability
measure π with marginals νf and μ,

H(νf |μ) ≤
∫ ∫ (

f (x) − f (y)
)
dπ(x, y).

From the definition of the sup-convolution function P λf , one has

H(νf |μ) ≤
∫ ∫ (

P λf (y) − f (y)
)
dπ(x, y) + λ

∫ ∫
c(y, x) dπ(x, y).

Optimizing over all probability measure π and since μ satisfies (Tc(C)), this yields

H(νf |μ) ≤
∫ (

P λf (y) − f (y)
)
dμ + λCH(νf |μ).

This is exactly the inequality (6.7). Now, if c(x, y) = c(x − y), x, y ∈ R
k , and

f : Rk → R is a K-semi-concave differentiable function, then by Lemma 2.2 one
has: for all η > 0,

P K+ηf − f ≤ ηc∗
(∇f

η

)
.

The restricted modified logarithmic Sobolev inequalities (6.8) then follows. �
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6.3. On Poincaré inequalities. Let c : Rk → R be a differentiable function
such that c(0) = ∇c(0) = 0, with Hessian at point 0 such that D2c(0) > 0 (as
symmetric matrices). As for the logarithmic Sobolev inequalities, it is known that
a linearized version of the transport inequality (Tc(C)) is Poincaré inequality (see
[5, 21, 25]).

Naturally, (rMLSI(c,C)) or (ICLSI(c,C)) also provide Poincaré inequality by
using basic ideas given in [21] (see also [5]). Namely, starting from (ICLSI(c,C)),
we apply it with εf , where f : Rk → R is a smooth function with compact sup-
port. The infimum infy∈Rk {εf (y) + λc(x − y)} is attained at some yε such that
ε∇f (yε) = λ∇c(x − yε). Since for h ∈ R

k , ∇c∗(∇c)(h) = h, one has

x − yε = ∇c∗
(

ε∇f (yε)

λ

)
= ε

λ
D2c∗(0) · ∇f (x) + o(ε).

Therefore, since D2c∗(∇c(h)) · D2c(h) = I and after some computations, we get
the following Taylor expansion

Qλ(εf )(x) = εf (yε) + λc(x − yε)

= εf (x) − ε2

2λ
∇f (x)T · D2c∗(0) · ∇f (x) + o(ε2).

It is a classical fact that

Entμ(eεf ) = ε2

2
Varμ(f ) + o(ε2).

Finally, as ε → 0, (ICLSI(c,C)) implies: for every λ ∈ (0,1/C),

Varμ(f ) ≤ 1

λ(1 − λC)

∫
∇f T · D2c∗(0) · ∇f dμ.

Optimizing over all λ yields the following Poincaré inequality for the metric in-
duced by D2c∗(0)

Varμ(f ) ≤ 4C

∫
∇f T · D2c∗(0) · ∇f dμ.

Denoting by ‖ · ‖ the usual operator norm, one also has a Poincaré inequality with
respect to the usual Euclidean metric

Varμ(f ) ≤ 4C‖D2c∗(0)‖
∫

|∇f |2 dμ.

From the infimum-convolution characterization of transport inequality (Tc(C))
(see Theorem 3.1), a similar proof gives the same Poincaré inequality with the
constant C instead of 4C (see [21]).

Conversely, Bobkov and Ledoux [7], Theorem 3.1, obtained that Poincaré in-
equality implies a modified logarithmic Sobolev inequality. Let α2,1 : R → R

+ and
c2,1 : Rk → R

+ be the cost function defined by

α2,1(h) = min
(1

2h2, |h| − 1
2

) ∀h ∈ R,
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and c2,1(x) = ∑k
i=1 α2,1(xi), x ∈ R

k . One has α∗
2,1(h) = h2/2 if |h| ≤ 1 and

α∗
2,1(h) = +∞ otherwise. Bobkov–Ledoux’s result is the following.

THEOREM 6.8 [7]. Let μ be a probability measure on R
k satisfying the

Poincaré inequality:

Varμ(f ) ≤ C

∫
|∇f |2 dμ,(P(C))

for every smooth function f on R
k . Then the following modified logarithmic Sobo-

lev inequality holds [in short (BLI(C))]: for all κ < 2/
√

C and every smooth func-
tion f ,

Entμ(ef ) ≤ Cκ2K(κ,C)

∫
α∗

2,1

(∇f

κ

)
ef dμ,(BLI(C))

where K(κ,C) = (2+κ
√

C

2−κ
√

C
)2eκ

√
5C .

Applying (BLI(C)) to εf , as ε → 0, (BLI(C)) yields P(CK(κ,C)) but also
(P(C)) since K(κ,C) → 1 as κ → 0. Theorem 6.8 therefore indicates that P(C)

and (BLI(C)) are exactly equivalent. Thanks to the Hamilton–Jacobi approach,
Bobkov, Gentil and Ledoux [5] obtained that (BLI(C)) implies (Tc̃κ

2,1
(C)) for all

κ < 2/
√

C where

c̃κ
2,1(x) = κ2C2K(κ,C)α2,1

( |x|
κCK(κ,C)

)
∀x ∈ R

k.(6.9)

By linearization and optimization over κ , (Tc̃κ
2,1

(C)) implies (P(C)), and therefore

(BLI(C)) is also equivalent to (Tc̃κ
2,1

(C)) for all κ < 2/
√

C.
Let cκ

2,1 denote the cost function defined similarly as c̃κ
2,1 replacing α2,1(| · |)

by c2,1 in (6.9). One has c̃κ
2,1 ≤ cκ

2,1 [this is a consequence of the subadditivity

of the concave function h → α2,1(
√

h)]. Therefore, (Tcκ
2,1

(C)) implies (Tc̃κ
2,1

(C)).
Consider now the case of dimension 1, k = 1, so that cκ

2,1 = c̃κ
2,1. Theorem 1.5

indicates that (Tcκ
2,1

) is equivalent, up to constant, to (rMLSI(cκ
2,1)). Actually

(rMLSI(cκ
2,1)) can be interpreted as BLI restricted to a class of semi-convex func-

tion for the cost cκ
2,1. However, from the discussions above, (rMLSI(cκ

2,1)) and
BLI are equivalent up to constant. It would be interesting to directly recover BLI
from (rMLSI(cκ

2,1)) or from (Tcκ
2,1

). The known results can be summarized by the
following diagram for k = 1:

BLI B.L.⇐��⇒ P

B
.G

.L
⇐� M

.−O.V
.

�⇒ �⇒

Tc̃κ
2,1

= Tcκ
2,1

Theorem 1.5⇐��⇒ (rMLSI(cκ
2,1))

where:
B.L.: Bobkov, Ledoux [7];

B.G.L.: Bobkov, Gentil, Ledoux [5];
M.: Maurey [21];

O.V.: Otto, Villani [25].
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