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We study asymptotic properties of the Green metric associated with tran-
sient random walks on countable groups. We prove that the rate of escape of
the random walk computed in the Green metric equals its asymptotic en-
tropy. The proof relies on integral representations of both quantities with the
extended Martin kernel. In the case of finitely generated groups, where this re-
sult is known (Benjamini and Peres [Probab. Theory Related Fields 98 (1994)
91–112]), we give an alternative proof relying on a version of the so-called
fundamental inequality (relating the rate of escape, the entropy and the loga-
rithmic volume growth) extended to random walks with unbounded support.

1. Introduction. Let � be an infinite countable group and let (Zn) be a tran-
sient random walk on �.

In order to study asymptotic properties of the random walk, we define the Green
(or hitting) metric,

dG(x, y) = − ln P
x[τy < ∞],

where τy is the hitting time of the element y by the random walk started at x.
Looking at the random walk via the Green metric leads to a nice geometrical

interpretation of probabilistic quantities describing the long-time behavior of the
walk. We illustrate this claim by showing that the rate of escape computed in dG

coincides with the asymptotic entropy of the random walk; see Theorem 1.1. As
another example of interest of the Green metric, we also explain how the Martin
compactification of � can be interpreted as the Busemann compactification of �

equipped with dG. In a forthcoming paper [5], we use the Green metric to study
fine geometric properties of the harmonic measure on boundaries of hyperbolic
groups.

Before stating our theorem, let us first recall some definitions. The rate of es-
cape of the random walk computed in the Green metric (in short, the Green speed)
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is defined by the almost sure limit

�G
def.= lim

n→∞
dG(e,Zn)

n
.

The asymptotic entropy of the random walk is defined by

h
def.= lim

n→∞
− lnμn(Zn)

n
,

where μ is the law of the increment of the random walk (i.e., the law of Z1) and
μn is the nth convolution power of μ (i.e., the law of Zn). This limit exists almost
surely and is finite if the entropy of μ,

H(μ)
def.= −∑

x∈�

μ(x) lnμ(x),

is finite. The asymptotic entropy h plays a very important role in the description
of the long-time behavior of the random walk, as illustrated in Derriennic [9, 10],
Guivarc’h [15], Kaimanovich [17], Kaimanovich and Vershik [18] and Vershik
[24], among others. For instance, it is known that h = 0 if and only if the Poisson
boundary of the random walk is trivial.

Our main result is the following.

THEOREM 1.1. For any transient random walk on a countable group such
that H(μ) < ∞, the asymptotic entropy h and the Green speed �G are equal.

In Section 2, we prove this result using an integral representation of h on the
Martin boundary of � (Lemma 2.6) and interpreting the Green speed of the random
walk as a limit of a Martin kernel (Proposition 2.4). This proof does not use any
quantitative bound on the transition probabilities of the random walk and therefore
applies to transient random walks on all countable groups, even those which are
not finitely generated.

In Section 3, we consider the case of a finitely generated group � and discuss the
connection of Theorem 1.1 with the so-called “fundamental inequality” h ≤ � · v,
where � and v denote the rate of escape and the logarithmic volume growth in some
left-invariant metric on the group with a finite first moment. We first derive a new
general version of the fundamental inequality for any random walk (with bounded
or unbounded support) and any (geodesic or nongeodesic) left-invariant metric on
the group with a finite first moment; see Proposition 3.4. We then use heat kernel
estimates to obtain bounds on the logarithmic volume growth in the Green metric;
see Proposition 3.1. Thus, we finally obtain another proof of Theorem 1.1, valid
for finitely generated groups of superpolynomial volume growth. In the case of
groups with polynomial volume growth, h and �G are both zero.

For finitely generated groups, Benjamini and Peres [3] gave a different proof
of the equality h = �. Even if their proof is written for finitely supported random
walks, their method also works for random walks with infinite support (see the
proof of Proposition 3.1).
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2. Countable groups.

2.1. The Green metric. We will give the definition of the Green metric associ-
ated with a transient random walks and recall some of its properties from Blachère
and Brofferio [4].

Let μ be a probability measure on � whose support generates the whole group
�. (We will always make this generating hypothesis.) We do not assume that μ is
symmetric nor that it is finitely supported. Let (Xk) be a sequence of i.i.d. random
variables whose common law is μ. The process

Zk
def.= xX1X2 · · ·Xk,

with Z0 = x ∈ �, is an irreducible random walk on � starting at x with law μ.
We denote by P

x and E
x , respectively, the probability and expectation related to

a random walk starting at x. When x = e (the identity of the group), the exponent
will be omitted.

From now on, we will always assume the random walk to be transient, that is,
with positive probability, it never returns to its starting point. This assumption is
always satisfied if � is not a finite extension of Z or Z

2 (see Woess [25], Sec-
tion I.3.B). On a finite extension of Z or Z

2, there exists a canonical projection ϕ

onto an Abelian subgroup ({e},Z or Z
2); see Alexopoulos [1]. We define the first

moment of the canonical projection of the random walk,

M1(μ)
def.= ∑

x∈�

‖ϕ(x)‖μ(x),

where ‖ϕ(x)‖ is the norm of ϕ(x). When M1(μ) < ∞, the random walk is tran-
sient if and only if it has a nonzero drift [

∑
x∈� ϕ(x)μ(x) �= 0]. But there are

examples of recurrent and transient random walks with M1(μ) = ∞. There are
even examples of transient symmetric random walks on Z. For these results and
examples, see Spitzer [23].

The Green function G(x,y) is defined as the expected number of visits at y for
a random walk starting at x:

G(x,y)
def.= E

x

[ ∞∑
n=0

1{Zn=y}
]

=
∞∑

n=0

P
x[Zn = y].

Since the random walk is chosen to be transient, the Green function is finite for
every x and y.

Let τy be the first hitting time of y by the random walk:

τy
def.= inf{k ≥ 0 :Zk = y}.

When y is never attained, let τy = ∞. The hitting probability of y starting at x is

F(x, y)
def.= P

x[τy < ∞].
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Note that F(x, y) is positive since the support of μ generates �, and that F and
G are invariant by left diagonal multiplication. In particular, G(y,y) = G(e, e).
A straightforward computation (using the strong Markov property) shows that the
functions F and G are proportional:

G(x,y) = G(y,y)F (x, y) = G(e, e)F (x, y).(2.1)

The metric we will use is the Green metric (or hitting metric, defined in [4]):

dG(x, y)
def.= − lnF(x, y) = lnG(e, e) − lnG(x,y).

Throughout the article, we will call (with some abuse of notation) metric any
nonnegative real function d(·, ·) on � × � which satisfies the triangle inequality,
vanishes on the diagonal and satisfies

d(x, y) = 0 = d(y, x) 	⇒ x = y.(2.2)

LEMMA 2.1 ([4], Lemma 2.1). The function dG(·, ·) is a left-invariant metric
on �.

PROOF. As F(x, y) is bounded by 1, dG(·, ·) is nonnegative. It is also clear
that F(x, x) = 1 and therefore dG(x, x) = 0 for any x ∈ �.

The invariance of F(·, ·) by left diagonal multiplication implies the same prop-
erty for dG(·, ·). Also, note that, since the random walk is transient, we have

∀x �= y 1 > P
x[τ ′

x < ∞] ≥ P
x[τy < ∞]Py[τx < ∞] = F(x, y)F (y, x),

where τ ′
x

def.= inf{k ≥ 1 : Zk = x}. Thus,

dG(x, y) = dG(y, x) = 0 ⇐⇒ F(x, y) = F(y, x) = 1 ⇐⇒ x = y.

Finally,

P
x[τz < ∞] ≥ P

x[τy < ∞]Py[τz < ∞]
leads to the triangle inequality dG(x, z) ≤ dG(x, y) + dG(y, z). �

REMARK 2.2. For the Green metric, and if we assume that � is not isomor-
phic to Z, a stronger property than condition (2.2) actually holds, namely,

dG(x, y) = 0 	⇒ x = y.(2.3)

The proof of this is as follows. Let S
def.= {x s.t. μ(x) > 0} be the support of the

measure μ and define E0
def.= {x �= e s.t. dG(e, x) = 0}. We recall that, as in the In-

troduction, S is assumed to generate the whole group �. First, observe that E0
cannot contain two different elements of S. Indeed, assume that x �= y both belong
to E0 ∩ S. The random walk has a positive probability of visiting x before y. But,
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since F(e, y) = 1, it implies that F(x, y) = 1 and therefore dG(x, y) = 0. Like-
wise, we have dG(y, x) = 0, which contradicts property (2.2). Similar arguments
show that if E0 is not empty, then there exists a ∈ � such that E0 = {an;n ∈ N

∗}.
One then argues that any element of S must also be a power of a and, since S
generates �, we conclude that � is, in fact, the group generated by a.

Observe that if μ is symmetric [μ(x) = μ(x−1) for all x ∈ �], then the Green
function G(·, ·) and the Green metric dG are also symmetric and therefore dG

becomes a genuine distance on �.

2.2. Entropy and Green speed. The measure μ is now supposed to have finite
entropy:

H(μ)
def.= −∑

x∈�

μ(x) lnμ(x) < ∞.

The first moment of μ in the Green metric is, by definition, the expected Green
distance between e and Z1, which is also the expected Green distance between Zn

and Zn+1 for any n, having the following analytic expression:

E[dG(e,Z1)] = ∑
x∈�

μ(x) · dG(e, x).

LEMMA 2.3. The finiteness of the entropy H(μ) implies the finiteness of the
first moment of μ with respect to the Green metric.

PROOF. By construction, the law of Z1 = X1 under P is μ. Since P[τx <

∞] ≥ P[Z1 = x] = μ(x) holds, we have∑
x∈�

μ(x) · dG(e, x) = −∑
x∈�

μ(x) · ln(P[τx < ∞])

≤ −∑
x∈�

μ(x) · ln(μ(x)) = H(μ)

so that H(μ) < ∞ 	⇒ E[dG(e,X1)] < ∞. �

Let �G be the rate of escape of the random walk Zn in the Green metric dG(e, .).

�G = �G(μ)
def.= lim

n→∞
dG(e,Zn)

n

= lim
n→∞

− lnF(e,Zn)

n
= lim

n→∞
− lnG(e,Zn)

n
,

since the functions F(·, ·) and G(·, ·) differ only by a multiplicative constant. We
call �G the Green speed. Under the hypothesis that μ has finite entropy, by the sub-
additive ergodic theorem (Kingman [22], Derriennic [9]), this limit exists almost
surely and in L1.
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The sub-additive ergodic theorem of Kingman also allows one to define the
asymptotic entropy as the almost sure and L1 limit:

h
def.= lim

n→∞
− lnμn(Zn)

n
,

where μn is the nth convolution power of the measure μ.
Taking expectations, we deduce that h also satisfies

h = lim
n

H(μn)

n
.

The properties of the asymptotic entropy are studied in great generality in the
articles mentioned in the Introduction. In particular, it turns out that h can also be
interpreted as a Fisher information. We shall use this fact to conclude the proof of
our theorem; see Lemma 2.6.

2.3. Martin boundary and proof of Theorem 1.1. The Martin kernel is defined
[using (2.1)] for all (x, y) ∈ � × � by

K(x,y)
def.= G(x,y)

G(e, y)
= F(x, y)

F (e, y)
.

The Martin kernel continuously extends to a compactification of � called the Mar-
tin compactification � ∪ ∂M�, where ∂M� is the Martin boundary. Let us briefly
recall the construction of ∂M�. Let � : � → C(�) be defined by y �−→ K(·, y).
Here, C(�) is the space of real-valued functions defined on �, endowed with the
topology of pointwise convergence. It turns out that � is injective and we may
thus identify � with its image. The closure of �(�) is compact in C(�) and, by
definition, ∂M� = �(�) \ �(�) is the Martin boundary. In the compact space
� ∪ ∂M�, for any initial point x, the random walk Zn almost surely converges to
some random variable Z∞ ∈ ∂M� (see, e.g., Dynkin [12] or Woess [25]).

We note that, by means of the Green metric, one can also consider the Martin
compactification as a special example of a Busemann compactification. We recall
that the Busemann compactification of a proper metric space (X,d) is obtained
through the embedding � :X → C(X), defined by y �−→ d(·, y) − d(e, y). (Here,
e denotes an arbitrary base point.) In general, C(X) should be endowed with the
topology of uniform convergence on compact sets. The Busemann compactifica-
tion of X is the closure of the image �(X) in C(X). We refer to Ballmann, Gromov
and Schroeder [2] and to Karlsson and Ladrappier [20] and the references therein
for further details.

If one now chooses for X the group � itself and, for the distance d , the Green
metric, constructions of both the Martin and Busemann compactifications coin-
cide, as is straightforward from the relation

dG(·, y) − dG(e, y) = − lnK(·, y).
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We first prove that the Green speed can be expressed in terms of the extended
Martin kernel. Theorem 1.1 will then be a direct consequence of the formulas in
Proposition 2.4 and Lemma 2.6. For that purpose, we need to define the reversed
law μ̃:

∀x ∈ � μ̃(x)
def.= μ(x−1).

Note that H(μ̃) = H(μ).

PROPOSITION 2.4. Let μ be a probability measure on � with finite entropy
H(μ) and whose support generates �. Let (Zn) be a random walk on � of law μ

(starting at e) and let X̃1 be an independent random variable of law μ̃. Then,

�G = EẼ[− lnK(X̃1,Z∞)],
where Ẽ refers to the integration with respect to the random variable X̃1 and E

refers to the integration with respect to the random walk (Zn).

PROOF. As μ is supposed to have finite entropy, �G is well defined as an
almost sure and L1 limit. We will prove that the sequence

E[dG(e,Zn+1) − dG(e,Zn)] = E[− lnG(e,Zn+1) + lnG(e,Zn)]
converges to EẼ[− lnK(X̃1,Z∞)]. Since its limit in the Cesaro sense is �G, it
implies the formula in Proposition 2.4.

By definition of the reversed law μ̃, X̃−1
1 has the same law as X1, the first

increment of the random walk (Zn). Also, note that X2 · · ·Xn+1 has the same law
as Zn = X1 · · ·Xn. Since we have assumed that X̃1 is independent of the sequence
(Zn), Zn+1 = X1 · X2 · · ·Xn+1 has the same law as X̃−1

1 · Zn and therefore, using
the translation invariance, G(e,Zn+1) has the same law as G(X̃1,Zn). Thus,

E[− lnG(e,Zn+1) + lnG(e,Zn)] = EẼ[− lnG(X̃1,Zn) + lnG(e,Zn)]
= EẼ[− lnK(X̃1,Zn)].

By continuity of the Martin kernel up to the Martin boundary, for every x ∈ �,
the sequence K(x,Zn) almost surely converges to K(x,Z∞). We need an inte-
grable bound for − lnK(X̃1,Zn) (uniformly in n) to justify the convergence of the
expectation.

To prove that − lnK(X̃1,Zn) cannot go too far in the negative direction, we
first prove a maximal inequality for the sequence (K(X̃1,Zn))n, following Dynkin
[12].

LEMMA 2.5. For any a > 0,

PP̃

[
sup
n

K(X̃1,Zn) ≥ a

]
≤ 1

a
,

where P̃ refers with the measure associated with the random variable X̃1 and P

refers to the measure associated with the random walk (Zn).
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PROOF. We fix an integer R. Let σR be the time of the last visit to the ball

BG(e,R)
def.= {x ∈ � s.t. dG(e, x) ≤ R} for the random walk (Zn). [Since the ran-

dom walk is transient, σR is well defined and almost surely finite if the random
walk starts within BG(e,R). Otherwise, σR is set to be infinite when BG(e,R)

is never reached.] Let us define the sequence (ZσR−k) (k ∈ N). As this sequence
(in �) is only defined for k ≤ σR , we take the following convention for negative
indices:

{k > σR} 	⇒ {ZσR−k
def.= 
}.

In this way, the sequence (ZσR−k)k∈N is well defined and takes its values in �∪{
}.
Note that ZσR

takes its value in BG(e,R).
Let us call Fk the σ -algebra generated by (ZσR

, . . . ,ZσR−k) and observe that

1{k≤σR} ∈ Fk

since {k ≤ σR} means that none of ZσR
, . . . ,ZσR−k equals 
. With the convention

that, for any x ∈ �, K(x, 
) = 0, we can define, for any x in �, the nonnegative
sequence (K(x,ZσR−k)) (k ∈ N). This sequence is adapted to the filtration (Fk)

and we will prove, following Dynkin [12], Sections 6, 7 that it is a supermartingale
with respect to (Fk).

For this purpose, let us check that, for any positive integer k and any sequence
z0, z1, . . . , zk−1 in � ∪ {
} [with z0 ∈ BG(e,R)],

E

[
K(x,ZσR−k)

k−1∏
j=0

1{ZσR−j=zj }
]

(2.4)

= (
K(x, zk−1) − δx(zk−1)G(e, x)−1) · E

[
k−1∏
j=0

1{ZσR−j=zj }
]
.

We first compute the left-hand side of (2.4) in the case where none of z0, z1, . . . ,

zk−1 equals 
. First using the fact that K(x, 
) = 0, we have∑
zk∈�∪{
}

P
[
ZσR

= z0, . . . ,ZσR−(k−1) = zk−1,ZσR−k = zk

] · K(x, zk)

= ∑
zk∈�

P[ZσR
= z0, . . . ,ZσR−k = zk] · K(x, zk)

= ∑
zk∈�

P[k ≤ σR,ZσR
= z0, . . . ,ZσR−k = zk] · K(x, zk)

since the fact that none of z0, . . . , zk equals 
 means, in particular, that

k⋂
j=0

{ZσR−j = zj } ⊂ {k ≤ σR}.
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Then,∑
zk∈�∪{
}

P[ZσR
= z0, . . . ,ZσR−(k−1) = zk−1,ZσR−k = zk] · K(x, zk)

= ∑
zk∈�

∞∑
m=k

P[σR = m,Zm = z0, . . . ,Zm−k = zk] · K(x, zk)

= ∑
zk∈�

∞∑
m=k

P[Zm−k = zk]μ(z−1
k zk−1) · · ·μ(z−1

1 z0)P
z0[σR = 0] · K(x, zk)

= μ(z−1
k−1zk−2) · · ·μ(z−1

1 z0)P
z0[σR = 0] ∑

zk∈�

G(e, zk)μ(z−1
k zk−1) · K(x, zk)

= μ(z−1
k−1zk−2) · · ·μ(z−1

1 z0)P
z0[σR = 0] ∑

zk∈�

G(x, zk)μ(z−1
k zk−1)

= μ(z−1
k−1zk−2) · · ·μ(z−1

1 z0)P
z0[σR = 0](G(x, zk−1) − δx(zk−1)

)
.

Using the same kind of computation, we get that the right-hand side of (2.4) equals
∞∑

m=k−1

P
[
σR = m,Zm = z0, . . . ,Zm−(k−1) = zk−1

]

× (
K(x, zk−1) − δx(zk−1)G(e, x)−1)

=
∞∑

m=k−1

P
[
Zm−(k−1) = zk−1

]
μ(z−1

k−1zk−2) · · ·μ(z−1
1 z0)P

z0[σR = 0]

× (
K(x, zk−1) − δx(zk−1)G(e, x)−1)

= μ(z−1
k−1zk−2) · · ·μ(z−1

1 z0)P
z0[σR = 0](G(x, zk−1) − δx(zk−1)

)
.

So, (2.4) is true as soon as z0, . . . , zk−1 take values in �. Now, supposing that
zj = 
 for some j ≤ k − 1, we have

{ZσR−j = zj } 	⇒ {
ZσR−(k−1) = 


} 	⇒ {ZσR−k = 
}.
Since K(x, 
) = 0, the left-hand side of (2.4) is zero. To check that the right-hand
side is also zero, observe that

zk−1 �= 
 	⇒ 1{ZσR−j=zj } · 1{ZσR−(k−1)=z(k−1)} = 0

	⇒ E

[
k−1∏
j=0

1{ZσR−j=zj }
]

= 0,

and, as x ∈ �,

zk−1 = 
 	⇒ K(x, zk−1) = 0 and δx(zk−1) = 0.
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The proof of (2.4) is now complete. Since the Green function is positive, we deduce
from (2.4) that

E

[
K(x,ZσR−k)

k−1∏
j=0

1{ZσR−j=zj
}
]

≤ K(x, zk−1) · E

[
k−1∏
j=0

1{ZσR−j=zj }
]
,

thus proving the supermartingale property of the sequence (K(x,ZσR−k)) (k ∈ N).
We use similar arguments to compute the expectation of the value of the super-

martingale at time k = 0, E[K(x,ZσR
)], which turns out not to depend on R:

E[K(x,ZσR
)] =

∞∑
m=0

∑
z∈BG(e,R)

P[σR = m,Zm = z] · K(x, z)

=
∞∑

m=0

∑
z∈BG(e,R)

P
z[σR = 0] · P[Zm = z] · K(x, z)

= ∑
z∈BG(e,R)

P
z[σR = 0] · G(x, z)

= ∑
z∈BG(e,R)

P
z[σR = 0]

∞∑
m=0

P
x[Zm = z]

= ∑
z∈BG(e,R)

∞∑
m=0

P
x[σR = m,ZσR

= z]

= P
x[σR < ∞] ≤ 1.

We can now use Doob’s maximal inequality for nonnegative supermartingales (see,
e.g., Breiman [6], Proposition 5.13) to get that

∀x ∈ � P

[
sup
k

K(x,ZσR−k) ≥ a

]
≤ 1

a
.

So, PP̃[supk K(X̃1,ZσR−k) ≥ a] ≤ 1
a

and, letting R tend to infinity,

PP̃

[
sup
n

K(X̃1,Zn) ≥ a

]
≤ 1

a
. �

Let us return to the proof of Proposition 2.4. Lemma 2.5 implies that, for any
b > 0,

PP̃

[
sup
n

lnK(X̃1,Zn) ≥ b

]
≤ e−b

and therefore EẼ[supn lnK(X̃1,Zn)1K(X̃1,Zn)≥1] < ∞.
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On the other hand, we have

K(x,Zn) = P
x[τZn < ∞]

Pe[τZn < ∞] ≥ P
x[τe < ∞] · P

e[τZn < ∞]
Pe[τZn < ∞]

= P
e[τx−1 < ∞] ≥ μ̃(x)

and

Ẽ[− ln μ̃(X̃1)] = H(μ̃) = H(μ) < ∞.

Writing that

| lnK(X̃1,Zn)| = lnK(X̃1,Zn)1K(X̃1,Zn)≥1 − lnK(X̃1,Zn)1K(X̃1,Zn)≤1

≤ lnK(X̃1,Zn)1K(X̃1,Zn)≥1 − ln μ̃(X̃1),

we conclude that the random variable supn | lnK(X̃1,Zn)| is integrable. We can
therefore apply the dominated convergence theorem to deduce that the sequence
E[− lnG(e,Zn+1) + lnG(e,Zn)] converges to

EẼ[− lnK(X̃1,Z∞)]. �

LEMMA 2.6. Let � be a countable group and μ be a probability measure on
� whose support generates � with finite entropy H(μ). Then,

h = EẼ[− lnK(X̃1,Z∞)].

PROOF. Recall that μ̃ is the law of X̃1. We have

EẼ[− lnK(X̃1,Z∞)] =
∫
�

∫
∂M�

− ln(K(x, ξ)) dν(ξ) dμ̃(x),

where νy(·) is the harmonic measure on the Martin boundary ∂M� for a random
walk (of law μ) starting at y and ν(·) = νe(·). By the Martin boundary convergence
theorem (see Hunt [16] or Woess [25], Theorem 24.10) the Martin kernel K(x, ξ)

is the Radon–Nikodym derivative of νx by ν at ξ . Therefore,

EẼ[− lnK(X̃1,Z∞)] =
∫
�

∫
∂M�

− ln
(

dνx(ξ)

dν(ξ)

)
dν(ξ) dμ(x−1).

We will make the following changes of variables. As ∂M� is stable by left
multiplication, the change of variables ξ �−→ x−1ξ gives νx(ξ) �−→ ν(ξ) and
ν(ξ) �−→ νx−1(ξ). Hence, also changing x into x−1 gives

EẼ[− lnK(X̃1,Z∞)] =
∫
�

∫
∂M�

− ln
(

dν(ξ)

dνx(ξ)

)
dνx(ξ) dμ(x)

(2.5)

=
∫
�

∫
∂M�

ln
(

dνx(ξ)

dν(ξ)

)
dνx(ξ) dμ(x).
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Observe that dνx(ξ)/dν(ξ) is the Radon–Nikodym derivative of the joint law of
(X̃−1

1 ,Z∞) with respect to the product measure μ(·)⊗ν(·). Therefore, (2.5) means
that EẼ[− lnK(X̃1,Z∞)] is the relative entropy of the joint law of (X̃−1

1 ,Z∞)

with respect to μ(·)⊗ ν(·), which equals the asymptotic entropy h (see Derriennic
[11], who actually takes the latter as the definition of the asymptotic entropy and
proves that the two definitions coincide). �

3. Finitely generated groups. We now restrict ourselves to a finitely gener-
ated group �.

3.1. Volume growth in the Green metric. For a given finite generating set S,
we define the associated word metric:

dw(x, y)
def.= min{n s.t. x−1y = g1g2 · · ·gn with gi ∈ S}.

This distance is the geodesic graph distance of the Cayley graph of � defined by S.
Different choices of generating sets lead to different word distances in the same
quasi-isometry class. When μ is symmetric and finitely supported, the two metrics
dG(·, ·) and dw(·, ·) can be compared (see [4], Lemma 2.2). These two metrics are
equivalent for any nonamenable group and also for some amenable groups (e.g.,
the Lamplighter group Z � Z2).

Throughout the article, the notion of growth of the group � always refers to the

function Vw(n)
def.= #{x ∈ � s.t. dw(e, x) ≤ n} for some (equivalently, any) symmet-

ric finite generating set. The group will be said to have:

• polynomial growth when Vw(n) = O(nD) for some constant D (the largest in-
teger D satisfying this condition is called the degree of the group);

• superpolynomial growth when Vw(n)/nD tends to infinity for every D;
• subexponential growth when Vw(n) = o(eCn) for every constant C > 0;
• exponential growth when Vw(n)/eCn tends to infinity for some C > 0.

We are now interested in the asymptotic behavior of the volume of the

balls for the Green metric. Let us define BG(e,n)
def.= {x ∈ � s.t. dG(e, x) ≤ n},

VG(n)
def.= #BG(e,n) and the corresponding logarithmic volume growth,

vG
def.= lim sup

n→∞
ln(VG(n))

n
.

PROPOSITION 3.1. Let us suppose that � is not a finite extension of Z or Z
2.

For any random walk on �:

(i) if � has superpolynomial growth, then vG ≤ 1;
(ii) if � has polynomial growth of degree D, then vG ≤ D

D−2 .
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PROOF. Observe that Proposition 2.3 in [4] proves (i) when μ has finite sup-
port and is symmetric.

We recall the following classical result (see, e.g., Woess [25]). Let μ be a sym-
metric measure with finite support and let � have at least polynomial growth of
degree D (D ≥ 3). Then,

∃Ce > 1 s.t. ∀x, y ∈ � and k ∈ N P
x[Zk = y] ≤ Cek

−D/2.(3.1)

The above estimate remains valid even without the symmetry and the finite support
hypotheses. Indeed, Coulhon’s result ([7], Proposition IV.4) (see also Coulhon and
Saloff-Coste [8]) allows one to extend upper bounds of the nth convolution power
of a symmetric probability measure μ1 to the nth convolution power of another
probability measure μ2 under the following condition:

∃c > 0 s.t. ∀x μ1(x) ≤ cμ2(x).(3.2)

For a general probability measure μ whose support generates �, there exists K

such that the support of μK contains any finite symmetric generating set S of �.
Hence, choosing μ2 = μK , c = (minx∈S μ2(x))−1 and μ1 = (1/#S) × δS(x),

the uniform distribution on S, we see that the measures μ1 and μ2 satisfy condition
(3.2). Therefore, the estimate (3.1) remains valid for μ, with a possibly different
constant Ce.

The same argument as in [4] shows that (3.1) implies

VG(n) ≤ C exp
(

D

D − 2
· n

)

for some constant C. Thus, vG ≤ D
D−2 . For groups with superpolynomial growth,

letting D go to infinity gives vG ≤ 1. �

REMARK 3.2. If the measure μ has finite support, then it is already known
that vG ≥ 1 [4] Proposition 2.3. From Lemma 3.3 and Proposition 3.4, we will
also get that vG ≥ 1 when μ has finite entropy and h > 0, but μ may have an
infinite support. This implies that vG = 1 for groups with superpolynomial growth
and measures of finite entropy such that h > 0.

3.2. The “fundamental” inequality. We now present a different proof of The-
orem 1.1 in the case of finitely generated groups. The interest of this proof comes
from an extended version of the “fundamental” inequality relating the asymptotic
entropy, the logarithmic volume growth and the rate of escape.

There is the following general, obvious link between the Green speed and the
asymptotic entropy.

LEMMA 3.3. For any random walk with finite entropy H(μ), we have �G ≤ h.
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PROOF. The sequence 1
n
dG(e,Zn) converges to �G in L1. Therefore,

�G = lim
n→∞

−∑
x∈� μn(x) ln(

∑∞
k=0 μk(x))

n

≤ lim
n→∞

−∑
x∈� μn(x) lnμn(x)

n
= h. �

Our aim is to prove the other inequality and deduce that h = �G.

Groups with polynomial volume growth. For groups with polynomial growth,
Lemma 3.3 gives the (trivial) equality since any random walk has zero asymp-
totic entropy. Indeed, these groups have a trivial Poisson boundary (Dynkin and
Malyutov [13]), which is equivalent to h = 0 for measures with finite entropy
(Derriennic [10] and Kaimanovich and Vershik [18], see also Kaimanovich [17],
Theorem 1.6.7).

Groups with superpolynomial volume growth. We rely on the so-called funda-
mental inequality.

h ≤ �G · vG,(3.3)

which holds when μ has finite entropy. For groups with superpolynomial growth,
Proposition 3.1 gives vG ≤ 1, therefore inequality (3.3) implies that h ≤ �G and
we conclude that h = �G. Thus, all that remains to be done in order to complete
the proof of Theorem 1.1 in the case of groups with superpolynomial growth is to
justify (3.3). This is the content of the next proposition.

A version of inequality (3.3), when the speed and volume growth are computed
in a word metric, is proved by Guivarc’h [15] and discussed in great detail by Ver-
shik [24]. The same proofs as in [15] or [24] would apply to any invariant metric
on �, for instance, the Green metric, the provided μ has finite support. The funda-
mental inequality is also known to hold for measures with unbounded support and
a finite first moment in a word metric. See, for instance, Erschler [14], Lemma 6
or Karlsson and Ledrappier [21], but note that their argument seems to apply only
to word metrics and observe that the Green metric is not a word metric in general
(as a matter of fact, it need not even be a geodesic metric). We shall derive the
fundamental inequality in the Green metric, under the simple assumption that the
entropy of μ is finite.

We present our result in a general setting (for any invariant metric and group)
since it has its own interest.

PROPOSITION 3.4. Let μ be the law of the increment of a random walk on a
countable group �, starting at a point e, and let d(·, ·) be a left-invariant metric.
Under the hypothesis that:
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• the measure μ has finite entropy;
• the measure μ has finite first moment with respect to the metric d;

• the logarithmic volume growth v
def.= lim supn→∞ ln(#B(e,n))

n
is finite, then

the asymptotic entropy h, the rate of escape �
def.= limn

d(e,Zn)
n

(limit both in L1 and
almost surely) and the logarithmic volume growth v satisfy the following inequal-
ity:

h ≤ � · v.

PROOF. The proof relies on an idea of Guivarc’h [15] Proposition C.2. Fix

ε > 0 and, for all integers n, let Bn
ε

def.= B(e, (� + ε)n) [here, the balls are defined
for the metric d(e, ·)]. We split �\Bn

ε into a sequence of annuli as follows. Choose
K > � + ε and define

Cn,K
ε

def.= B(e,Kn)\Bn
ε ,

∀i ≥ 1 Cn,K
i

def.= B(e,2iKn)\B(e,2i−1Kn).

Define the conditional entropy

H(μ|A)
def.= −∑

x∈A

μ(x)

μ(A)
ln

μ(x)

μ(A)
.

The entropy of μn can then be written as

H(μn) = μn(Bn
ε ) · H(μn|Bn

ε )

+ μn(Cn,K
ε ) · H(μn|Cn,K

ε )(3.4)

+
∞∑
i=1

μn(Cn,K
i ) · H(μn|Cn,K

i ) + H ′
n,

where

H ′
n

def.= −μn(Bn
ε ) · ln(μn(Bn

ε ))

− μn(Cn,K
ε ) · ln(μn(Cn,K

ε ))(3.5)

−
∞∑
i=1

μn(Cn,K
i ) · ln(μn(Cn,K

i )).

We will repeatedly use the fact that the entropy of any probability measure sup-
ported by a finite set is maximal for the uniform measure and then equals the
logarithm of the volume. First, observe that

H(μn|Bn
ε ) ≤ ln(#Bn

ε ) ≤ (� + ε) · v · n + o(n)
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and thus the first term in (3.4) satisfies

lim
n

μn(Bn
ε ) · H(μn|Bn

ε )

n
≤ (� + ε) · v.

For the second term in (3.4), we get that

H(μn|Cn,K
ε ) ≤ ln(#Cn,K

ε ) ≤ K · v · n + o(n).

On the other hand, � is also the limit in probability of d(e,Zn)/n, hence ∀ε >

0, limn μn(Bn
ε ) = 1. Therefore, limn μn(Cn,K

ε ) = 0 and the second term in (3.4)
satisfies

lim
n

μn(Cn,K
ε ) · H(μn|Cn,K

ε )

n
= 0.

For the third term in (3.4), as before, we have

H(μn|Cn,K
i ) ≤ ln(#Cn,K

i ) ≤ 2iK · v · n + o(n)

and, by the definition of Cn,K
i ,

μn(Cn,K
i ) = E

[
1{Zn∈Cn,K

i }
] ≤ E

[
d(e,Zn)

2i−1Kn
· 1{Zn∈Cn,K

i }
]
.(3.6)

So,

1

n

∞∑
i=1

μn(Cn,K
i ) · H(μn|Cn,K

i )

≤
(

2v

n
+ o

(
1

n

))
E

[
d(e,Zn)

∞∑
i=1

1{Zn∈Cn,K
i }

]

=
(

2v

n
+ o

(
1

n

))
E[d(e,Zn) · 1{d(e,Zn)>Kn}].

As d(e,Zn) ≤ ∑n
k=1 d(e,Xk), we have

1

n

∞∑
i=1

μn(Cn,K
i ) · H(μn|Cn,K

i )

≤
(

2v

n
+ o

(
1

n

)) n∑
j=1

E
[
d(e,Xj ) · 1{∑n

k=1 d(e,Xk)>Kn}
]

= (
2v + o(1)

)
E[d(e,X1) · 1{∑n

k=1 d(e,Xk)>Kn}]
since X1, . . . ,Xn are i.i.d., so the random variables

Yj
def.= d(e,Xj ) · 1{∑n

k=1 d(e,Xk)>Kn}
have the same distribution.
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By the strong law of large numbers, the sequence 1
n

∑n
k=1 d(e,Xk) almost surely

converges to E[d(e,X1)] def.= m < ∞. As a consequence, for any K > m, we have

d(e,X1) · 1{∑n
k=1 d(e,Xk)>Kn}

a.s.−→ 0.(3.7)

Moreover, as

d(e,X1) · 1{∑n
k=1 d(e,Xk)>Kn} ≤ d(e,X1),

which is integrable, the limit in (3.7) also occurs in L1. Then,

lim
n

1

n

∞∑
i=1

μn(Cn,K
i ) · H(μn|Cn,K

i ) = 0.

We are left with H ′
n. As limn μn(Bn

ε ) = 1 and limn μn(Cn,K
ε ) = 0, we have

lim
n

[−μn(Bn
ε ) · ln(μn(Bn

ε )) − μn(Cn,K
ε ) · ln(μn(Cn,K

ε ))] = 0.

For the last term in (3.5), note that (3.6) gives

μn(Cn,K
i ) ≤ 1

2i−1Kn

n∑
k=1

E[d(e,Xk)] ≤ m

2i−1K
.

Together with the inequality −a ln(a) ≤ 2e−1√a, we get

−
∞∑
i=1

μn(Cn,K
i ) · ln(μn(Cn,K

i )) ≤ 2e−1
∞∑
i=1

√
μn(Cn,K

i ) < ∞.

So, limn H ′
n/n = 0.

Finally, taking the limit n → ∞, we deduce from (3.4) that h ≤ (� + ε) · v for
any ε, so h ≤ � · v. �

We conclude with a final remark.

REMARK 3.5. The proof of Theorem 1.1 using the Martin boundary relies on
the translation invariance of �, but the hypothesis that the graph is a Cayley graph
of a countable group seems too strong. It would be interesting to extend this proof
to the case of space homogeneous Markov chains (see Kaimanovich and Woess
[19]).
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