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Abstract. The objective of this review paper is to summarize the main prop-
erties of the spatial ARMA models and describe some of the well-known
methods used in image filtering based on estimation of spatial autoregressive
models. A new proposal based on robust RA estimation is also presented.
Previous studies have shown that under additive outliers the RA estimator is
resistant to a small percentage of contamination and behaves better than the
LS, M, and GM estimators. A discussion about how well these models fit to a
digital image is presented. Some applications using real images are presented
to illustrate how an image is filtered in practice.

1 Introduction

Image filtering in the presence of noise is a fundamental problem in image pro-
cessing. The importance of this problem has been recognized for a long time pe-
riod. Traditionally nonlinear filtering methods such as median filter (Jain (1989))
or α-trimmed mean filter are used to remove impulse noise from an image. In the
literature there are many other proposed algorithms. For a review, see Katsaggelos
(1989) and Banham and Katsaggelos (1997).

In this paper we review some existing recursive algorithms to filter those im-
ages that can be well represented by spatial ARMA models on the plane. These
algorithms are based on the fact that a contaminated image can be cleaned through
robust estimation of the parameters of a suitable model for the image. Robust pa-
rameter estimation of spatial ARMA models has been studied in the context of im-
age filtering. For example, Kashyap and Eom (1988) studied the M estimators for
the parameters of spatial AR models. Later Allende, Galbiati and Vallejos (2001)
proposed the generalized M (GM) estimator. In the experimental results carried
out by these authors it was reported that the GM estimator performed better than
the M estimator when the process is contaminated with additive outliers. Subse-
quently, Ojeda, Vallejos and Lucini (2002) proposed the use of the RA estimators
as a robust alternative to the M and GM estimators for first order spatial AR mod-
els.
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As a result of the robust estimation process Kashyap and Eom (1988) suggested
an algorithm to filter isolated impulse noise images. They used one extension of
the M estimators to attenuate the effect of outliers on the residuals of the model.
This algorithm was later developed using the GM estimators. Finally Vallejos and
Mardesic (2004) introduced classification techniques as a previous stage in the
algorithm developed by Allende, Galbiati and Vallejos (2001). This significantly
reduces the number of parameters to estimate, which impact the computational
time required to filter an image.

In this article we briefly review the filtering algorithms mentioned above. Also
a new filtering algorithm is suggested. A motivation is given in Section 2. Some
preliminary notation and the spatial autoregressive models are presented in Sec-
tion 3. In Section 4 the robust parameter estimation of spatial autoregressive mod-
els is discussed. Two examples are developed in Section 5 to illustrate how to fit
a spatial AR model in practice. In Section 6 the image filtering algorithms are de-
scribed. A new algorithm based on RA estimation is also presented. Applications
using real images are introduced to illustrate the filtering process. Finally, the main
conclusions are summarized in Section 7.

2 Motivation

Most of the images of interest, for example, the images of cultivated fields and con-
centration of population are naturally rich in texture, level of gray, etc. The same
thing happens to the images of geographical regions that allow the making of maps
and, in general, almost all the images of the earth. In this sense the AR-2D model
has two main properties. First, simulation experiments have shown that this model
is adequate to represent a diversity of real sceneries. Second, the AR-2D model
does not require a large number of parameters to represent different real sceneries
(parsimony).

To illustrate the capability of this model to represent different textures, in Fig-
ure 1 we show six images generated from AR-2D models with different sets of
parameters.

In recent times the spatial autoregressive models have been extensively used
to represent images (Bennett and Khotanzad (1999)). In particular, the first-order
AR-2D model has been used to represent real scenarios (see Kashyap and Eom
(1988)). Theoretical properties of this model were studied by Basu and Reinsel
(1993). They derived the correlation structure of the model and the maximum
likelihood estimators of the parameters. The first-order AR-2D model is able to
represent a number of different textures as is shown in Figure 2.

3 Spatial ARMA models

In this section we assume that the underlying image generation process is 2D au-
toregressive moving average. Thus a pixel in the original image X(s), where s
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(a) (b) (c)

(d) (e) (f)

Figure 1 Images (a)–(f) are realizations of an AR-2D process with 2, 3, 4, 5, 6, and 7 parameters,
respectively.

(a) (b) (c)

Figure 2 Images generated from the model X(i, j) = φ(1,0)X(i − 1, j) + φ(0,1)X(i, j − 1) +
φ(1,1)X(i − 1, j − 1) + ε(i, j).

represents a spatial position vector, can be modeled as follows:

X(s) =
P∑

k=1

φk(s)X(s + hk) +
Q∑

j=1

θj (s)ε(s + hj ), (3.1)

where a particular pixel at site s is predicted as a linear combination of pixels in
the current frame plus pixels that are in a neighborhood of a white noise ε(s),
φk(s) and θj (s) are the parameters of the model and the vectors hk , hj define
the support or neighborhood of the model. Note that the model parameters φk(s)
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and θj (s) are nonstationary since they are a function of position s. These models
have been considered to extend the models used in time series. However, from
a classical point of view the estimation process is extremely difficult because of
the large number of unknown parameters to be estimated. Alternatively, Bayesian
treatment of models like (3.1) and an algorithm for filling missing gaps in images
were suggested by Kokaram (2004).

In order to represent images using models that are statistically treatable, it is
common to assume that an image can be represented using a few number of pa-
rameters. In this context, three broad categories of spatial models that have been
studied are the simultaneous autoregressive (SAR) models (Whittle (1954)), the
conditional autoregressive (CAR) models (Besag (1974)), and the moving aver-
age (MA) models (Haining (1978)). A spatial ARMA model is described by the
equation (Martin (1996))

�(B1,B2)X(i, j) = �(B1,B2)ε(i, j), (3.2)

where the two-dimensional backward operators �(B1,B2) and �(B1,B2) are
given by

�(B1,B2) = ∑
k

∑
l

φ(k, l)Bk
1Bl

2,

�(B1,B2) = ∑
k

∑
l

θ(k, l)Bk
1Bl

2,

with B1X(i, j) = X(i − 1, j) and B2X(i, j) = X(i, j − 1) and ε(i, j) are inde-
pendent random variables with E[ε(i, j)] = 0 and Var[ε(i, j)] = σ 2.

Similarly to the time series case there are conditions on the two-dimensional
polynomials to have stationarity and invertibility. For stationarity it is enough to
assume that the complex valued polynomial �(z1, z2) is not zero for any z1 and z2
which simultaneously satisfy |z1| < 1 and |z2| < 1.

In practice, the spatial ARMA models have been used in several applications re-
lated to agricultural statistics. For example, in Cullis and Glesson (1991) the spatial
separable processes were introduced. Later, these processes were used to analyze
yield trials in the context of incomplete block designs (Grondona et al. (1996)).
Basu and Reinsel (1993) studied the spatial unilateral first-order ARMA model
to examine regression models with spatially correlated errors. Martin (1996) pre-
sented some results on separable ARMA models. These processes are defined by
their correlation function being the product of one-dimensional correlation func-
tions, and were studied first by Quenoulle (1949).

3.1 Neighborhoods in Z2

In time series, there is a natural neighbor structure induced by the existing total
order of Z (the set of all past values of t ∈ Z is the set of all integers that are
less than t). However, for points on the plane, for instance (m,n) ∈ Z2, there are
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several different notions of neighborhood. In general, definitions of neighborhood
of a point (m,n) on the plane are motivated by the physical acquisition system of
the data. This is the case of images that have been captured by satellites. Here we
describe the most frequent definitions of neighborhood found in the literature (see
Jain (1989)).

Definition 1. For all (m,n) ∈ Z2:

(a) S1(m,n) = {(k, l) ∈ Z2 : (k, l) �= (m,n)} is called noncausal prediction re-
gion at (m,n).

(b) S2(m,n) = {(k, l) ∈ Z2 :k < m)} ∪ {(m, l) ∈ Z2 : l �= n} is called semi-
causal prediction region at (m,n).

(c) S3(m,n) = {(k, l) ∈ Z2 :k < m}∪ {(m, l) ∈ Z2 : l > n} is called causal pre-
diction region at (m,n) (alternatively called nonsymmetric half plane (NSHP)).

(d) S4(m,n) = {(k, l) ∈ Z2 :k ≤ m, l ≤ n)}−{(m,n)} is called strongly causal
region at (m,n).

In general, a realization of a stochastic process defined on the plane is observed
on one of the prediction regions described above. This motivates the following
definition.

Definition 2. For all (m,n) ∈ Z2, and for all M ∈ N:

(a) W1,M(m,n) = {(k, l) ∈ S1(m,n) : |k −m| ≤ M, |l −n| ≤ M} is called non-
causal prediction window of order M at (m,n).

(b) W2,M(m,n) = {(k, l) ∈ S2(m,n) :m − M ≤ k < m, |l − n| ≤ M} ∪
{(m, l) : 0 < |l − n| ≤ M} is called semicausal prediction window of order M at
(m,n).

(c) W3,M(m,n) = {(k, l) ∈ S3(m,n) :m − M ≤ k < m, |l − n| ≤ M} ∪
{(m, l) :n < l ≤ n + M} is called causal prediction window of order M at (m,n).

(d) W4,M(m,n) = {(k, l) ∈ S4(m,n) :m − M ≤ k ≤ m,n − M ≤ l ≤ n} is
called strongly causal prediction window of order M at (m,n).

3.2 Spatial AR processes

Similarly to the one-dimensional case, if �(B1,B2) = 1, then the process is called
moving average. If �(B1,B2) = 1, the process is called autoregressive.

The simultaneous AR model is defined as

�(B1,B2)X(i, j) = ε(i, j). (3.3)

Particular cases of these processes are well known in the literature. For example,
the isotropic first-order simultaneous autoregressive scheme (Cliff and Ord (1981))
described by the equation

X(i, j) = φ
(
X(i−1, j)+X(i+1, j)+X(i, j −1)+X(i, j +1)

)+ε(i, j), (3.4)
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with |φ| < 1/4 to ensure stationarity. Whittle (1954) has shown that given a set of
autocorrelations of a SAR process, there is a unique representation of the process in
which X(i, j) can be expressed as an autoregression on X(i, j) (i = 0 and j < 0)

and X(i, j) (i < 0, and j unrestricted).
A special case of the unilateral AR models where the value at the site (i, j)

is a finite autoregression on the strongly causal region S4(i, j) was examined by
Tjostheim (1978). In two dimensions this model becomes

X(i, j) =
p1∑

k=0

p2∑
l=0

φ(k, l)X(i − k, j − l) + ε(i, j), (3.5)

with φ(0,0) = 0. This model leads to the Wold-type representation

X(i, j) =
∞∑

k=0

∞∑
l=0

φ(k, l)ε(i − k, j − l). (3.6)

See Tjostheim (1978) for further discussion and properties of related purely non-
deterministic processes.

Notice that the study of the invertibility of the complex valued function
�(z1, z2) is not a simple problem. To get the representation

X(i, j) = �(B1,B2)
−1ε(i, j), (3.7)

the function �(z1, z2)
−1 needs to be written using a Laurent expansion as

�(z1, z2)
−1 = ∑

k,l

ψklz
k
1z

l
2. (3.8)

Basu and Reinsel (1993) investigated the correlation structure of a general first-
order autoregressive process of the form,

X(i, j) = φ(1,0)X(i − 1, j) + φ(0,1)X(i, j − 1)
(3.9)

+ φ(1,1)X(i − 1, j − 1) + ε(i, j).

They showed that the conditions,

|φ(k, l)| < 1,

1 − φ(0,1)2 > |φ(1,0) + φ(0,1)φ(1,1)|,(
1 + φ(1,0)2 − φ(0,1)2 − φ(1,1)

)2
> 4

(
φ(1,0) + φ(0,1)φ(1,1)

)2
,

guarantee the stationarity of the process. Because of the uniqueness of representa-
tion (3.8), a multinomial expansion for the function (1 − φ(1,0)z1 − φ(0,1)z2 −
φ(1,1)z1z2)

−1, can be used to get the convergent representation

X(i, j) =
∞∑

k=0

∞∑
l=0

∞∑
r=0

(k + l + r)!
k!l!r! φ(1,0)kφ(0,1)lφ(1,1)rε(i − k − r, j − l − r).
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Figure 3 Prediction window for the first-order spatial AR model.

The prediction window in this case is shown in Figure 3.
One way to avoid the analysis of (3.8) is to consider an additional assumption

on the parameters of the model. For example, if φ(1,1) = −φ(1,0)φ(0,1), the
multiplicative (separable) process simplifies to

X(i, j) =
∞∑

k=0

∞∑
l=0

φ(1,0)kφ(0,1)lε(i − k, j − l).

This model has been investigated by Martin (1979, 1990) who argued that it has
many practical uses. Martin (1996) have shown that axially symmetric quadrant
ARMA processes are separable.

We also note that one way to avoid expansion (3.8) is to consider more general
models as the CAR and SAR models frequently used in spatial statistics. Briefly
we can say that a CAR model is described by

(
X(si)|X(sj ), j �= i

) ∼ N

(
μi + ρ

∑
j �=i

bijX(sj ), τ
2
i

)
, (3.10)

i = 1,2, . . . , n,

where ρ is a parameter that determines the direction (positive or negative) and
magnitude of the spatial neighborhood effect, bij are weights that determine the
relative influence of location j on location i, and μi and τ 2

i are the conditional
mean and variance, respectively.

Alternatively to CAR specification, the SAR models can be defined. We let ε
induce a distribution for X. Analogous to (3.10), now

Xi = ∑
j

bijXj + εi, i = 1,2, . . . , n, (3.11)

with εi ∼ N(0, σ 2
i ). We notice that CAR and SAR models are not necessarily

stationary models. Thus representations (3.10) and (3.11) provides a wider class
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of models that can be used even for nonrectangular lattices (see Griffith (1988);
Baneerje, Carlin and Gelfand (2004), pages 79–82).

3.3 Spatial MA processes

Alternatively to the spatial autoregressive processes, the moving average models
are of great theoretical and practical importance, and have been studied in differ-
ent contexts. The relevance of the MA models is mainly due to the great popularity
of the Wold-type decomposition of a regular homogeneous random field. In this
decomposition, the purely indeterministic random field component has a unique
(but unknown) MA representation. Applications of the Wold-type decomposition
include modeling natural textures (Francos, Narasimhan and Woods (1995)), im-
age modeling and retrieval (Liu and Piccard (1996)), and more recently models
for space–time adaptive processing radar systems (Francos and Nehorai (2003)).
In addition, the MA models have been considered in the context of image segmen-
tation and restoration problems (Krishnamurthy, Woods and Francos (1996)).

It is well known that MA representation models for random fields are less in-
formative than AR or ARMA models. However, from an estimation perspective it
is very interesting to know the performance of new proposals for the estimation
of the parameters of a model. Alternatively, this problem can be tackled from a
Bayesian point of view. In the context of robust methods, most of the robust es-
timators introduced for AR models in time series do not perform well for MA or
ARMA models (Allende and Heiller (1992)).

A linear representation of a spatial moving average model was considered in
Francos and Friedlander (1998). In fact, X = Be, where X is a vector containing
the spatial observations over a completely ordered set; e is a spatial white noise
and B is the matrix containing the parameters of the model according to the mov-
ing average structure of the process. The form of B in the context of toroidal
approximation of a bidimensional autoregressive model was studied in Kashyap
and Chellappa (1983). A complete treatment of the linear representation for mul-
tiespectral autoregressive models (MSAR) can be found in Bennet and Khotanzad
(1999). Usually, the structure of B has a strong dependency on the prediction win-
dow and on the boundary conditions.

Let {X(i, j) : (i, j) ∈ Z2} be a real-valued random field. Let us assume a total
order on the discrete lattice such that (i, j) � (s, t) ⇐⇒ (i, j) ∈ {{(k, l) :k =
s, l ≤ t}∪{(k, l) :k < s,−∞ < l < ∞}}. Then an infinite two-dimensional moving
average model can be represented by

X(i, j) = ∑
(0,0)�(k,l)

θ(k, l)e(i − k, j − l), (3.12)

where the sequence {e(i, j) : (i, j) ∈ Z2} is a white-noise process with respect to
the above total order with variance σ 2

e and with θ(k, l) denoting the parameters of
the model. As usual, we will assume that θ(0,0) = 1.
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In practice, the observed random process is of finite dimensions. For the sup-
port D = {(i, j) : 0 ≤ i ≤ S − 1,0 ≤ j ≤ T − 1}, the observed process is the set
{X(i, j) : (i, j) ∈ D}. In particular, for (k, l) ∈ S(N,M), where S(N,M) = {(i, j) : 0 ≤
i ≤ N,0 ≤ j ≤ M} and N,M are a priori known natural numbers, model (3.12)
can be written in the form

X(i, j) = ∑
(k,l)∈S(N,M)

θ(k, l)e(i − k, j − l). (3.13)

The model obtained by the relation in (3.13) along with the assumption of white
noise on the errors is called spatial MA model.

The estimation of the parameters of a model like (3.12) has been widely stud-
ied (Whittle (1954)). More recently, this general derivation was presented for the
case of noncausal AR models and NSHP AR models (Isaksson (1993)). Since the
ML method requires an iterative and computationally intensive procedure, it be-
comes computationally prohibitive even for moderate size data fields. In Francos
and Friedlander (1998) a close form exact expression for the Cramer–Rao lower
bound was derived. Using the expressions of the covariance matrix in terms of
the moving average model parameters they derived a maximum likelihood algo-
rithm that offers an increasingly attractive alternative to ML estimation. Later, in
Vallejos and García-Donato (2006) the authors focused on a Bayesian approach
to analyze the MA model. By using simulation, they showed that the correlation
structure of MA model is seriously affected when data contains additive contami-
nation. Nevertheless, the posterior distribution of correlations seems to be resistent
to the innovation contamination. In that work, they also proposed a more general
class of moving average models which deal with contaminated data (CMA model).
The main idea is to consider a MA model with e being a mixture of Normal dis-
tributions. The resulting model allows the presence of errors produced under a
distribution with a different variance than the usual one. Important characteristics
of this new model such as the correlation function were studied. They suggested
how to handle this model within the Bayesian framework. First, a prior distribution
arising from prior information about the strength of contamination was proposed.
Second, some strategies for sampling from a posterior distribution in a MCMC
context were discussed. The results obtained in numerical examples have shown
the goodness of the CMA model under contaminated data.

Since the models presented above will be useful to represent images let us con-
sider X(s) being the intensity at coordinate location s measured in a finite scale
of gray. Precisely, from now on we consider X = {X(s) : s ∈ S4(0,0)} being a two
dimensional real random process over the probability space (�,F,μ).

4 Robust parametric estimation

The Yule–Walker and least squares estimators for two-dimensional causal autore-
gressive models were studied from an asymptotic point of view by Eunho and
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Newton (1993). As a result, an explicit expression for the bias of Yule–Walker es-
timators was obtained. Simulation experiments have shown that the performance
of the least squares and asymptotically unbiased Yule–Walker estimators are re-
markably similar.

In general, it is not easy to deal with the exact likelihood of spatial autoregres-
sive models. In the literature the exact likelihood estimator has been studied for
specific models and neighbor structures. An appealing feature of the first-order
spatial ARMA model (3.9) is that the exact likelihood function can be obtained
in a convenient computational form. Basu and Reinsel (1993) examined the im-
plementation of the ML estimator. Using a Monte Carlo study they explored the
accuracy of the ML estimations.

It is well known that the ML estimators are very sensitive to the outliers (Martin
(1980)). This motivated the introduction of several alternative estimators to atten-
uate the impact of contaminated observations on the estimations. Most of these
proposals are natural extensions of the robust estimators studied in time series.

Here we use model (3.9) to describe the well-known robust estimators, however,
a more general treatment for AR and MA models can be found in: Kashyap and
Eom (1988); Allende, Galbiati and Vallejos (2001); Ojeda, Vallejos and Lucini
(2002); Vallejos and Garcia-Donato (2006), and Bustos et al. (2008).

In time series, innovation outliers (IO) and additive outliers (AO) are well
known (Fox (1972)). The same notion of data contamination has been studied for
spatial processes (Ojeda (1999)). A more recent discussion about types of con-
tamination in the context of time series can be found in Chang, Tiao and Chen
(1988), Chen and Lui (1993), and Tsay (1988). The definitions of outliers have
been extended to multivariate framework and the effects of multivariate outliers
on the joint and marginal models have been examined by Tsay, Peña and Pankratz
(2000).

4.1 Robust estimators

Several robust estimators have been defined for models containing a finite number
of parameters. In order to simplify the notation, in this work we describe the most
commonly used robust estimators for a model like (3.9).

Notice that model (3.9) can be rewritten in the linear model form

X(i, j) = φT Z(i, j) + ε(i, j),

where φT = (φ(1,0), φ(0,1), φ(1,1)) is a parameter vector and

Z(i, j)T = (
X(i − 1, j),X(i, j − 1),X(i − 1, j − 1)

)
. (4.1)

To obtain the LS estimator of the parameters of model (3.9) we need to minimize
the function ∑

i,j

[X(i, j) − φT Z(i, j)]2,
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with respect to φ. The LS estimator is nonrobust when the process is contaminated
with innovation or additive outliers (Allende, Galbiati and Vallejos (1998)).

Similarly, the class of M estimators that was proposed for causal autoregressive
processes (Kashyap and Eom (1988)), defined by minimizing the function of a
finite sample of observations

Q(φ, σ ) = ∑
i,j

[
ρ

(
X(i, j) − φT Z(i, j)

σ

)
+ 1

2

]
σ, (4.2)

is robust for innovation outliers, when the function ρ is a differentiable function,
convex, symmetric with respect to the origin, with bounded derivative, and such
that ρ(0) = 0. However, the M estimators are very sensitive when the process is
contaminated with additive outliers. This suggested the introduction of robust esti-
mators that are less sensitive to the additive outliers. Allende, Galbiati and Vallejos
(2001) developed the GM estimators. A GM estimator of φ is the solution to the
problem of minimizing the nonquadratic function defined by

Q(φ,σ) = ∑
i,j

lij tij

[
ρ

(
X(i, j) − φT Z(i, j)

lij σ

)
+ 1

2

]
σ,

where ρ is as in (4.2). Equivalently, the robust GM estimator can be obtained by
solving the equation∑

ij

tijψ

[
X(i, j) − φT Z(i, j)

lij σ

]
ZT (i, j) = 0, (4.3)

where the influence function ψ is bounded and continuous, and tij and lij are
weights corresponding to the respective Z(i, j). The principal types of GM esti-
mators are:

(1) Mallows type, where lij = 1 and tij = ψ(bij )/bij , with bij = p−1 ×
Z(i, j)T Ĉ−1Z(i, j), where Ĉ−1 is a robust estimate of C−1 and C−1 is a priori
unknown covariance matrix for the AR-2D process.

(2) Schweppe type, lij = tij = ψ(bij /cr)/(bij /cr), where cr is a tuning con-
stant used to yield high efficiencies at the Gaussian AO model.

The estimation of σ can be obtained independently using a preliminary robust
estimator of the scale parameter.

Alternatively to the GM estimators, Ojeda (1999) and Ojeda, Vallejos and Lu-
cini (2002) introduced the RA estimators for spatial autoregressive processes. This
estimator was introduced first in Bustos and Yohai (1986) in the context of ARMA
models in time series.

Let X be a zero mean AR-2D process with Var(ε(m,n)) = σ 2. Assume that
X is observed on a strongly causal square window of order M , WM = {(k, l) ∈
S : 0 ≤ k, l ≤ M}, where S is an infinite strongly causal prediction neighborhood
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(Guyon (1995)). Let us define WM \ T = {(m,n) ∈ WM : (m − 1, n − 1) ∈ WM}.
The residual of order (m,n) in φ of X is

r(m,n) =
⎧⎨⎩− ∑

(k,l)∈T ′
φ(k, l)X(m − k,n − l), (m,n) ∈ (Wm \ T ),

0, otherwise,
(4.4)

where T ′ = T ∪ {(0,0)} and φ(0,0) = −1. Defining the coefficients

pφ(k, l, r) = (k + l + r)!
k! l! r! φ(1,0)kφ(0,1)lφ(1,1)r ,

the RA estimator φ̂ of φ is defined by the following equations

∞∑
k,l,r=0

pφ̂(k, l, r)
∑

(m,n)∈(WM\T )

η

(
r(m,n)

σ̂
,
r(m − i − k − r, n − j − l − r)

σ̂

)
(4.5)

= 0, for all (i, j) ∈ T ,

∑
(m,n)∈(WM\T )

ψ

(
r(m,n)

σ̂

)
= 0, (4.6)

where σ is estimated independently by

σ̂ = Med
(|r(m,n)| : (m,n) ∈ (WM \ T )

)
/0.6745, (4.7)

η is a continuous, bounded, and odd function in two variables and 0.6745 =
Med(|Y |), where Y is a standard normal random variable. Two possible choices
for η are η(u, v) = ψ1(u · v), and η(u, v) = ψ2(u) · ψ3(v), where the most com-
monly used ψ1,ψ2, and ψ3 functions are the following:

(1) Huber’s ψ function

ψH,c(u) = sgn(u)min(|u|, c)
(2) Tuckey’s ψ function

ψT,k(u) =
⎧⎨⎩u

[
1 −

(
u

k

)2]2

, |u| ≤ k,

0, otherwise.

(3) Hampel’s ψ function

ψHA,a,b,d(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u, |u| ≤ a,
a · sgn(u), a < |u| ≤ b,

a
d − |u|
d − b

sgn(u), b < |u| ≤ d,

0, d < |u|.
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(4) Andrews’ ψ function

ψA,n(u) =
⎧⎨⎩ sin

(
u

n

)
, |u| ≤ nπ ,

0, otherwise,
where

sgn(u) =
⎧⎨⎩

1, u > 0,
−1, u < 0,
0, u = 0.

For instance, typical values for the adjusting constant c in ψH,c(u) are between 1.5
and 2.0, and for k in ψT,k(u) are between 4.5 and 6. The values of constants c

and k should be such that, with the noncontaminated model, the loss of efficiency
of the RA estimator with respect to the maximum likelihood estimator does not
exceed 5%.

4.2 Monte Carlo results

Several simulation experiments have been carried out to explore the performance
of the estimators defined above. A first preliminary study by Allende and Heiller
(1992) revealed that the GM performs better than the M estimator under additive
outliers. Later, the RA estimator was compared with the M, GM, and LS estimators
(Ojeda (1999) and Ojeda, Vallejos and Lucini (2002)). In all cases the GM and RA
estimators perform much better than the M and LS estimators. The performance
of the RA estimator was better than that of the GM estimator. These studies were
carried out for a process containing two parameters since the implementation of
the RA estimator depends on the dimension of the parameter space. Subsequently,
simulation studies were carried out to explore the behavior of the robust estimators
in models with more than two parameters (Vallejos, Ojeda and Bustos (2008)).
The experiments showed similar patterns as before. The GM and RA estimators
were highly superior to the M and LS estimators.

5 Model fitting

To gain more insight into the estimation process, in this section we present two
examples. The first one illustrates the model selection problem. We suggest the
use of cross-validation to find a suitable model for the data. The second example
illustrates the local approximation of images by using 2D unilateral AR processes.
Real images are compared with the images generated from fitted models. This
procedure has been frequently used in the context of image filtering (Kashyap and
Eom (1988) and Allende, Galbiati and Vallejos (2001)).

Example 1. Consider the image shown in Figure 4. This is a Landsat TM5 image
from Sierra Comechingones in the Southwest of Córdoba, Argentina, acquired in
December’92, two months after a wildfire. The burned zone corresponds to the
darkest area in the middle of the image. Here, we illustrate the model selection
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Figure 4 Landsat TM5 image from Sierra Comechingones, Córdoba, Argentina.

Figure 5 Zoom of the image delimited by a white square in Figure 4.

problem of spatial autoregressive models, following the guidelines given in Rukhin
and Vallejos (2008) in the context of flammability of polymers.

Let us consider the following AR models:

Model 1: X(i, j) = φ1X(i − 1, j) + ε(i, j),

Model 2: X(i, j) = φ2X(i, j − 1) + ε(i, j),

Model 3: X(i, j) = φ1X(i − 1, j) + φ2X(i, j − 1) + ε(i, j),

Model 4: X(i, j) = φ1X(i − 1, j) + φ2X(i, j − 1)

+ φ3(i − 1, j − 1) + ε(i, j),

where in each case {ε(i, j)} is a white noise. The goal is to fit one of those models
to the data located inside of the 50 × 50 white square shown in Figure 4. A zoom
corresponding to that area is shown in Figure 5.
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Table 1 LS estimators for models 1–4

φ̂1 φ̂2 φ̂3

Model 1 0.9702
Model 2 0.9715
Model 3 0.4895 0.5007
Model 4 0.4799 0.4918 0.0186

Figure 6 Density estimate of the residuals generated from model 4.

Using (4.4) and the LS estimators for model 4 (see Table 1), the residuals r̂(i, j)

were computed for each location (i, j). To gain more insight into the distribution
of the residuals, the density estimate of the residuals was plotted (see Figure 6). We
observe that the distribution of the residuals looks symmetric about zero and since
there is higher kurtosis than in the normal case we fitted a Laplace distribution.
The maximum likelihood estimators for the location and scale parameters were
μ = 0.49 and σ = 12.56. Using random numbers from Laplace distribution a new
image was created as

X̂(i, j) = φ̂
T
Z(i, j) + r̂(i, j), (5.1)

where r̂(i, j) represent a random number from the Laplace distribution corre-
sponding to location (i, j) and Z(i, j) is given in (4.1).

The original and estimated images can be compared using a measure of discrep-
ancy. One way to accomplish this is through the mean square error of prediction
(MSE) (Vallejos and Garcia-Donato (2006)) given by

MSE = 1

N

∑
i,j

(
X(i, j) − X̂(i, j)

)2
, (5.2)

where N represents the total number of pixels in each image. In this experiment the
MSE was used in the context of cross-validation (Grondona et al. (1996)) to com-
pare models 1–4. Using (5.1) in each case, images of size 30 × 30 were generated
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Table 2 MSE for models 1–4

Model 1 Model 2 Model 3 Model 4

MSE 780.1253 785.2043 793.4743 672.1097

from models 1–4 and situated in the center of the original (50 × 50) square. These
models were used to predict the locations observed in the original image (5.1) but
outside of the 30 × 30 square region. For each model the MSE was computed over
the observations located in the area surrounding the 30 × 30 region. These values
are shown in Table 2.

The smallest MSE value corresponds to model 4. We will come back to the idea
of generating images from equations similar to (5.1) in Section 6.

Example 2. We present now a real data example to illustrate the local approxi-
mation of images by using 2D unilateral AR processes. The goal is to graphically
show that the 2D unilateral AR processes are useful and expressive processes to
represent a number of different real scenarios. In this context, the following ques-
tion arises: is it possible to represent any image by using a 2D AR unilateral pro-
cess? To heuristically answer this question, here we consider an algorithm that
defines what we call a local AR-2D approximated image by using blocks. This
algorithm was originally defined by Kashyap and Eom (1988) and later adapted
by Bustos et al. (2008).

Suppose that a real image is available. Then divide the original image in blocks,
that is, 8 × 8 blocks.

Algorithm.
For each block:

(1) Compute the least squares estimators of the parameters of the AR-2D model
described by

X(i, j) = φ(1,0)X(i − 1, j) + φ(0,1)X(i, j − 1) + ε(i, j).

Let us call the estimators φ̂(1,0) and φ̂(0,1).
(2) Generate the image

X̂(i, j) = φ̂(1,0)X(i − 1, j) + φ̂(0,1)X(i, j − 1),

and compute the approximated image X̃ of X as

X̃(m,n) = X̂(m,n) + X,

where X is the mean of the original image X.

In order to compare the images produced by the previous algorithm, in Figure 7 we
show 3 images. Image (a) is an artificial image (512 × 512) taken from The USC-
SIPI Image Database. Image (b) is the AR-2D approximated image using blocks
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(a) (b) (c)

Figure 7 (a) Original image, (b) image generated by the AR-2D models, (c) difference between the
original and approximated images.

of size 8 × 8, and image (c) is the difference between the original and the AR-2D
approximated image. To quantify the discrepancy between the original and fitted
image the mean square error given in (5.2) was computed, where N is the total
number of pixels excluding the pixels belonging to the boundaries that do not have
neighbors on the top or on the left. In this case MSE = 31.6343.

In Figure 7(c), we see that the borders have been highlighted. This is a promi-
nent and unexpected result that can be matter of further research. An image seg-
mentation method could be implemented using the information contained in the
difference image.

We repeat the same experiment applying the previous algorithm to a LANDSAT
image from Colonia Tirolesa, a region near to Córdoba, Argentina. In Figure 8,
(a) is the original satellite image, (b) is the approximated image, and (c) is the
difference image. The empirical mean square error (MSE) in this case is 220.3293.
Notice that the MSE for images shown in Figure 8 is much bigger than the MSE for
the images shown in Figure 7. One of the reasons of having a large MSE could be
that image (a) shown in Figure 8 is much more heterogeneous than image shown
in Figure 7(a). Hence, the block of size 8 × 8 may be inadequate to approximate
the real image in Figure 8 by an AR-2D process. Also notice that none of the
differences found in Figures 7(c) and 8(c) can be visually detected.

This illustration suggests that a wide class of real images can be well represented
by the spatial autoregressive models.

6 Image filtering algorithms based on robust estimation of
spatial AR models

6.1 Algorithm 1

The original idea of data cleaning algorithm was given in Kashyap and Eom
(1988). They created an algorithm that uses robust parameter estimation to filter
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(a)

(b)

(c)

Figure 8 (a) Landsat image from Colonia Tirolesa. (b) Approximated image of (a). (c) Difference
between images (a) and (b).

the contamination produced by the outliers. The approach consist in two stages.
First, using the contaminated image a robust estimation of the parameters of the
autoregressive model is computed. If one observation is contaminated by an out-
lier the residual will be large. If the normalized residual is large, the observation is
modified to reduce the effect of the outlier. Second, a new image is generated using
an equation similar to (5.1) but considering a robustified version of the residuals.
The procedure is described in the following algorithm.

Given an additively contaminated image X, divide the image into windows of
size 8 × 8 and for each:

1. Initially set Y (0) = X(i, j). Compute the initial estimate φ(0), σ (0) from the
contaminated observations X(i, j) by the least squares algorithm.

2. Consider the (m+ 1)th iteration, where Y (m) and φ(m) are available. Obtain the
updated estimates r(m)(·) and r̂ (m)(·) by the following recursive equations.

r(m)(i, j) = Y (m) − φ(m)T Z(m)(i, j),

r̂(m)(i, j) = ψ

[
r(m)(i, j)

σ̂ (m)

]
σ̂ (m),



Spatial ARMA models and its applications to image filtering 159

where ψ is one of the bounded continuous functions as discussed in con-
nection with M estimation, Z(m)(i, j)T = (Y (m)(i − 1, j), Y (m)(i, j − 1),

Y (m)(i − 1, j − 1)), and φ(m)T = (φ(m)(1,0), φ(m)(0,1), φ(m)(1,1)).
3. Restore the image Y (m+1)(i, j) using

Y (m+1)(i, j) = φ(m)T Z(m)(i, j) + r̂ (m)(i, j).

4. Obtain the M estimators of φ(m+1) and σ̂ (m+1) from the cleaned data Y (m+1).
5. Repeat steps 2–4 until |σ (m+1) − σ (m)| < ε1 and ‖φ(m+1) − φ(m)‖ < ε2, where

ε1, ε2 > 0 are small (typically 10−3 or 10−6), and ‖·‖ denotes any matrix norm.

Notice that the algorithm can be applied to nonstationary images. The fact that
we divide the image in small rectangles allow us to deal with images that have a
nonconstant mean. The data cleaning procedure removes outliers without degrad-
ing the original image. The robust image model-based method does not produce
blurred images after filtering.

6.2 Algorithm 2

It is well known that the M estimator is sensitive to the additive outliers. However,
the GM estimators attenuate better these outliers. If the same cleaning data process
is used for the residuals, Algorithm 1 can be explored using the GM estimator of
φ instead of the M estimator. This approach was investigated by Allende, Galbiati
and Vallejos (2001). To facilitate both, the computation of the estimators and the
recursive cleaning process, the estimation of σ was carried out independently to the
estimation of φ. In our experience the estimator of σ in (4.7) was enough to reduce
the effect of the outliers on the variance component. To visualize the effectiveness
of filtering, Allende, Galbiati and Vallejos (2001) applied this algorithm to six
images breaking up the original images into small fragments of size 8 × 8. In that
experiment the results were not sensible to the window size (8 × 8,12 × 12, or
16 × 16) for images of size 512 × 512. In all cases the effect of the outliers in
the filtered images is attenuated by the robust procedure, they have some minor
effect, resulting in certain irregularity which can be observed in smooth areas. If
a fragment is extremely smooth, with little contamination, the resulting standard
deviation is very small, and this can cause numerical instability and an erratic
parameter estimation.

6.3 Algorithm 3

In the above algorithms, the contaminated image X is divided into windows of size
8 × 8 and each of them is assumed to obey a spatial AR model. The subdivision
of the image involves only square windows, which is a strong assumption because
square regions are not necessarily representative of the patterns in the image. In
Vallejos and Mardesic (2004) the authors proposed an algorithm that is a general-
ization of Algorithm 1 and 2 in two senses. First, it is not required to divide the
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image in square windows and, second, the algorithm works with a small number
of spatial AR models, which improves the cleaning time of the image.

The algorithm is recursive and incorporates classification as additional infor-
mation for X. The intensity of gray at the coordinate (i, j) will be a combination
between past information of the intensity X(i, j) and information contained in the
classification stage. The procedure to filter X can be summarized in the following
algorithm.

(1) Classify X using a suitable method (in Vallejos and Mardesic (2004), they
suggested the thresholding method).

(2) Apply Algorithm 2 to each class provided by the classification technique.

This algorithm does not require the classes to be square subdivisions of the
original image. In particular, the classes given by the classification method can be
physically separated regions in the original image.

Illustrations presented in Vallejos and Mardesic (2004) have shown that the im-
plementation of the algorithm is faster than previous algorithms due to the fact
that this method works with a small number of parameters. Furthermore, when the
percentage of contamination is small this method seems to work well in practice.
From filtered images it is noticed that there are certain regions where the algo-
rithm is more effective. This is due to two factors. First, the number of iterations
that the algorithm performs in each class is different. Second, the texture of the
image plays an important role, hence the filtering process is highly affected by the
texture of the image.

6.4 Algorithm 4

Here we describe a new image filtering algorithm. This algorithm is based on ro-
bust estimation of a model defined on a moving window that cover the whole
contaminated image. Let us assume that an additively contaminated image X is
available. Then the algorithm can be described as follows.

(1) Consider the 7 × 7 subimage Y located in the top left corner of X.
(2) Compute the robust RA estimator of the parameters of the model

Y(i, j) = φ1Y(i − 1, j) + φ2Y(i, j − 1) + ε(i, j),

where ε(i, j) are independent and identically distributed variables with mean
zero and variance σ 2. Denote the RA estimations as φRA

1 and φRA
2 , respectively.

(3) Let Y(i0, j0) be the center point of the 7 × 7 moving window. Then replace
X(i0, j0) by

X(i0, j0) = φ̂RA
1 Y(i0 − 1, j0) + φ̂RA

2 Y(i0, j0 − 1).

(4) Move the initial window in step (1) one position to the right (down if one edge
of the image is already on the edge of X) as is illustrated in Figure 9.
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Figure 9 7 × 7 moving window in Algorithm 4.

(a) (b)

(c) (d)

(e)

Figure 10 (a) Original image. (b) 5% contaminated image. (c) Filtered image using the M estima-
tor. (d) Image using the RA estimator. (e) Median filter.

(5) Repeat steps (2) and (4) until the moving window has covered the whole im-
age X.

In Figures 10 and 11 we display the images produced by Algorithm 4 (Fig-
ure 10(d) and Figure 11(d)). In addition we display the images produced by Al-
gorithm 4 using the M estimator of the parameters instead of the RA estimator
(Figure 10(c) and Figure 11(c)). Our results are in agreement with the proposal of
Kashyap and Eom (1988). In the filtering process of image shown in Figure 10(a),
the median filter introduced distortion. The performance of Algorithm 4 using the
RA estimator is the best in terms of recovering the original patterns and textures of
the original image. Visually the differences are hard to detect, however, the MSE
is smallest when the original and filtered RA images are compared.
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(a) (b) (c)

(d) (e) (f)

Figure 11 (a) Original image. (b) 10% contaminated image. (c) Filtered image using the M esti-
mator. (d) Filtered image using the RA estimator. (e) Difference (a)–(c). (f) Difference (b)–(d).

Notice that Algorithm 4 is not a new version of the algorithm introduced by
Kashyap and Eom. They divided the contaminated image in small 8 × 8 windows
and then the algorithm is applied to each small window. In our algorithm we de-
fined a moving window, and the filtering is produced just for the point located in
the center. That is to say, the number of times that the algorithm needs to com-
pute the robust estimators to filter an image is equal to the number of rows times
the number of columns of the original image. In practice some considerations are
necessary to treat the edges of the image that are excluded. For example, the grey
intensities corresponding to the pixels over the edges can be replaced by the RA
estimations using a different structure for the neighbors.

The size of the moving window plays an important role depending on the kind of
treatment to be applied to the original image. In our experiments moving windows
of size 8 × 8, 12 × 12, or 16 × 16 for images of size 512 × 512 produces the
same effect on the filtered image. However, we expect to fit a better model for a
small window size as mentioned above. If the purpose is to produce segmentation
over the original image a large window size will produce a poor fitted model,
hence the boundaries and borders will be highlighted. Thus we remark that for
filtering contaminated images a small window size for the moving window will
be appropriate; on the other hand a large window size will help the segmentation
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process to produce differences between the original and fitted images that contain
information about the borders and boundaries of the original image.

7 Conclusion

This paper reviewed main characteristics and applications of the spatial autoregres-
sive and moving average models. Model fitting and robust estimation allowed the
developement of image filtering algorithms. These algorithms originally consid-
ered a large number of parameters to estimate, making the filtering process slow
and computationally expensive. Later modifications and variants of the original
procedures have resulted in algorithms that perform faster. Moreover, the inclu-
sion of these variants in the filtering process have improved the ability of these
algorithms to clean different kinds of contaminated images. The performance of
these type of algorithms under different kinds of contamination is an interesting
open problem to be addressed in the future.
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