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THE RANK OF DILUTED RANDOM GRAPHS

BY CHARLES BORDENAVE, MARC LELARGE AND JUSTIN SALEZ

Université Toulouse III, INRIA and INRIA

We investigate the rank of the adjacency matrix of large diluted random
graphs: for a sequence of graphs (Gn)n≥0 converging locally to a Galton–
Watson tree T (GWT), we provide an explicit formula for the asymptotic
multiplicity of the eigenvalue 0 in terms of the degree generating function ϕ∗
of T . In the first part, we show that the adjacency operator associated with T

is always self-adjoint; we analyze the associated spectral measure at the root
and characterize the distribution of its atomic mass at 0. In the second part,
we establish a sufficient condition on ϕ∗ for the expectation of this atomic
mass to be precisely the normalized limit of the dimension of the kernel of
the adjacency matrices of (Gn)n≥0. Our proofs borrow ideas from analysis of
algorithms, functional analysis, random matrix theory and statistical physics.

1. Introduction. In this paper we investigate asymptotical spectral properties
of the adjacency matrix of large random graphs. To motivate our work, let us briefly
mention its implications in the special case of Erdős–Rényi random graphs. Let
Gn = (Vn,En) be an Erdős–Rényi graph with connectivity c > 0 on the vertex set
Vn = {1, . . . , n}. In other words, we let each pair of distinct vertices ij belong to the
edge-set En with probability c/n, independently of the other pairs. The adjacency
matrix An of Gn is the n × n symmetric matrix defined by (An)ij = 1((ij) ∈ En).
Let λ1(An) ≥ · · · ≥ λn(An) denote the eigenvalues of An (with multiplicities) and

μn = 1

n

n∑
i=1

δλi(An)

denote the spectral measure of An. Our main concern will be the rank of An

rank(An) = n − dim ker(An) = n − nμn({0}).
THEOREM 1. (i) There exists a deterministic symmetric measure μ such that,

almost surely, for the weak convergence of probability measures,

lim
n→∞μn = μ.

(ii) Let 0 < q < 1 be the smallest solution to q = exp(−c exp(−cq)). Then al-
most surely,

lim
n→∞μn({0}) = μ({0}) = q + e−cq + cqe−cq − 1.
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In other words, almost surely,

lim
n→∞

rank(An)

n
= 2 − q − e−cq − cqe−cq .(1)

Apart from an improvement of the convergence, part (i) is not new; the conver-
gence in probability was first rigorously proved by Khorunzhy, Shcherbina and
Vengerovsky [16] (for an alternative proof, see [10] [note that it only implies
lim supn μn({0}) ≤ μ({0})]).

In the sparse case, that is, when the connectivity c grows with n like a logn, the
rank of An has been studied by Costello, Tao and Vu [13] and Costello and Vu [12].
Their results imply that for a > 1, with high probability dim ker(An) = 0 while for
0 < a < 1, dim ker(An) is of order of magnitude n1−a . Our theorem answers one
of their open questions in [12].

The formula (1) already appeared in a remarkable paper by Karp and Sipser
[15] as the asymptotic size of the number of vertices left unmatched by a maxi-
mum matching of Gn. To be more precise, the function G �→ dim ker(G) is easily
checked to be invariant under “leaf removal,” that is, if G′ is the graph obtained
from G by deleting a leaf and its unique neighbor, then dim ker(G′) = dim ker(G).
Karp and Sipser [15] study the effect of iterating this leaf removal on the random
graph Gn until only isolated vertices and a “core” with minimum degree at least
2 remain. They show that the asymptotic number of isolated vertices is approxi-
mately (2 − q − e−cq − cqe−cq)n as n → ∞, and that the size of the core is o(n)

when c ≤ e. Thus, (1) follows by additivity of G �→ dim ker(G) on disjoint com-
ponents, as observed by Bauer and Golinelli [6]. However for c > e, the size of the
core is not negligible and the same argument only leads to the following inequality:

lim inf
n→∞

dim ker(An)

n
≥ q + e−cq + cqe−cq − 1.

Bauer and Golinelli [6] conjecture that this lower bound should be the actual limit
for all c, which is equivalent to saying that asymptotically the dimension of the
kernel of the core is zero. The proof of this conjecture follows from our work (see
Section 4).

Our results are not restricted to Erdős–Rényi graphs. They will in fact hold for
any sequence (Gn)n≥1 of random graphs converging locally to a rooted Galton–
Watson tree (GWT), provided the latter satisfies a certain degree condition. The
precise definition of local convergence is recalled in Section 3. It was intro-
duced by Benjamini and Schramm [7] and Aldous and Steele [3]. A rooted GWT
(see [2]) is characterized by its degree distribution F∗, which can be any prob-
ability measure with finite mean on N: the root Ø has offspring distribution
F∗ and all other genitors have offspring distribution F , where for all k ≥ 1,
F(k−1) = kF∗(k)/

∑
� �F∗(�). In the case of Erdős–Rényi graphs with connectiv-

ity c, the limiting tree is simply a GWT with degree distribution F∗ = Poisson(c).
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The adjacency operator A of a GWT [T = (V ,E)] is a densely defined sym-
metric linear operator on the Hilbert space �2(V ) defined for i, j in V by

〈Aei, ej〉 = 1(ij ∈ E),

where for any i ∈ V , ei denotes the base function j ∈ V �→ 1(j = i). As we will
show, if F∗ has a finite second moment, then A has almost surely a unique self-
adjoint extension, which we also denote by A. Consequently, for any unitary vector
ψ ∈ Dom(A), the spectral theorem guarantees the existence and uniqueness of a
probability measure μψ on R, called the spectral measure associated with ψ , such
that for any k ≥ 0,

〈Akψ,ψ〉 =
∫

R

xk dμψ(x).

In particular, we may consider the spectral measure μT associated with the vec-
tor eØ, where Ø is the root of the rooted tree T . Our first main result is an explicit
formula for EμT ({0}), the expected mass at zero of the spectral measure at the
root Ø of a rooted GWT T .

THEOREM 2. Let T be a GWT whose degree distribution F∗ has a finite
second moment, and let ϕ∗ be the generating function of F∗. Then, EμT ({0}) =
maxx∈[0,1] M(x), where

M(x) = ϕ′∗(1)xx + ϕ∗(1 − x) + ϕ∗(1 − x) − 1 with x = ϕ′∗(1 − x)/ϕ′∗(1).

In the special case of regular trees, the measure μT can be explicitely computed
and turns out to be absolutely continuous, so μT ({0}) = 0. In contrast, one may
construct GWTs with arbitrary large minimum degree and such that EμT ({0}) > 0.
The following example is taken form [9] and is due to Picollelli and Molloy: set
d ≥ 3 and take ϕ∗(x) = d

1+d
xd + 1

1+d
xd3

. Figure 1 gives a plot of M for the case
d = 3, showing that EμT ({0}) > 0 in this case.

When F∗ is a Poisson distribution with mean c, the corresponding quan-
tity maxx∈[0,1] M(x) is precisely (1), and it already appeared in Zdeborová and
Mézard [19], equation (38), as a “cavity method” prediction for the limiting frac-
tion of unmatched vertices in a maximum matching.

To the best of our knowledge, the formula was unknown for general GWTs.
However, Bauer and Gollineli [5] have computed explicitly the asymptotic rank of
the uniform spanning tree on the complete graph of size n. Also Bhamidi, Evans
and Sen [8] have recently analyzed the convergence of the spectrum of the adja-
cency matrix of growing random trees.

Our second main result (Theorem 13) states that for any sequence of ran-
dom graphs (Gn)n≥0 converging locally in distribution to a GWT, we have
limn n−1 rank(An) = 1−EμT ({0}), provided the first local extremum of the above
function x �→ M(x) is a global maximum on [0,1]. We have left open the case
where the global maximum of M is not the first local maximum (see Section 4).
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FIG. 1. Plot of M for ϕ∗(x) = d
1+d

xd + 1
1+d

xd3
, with d = 3.

Our detailed analysis of the atomic mass at 0 of the limiting spectral measure μ

remains only a small achievement for the global understanding of this measure. For
example, for Erdős–Rényi graphs, the atomic part of μ is dense in R, and nothing is
known on the mass of atoms apart 0. There is also a conjecture about the absolutely
continuous part μac of the measure μ: we say that μ has extended states (resp., no
extended state) at E ∈ R if the partition function x �→ μac(−∞, x) is differentiable
at x = E and its derivative is positive (resp., null). This notion was introduced in
mathematical physics in the context of spectra of random Schrödinger operators; a
recent treatment can be found in Aizenman, Sims and Warzel [1]. For Erdős–Rényi
graphs, Bauer and Gollineli have conjectured that μ has no extended state at E = 0
when 0 < c ≤ e, and has extended states at E = 0 when c > e. More generally, one
may wonder whether μac = 0 when 0 < c ≤ e. Finally, the existence of a singular
continuous part in μ is apparently unknown.

The remainder of the paper is organized as follows: in Section 2, we analyze
the adjacency operator of a GWT. In Section 2.3, we study μT ({0}) and prove
Theorem 2. In Section 3, we prove finally the convergence of the spectrum of
finite graphs and the convergence of the rank. The proof of Theorem 1 is given in
the Appendix.

2. Locally finite graphs and their adjacency operators. A rooted graph is
the pair formed by a graph G with a distinguished vertex Ø ∈ V , called the root.
There is a canonical way to define a distance on V : for each u, v ∈ V , the (graph)-
distance is the minimal length of a path from u to v, if any, and ∞ otherwise. For
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a rooted graph G with root Ø and t an integer, we will denote by (G)t the rooted
subgraph spanned by the vertices at distance at most t from the root. In all this
section, we consider a locally finite rooted graph G = (V ,E) with root denoted
by Ø.

2.1. Adjacency operator. Consider the Hilbert space

�2(V ) =
{
ψ :V → C,

∑
i∈V

|ψ(i)|2 < ∞
}

with inner product 〈ψ,φ〉 = ∑
i∈V

ψ(i)φ(i).

Denote by H0 ⊆ �2(V ) the dense subspace of finitely supported functions, and
by (ei)i∈V the canonical orthonormal basis of �2(V ), that is, ei is the coordinate
function j ∈ V �→ 1(i = j). By definition, the adjacency operator A of G is the
densely-defined linear operator over �2(V ) whose domain is H0 and whose action
on the basis vector ei, i ∈ V , is

Aei = ∑
j : ij∈E

ej.

Note that Aei ∈ �2(V ) since G is locally finite. Moreover, for all i, j ∈ V ,

〈Aei, ej〉 = 1{ij ∈ E} = 〈Aej, ei〉.
Therefore, the operator A is symmetric, and we may now ask about the self-
adjointness of its closure, which is again denoted by A. The answer of course
depends upon G, but here is a simple sufficient condition that should suit all our
needs in the present paper.

We define the boundary of a subset S ⊆ V as ∂S = {ij ∈ E : i ∈ S, j /∈ S}, and
the boundary degree 	(∂S) as the maximum number of boundary edges that are
adjacent to the same vertex.

PROPOSITION 3. For A to be self-adjoint, it is enough that V admits an ex-
hausting sequence of finite subsets with bounded boundary degree:

(A) There exist finite subsets S1, S2, . . . ⊆ V such that⋃
n

Sn = V and sup
n

	(∂Sn) < ∞.

PROOF. Denote by A∗ the adjoint of A. By the basic criterion for self-
adjointness (see, e.g., Reed and Simon [18], Theorem VIII.3), it is enough to show
that 0 is the only vector ψ ∈ Dom(A∗) satisfying A∗ψ = ±iψ . Consider such a
ψ (let us treat, say, the +i case), and define the following flow along the oriented
edges of G:

(i → j) = (ψ(i)ψ(j)) = −(j → i),
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for all ij ∈ E. The amount of flow created at vertex i ∈ V is then∑
j : ij∈E

(i → j) = 
(
ψ(i)

∑
j : ij∈E

ψ(j)
)

= 〈A(ψ(i)ei),ψ〉

= 〈ψ(i)ei,A
∗ψ〉 = |ψ(i)|2.

Now, by anti-symmetry of the flow, the total amount of flow created inside any fi-
nite subset S ⊆ V must equal the total amount of flow escaping through the bound-
ary ∂S ∑

i∈S

|ψ(i)|2 = ∑
ij∈∂S

(i → j).

Therefore, using (i → j) ≤ |ψ(i)||ψ(j)| and twice the Cauchy–Schwarz inequality,
we find

∑
i∈S

|ψ(i)|2 ≤
( ∑

i∈∂S−
|ψ(i)|2 ∑

i∈∂S−

( ∑
j∈Sc∩Ni

|ψ(j)|
)2)1/2

≤ 	(∂S)

( ∑
i∈∂S−

|ψ(i)|2 ∑
j∈∂S+

|ψ(j)|2
)1/2

,

where we have written Ni for the set of neighbors of i, ∂S− and ∂S+ for the sets
of vertices ∂S ∩ S and ∂S ∩ Sc, respectively. Finally, take S = Sn, and let n → ∞:
the exhaustivity

⋃
n Sn = V ensures that the left-hand side tends to

∑
i∈V |ψ(i)|2 =

‖ψ‖2 and also that∑
i∈∂S−

n

|ψ(i)|2 −−−→
n→∞ 0 and

∑
j∈∂S+

n

|ψ(j)|2 −−−→
n→∞ 0.

Since supn 	(∂Sn) < ∞, the right-hand side vanishes, and we obtain the desired
‖ψ‖ = 0. �

2.2. Spectral measure. We now assume that the adjacency operator A is self-
adjoint. The spectral theorem then guarantees the validity of the Borel functional
calculus on A: any measurable function f : R → C may now be rigorously applied
to the operator A just as one would do with polynomials. Denoting by μG the
spectral measure associated with the vector eØ, we may thus write

〈f (A)eØ, eØ〉 =
∫

R

f (x) dμG(x)(2)

for any f ∈ LC(μG). Taking f (x) = xn (n ∈ N), we obtain in particular

γn = 〈AneØ, eØ〉 =
∫

xn dμG(x)

(3)
= #{paths of length n from Ø to Ø in G}.



RANK OF RANDOM GRAPHS 1103

Since ‖eØ‖ = 1, the spectral measure μT is a probability measure on R. We
will now study its Cauchy–Stieltjes transform. By definition, the Cauchy–Stieltjes
transform of a probability measure μ on R is the holomorphic function mμ defined
on the upper complex half-plane C+ by

mμ : z �→
∫

R

dμ(x)

x − z
.

Note that mμ belongs to the set H of holomorphic functions f on C+ satisfying

∀z ∈ C+ f (z) ≥ 0 and |f (z)| ≤ (z)−1,

which is compact in the normed space of holomorphic functions on C
+ (Montel’s

theorem).
Henceforth, we will assume that G is a rooted tree T . We write j � i to mean that

i ∈ V is an ancestor of j ∈ V , and we let Ti be the subtree of T restricted to {j ∈ V ,
j � i}, rooted at i. Its adjacency operator Ai is the projection of A on Vect(ej, j � i).
Since it is also self-adjoint, we may consider its spectral measure μTi associated
with the vector ei, and its Cauchy–Stieltjes transform mTi . The recursive structure
of trees implies a simple well-known recursion for the family (mTi)i∈V :

PROPOSITION 4. The family (mTi)i∈V is solution in HV to the system of equa-
tions, for all z ∈ C+,

fi(z) = −
(
z + ∑

j∈D(i)

fj(z)

)−1

,(4)

where D(i) = {j � i, |j| = |i| + 1} denotes the set of immediate children of i.

PROOF. As we will see, the recursion follows from a classical operator version
of the Schur complement formula (see, e.g., Proposition 2.1 in Klein [17] for a
similar argument). We write the proof for completeness. Define the operator U on
�2(V ) by its matrix elements,

〈UeØ, ei〉 = 〈Uei, eØ〉 = 1 = 〈AeØ, ei〉,
for all i ∈ D(Ø), and 〈Uej, ek〉 = 0 otherwise. We then have the following decom-
position:

A = U + ⊕
i∈D(Ø)

Ai,

where Ai, is the projection of A on Vi = Vect(ej, j � i). Since A and Ã =⊕
i∈D(Ø) Ai are self-adjoint operators, their respective resolvents

R : z �→ (A − zI)−1, R̃ : z �→ (Ã − zI)−1
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are well defined on C+, and the resolvent identity gives

R(z)UR̃(z) = R(z) − R̃(z).(5)

In particular, for all k ∈ V ,

〈R(z)UR̃(z)eØ, ek〉 = 〈R(z)eØ, ek〉 − 〈R̃(z)eØ, ek〉.
Now, using the definition of U , we may expand the left-hand side as(

〈R̃(z)eØ, ek〉 ∑
i∈D(Ø)

〈R(z)eØ, ei〉
)

+
(
〈R(z)eØ, eØ〉 ∑

i∈D(Ø)

〈R̃(z)ei, ek〉
)
.

But R̃(z)eØ = −z−1eØ and each Vi, i ∈ D(Ø), is stable for R̃. Therefore, in the
special case where k = Ø, the above equality simplifies into

−1

z

∑
i∈D(Ø)

〈R(z)eØ, ei〉 = 〈R(z)eØ, eØ〉 + 1

z
,

while for k ∈ D(Ø), it gives

〈R(z)eØ, eØ〉〈R̃(z)ek, ek〉 = 〈R(z)eØ, ek〉.
Combining both, we finally obtain

〈R(z)eØ, eØ〉 = −
(
z + ∑

i∈D(Ø)

〈R̃(z)ei, ei〉
)−1

,

which, by (2) with f (x) = (x − z)−1, is precisely

mTØ(z) = −
(
z + ∑

i∈D(Ø)

mTi(z)

)−1

.
�

When T is finite, the set of equations (4) uniquely determines the Cauchy–
Stieltjes transforms (mTi)i∈V , which can be computed iteratively from the leaves
up to the root. Under an extra condition on T , this extends to the infinite case.
Recall that (T )n denote the truncation of T to the first n generations. In what
follows, we will make the additional assumption

lim sup
n→∞

|∂(T )n|1/n < ∞.(B)

PROPOSITION 5. If T satisfies assumption (B), then (mTi)i∈V is the unique
solution in HV to the system of equations (4), and for all i ∈ V ,

mTi = lim
n→∞m(Ti)n,(6)

in the sense of compact convergence on C+.
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PROOF. If (fi)i∈V ∈ HV and (gi)i∈V ∈ HV are solutions to the system of
equations (4), then we can write, for all i ∈ V , z ∈ C+,

|fi(z) − gi(z)| =
∣∣∣∣

∑
j∈D(i)(fj(z) − gj(z))

(z + ∑
j∈D(i) fj(z))(z + ∑

j∈D(i) gj(z))

∣∣∣∣
≤ 1

((z))2

∑
j∈D(i)

|fj(z) − gj(z)|.

Iterating this n times, and then using the uniform bound |fj(z) − gj(z)| ≤ 2 ×
((z))−1, we obtain

|fi(z) − gi(z)| ≤ 1

((z))2n

∑
j∈∂(Ti)n

|fj(z) − gj(z)| ≤ 2|∂(Ti)n|
((z))2n+1 .

Therefore, we see that under assumption (B),

∀i ∈ V |fi(z) − gi(z)| = 0

as soon as (z) is sufficiently large, hence for all z ∈ C+ by holomorphy. Finally,
denote by Mn the denumerable vector of holomorphic functions (m(Ti)n)i∈V ∈ HV .
Since H is compact, the sequence (Mn)n≥0 is relatively compact, and since each
vector Mn satisfies the partial set of equations (4) corresponding to the truncated
tree (T )n, any limit point M∞ must satisfy the global set of equations (4) corre-
sponding to the full tree T , so M∞ is nothing but (mTi)i∈V . Therefore, the sequence
of vectors (Mn)n≥0 converges to M∞ = (mTi)i∈V , and this is exactly (6). �

2.3. Atomic mass at zero. Our goal here is to characterize μT ({0}), the atomic
mass at zero of the spectral measure μT .

PROPOSITION 6. If T satisfies assumption (B), then the family (μTi({0}))i∈V

is the largest solution in [0,1]V to the system of equations

xi =
(

1 + ∑
j∈D(i)

( ∑
k∈D(j)

xk

)−1)−1

,(7)

with the conventions 1/0 = ∞ and 1/∞ = 0.

PROOF. Since T is acyclic, (3) ensures that the measures μTi, i ∈ V , are sym-
metric. Therefore, for all t > 0, i ∈ V

mTi(it) =
∫

R

x

x2 + t2 dμTi(x) + i

∫
R

t

x2 + t2 dμTi(x) = i

∫
R

t

x2 + t2 dμTi(x).

Hence, if we define hTi(t) := −itmTi(it) ∈ [0,1], then by the dominated conver-
gence theorem,

hTi(t) =
∫

R

t2 dμTi(x)

x2 + t2 −−−→
t→0

μTi({0}).
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But, iterating once equation (4), we get

hTi(t) =
(

1 + ∑
j∈D(i)

(
t2 + ∑

k∈D(j)

hTk(t)

)−1)−1

,(8)

so that letting t → 0 yields exactly that (μTi({0}))i∈V must satisfy (7).
Again, when the rooted tree T is finite, this recursion characterizes the family

(μTi({0}))i∈V , since it can be computed iteratively from the leaves up to the root.
However, when T is infinite, (7) may admit several other solutions. Fortunately,
among all of them, (μTi({0}))i∈V is always the largest. To see why, consider any
solution (xi)i∈T ∈ [0,1]V . Fixing t > 0, let us show by induction that for all n ∈ N,

∀i ∈ V xi ≤ h(Ti)2n
(t) := −itm(Ti)2n

(it).(9)

This will conclude our proof since we may then let n → ∞ to obtain xi ≤ hTi(t)

by Proposition 5, and let finally t → 0 to reach the desired xi ≤ μTi({0}). The base
case n = 0 is trivial because the right-hand equals 1. Now, if (9) holds for some
n ∈ N, then for all i ∈ V ,

xi =
(

1 + ∑
j∈D(i)

( ∑
k∈D(j)

xk

)−1)−1

≤
(

1 + ∑
j∈D(i)

(
t2 + ∑

k∈D(j)

h(Tk)2n
(t)

)−1)−1

= h(Ti)2n+2(t),

where the first equality follows from the fact that (xi)i∈T satisfies (7), the middle
inequality from the induction hypothesis, and the last equality from (8) applied to
(Ti)2n+2. �

2.4. Galton–Watson trees. We now apply the above results to Galton–Watson
trees. Let F∗ be a distribution on N with finite mean, and let T be a GWT with
degree distribution F∗, that is, a random locally finite rooted tree obtained by a
Galton–Watson branching process where the root has offspring distribution F∗,
and all other genitors have offspring distribution F , where

∀k ≥ 1 F(k − 1) = kF∗(k)
/∑

�

�F∗(�).(10)

In the rest of this paper, we will make the following second moment assumption
on the distribution F∗ :

∑
k k2F∗(k) < ∞, or equivalently

∑
k kF (k) < ∞. It is in

fact a sufficient condition for all the previous results to hold almost surely.

PROPOSITION 7. If F∗ has a finite second moment, then T satisfies (A)
and (B) with probability one. In particular, the adjacency operator A is almost
surely self-adjoint, and the atomic mass at zero of the spectral measure at the root
of T is characterized by the fixed-point equation (7).
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PROOF. Let N denote a generic random variable with law F . For (B), it is
well known (and easy to check by a martingale argument) that the size of the nth
generation in a GWT with offspring distribution F behaves like E

nN as n → ∞,
in the precise sense that almost surely, n−1 log|∂(T )n| → EN , which is finite by
assumption. As far as (A) is concerned now, if T is finite there is nothing to do.
Now if T is infinite, we build an exhausting sequence of finite vertex subsets with
uniformly bounded boundary degree as follows: the finite first moment assumption
on F guarantees the existence of a large enough integer κ ≥ 1 so that∑

k≥κ

kF (k) < 1.(11)

For each vertex of T , color it in red if it has less than κ children and in blue other-
wise. If the root Ø is red, set S1 = {Ø}. Otherwise, the connected blue component
containing the root is a GWT with average offspring

∑
k≥κ kF (k) < 1, so it is

almost-surely finite, and we define S1 as the set of its vertices, together with their
(red) external boundary vertices. Now for each external boundary vertex i ∈ ∂S+

1 ,
we repeat the procedure on the subtree Ti, and we define S2 as the union of S1
and all the resulting subsets. Iterating this procedure, we obtain an exhaustive se-
quence of subsets S1, S2, . . . ⊆ V whose boundary degree satisfies by construction
	(∂Sn) = κ , which is exactly (A). �

Owing to the recursive distributional nature of GWTs, the set of equations (7)
defining μT ({0}) takes the much nicer form of a Recursive distributional equa-
tion (RDE), which we now make explicit. We denote P(N) (resp., P([0,1])) the
space of probability distributions on N ([0,1], resp.). Given F,F ′ ∈ P(N) and
ν ∈ P([0,1]), we denote by F,F ′(ν) the distribution of the [0,1]-valued r.v.

Y = 1

1 + ∑N
i=1(

∑N ′
i

j=1 Xij )−1
,(12)

where N ∼ F , N ′
i ∼ F ′ and Xij ∼ ν, all of them being independent. With this

notation in hand, the previous result implies the following: if F ∗ has a finite second
moment, then μT ({0}) has distribution F∗,F (ν∗

0 ), where F is given by (10) and
ν∗

0 is the largest solution to the RDE

ν∗
0 = F,F (ν∗

0 ).(13)

The remainder of this section is dedicated to solving (13) when F∗ has a finite
second moment. We will assume that F∗(0) + F∗(1) < 1; otherwise F = δ0 and
ν∗

0 = δ1 is clearly the only solution to (13). We let ϕ∗(z) = ∑
n≥0 F∗(n)zn be the

generating function of F∗. For any x ∈ [0,1], we set x = ϕ′∗(1 − x)/ϕ′∗(1), and we
define

M(x) = ϕ′∗(1)xx + ϕ∗(1 − x) + ϕ∗(1 − x) − 1.
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Observe that M ′(x) = ϕ′′∗(1 − x)(x − x), and therefore any x ∈ [0,1] where M

admits a local extremum must satisfy x = x. We will say that M admits a historical
record at x if x = x and M(x) > M(y) for any 0 ≤ y < x. Since [0,1] is compact
and M is analytic, there are only finitely many such records. In fact, they are in
one-to-one correspondence with the solutions to the RDE (13).

THEOREM 8. If p1 < · · · < pr are the locations of the historical records of
M , then the RDE (13) admits exactly r solutions; moreover, these solutions can be
stochastically ordered, say ν1 < · · · < νr , and for any i ∈ {1, . . . , r}:
(i) νi({0}c) = pi ;

(ii) F∗,F (νi) has mean M(pi).

In particular, E[μT ({0})] = maxx∈[0,1] M(x).

It now remains to prove Theorem 8. The space P([0,1]) is naturally equipped
with:

- a natural topology, which is that of weak convergence,

μn −−−→
n→∞ μ ⇐⇒

∫
ϕ dμn −−−→

n→∞

∫
ϕ dμ

for any continuous function ϕ : [0,1] → R;
- a natural order, which is that of stochastic domination,

μ1 ≤ μ2 ⇐⇒
∫
ϕ dμ1 ≤

∫
ϕ dμ2

for any continuous, increasing function ϕ : [0,1] → R.

The proof is based on two lemmas, the first one being straightforward.

LEMMA 9. For any F,F ′ ∈ P(N) \ {δ0}, F,F ′ is continuous and strictly in-
creasing on P([0,1]).

LEMMA 10. For any ν ∈ P([0,1]), letting p = ν({0}c), we have:

(i) F,F (ν)({0}c) = p;
(ii) if F,F (ν) ≤ ν, then the mean of F∗,F (ν) is at least M(p);

(iii) if F,F (ν) ≥ ν, then the mean of F∗,F (ν) is at most M(p).

In particular, if ν is a fixed point of F,F , then p = p and F∗,F (ν) has mean
M(p).

PROOF. In (12) it is clear that Y > 0 if and only if for any i ∈ {1, . . . ,N}, there
exists j ∈ {1, . . . ,N ′

i } such that Xij > 0. Denoting by ϕ the generating function
of F , this rewrites

F,F (ν)({0}c) = ϕ
(
1 − ϕ

(
1 − ν({0}c))).
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But from (10) it follows that ϕ(·) = ϕ′∗(·)/ϕ′∗(1), that is, ϕ(1 − x) = x, hence the
first result.

Now let X ∼ ν, N∗ ∼ F∗, N ∼ F , and let S,S1, . . . have the distribution of the
sum of N i.i.d. copies of X, all these variables being independent. Then, F∗,F (ν)

has mean

E

[
1

1 + ∑N∗
i=1 S−1

i

]
= E

[(
1 −

∑N∗
i=1 S−1

i

1 + ∑N∗
i=1 S−1

i

)
1{∀i=1,...,N∗,Si>0}

]

= ϕ∗(1 − p)

− ϕ′∗(1)E

[
S−1

S−1 + 1 + ∑N
i=1 S−1

i

1{S>0,∀i=1,...,N̂∗,Si>0}
]

= ϕ∗(1 − p) − ϕ′∗(1)E

[
Y

Y + S
1{S>0}

]
,

where the second and last lines follow from (10) and Y ∼ F,F (ν), respectively.
Now, for any s > 0, x �→ x

x+s
is increasing, and hence, depending on whether

F,F (ν) ≥ ν or F,F (ν) ≤ ν, F∗,F (ν) has mean at most/least

ϕ∗(1 − p) − ϕ′∗(1)E

[
X

X + S
1{S>0}

]
(14)

= ϕ∗(1 − p) − pϕ′∗(1)E

[
1

1 + N̂
1{N̂≥1}

]
with N̂ =

N∑
i=1

1{Xi>0}.

But using the definition (10) and the well-known identity (n + 1)
(n
d

) = (d +
1)

(n+1
d+1

)
, one can easily check that

ϕ∗(1 − p) − pϕ′∗(1)E

[
1

1 + N̂
1{N̂≥1}

]

= ϕ∗(1 − p) − pϕ′∗(1)
∑
n≥1

F(n)

n∑
d=1

(
n

d

)
pd(1 − p)n−d

d + 1

= M(p). �

We now have all the ingredients we need to prove Theorem 8.

PROOF OF THEOREM 8. Let p ∈ [0,1] such that p = p, and define ν0 =
Bernoulli(p). From Lemma 10 we know that F,F (ν0)({0}c) = p, and since
Bernoulli(p) is the largest element of P([0,1]) putting mass p on {0}c, we have
F,F (ν0) ≤ ν0. Immediately, Lemma 9 guarantees that the limit

ν∞ = lim
k→∞ ↘ k

F,F (ν0)
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exists in P([0,1]) and is a fixed point of F,F . Moreover, by Fatou’s lemma, the
number p∞ = ν∞({0}c) must satisfy p∞ ≤ p. But then the mean of F∗,F (ν∞)

must be both:

- equal to M(p∞) by Lemma 10 with ν = ν∞ and
- at least M(p) since ∀k ≥ 0, the mean of F∗,F (k

F,F (μ0)) is at least M(p)

[Lemma 10 with ν = k
F,F (ν0)].

We have just shown both M(p) ≤ M(p∞) and p∞ ≤ p. From this, we will now
deduce the one-to-one correspondence between historical records of M and fixed
points of F,F . We treat each inclusion separately:

- If M admits a historical record at p, then clearly p∞ = p, so ν∞ is a fixed point
satisfying ν∞({0}c) = p.

- Conversely, considering a fixed point ν with ν({0}c) = p, we want to deduce
that M admits a historical record at p. We first claim that ν is the above defined
limit ν∞. Indeed, ν ≤ Bernoulli(p) implies ν ≤ ν∞ (F,F is increasing), and
in particular p ≤ p∞. Therefore, p = p∞ and M(p) = M(p∞). In other words,
the two ordered distributions F∗,F (ν) ≤ F∗,F (ν∞) share the same mean and
hence are equal. This ensures ν = ν∞. Now, if q < p is any historical record
location, we know from part 1 that

λ∞ = lim
k→∞ ↘ k

F,F (Bernoulli(q))

is a fixed point of F,F satisfying λ∞({0}c) = q . But q < p, so Bernoulli(q) <

Bernoulli(p), hence λ∞ ≤ ν∞. Moreover, this limit inequality is strict be-
cause λ∞({0}c) = q < p = ν∞({0}c). Consequently, F∗,F (λ∞) < F∗,F (ν∞)

and taking expectations, M(q) < M(p). Thus, M admits a historical record
at p. �

3. Convergence of the spectral measure.

3.1. Local convergence of rooted graphs. In this paragraph, we briefly recall
the framework of local convergence introduced by Benjamini and Schramm [7]
and Aldous and Steele [3] (see also Aldous and Lyons [2]).

We recall that for integer t , (G)t is the rooted subgraph spanned by the vertices
at distance at most t from the root. We consider the set G∗ of all locally finite,
connected rooted graphs, taken up to root-preserving isomorphism. With the ter-
minology of combinatorics, G∗ is the set of rooted unlabeled connected locally
finite graphs. We define a metric on G∗ by letting the distance between two rooted
graphs G1 and G2 be 1/(1 + T ), where T is the supremum of those t ≥ 0 such
that there exists a root-preserving isomorphism from (G1)t to (G2)t . Convergence
with respect to this metric is called local convergence.

This makes G∗ into a separable and complete metric space (see Section 2 in [2]).
In particular, we can endow G∗ with its Borel σ -algebra and speak about weak
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convergence of random elements in G∗. Specifically, a sequence of probability
distributions ρ1, ρ2, . . . on G∗ converges weakly to a probability distribution ρ,
denoted by ρn �⇒ ρ, if ∫

G∗
f dρn −−−→

n→∞

∫
G∗

f dρ

for all bounded continuous function f : G∗ → R. This is called the local weak
convergence.

Let us finally mention three important examples of random graph sequences
that converge locally weakly to Galton–Watson trees. The Erdős–Rényi graphs
with connectivity c on the vertex set {1, . . . , n}, rooted at Ø = 1 converges locally
weakly to the GWT with degree distribution Poisson(c). The uniform k-regular
(k ≥ 2) graph on {1, . . . , n}, rooted at Ø = 1, converges weakly to the infinite k-
regular tree. More generally, if F∗ is a degree distribution on N with finite mean,
the random graph-sequence with asymptotic degree distribution F∗ converges to
the GWT with degree distribution F∗. Note that in the above examples, the ver-
tices are exchangeable and the choice Ø = 1 is arbitrary: equivalently, we could
have chosen Ø uniformly at random among all vertices, independently of the edge
structure.

3.2. Continuity of the spectral measure. Since the elements of G∗ have count-
ably many vertices and are only considered up to isomorphism, we may without
loss of generalities embed all vertices into the same, fixed generic vertex set V , say
the set of finite words over integers: the root is represented by the empty-word Ø,
and vertices at distance t from the root are represented by word of length t in
the usual way. All adjacency operators can thus be viewed as acting on the same
Hilbert space �2(V ), their action being defined as zero on the orthogonal comple-
ment of the subspace spanned by their vertices. Note that this does not affect the
spectral measure at the root μT .

If (Gn) is a converging sequence in G∗, say to G ∈ G∗, we may even relabel the
vertices in a consistent way so that the root-preserving isomorphisms appearing in
the definition of local convergence become identities: for every t ∈ N, there exists
nt ∈ N such that

n ≥ nt �⇒ (Gn)t = (G)t .(15)

Fixing a word i ∈ V , and setting t equal 1 plus the distance from i to the root
above, we obtain that for all n ≥ nt , i is a vertex of Gn if and only if it is a ver-
tex of G, and in that case its neighbors in Gn are exactly its neighbors in G. In
other words, Anei = Aei. By linearity, it follows that any finitely supported vector
ψ :V → C must satisfy

Anψ
�2(V )−−−→
n→∞ Aψ,
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and since those ψ are dense in �2(V ), Theorem VIII.25(a) in Reed and Simon
[18] guarantees that An → A in the strong resolvent sense, provided of course that
A,A1, . . . are self-adjoint. In particular, this implies the weak convergence of the
corresponding spectral measures at the root and the compact convergence of their
associated Cauchy–Stieltjes transforms,

mGn

H−−−→
n→∞ mG and μGn

P(R)−−−→
n→∞ μG.

Note that this last statement does not depend anymore on the way G,G1, . . . have
been embedded. We have thus established the following continuity result:

PROPOSITION 11. Let G,G1,G2, . . . be elements of G∗ whose adjacency op-
erators are self-adjoint. Let μG,μG1, . . . denote the associated spectral measures
at their root, and mG,mG1, . . . the corresponding Cauchy–Stieltjes transforms. If

Gn
G∗−−−→

n→∞ G, then

mGn

H−−−→
n→∞ mG and μGn

P(R)−−−→
n→∞ μG.

As a consequence, when G,G1,G2, . . . are random elements of G∗, the same
implication holds with all convergences being replaced by their distributional ver-
sions. More precisely, if the law of Gn converges weakly to that of G, then

mGn

P(H)−−−→
n→∞ mG and μGn

P(P(R))−−−−→
n→∞ μG.

3.3. Connection with the empirical spectral measure of a finite graph. In the
case of a finite (nonrooted) graph Gn = (Vn,En) on n vertices, the adjacency op-
erator An is a particularly simple object: it is bounded and self-adjoint, and it
has exactly n eigenvalues λ1(An) ≥ · · · ≥ λn(An) (with multiplicities), all of them
being real. Moreover, �2(Vn) ≡ C

n admits an orthonormal basis of eigenvectors
(b1, . . . , bn), a priori different from the canonical orthonormal basis (ev)v∈Vn , such
that

∀x ∈ C
n Anx =

n∑
i=1

λi(An)〈x, bi〉bi.

If (Gn, v) denotes the graph Gn when rooted at v, the spectral measure at the root
is simply

μ(Gn,v) =
n∑

i=1

|〈bi, ev〉|2δλi(An).

In fact μ(Gn,v) can be interpreted as the local contribution of vertex v to the em-
pirical spectral measure μn of Gn. Indeed, the above formula implies

1

n

∑
v∈Vn

μ(Gn,v) = 1

n

n∑
i=1

δλi(An) = μn.(16)
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Note that the left-hand side can be reinterpreted as the expectation of μ(Gn,Ø) un-
der a uniform choice of the root Ø. More generally, if Gn is a random graph on n

vertices, we denote by U(Gn) the random element of G∗ obtained by rooting Gn

at a uniformly chosen vertex, independently of the random edge-structure. Simi-
larly, we define U2(Gn) as the random element ((Gn,Ø1), (Gn,Ø2)) in G∗ × G∗,
where (Ø1,Ø2) is a uniformly chosen pair of vertices. Finally we let μn denote
the (random) empirical spectral measure of the adjacency matrix of Gn. With this
notation, we have the following corollary.

COROLLARY 12. If U(Gn) converges weakly to a rooted GWT T whose de-
gree distribution F∗ has a finite second moment, then

lim
n→∞Eμn = EμT ,

where μT denotes the local spectral measure at the root of T . If moreover U2(Gn)

converges weakly to (T1, T2), two independent copies of T , then in probability,

lim
n→∞μn = EμT .

In the above-mentioned cases of Erdős–Rényi random graphs and random
graphs with asymptotic degree distribution F∗, the assumption on U2(Gn) is easily
checked. This corollary implies that the study of the limiting spectral measure of
random tree-like graphs boils down to the study of the local spectral measure at
the root of the limiting GWT. As we have seen, the latter is fully characterized by a
simple RDE involving its Cauchy–Stieltjes transform. Note, however, that this re-
sult does not give the full statement of Theorem 1(i); the almost sure convergence
will be considered later.

PROOF OF COROLLARY 12. By (16), we may write for any bounded contin-
uous function f : R → R,

E

∫
R

f dμn = 1

n

∑
Ø∈Vn

E

∫
R

f dμ(Gn,Ø) −−−→
n→∞ E

∫
R

f dμT ,

where the convergence follows from the weak convergence U(Gn) → T and the
continuity result stated in Proposition 11. This is exactly saying that Eμn → EμT .
If, moreover, U2(Gn) converges weakly to (T1, T2), then by the same argument,

E

(∫
R

f dμn

)2

= 1

n2

∑
Ø1∈Vn,Ø2∈Vn

E

(∫
R

f dμ(Gn,Ø1)

∫
R

f dμ(Gn,Ø2)

)

−−−→
n→∞

(
E

∫
R

f dμT

)2

,
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and therefore, the second moment method suffices to conclude that∫
R

f dμn
P−−−→

n→∞ E

∫
R

f dμT ,

which is exactly saying that μn → EμT in probability. �

3.4. Main result: Convergence of the rank. We are now in position to state
the main result of this paper. We consider a sequence of finite random graphs
G1,G2, . . . converging in distribution (once uniformly rooted) to a GWT whose
degree distribution F∗ has a finite second moment. As above, ϕ∗(x) = ∑

k F∗(k)xk

denotes the generating function of F∗, and we consider the function

M :x ∈ [0,1] �→ ϕ′∗(1)xx + ϕ∗(1 − x) + ϕ∗(1 − x) − 1

where x = ϕ′∗(1 − x)/ϕ′∗(1).

Recall that M ′(x) = ϕ′′∗(1 − x)(x − x) so that M(x) is a local extremum if and
only if x = x.

THEOREM 13. Assume that U2(Gn) converges weakly to (T1, T2), two inde-
pendent copies of a GWT whose degree distribution F∗ has a finite second moment.
If the first local extremum of M is the global maximum, then in probability,

lim
n→∞

1

n
rank(An) = 1 − max

x∈[0,1]M(x).

Moreover, a simple sufficient condition for the assumption on M to hold is that ϕ′′∗
is log-concave.

If the assumption U2(Gn) → (T1, T2) is replaced by the weaker U(Gn) → T ,
then we only have convergence of the expected rank.

The log-concavity of ϕ′′∗ is a sufficient condition for the first local extremum of
M to be a global maximum. Setting h :x �→ x − x, we find

∀x ∈ (0,1) h′′(x) = ϕ′′∗(1 − x)

ϕ′∗(1)

ϕ′′∗(1 − x)

ϕ′∗(1)
g(x)

with

g(x) = ϕ′′∗(1 − x)ϕ′′′∗ (1 − x)

ϕ′∗(1)ϕ′′∗(1 − x)
− ϕ′′′∗ (1 − x)

ϕ′′∗(1 − x)
.

Now, if ϕ′′∗ is log-concave, then x �→ ϕ′′′∗ (x)/ϕ′′∗(x) is nonincreasing on (0,1),
and therefore, g is decreasing (as the difference of a decreasing function and a
nondecreasing one). Consequently, h′′ can vanish at most once on (0,1), hence
h′ admits at most two zeros on [0,1], and h at most three. The unique root xc of
x = x is always one of them, and if x is another one, then so is x. Therefore, only
two cases are possible:
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- Either xc is the only zero of h; then h(0) > 0 and h(1) < 0, so M is maximum
at xc,

- or h admits exactly three zeros x− < xc < x+; in this case the decreasing func-
tion g has to vanish somewhere in (0,1), so h′′ is positive and then negative
on (0,1). Consequently, h is decreasing, then increasing, and then decreasing
again. In other words, M is minimum at xc and maximum at x−, x+.

In both cases, the first local extremum of M is its global maximum.
The remaining part of this section is devoted to the proof of Theorem 13. First,

recall that n−1 rank(An) = 1−μn({0}). From Corollary 12, we have in probability,

lim sup
n

μn({0}) ≤ EμT ({0}).
In order to prove Theorem 13, it is thus sufficient to establish that

lim inf
n

Eμn({0}) ≥ max
x∈[0,1]M(x).(17)

To do so, we will use the Karp–Sipser leaf removal algorithm, which was intro-
duced in [15] to efficiently build a matching (i.e., a subset of pairwise disjoint
edges) on a finite graph.

For our purposes, the leaf removal algorithm on a locally finite graph G =
(V ,E) can be described as an iterative procedure that constructs two nondecreas-
ing sequences (At )t≥0 and (Bt )t≥0 of subsets of V as follows: we start with

A0 = {v ∈ V : deg(v;G) = 0} and B0 = ∅.

Thus, A0 is simply the set of isolated vertices in G. Then, at each step t ∈ N, we
let Gt be the subgraph of G spanned by the vertex-set Vt = V \ (At ∪ Bt ∪ Pt),
where P0 = ∅. We denote by

Lt = {v ∈ Vt : deg(v;Gt) = 1}
the set of its leaves. We also introduce the set of vertices that are adjacent to those
leaves,

Wt = {v ∈ Vt \ Lt :∃u ∈ Lt, (uv) ∈ E}.
We add to Pt the set of pairs of adjacent vertices in Lt ,

Pt+1 = Pt ∪ {v ∈ Lt,∃u ∈ Lt, (uv) ∈ E}.
Then we set

At+1 = At ∪ {u ∈ Lt :∃v ∈ Wt, (uv) ∈ E} and Bt+1 = Bt ∪ Wt.

In words, for any leaf u of Gt whose (unique) neighbor v is not a leaf, we add
u to At and v to Bt . Then to obtain Gt+1, all nodes in At+1 ∪ Bt+1 ∪ Pt+1 are
removed from G (note that to obtain Gt+1, all leaves from Gt are removed with
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their adjacent vertices). If Lt becomes empty, we have (At+1, Bt+1) = (At , Bt ),
and the algorithm stops. Finally, in the case where the graph G is finite, we define

LRt (G) = |At (G)| − |Bt (G)|.(18)

Note that for any finite graph G, the sequence (LRt (G))t≥0 is nondecreasing. Note
also that the leaf removal algorithm is well defined for a (possibly infinite) locally
finite graph, but the definition (18) makes sense only for finite graphs. The lemma
below states a connection between these numbers and the rank of the adjacency
matrix of G. It was first observed in [6], and a proof can be found in [14].

Although we will not need it here, let us make for completeness the following
observation, which was the original reason why this algorithm was introduced for
finite graphs: each time a vertex v is added to Bt , one may arbitrarily associate
it with one of its neighboring leaves uv ∈ At . Similarly, for every vertex v added
to Pt , define uv as its other neighboring leaf in Pt . The edge-set {(vuv), v ∈ Bt ∪
Pt } is then a matching of G, and it is contained in at least one maximum matching
of G. Since the graph is finite, the algorithm stops at a finite time t∗. The subgraph
of G spanned by the vertex-set V \ (At∗ ∪ Bt∗ ∪ Pt∗) is a graph with minimal
degree at least 2 called the core of the graph.

LEMMA 14. For any finite graph G with adjacency matrix A, and any t ∈ N,

dim ker(A) ≥ |LRt (G)|.
PROOF. Let u1 ∈ L0(G) be a leaf of G and v its unique neighboring vertex.

Let G′ = G \ {u1, v} and A(G′) the adjacency matrix of G′, we have

dim kerA(G) = dim kerA(G′)
(see [6]). Now, if {u1, . . . , ua} ⊂ L0(G), is the set of leaves adjacent to v, then
{u2, . . . , ua} are isolated vertices in G′. The vectors eu2, . . . , eua are thus eigen-
vectors of the kernel of A′. By orthogonal decomposition, we deduce that

dim kerA(G) = a − 1 + dim ker
(
A(G \ {v,u1, . . . , ua})).

By linearity, we obtain that for any integer t ,

dim kerA(G) = |At (G)| − |Bt (G)| + dim ker
(
A

(
G \ (At ∪ Bt ∪ Pt)

))
≥ |At (G)| − |Bt (G)|. �

The lower bound (17) will now follow from the following proposition.

PROPOSITION 15. Let T be a rooted GWT whose degree distribution F∗ has
a finite mean. Then

lim
t→∞P

(
Ø ∈ At (T )

) − P
(
Ø ∈ Bt (T )

) = M(x0),

where x0 ∈ [0,1] is the location of the first local extremum of M .
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PROOF. The argument is close to that appearing in [15], Section 4. For any
vertex i �= Ø, we run the leaf removal algorithm on T̃i which is the tree Ti with an
additional infinite path starting from i. We first compute the corresponding prob-
abilities αt = P(i ∈ At (T̃i)) and βt = P(i ∈ Bt (T̃i)). For our purpose, adding the
infinite path amounts to increase artificially the degree of the root by 1: to be a leaf
in T̃i, the root needs to be isolated in Ti. By construction, i is in Bt (T̃i) if and only
if one of its children k is in At (T̃k). Hence if N denotes the number of children
of i, we have

βt = E[1 − (1 − αt)
N ] = 1 − ϕ(1 − αt),

where ϕ is the generating function of N with distribution F given by (10). Sim-
ilarly, i is in At (T̃i) if and only if all its children k are in Bt−1(T̃k), so that
αt = ϕ(βt−1). Hence for all t ≥ 1, we have αt = ϕ(1 − ϕ(1 − αt−1)) and α0 = 0.
Since x �→ ϕ(1 −ϕ(1 −x)) is nondecreasing, αt converges to α, the smallest fixed
point of the equation x = ϕ(1 − ϕ(1 − x)), and βt converges to β = 1 − ϕ(1 − α).
Note that ϕ(x) = ϕ′∗(x)/ϕ′∗(1), where ϕ∗ is the generating function of F∗. Hence,
with the notation of Section 2.4, we have β = 1 − α, α = α. In particular, we get
x0 = α.

We now compute P(Ø ∈ At (T ))− P(Ø ∈ Bt (T )). Recall that D(Ø) is the set of
neighbors of the root Ø. Here are all the possible cases:

- if ∀i ∈ D(Ø), i ∈ Bt−1(T̃i), then Ø ∈ At (T );
- if there exists j ∈ D(Ø) \ (Bt−1(T̃j) ∪ At (T̃j)) and ∀i ∈ D(Ø) \ j, i ∈ Bt−1(T̃i),

then Ø ∈ At (T );
- if there exists i �= j ∈ D(Ø) such that i ∈ At (T̃i) and j /∈ Bt−1(T̃j), then Ø ∈

Bt (T ).

In all other cases, Ø /∈ At (T ) ∪ Bt (T ). In summary, we have

P
(
Ø ∈ At (T )

)
= P

(∀i ∈ D(Ø), i ∈ Bt−1(T̃i)
)

+ P
(∃j ∈ D(Ø) \ (

Bt−1(T̃j) ∪ At (T̃j)
)
,∀i ∈ D(Ø) \ j, i ∈ Bt−1(T̃i)

)
= ϕ∗(βt−1) + (1 − βt−1 − αt)ϕ

′∗(βt−1),

P
(
Ø ∈ Bt (T )

)
= P

(∃i �= j ∈ D(Ø), i ∈ At (T̃j), j /∈ Bt−1(T̃j)
)

= P
(∃i ∈ D(Ø), i ∈ At (T̃i)

)
− P

(∃i ∈ D(Ø), i ∈ At (T̃i),∀j ∈ D(Ø) \ i, j ∈ Bt−1(T̃j)
)

= 1 − ϕ∗(1 − αt) − αtϕ
′∗(βt−1).
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Hence,

lim
t→∞P

(
Ø ∈ At (T )

) − P
(
Ø ∈ Bt (T )

) = ϕ∗(β) + (1 − β)ϕ′∗(β) + ϕ∗(1 − α) − 1

= M(α) = M(x0),

where we have used the identities: β = 1−α, ϕ′∗(x)/ϕ′∗(1) = 1 − x and 1 − β = α.
�

PROOF OF THEOREM 13. As already pointed out, it is sufficient to prove (17).
From Lemma 14, for any integer t ,

Eμn({0}) ≥ 1

n
E LRt (Gn) = P

(
Ø ∈ At (Gn)

) − P
(
Ø ∈ Bt (Gn)

)
,

where Ø is the uniformly drawn root of U(Gn). Note that the events {Ø ∈ At (Gn)}
and {Ø ∈ Bt (Gn)} belong to the σ -field generated by (Gn,Ø)t+1. Thus the con-
vergence of U(Gn) implies that for any t ∈ N,

lim
n→∞P

(
Ø ∈ At (Gn)

) − P
(
Ø ∈ Bt (Gn)

) = P
(
Ø ∈ At (T )

) − P
(
Ø ∈ Bt (T )

)
,

where T is a rooted GWT with degree distribution F∗ (this is a standard application
of the objective method [3]). �

4. Conclusion. As explained in the Introduction, the condition on M in The-
orem 13 is restrictive, and the convergence of the rank when this condition is not
met (as in the example described in the Introduction) is left open. Without any con-
dition on the function M , our work gives only the following bounds: assume that
U2(Gn) converges weakly to (T1, T2), two independent copies of a GWT whose
degree distribution F∗ has a finite second moment, then in probability,

1 − max
x∈[0,1]M(x) ≤ lim inf

n→∞
1

n
rank(An) ≤ lim sup

n→∞
1

n
rank(An)

(19)
≤ 1 − M(x0),

where x0 is the first local extremum of M . For example, if the sequence of graphs
converges weakly to a GWT with degree distribution F∗ with F∗(1) = 0, that is,
with no leaf, then x0 = 0 and M(0) = F∗(0) so that the upper bound in (19) is
trivial.

Our proof for the upper bound on the rank of An relies on the analysis of the
leaf removal algorithm on the graph Gn. As explained above, this algorithm when
applied to a finite graph produces a matching and a subgraph of minimal degree 2
called the core. It turns out that the RDEs (12) and (13) also appear in the the
analysis of the size of maximal matchings on graphs [11]. In particular, if the size
of the core is o(n), the leaf removal produces an (almost) maximal matching [with
error o(n)], and the bounds in (19) match. If the size of the core is not negligible,
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but the bounds in (19) match (as, e.g., in the case where ϕ′′∗ is log-concave), our
result shows that the asymptotic size of the kernel of the core is zero. In [11], it is
shown that this case corresponds to the situation where there is an (almost) perfect
matching on the core of the graph. However, as soon as M(x0) �= maxx∈[0,1] M(x),
for any maximal matching, there is a positive fraction of vertices in the core that
are not matched [11]. In this latter case, the convergence of the rank is left open.

APPENDIX: PROOF OF THEOREM 1

In the case where F∗ is the Poisson(c) distribution, we simply have

∀x ∈ (0,1) ϕ(x) = ϕ∗(x) = exp
(
c(x − 1)

)
,

whose second derivative is clearly log-concave. We may therefore apply Theo-
rem 13 to the sequence of Erdős–Rényi graphs (Gn)n∈N. See Figure 2 for a plot of
the corresponding function.

To complete the proof of Theorem 1, it only remains to improve the convergence
in probability into an almost sure convergence. This is performed by a standard
exploration procedure of the edges En of the graph Gn. For 1 ≤ k ≤ n, we define
the random variable in {0,1}k ,

Xk = (Aik)1≤i≤k.

By construction, the variables (Xk)1≤k≤n are independent random variables. Note
also that the upper half of the adjacency matrix An is precisely (X1, . . . ,Xn) and
we may safely write An = A(X1, . . . ,Xn).

For 1 ≤ i ≤ n, let Ai(X1, . . . ,Xn) be the principal minor of A obtained by
removing ith row and column. If λ1 ≤ · · · ≤ λn and λ1,i ≤ · · · ≤ λn−1,i denote
the eigenvalues of A(X1, . . . ,Xn) and Ai(X1, . . . ,Xn), by the Cauchy interlacing
theorem, for all 1 ≤ j ≤ n − 1,

λj ≤ λj,i ≤ λj+1.

In particular,

|dim kerA(X1, . . . ,Xn) − dim kerAi(X1, . . . ,Xn)| ≤ 1.

FIG. 2. From left to right: plot of M for c = 2, c = e and c = 3.
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We note that Ai(X1, . . . ,Xn) does not depend on Xi . Therefore, for all (xj ∈
{0,1}j ),1 ≤ j ≤ n, x′

i ∈ {0,1}i :
|dim kerA(x1, . . . , xi−1, xi, xi+1, . . . , xn)

− dim kerA(x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)| ≤ 2.

In other words, the function (x1, . . . , xn) �→ dim kerA(x1, . . . , xn) is 2-Lipschitz
for the Hamming distance. By a standard use of Azuma’s martingale difference
inequality we get

P
(|dim kerA(X1, . . . ,Xn) − E dim kerA(X1, . . . ,Xn)| ≥ t

) ≤ 2 exp
(−t2

8n

)
.

From the Borel–Cantelli lemma, we obtain that almost surely,

lim
n

dim kerA(X1, . . . ,Xn) − E dim kerA(X1, . . . ,Xn)

n
= 0.

Since we have already proved that E dim kerA(X1, . . . ,Xn)/n converges to
maxx∈[0,1] M(x), we deduce that dim kerA(X1, . . . ,Xn)/n convergences a.s. to
maxx∈[0,1] M(x).

It remains to deal with the almost sure convergence in Theorem 1(i). We
have already proved that μn converges in probability to μ. Henceforth Eμn

converges to μ. It is thus sufficient to prove that almost surely, for all t ∈ R,
μn((−∞, t]) − Eμn((−∞, t]) converges to 0. The next lemma is a consequence
of Lidskii’s inequality. For a proof see Theorem 11.42 in [4].

LEMMA 16 (Rank difference inequality). Let A, B be two n × n Her-
mitian matrices with empirical spectral measures μA = 1

n

∑n
i=1 δλi(A) and μB =

1
n

∑n
i=1 δλi(B). Then

sup
t∈R

|μA((−∞, t]) − μB((−∞, t])| ≤ 1

n
rank(A − B).

Again, we view μn as a function of (X1, . . . ,Xn), and write μn = μ(X1,...,Xn).
Note that for all (xj ∈ {0,1}j ),1 ≤ j ≤ n, x′

i ∈ {0,1}i , A(x1, . . . , xi−1, xi, xi+1,
. . . , xn) − A(x1, . . . , xi−1, x

′
i , xi+1, . . . , xn) has only the ith row possibly different

from 0, and we get

rank
(
A(x1, . . . , xi−1, xi, xi+1, . . . , xn) − A(x1, . . . , xi−1, x

′
i , xi+1, . . . , xn)

) ≤ 2.

Therefore from Lemma 16, for any real t ,

∣∣μ(x1,...,xi−1,xi ,xi+1,...,xn)((−∞, t]) − μ(x1,...,xi−1,x
′
i ,xi+1,...,xn)((−∞, t])∣∣ ≤ 1

n
.

Again, Azuma’s martingale difference inequality leads to

P
(∣∣μ(X1,...,Xn)((−∞, t]) − Eμ(X1,...,Xn)((−∞, t])∣∣ ≥ s

) ≤ 2 exp
(−ns2

2

)
.
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We deduce similarly from the Borel–Cantelli lemma that μn((−∞, t]) −
Eμn((−∞, t]) converges a.s. to 0 and the proof of Theorem 1 is complete.
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