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PALM DISTRIBUTIONS OF WAVE CHARACTERISTICS
IN ENCOUNTERING SEAS

BY SOFIA ABERG,1 IGOR RYCHLIK AND M. ROSS LEADBETTER

Lund University, Lund University and University of North Carolina

Distributions of wave characteristics of ocean waves, such as wave slope,
waveheight or wavelength, are an important tool in a variety of oceanographic
applications such as safety of ocean structures or in the study of ship stability,
as will be the focus in this paper. We derive Palm distributions of several
wave characteristics that can be related to steepness of waves for two different
cases, namely for waves observed along a line at a fixed time point and for
waves encountering a ship sailing on the ocean. The relation between the
distributions obtained in the two cases is also given physical interpretation in
terms of a “Doppler shift” that is related to the velocity of the ship and the
velocities of the individual waves.

1. Introduction. The study of wave characteristics such as crest height, wave-
length and wave slope is important in various ocean engineering applications. Ex-
amples can be found in the design of ocean structures, such as oil platforms, or in
the design of sea walls that should prevent cities, or sometimes whole countries,
from flooding. Another important application, motivating this paper, is that of ship
stability. Because high and steep waves encountering a ship may cause structural
damage and even capsize smaller vessels, it is important to know the distribution
of, for example, wavelength, waveheight and wave slope of such waves. Based
on these distributions, capsize probabilities can be computed and used as a risk
measure for existing vessels or as a tool in the design of new ones.

A sea surface can be seen as a sequence of apparent waves. By an apparent wave
is meant the part of the sea record between two consecutive upcrossings of the still
water level and the downcrossing in between these upcrossings is called the center
of the wave. The purpose of this paper is to derive exact distributions of steepness
related wave characteristics of the apparent waves for two different cases. The
first case, the spatial case, concerns properties of the waves observed, in space,
along a fixed line at a fixed time point and the second case, the encountered case,
involves properties of the waves encountering a ship on the ocean. More precisely,
the characteristics of those waves that overtake a ship sailing with constant velocity
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along a straight line will be investigated because such waves are considered as
particularly dangerous for ship stability.

Distributions of wave characteristics are defined as Palm distributions. Such dis-
tributions are intimately related to level-crossings of the underlying process; in our
case representing the sea surface, and Rice’s formula proves useful in their evalua-
tion. Although the main result of this paper is the derivation of several distributions
for the two different cases stated above, a nice by-product is that the relation be-
tween the two cases can be given interpretation in terms of wave velocities. In
physical terminology this can be expressed as a Doppler shift and is caused by the
fact that the sea surface is observed by a moving observer—the ship. Due to this
interpretation, similar results can be expected in many other applications where the
distribution of moving objects, observed from a moving observer are studied. As
an example, the distribution of the size of the storms you will meet when sailing
will be related, by a Doppler shift, to the distribution of storm sizes that can be
observed from a satellite image.

The organization of this paper is as follows. First, the Gaussian sea model used
to evaluate the distributions for the wave characteristics is introduced. Then it is
shown how distributions defined by Palm distributions can be computed by using
generalized versions of Rice’s formula. After a short section on wave velocities,
the theory is exemplified by calculation of the distribution of wave slope for spatial
and encountered waves. Thereafter, a more intricate example concerning wave-
height and wavelength of apparent waves is investigated, and finally, the derived
distributions are evaluated numerically for a unidirectional Gaussian sea.

2. Gaussian sea model. Let W(x, t) be the sea surface elevation at location x

and time t . Further denote its partial derivative on t by Wt(x, t) and its first and
second partial derivative on x by Wx(x, t) and Wxx(x, t), respectively. Sometimes,
when no misunderstanding can be made, the notation W(x) = W(x,0) is used.
Throughout this paper, W(x, t) is modeled as a zero mean, stationary Gaussian
field with a directional spectrum having spectral density S(ω, θ), where ω is an
angular frequency and θ an angle representing wave direction. These quantities
satisfy ω > 0 and θ ∈ [0,2π ]. For sea waves such a parametrization of the spectral
density is possible because the angular frequency ω and the wave number κ are
related by physical dispersion laws; see [4] for further reference. In particular, for
deep water,

κ = ω2

g
,(2.1)

where g is the gravitational constant. Writing ω = 2π/T and κ = 2π/L, where
T is the wave period and L the wavelength, the dispersion relation can also be
expressed in terms of periods and wavelengths, namely

L = g

2π
T 2.
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Due to the dispersion relation, we thus have the following relation between the
covariance function R(ξ, τ ) = E[W(x, t)W(x + ξ, t + τ)] and the spectrum

R(ξ, τ ) =
∫ ∞

0

∫ 2π

0
cos

(
ωτ + ω2

g
ξ cos θ

)
S(ω, θ) dθ dω.(2.2)

Due to this relation variances and covariances of the process and its derivatives can
be expressed in terms of the spectral moments defined as

λij =
∫ ∞

0

∫ 2π

0
(κ(ω) cos θ)iωjS(ω, θ) dθ dω.(2.3)

Note that Var(W(0,0)) = R(0,0) = λ00, Var(Wx(0,0)) = −Rξξ (0,0) = λ20,
Var(Wt(0,0)) = −Rττ (0,0) = λ02 and Cov(Wx(0,0),Wt(0,0)) = −Rξτ (0,0) =
λ11.

3. Palm distributions and Rice’s formula. Let Nu
Z([0, T ]) be the number of

times that a process Z(t) of one parameter takes the value u in the interval [0, T ],
and let Nu

Z([0, T ],E) be the number of times the process takes the value u and at
the same time a statement E about the process, its derivatives or another process,
is satisfied. For example E could be the statement “Zt(t) ≤ z,” where Zt(t) is the
derivative of Z(t). A Palm measure is defined by the following ratio of intensities

P u
Z(E) = E[Nu

Z([0,1],E)]
E[Nu

Z([0,1])] ,(3.1)

provided that the expected number of u-crossings, E[Nu
Z([0,1])], is finite. If the

process Z(t) is ergodic the intensities in (3.1) can be computed as sample averages
and, with probability one,

P u
Z(E) = lim

T →∞
Nu

Z([0, T ],E)

Nu
Z([0, T ]) .

Thus the Palm distribution has the empirical interpretation that it is the long-term
proportion of u-crossings by the process Z for which E is satisfied. Note that
a sufficient condition for ergodicity for a Gaussian process is that it possesses a
spectral density function; see [7], page 157.

The intensities of crossings in (3.1) can be computed by using Rice’s formula,
first studied by [8] and [15]. In its simplest form, when Z is a zero-mean stationary
Gaussian process having almost surely differentiable sample paths (realizations),
it reads

E[Nu
Z([0,1])] = 1

π

√
Var(Zt (0))

Var(Z(0))
exp

(
− u2

2 Var(Z(0))

)
.(3.2)

It can also be written on integral form, namely

E[Nu
Z([0,1])] =

∫ ∞
−∞

|z|fZt (0),Z(0)(z, u) dz

(3.3)
= E[|Zt(0)| | Z(0) = u]fZ(0)(u),
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where fZt (0),Z(0) and fZ(0) are the densities of (Zt (0),Z(0)) and Z(0), respec-
tively. There is a vast literature on generalized versions of Rice’s formula; see, for
example, [1, 3, 5, 9, 18]. It turns out that the formulation (3.3) extends in a natural
way so that the intensity of crossings satisfying a statement E can be computed.
For example, if Z(t) has almost surely differentiable sample paths and the event E

satisfies certain regularity conditions, then by [9], Lemma 7.5.2.

E[Nu
Z([0,1],E)] = E

[|Zt(0)|1{E} | Z(0) = u
]
fZ(0)(u),(3.4)

where 1{·} is an indicator function. Thus Rice’s formula and generalizations of it
can be used to compute the Palm distribution (3.1). However, some of the Palm
distributions that we will consider include crossings by random vector fields and
therefore slightly more general forms of Rice’s formula are required. The exact
version that will be used is due to [13], Theorem 9.6, which is a generalization of
a theorem in [3].

REMARK 3.1. Notation like E[|Zt(t)| | Z(t) = u]fZ(t)(u) is used extensively
throughout this paper. This should be interpreted in the sense of (3.3), that is,
as an integral. In particular, this requires that the joint density of Zt(t) and Z(t)

exists, so that (Zt (t),Z(t)) has a nondegenerate Gaussian distribution. For higher
dimensions the notation should be understood in a analogous fashion.

REMARK 3.2. It should be pointed out that the Gaussian assumption is not
necessary for Rice’s formula (3.3) to hold, although the conditions for its validity in
some cases can be quite intricate. However, if one is content to use (3.3) for almost
every u, rather than for each specific u, these conditions simplify substantially.
In [10] sufficient conditions for applying almost everywhere results to fixed levels
are given.

4. Wave velocities. We will see that encountered distributions of wave char-
acteristics are closely related to velocities of the individual apparent waves. Before
defining velocities for these random waves we start with velocities of deterministic
waves, and in particular, study the implications of the dispersion relation for the
velocities of such waves.

Consider a deterministic cosine-wave c(x, t) with angular wave frequency ω

and wave number κ , namely

c(x, t) = A cos(ωt + κx + φ),

where A is an amplitude and φ a phase. For fixed t this is a wave in space and for
fixed x, a wave in time. If both t and x are varying it is a wave traveling in the
direction of the negative x-axis. The (phase) velocity of the wave can be expressed
as

V = −L

T
= −ω

κ
= − ct (x, t)

cx(x, t)
.
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Note that the convention here is that a wave travels in the direction of the positive
x-axis if it has positive velocity and vice versa. Now for this deterministic wave,
ω and κ are linked by the dispersion relation (2.1) and consequently

V = −ω

κ
= −

√
g

κ
= −

√
gL

2π
.(4.1)

Thus for ocean waves the dispersion relation implies that longer waves are faster
than shorter ones and, because the spatial slope of the wave at a zero-crossing is
proportional to κ , it also implies that waves with a high spatial slope are slow.

Velocities for waves in irregular seas can be defined in a similar fashion, and
has been studied by [2, 4, 12, 14]. In this case, however, one is interested in the
velocities of the apparent waves rather than velocities of single harmonics. Recall
that an apparent wave is the part of the sea record between two consecutive up-
crossings of the still water level, and that the downcrossing in between is termed
the center of the wave. Let xi > 0 be the positions of centers of waves observed
in W(x,0), that is, along the x-axis at time zero. Due to the time variability of the
sea surface, the centers change their positions with time and at t = 0 the velocity
Vi that the ith wave moves at can be evaluated by means of Vi = − Wt(xi ,0)

Wx(xi ,0)
; see

for example, [4]. The variability of the velocities Vi will be described by the Palm
distribution defined as follows

FV (v) = E[number of xi < 1 such that Vi ≤ v]
E[number of xi < 1] .(4.2)

For the Gaussian sea this becomes

FV (v) = 1

2

(
1 + v − v̄√

(v − v̄)2 + σ 2/λ20

)
, v̄ = −λ11

λ20
,

where σ 2 = λ02 − λ2
11

λ20
and v̄ is the average wave velocity; see [14].

REMARK 4.1. The velocity defined by V (x, y, t) = − Wt(x,y,t)
Wx(x,y,t)

, (x, y) ∈ R
2,

can be seen as the local velocity field of a random, moving, surface. This velocity
is defined at any point (x, y) ∈ R

2 at any time t . For a thorough study of different
velocity concepts; see [4].

5. Explicit evaluation of Palm distributions. Earlier it was shown how Palm
distributions can be expressed by Rice’s formula, given by (3.3) and (3.4). These
formulas involve computation of multivariate normal expectations. Sometimes
these have to be evaluated numerically, but in some cases explicit forms can be
given. One of these explicit cases will be investigated next in some detail.
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In the following lemma, a stationary Gaussian vector valued process (Z(t),

Zt (t), Y (t)) will be considered. In order to simplify notation, introduce the ran-
dom variables Yu and Zu

t having joint distribution function FYu,Zu
t
(y, z) defined

by the measure (3.1), namely

FYu,Zu
t
(y, z) = P(Yu ≤ y,Zu

t ≤ z) = P u
Z

(
Y(t) ≤ y,Zt(t) ≤ z

)
.(5.1)

These random variables are a special case of the Slepian model process; see [11]
for a detailed presentation, and one may think of them as Y(t) and Zt(t) observed
at a randomly chosen u-crossing of the process Z(t). The next lemma gives an
explicit representation of these variables.

LEMMA 5.1. Suppose that (Z(t),Zt (t), Y (t)) is a stationary Gaussian vector
valued process such that the density of (Z(t),Zt(t), Y (t)) exists. Assume further
that the sample paths of Y(t) and Z(t) are a.s. continuous and a.s. continuously
differentiable, respectively. Let mZ = E(Z(t)), mY = E(Y (t)) and let the covari-
ance matrix � of the vector (Z(t),Zt (t), Y (t)) be given by

� =
⎛⎝ σ 2

Z 0 σZσY ρZY

0 σ 2
Zt

σZt σY ρZtY

σZσY ρZY σZt σY ρZtY σ 2
Y

⎞⎠ .(5.2)

Then the variables Yu,Zu
t , with distribution defined by (5.1), have the following

distributional representations:

Zu
t = σZt R, Y u = mu + σY

(
ρZtY R +

√
1 − ρ2

ZY − ρ2
ZtY

U
)
,(5.3)

where U is standard normal and R is independent of U , with a double Rayleigh
distribution, that is, probability density f (r) = |r|

2 e−r2/2. Here mu = mY +
σY
σZ

ρZY (u − mZ) and ρZY , ρZtY are correlations between Y(0) and Z(0), Zt(0),
respectively.

PROOF. The proof is easy using the definition of Palm probability, Rice’s for-
mula (3.2) and (3.4) and the Gaussian regression formulas. �

This lemma thus shows that the derivative Zt at crossings has a Rayleigh distrib-
ution as opposed to the derivative at any point, where it has a Gaussian distribution.
Furthermore, the distribution of another Gaussian process Y , correlated with Z(t),
can be represented as the sum of a Rayleigh and Gaussian variable at the crossing
point. The corresponding distributions, but only observed at up- or downcrossings
of Z(t), are easily obtained by using the representation from Lemma 5.1. These
distributions are summarized in the following lemma.

LEMMA 5.2. Let Zu
t | Zu

t > 0 denote the random variable obtained by condi-
tioning Zu

t on Zu
t > 0 and let Yu | Zu

t > 0, Zu
t | Zu

t < 0 and Yu | Zu
t < 0 be defined
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analogously. Using the same notation as in Lemma 5.1, we then have the following
distributional representations:

Zu
t | Zu

t > 0 = σZt R
+,

Y u | Zu
t > 0 = mu + σY

(
ρZtY R+ +

√
1 − ρ2

ZY − ρ2
ZtY

U
)

and

Zu
t | Zu

t < 0 = σZt R
−,

Y u | Zu
t < 0 = mu + σY

(
ρZtY R− +

√
1 − ρ2

ZY − ρ2
ZtY

U
)
,

where R+ and R−, both independent of U , have densities fR+(r) = re−r2/2, r > 0,
and fR−(r) = −re−r2/2, r < 0, respectively.

This result will be used to obtain explicit representations of the distributions of
the slope observed at wave centers and encountered wave centers. When evaluat-
ing such distributions, the following lemma that can be proved by straightforward
calculations is useful.

LEMMA 5.3. Let U and R+ be independent standard Gaussian and Rayleigh
distributed variables. Then, for a > 0 and any x,

P(aU + bR+ > x) = 

(
−x

a

)
+ e−x2/(2σ 2) · b

σ


(
x

σ

b

a

)
,

where σ = √
a2 + b2 and  is the distribution function of a standard Gaussian

variable.

6. Distribution of slope. Consider the sea surface W(x, t). In this section the
distribution of the slope Wx(x, t) will be computed, but only for values of x and t

chosen in a careful manner. The cases considered are:

1. Spatial case. Choose x to be points where the process W(x,0) has a downcross-
ing of the zero level. This means that only values of x satisfying W(x,0) = 0
and Wx(x,0) < 0 are chosen. In other words, x are locations of the wave cen-
ters in W(·,0). These values of x and t = 0 will lead to a Palm distribution of
wave slopes observed at centers of waves.

2. Encountered case. Consider a ship sailing with constant velocity v on the ocean.
If it at time zero is at position x = 0, then the sea elevation at the center of
gravity at time t is W(vt, t). Choose t so that W(vt, t) = 0, Wx(vt, t) < 0 and
∂
∂t

W(vt, t) < 0, then t can be interpreted as a time when the ship is overtaken
by a wave center. Values of t chosen in this manner, and x = vt , lead to a Palm
distribution of wave slopes observed at overtaking centers of waves.

REMARK 6.1. By slope is here meant the water surface wave slope. This
should not be confused with the term velocity slope sometimes used in the ma-
rine sciences.
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6.1. Spatial distribution of slope. To derive the distribution of the slope ob-
served at centers of waves, we start by defining it by means of a Palm distribution.
Therefore, let xi ≥ 0 be the locations of the centers of waves, that is, locations of
the zero-downcrossings, in W(x,0). Each of these wave centers can be associated
with a slope Wx(xi,0) and the following Palm distribution for the slope at centers
of waves, denoted by F

space
Wx

(w), can be defined as

F
space
Wx

(w)

= E[number of xi ≤ 1 such that Wx(xi,0) ≤ w]
E[number of xi ≤ 1](6.1)

= E[#{x ∈ [0,1];W(x,0) = 0,Wx(x,0) < 0,Wx(x,0) ≤ w}]
E[#{x ∈ [0,1];W(x,0) = 0,Wx(x,0) < 0}] ,

where the second equality holds because xi is a point of downcrossing of W(x,0).
Note that by ergodicity this distribution can be interpreted as

F
space
Wx

(w) = lim
X→∞

number of xi < X such that Wx(xi,0) ≤ w

number of xi < X
,

that is, as the proportion of wave centers with associated slope less or equal to w

in an infinitely long realization of the process.
The following theorem gives an expression for the Palm distribution in this case,

and also states how it can be evaluated.

THEOREM 6.1. If W(x,0) is a stationary Gaussian process having a.s. con-
tinuously differentiable sample paths then

F
space
Wx

(w) = E[Wx(0,0)−1{Wx(0,0)≤w} | W(0,0) = 0]fW(0,0)(0)

E[Wx(0,0)− | W(0,0) = 0]fW(0,0)(0)
,(6.2)

where x− = max(−x,0). Moreover

F
space
Wx

(w) = P
(√

λ20R
− ≤ w

)
,(6.3)

where R− is a random variable having density fR−(r) = −re−r2/2, r < 0.

PROOF. The first statement of the proof follows by applying the generalized
Rice’s formula (3.4) to the numerator and denominator of (6.1). For the numerator,
(3.4) is used with E = “Wx(x,0) < 0,Wx(x,0) ≤ w” and for the denominator
E = “Wx(x,0) < 0.”

To prove (6.3), Lemma 5.1 is used with Z = W(x,0). Then Zx = Wx(x,0),
and the Slepian variable Z0

x is the derivative Wx(x,0) observed at zero-crossings
of the process Z = W(x,0). Using the variable Z0

x , the distribution for the slope
Wx(x,0) observed at zero-downcrossings can be expressed as

F
space
Wx

(w) = P(Z0
x ≤ w | Z0

x < 0),

that is, as the distribution of the slope observed at zero-crossings conditional on a
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negative slope at the crossing. Now (6.3) follows by Lemma 5.2. �

6.2. Encountered distribution of slope. Consider a vessel sailing along
the x-axis in the positive direction with constant speed v, having its center of
gravity at time zero at x = 0. Disregarding the interaction between the ship
and the waves, the sea elevation at the center of gravity of the ship is given by
Z(t) = W(vt, t). In the following, we will refer to Z(t) as the encountered sea.
Now let ti ≥ 0 be the times when the vessel is overtaken by a wave center. Charac-
teristic for such times is that the center of gravity is passing through the still water
level, Z(ti) = 0, the slope of the wave is negative, Wx(vti, ti) < 0 and the encoun-
tered sea Z(t) has an upcrossing Zt(ti) > 0, meaning that the center of wave is
overtaking the ship. Because each ti can be associated with the slope Wx(vti, ti) of
the ith overtaking wave, the following Palm distribution of the slope at overtaking
waves, F enc

Wx
(w), say, can be formed

F enc
Wx

(w)

= E[number of ti ≤ 1 such that Wx(vti, ti) ≤ w]
E[number of ti ≤ 1](6.4)

= E[#{t ∈ [0,1];Z(t) = 0,Zt (t) > 0,Wx(vt, t) < 0,Wx(vt, t) ≤ w}]
E[#{t ∈ [0,1];Z(t) = 0,Zt (t) > 0,Wx(vt, t) < 0}] ,

where the second equality is due to the definition of ti . As before, the Palm distri-
bution can be interpreted in the following frequency fashion:

F enc
Wx

(w) = lim
T →∞

number of ti < T such that Wx(vti, ti) ≤ w

number of ti < T
.

REMARK 6.2. Despite the similarities of expressions (6.1) and (6.4), there
is an important difference arising from the fact that crossings from two different
processes are counted, namely crossings from W(x,0) in the spatial case and from
W(vt, t) in the encountered case. From a statistical point of view this means sam-
pling from two different populations.

The following theorem, concerning the Palm distribution of slope for encoun-
tered waves, is an analogue to Theorem 6.1.

THEOREM 6.2. Let W(x, t) be a stationary Gaussian process having a.s. con-
tinuously differentiable sample paths. Then F enc

Wx
(w) can be expressed as

F enc
Wx

(w) = E[Zt(0)+1{Wx(0,0)<0,Wx(0,0)≤w} | Z(0) = 0]fZ(0)(0)

E[Zt(0)+1{Wx(0,0)<0} | Z(0) = 0]fZ(0)(0)
,(6.5)
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where x+ = max(x,0). Moreover, F enc
Wx

(w) = 1 if w ≥ 0 and for w < 0

F enc
Wx

(w) = 2

1 − ρZtY

(


(
w√

λ20(1 − ρ2
ZtY

)

)
(6.6)

− ρZtY e−w2/(2λ20)

(
ρZtY w√

λ20(1 − ρ2
ZtY

)

))
,

where  is the distribution function of a standard normal variable and

ρZtY = vλ20 + λ11√
λ20(v2λ20 + 2vλ11 + λ02)

.(6.7)

PROOF. Expression (6.5) follows, in a similar fashion as in the proof of The-
orem 6.1, by applying the generalized Rice’s formula (3.4) to the numerator and
denominator in (6.4).

To prove the second statement, identify the process Z(t) of Lemma 5.1 with
the encountered process W(vt, t) and let Y(t) = Wx(vt, t). With this choice of
variables the covariance matrix, expressed in terms of spectral moments defined
by (2.3), becomes

� =
⎛⎝λ00 0 0

0 v2λ20 + 2vλ11 + λ02 vλ20 + λ11
0 vλ20 + λ11 λ20

⎞⎠ .(6.8)

In this setting Z0
t is the time derivative of the encountered process observed at

its zero-crossings, and Y 0 is the spatial slope observed at zero-crossings of the
encountered process. The distribution in (6.5), however, is the distribution of the
spatial slope, but only at upcrossings of Z(t) such that the spatial slope is negative.
Using the variables Z0

t and Y 00 this can be expressed as

F enc
Wx

(w) = P(Y 0 ≤ w | Z0
t > 0, Y 0 < 0)

=
⎧⎨⎩

P(Y 0 ≤ w|Z0
t > 0)

P (Y 0 < 0|Z0
t > 0)

, w < 0,

1, w ≥ 0.

Use of Lemma 5.2 now gives the following representation

F enc
Wx

(w) =

⎧⎪⎪⎨⎪⎪⎩
P(

√
λ20(ρZtY R+ +

√
1 − ρ2

ZtY
U) ≤ w)

P (
√

λ20(ρZtY R+ +
√

1 − ρ2
ZtY

U) < 0)
, w < 0,

1, w ≥ 0,

with ρZtY given by (6.7). Thus the slope observed at an encountered overtaking
center of wave can be evaluated by computing probabilities for a sum of a Rayleigh
and a Gaussian random variable. Thus, (6.6) holds by Lemma 5.3. �
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The interpretation of (6.5) is that it is the distribution of the slope of the waves
that overtake a ship sailing on the ocean. If a wave overtake the ship, then it must
necessarily be traveling at a higher speed than the ship. Thus intuition suggests
that in some way the distribution (6.5) should be related to the relative velocities
of the individual waves and the ship. The exact relation is given by the following
corollary, enabling us to interpret the encountered distribution in terms of physical
quantities.

COROLLARY 6.1. Let V = −Wt(0,0)/Wx(0,0) be the local velocity at
(x, t) = (0,0) and let v denote the velocity of the ship. Then

F enc
Wx

(w)
(6.9)

= E[(V − v)+Wx(0,0)−1{Wx(0,0)≤w} | W(0,0) = 0]fW(0,0)(0)

E[(V − v)+Wx(0,0)− | W(0,0) = 0]fW(0,0)(0)
.

PROOF. The assertion of the corollary follows easily from (6.5) due to the
following equality

Zt(0)+1{Wx(0,0)<0} = (
vWx(0,0) + Wt(0,0)

)+1{Wx(0,0)<0}
= (

Wx(0,0)(v − V )
)+1{Wx(0,0)<0}

(6.10)
= Wx(0,0)−(v − V )−

= Wx(0,0)−(V − v)+,

and the fact that Z(0) = W(0,0). �

The encountered distribution given by (6.5) or (6.9) differs from the correspond-
ing spatial distribution (6.2) only by the term (V − v)+ that enters into the expec-
tation. Thus the spatial measure for slope can be transformed to the encountered
measure for slope by entering the velocity term (V − v)+. The physical interpreta-
tion of this is that in the encountered approach not every center of wave is sampled
but only those with velocity greater than the ship. The velocity factor is thus a con-
sequence of the fact that the sea surface is observed from a moving observer, that
is, the ship. In physics, such a phenomenon would be termed a Doppler shift. In
the following, we will see that the Doppler shift transformation of the distribution
is not limited to the distribution of the spatial slope. In fact, by the way the mea-
sures are defined, it extends to all wave characteristics of overtaking encountered
waves.

7. Distribution of waveheight and half-wavelength. Let x1 be the loca-
tion of a wave center, that is, a downcrossing of the level zero, in W(x, t)

for some time t . Then x1 is characterized by the fact that W(x1, t) = 0 and
Wx(x1, t) < 0. Further, let x2 be the distance from the downcrossing x1 to the
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closest local maximum before x1 so that Wx(x1 − x2, t) = 0, Wxx(x1 − x2, t) < 0
and Wx(x1 − s, t) ≤ 0,∀s ∈ (0, x2). The latter condition guarantees that this really
is the closest maximum before x1. Similarly define x3 to be the distance from x1 to
the closest local minimum after x1. Hence Wx(x1 +x3, t) = 0, Wxx(x1 +x3, t) > 0
and Wx(x1 − s, t) ≤ 0,∀s ∈ (0, x3). The definitions of x2 and x3 are shown in Fig-
ure 1. In the same figure, it is also indicated that the notation H2 = W(x1 − x2, t)

and H3 = W(x1 + x3, t) will be used.
The task is to obtain an expression for the joint Palm distribution of the dis-

tances from the wave center to the two closest local extrema and their heights
(x2, x3,H2,H3). As before two cases, corresponding to choosing wave centers in
two different ways, are considered. The first is a spatial case where the Palm dis-
tribution is derived for wave centers in W(x,0) and the second is an encountered
case where the corresponding distribution is derived for wave centers that overtake
a ship.

By dividing the waveheight by the half-wavelength a measure of the steepness
at the wave center is obtained, hence motivating the study of these quantities from
a ship stability perspective.

7.1. Spatial distribution of heights and distances. In this section, an expres-
sion for the joint Palm distribution of (x2, x3,H2,H3) at downcrossings in space is
derived. To do so, we first define the appropriate Palm distribution and then express
it in terms of level crossings of the process W(x) = W(x,0).

Let (x1)i ≥ 0 be positions of downcrossings in W(x). With each downcrossing
associate distances (x2, x3)i , say, to the closest local extrema and form the follow-

FIG. 1. Definition of waveheights and distances. If x1 is the location of a downcrossing in W(x, t)

for fixed t , then x2 is defined to be the distance to the first local maximum before x1 and similarly x3
is the distance to the first local minimum after x1. H2 is defined as the sea elevation W(x1 − x2, t)

and H3 as the sea elevation W(x1 + x3, t).
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ing Palm distribution:

F
space
x2,x3,H2,H3

(r, s, u,w)

= E[number of (x1)i ≤ 1 such that (x2, x3,H2,H3)i ≤ (r, s, u,w)]
E[number of (x1)i ≤ 1] .

In order to express the Palm distribution in terms of level crossings of the
process W, note that for each crossing (x1)i satisfying (x2, x3,H2,H3)i ≤
(r, s, u,w) the triple (x1, x2, x3) is characterized by the following properties:

(x1, x2, x3) ∈ B, where the set B is defined by(A1)

B = {x ∈ R
3;0 ≤ x1 ≤ 1,0 < x2 ≤ r,0 < x3 ≤ s},

W(x1) = Wx(x1 − x2) = Wx(x1 + x3) = 0,(A2)

Wxx(x1 − x2) < 0,

Wxx(x1 + x3) > 0,(A3)

Wx(s) ≤ 0 ∀s ∈ �x, where �x = {s ∈ R;x1 − x2 ≤ s ≤ x1 + x3},
W(x1 − x2) ≤ u, W(x1 + x3) ≤ w.(A4)

Defining

ξ(x) = ξ(x1, x2, x3) = (
W(x1),Wx(x1 − x2),Wx(x1 + x3)

)
(7.1)

it thus holds that

F
space
x2,x3,H2,H3

(r, s, u,w)
(7.2)

= E[#{x ∈ B; ξ(x) = 0, (A3) and (A4) satisfied}]
E[#{x1 ∈ [0,1];W(x1) = 0,Wx(x1) < 0}] .

The formulation (7.2) is suitable when it comes to computation of the expectations
by means of Rice’s formula. In particular, the following theorem states how the
expectation in the numerator can be computed.

THEOREM 7.1. Let W : R → R be a stationary Gaussian process having a.s.
twice continuously differentiable sample paths. Assume that the spectrum of W has
a continuous component and that the variance of the number of zeros Wx(y) = 0,
y ∈ [0,1] is finite. From W define a process ξ by the relation (7.1) and a set B as
in (A1). Furthermore, define a vector valued process Y = (W,Wx,Wxx), a set �x

as in (A3) and let g(Y, x) be an indicator function defined by

g(Y, x) = 1{Wx(s)≤0,∀s∈�x}1{W(x1−x2)≤u}1{W(x1+x3)≤w}
× 1{Wxx(x1−x2)<0}1{Wxx(x1+x3)>0}.
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Then, writing N
ξ
0 (B,g) = #{x ∈ B; ξ(x) = 0, g(Y, x) = 1} and det(ξx(x)) for the

Jacobian determinant of ξ(x),

E[Nξ
0 (B,g)] =

∫
B

E[|det(ξx(x))|g(Y, x) | ξ(x) = 0]fξ(x)(0) dx,

where both members are finite.

PROOF. Let Bδ = {x ∈ R
3;0 ≤ x1 ≤ 1,0 < x2 < δ

2 ,0 < x3 < δ
2} and B−δ =

B\Bδ . Then ∑
x∈B∩ξ−1(0)

g(Y, x) = ∑
x∈Bδ∩ξ−1(0)

g(Y, x) + ∑
x∈B−δ∩ξ−1(0)

g(Y, x).(7.3)

On the set B−δ the distribution of ξ is nondegenerate, so that Theorem 9.6. of
[13] can be used. However, that theorem is only valid for a continuous function g.
Therefore, let {kn} and {hn} be sequences of continuous, monotone functions such
that kn(x) = 1 if x ≤ 0, kn(x) = 0 if x > 1/n, hn(x) = 1 if x ≤ −1/n and hn(x) =
0 if x > 0. It is easy to verify that kn(x) → 1(−∞,0](x) and hn(x) → 1(−∞,0)(x) as
n → ∞. Because kn(x) and hn(x) are continuous for each n the theorem of [13]
can be applied with

gn(Y, x) = kn

(
sup
s∈�x

Wx(s)

)
· kn

(
W(x1 − x2) − u

) · kn

(
W(x1 + x3) − w

)
× hn

(
Wxx(x1 − x2)

) · hn

(−Wxx(x1 + x3)
)
,

so that

E

[ ∑
x∈B−δ∩ξ−1(0)

gn(Y, x)

]
(7.4)

=
∫
B−δ

E[|det(ξx(x))|gn(Y, x) | ξ(x) = 0]fξ(x)(0) dx,

where both members are finite. By dominated convergence arguments as n → ∞,
(7.4) holds with gn replaced by g.

On Bδ , however, the distribution of ξ will degenerate, so the same theorem
cannot be used in this case. Instead, we show that the assumption of finite variance
of the number of zeros Wx(y) = 0, y ∈ [0,1], will force the expected value of the
first term on the right-hand side in (7.3) to go to zero as δ approaches zero. To see
that this is the case, first note that g is bounded by 1 so that

0 ≤ E

[ ∑
x∈B∩ξ−1(0)

g(Y, x)

]
− E

[ ∑
x∈B−δ∩ξ−1(0)

g(Y, x)

]
≤ E[Nξ

0 (Bδ)],

where N
ξ
0 (Bδ) = #{x ∈ Bδ; ξ(x) = 0}. Because W is assumed to be an a.s. differ-

entiable Gaussian process, it follows that a.s. there are only finitely many solutions
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to W(y) = 0 in any finite interval. Thus, with probability one, {y ∈ [0,1];W(y) =
0} = {y1, . . . , yK}, where K = NW

0 ([0,1]) = #{y ∈ [0,1];W(y) = 0}. Using this
fact and the stationarity of W , the following inequality holds for 0 < δ < 1:

E[Nξ
0 (Bδ)] = E

[
K∑

i=1

#{(x2, x3) ∈ [0, δ/2]2;Wx(yi − x2) = Wx(yi + x3) = 0}
]

=
∞∑

k=1

k∑
i=1

E
[
#{(x2, x3) ∈ (0, δ/2]2;

Wx(yi − x2) = Wx(yi + x3) = 0}]P(K = k)

=
∞∑

k=1

kE
[
#{(x2, x3) ∈ (0, δ/2]2;Wx(−x2) = Wx(x3) = 0}]P(K = k)

= E
[
#{(x2, x3) ∈ (0, δ/2]2;Wx(−x2) = Wx(x3) = 0}] · E[NW

0 ([0,1])]
≤ E

[
#{(s, t) ∈ [0,1];

0 < |t − s| < δ,Wx(s,0) = Wx(t,0) = 0}] · E[NW
0 ([0,1])].

Writing Nδ = #{(s, t) ∈ [0,1];0 < |t − s| < δ,Wx(s,0) = Wx(t,0) = 0} and ob-
serving that

N
Wx

0 ([0,1])(NWx

0 ([0,1]) − 1
)

= #{(s, t) ∈ [0,1]; s 
= t,Wx(s,0) = Wx(t,0) = 0},
where N

Wx

0 ([0,1]) = #{y ∈ [0,1];Wx(y) = 0}, one can by using the formula for
the second factorial moment, given in [7], deduce that

E[Nδ] =
∫
{(t,s)∈[0,1]2,0<|t−s|<δ}

h(s, t) ds dt,

where

h(s, t) = E[|Wxx(s)Wxx(t)| | Wx(s) = Wx(t) = 0]fWx(s),Wx(t)(0,0).

Because the assumption of finite variance of the number of zeros N
Wx

0 ([0,1]) im-
plies that h(s, t) is integrable over the rectangle [0,1]2 it follows, by absolute
continuity, that limδ→0 E[Nδ] = 0. Thus

E

[ ∑
x∈B∩ξ−1(0)

g(Y, x)

]

= lim
δ→0

∫
B−δ

E[|det(ξx(x))|g(Y, x) | ξ(x) = 0]fξ(x)(0) dx,

so that the final result follows by monotone convergence. �
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REMARK 7.1. In [13] the domain of definition of the function g is C(B,R)×
B , where C(B,R) is the class of continuous functions on B . However, the argu-
ments of that proof holds also in the case when the domain of definition of g is
C(B,R

n) × B , where C(B,R
n) is the class of continuous functions on B taking

values in R
n. The spaces C(B,R) and C(B,R

n) are, in both cases, equipped with
a uniform convergence norm.

REMARK 7.2. Sufficient conditions for finite variance of the number of zeros
Wx(y) = 0, y ∈ [0,1], can be found in [7], page 209.

Using Theorem 7.1, we may state the main theorem for the Palm distribution of
(x2, x3,H2,H3) in the spatial case.

THEOREM 7.2. Let the assumptions and notation of Theorem 7.1 hold and
define

α(x) = Wx(x1)
−Wxx(x1 − x2)

−Wxx(x1 + x3)
+1{Wx(s)≤0,∀s∈�x}.(7.5)

Moreover, define a function hs(x, y) = hs(x1, x2, x3, y1, y2) by

hs(x, y) = E[α(x) | ξ(x) = 0,W(x1 − x2) = y1,W(x1 + x3) = y2]
× fξ(x),W(x1−x2),W(x1+x3)(0, y1, y2).

Then the Palm distribution F
space
x2,x3,H2,H3

is given by

F
space
x2,x3,H2,H3

(r, s, u,w)
(7.6)

=
∫ r

0
∫ s

0
∫ u

0
∫ w
−∞ hs(0, x2, x3, y1, y2) dy2 dy1 dx3 dx2

E[Wx(0)− | W(0) = 0]fW(0)(0)
,

having the density

f
space
x2,x3,H2,H3

(r, s, u,w) = hs(0, r, s, u,w)

E[Wx(0)− | W(0) = 0]fW(0)(0)
,(7.7)

where r, s, u > 0 and w < 0.

PROOF. From the definition of the Palm distribution (7.2) and Theorem 7.1,
the numerator in the statement (7.6) of the theorem follows due to stationarity in
the first coordinate x1. The denominator follows by straightforward application of
Rice’s formula; see the proof of Theorem 6.1. Moreover, it follows from (7.6) that
F space is absolutely continuous so that the density exists and is given by (7.7).

�
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7.2. Encountered distribution of heights and distances. The corresponding
Palm distribution for overtaking encountered waves will now be considered, that
is the distribution of distances and heights at times ti ≥ 0 when a ship sailing with
constant velocity v is overtaken by a wave center. To obtain a Palm distribution
each crossing ti is associated with some distances denoted by (x2, x3)i . In this
case (x2, x3)i are the distances from vti to the closest local maximum and min-
imum before and after vti , respectively, in the wave profile W(x, ti). Following
now familiar steps, the following Palm distribution can be formed

F enc
x2,x3,H2,H3

(r, s, u,w)

= E[number of ti ≤ 1 such that (x2, x3,H2,H3)i ≤ (r, s, u,w)]
E[number of ti ≤ 1] .

Similarly to the previous case, the Palm distribution can be expressed in terms
of level crossings of the process W . More precisely, each time ti satisfying
(x2, x3,H2,H3)i ≤ (r, s, u,w) has the following characteristics

(t, x2, x3) ∈ B, where the set B is defined by
(C1)

B = {(t, x2, x3) ∈ R
3;0 ≤ t ≤ 1,0 < x2 ≤ r,0 < x3 ≤ s},

W(vt, t) = Wx(vt − x2, t) = Wx(vt + x3, t) = 0,(C2)

Wxx(vt − x2, t) < 0,

Wxx(vt + x3, t) > 0,(C3)

Wx(s, t) ≤ 0, ∀s ∈ �tx, where �tx = {s ∈ R;vt − x2 ≤ s ≤ vt + x3}

W(vt − x2, t) ≤ u, W(vt + x3, t) ≤ w,(C4)

∂

∂t
W(vt, t) = vWx(vt, t) + Wt(vt, t) > 0.(C5)

Using these facts and by defining

η(x) = η(t, x2, x3) = (
W(vt, t),Wx(vt − x2, t),Wx(vt + x3, t)

)
(7.8)

the Palm distribution can be written in the following form, suitable for our pur-
poses:

F enc
x2,x3,H2,H3

(r, s, u,w)
(7.9)

= E[#{x ∈ B;η(x) = 0, (C3), (C4) and (C5) satisfied}]
E[#{t ∈ [0,1];W(vt, t) = 0, (∂/∂t)W(vt, t) > 0,Wx(vt, t) < 0}] .

The following theorem is the encountered counterpart of Theorem 7.1.
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THEOREM 7.3. Let W : R2 → R be a stationary Gaussian process having a.s.
twice continuously differentiable sample paths. Assume that the spectrum of W has
a continuous component and that the variance of the number of zeros Wx(y,0) =
0, y ∈ [0,1], is finite. From W define a process η by the relation (7.8) and a set B

as in (C1). Furthermore, define a vector valued process Y = (W,Wx,Wxx), a set
�tx as in (C3) and let g(Y, x) be an indicator function defined by

g(Y, x) = 1{Wx(s,t)≤0,∀s∈�tx}1{W(vt−x2,t)≤u}1{W(vt+x3,t)≤w}
× 1{Wxx(vt−x2,t)<0}1{Wxx(vt+x3,t)>0}1{(∂/∂t)W(vt,t)>0}.

Then, writing N
η
0 (B,g) = #{x ∈ B;η(x) = 0, g(Y, x) = 1},

E[Nη
0 (B,g)] =

∫
B

E[|det(ηx(x))|g(Y, x) | η(x) = 0]fη(x)(0) dx,

where both members are finite.

The proof of the theorem follows the same lines as the proof of Theorem 7.1
and is, therefore, omitted.

We are now ready to state the main theorem for the distribution of (x2, x3,

H2,H3) in the encountered case. The proof is analogous to that of Theorem 7.2.

THEOREM 7.4. Let the assumptions and notation of Theorem 7.3 hold. Define

β(x) = Zt(t)
+Wxx(vt − x2, t)

−Wxx(vt + x3, t)
+1{Wx(s,t)≤0,∀s∈�tx},(7.10)

where Z(t) = W(vt, t) is the encountered process.
Moreover, define a function he(x, y) = he(x1, x2, x3, y1, y2) by

he(x, y) = E[β(x) | η(x) = 0,W(vt − x2, t) = y1,W(vt + x3, t) = y2]
× fη(x),W(vt−x2,t),W(vt+x3,t)(0, y1, y2).

Then the Palm distribution F enc
x2,x3,H2,H3

is given by

F enc
x2,x3,H2,H3

(r, s, u,w)
(7.11)

=
∫ r

0
∫ s

0
∫ u

0
∫ w
−∞ he(0, x2, x3, y1, y2) dy2 dy1 dx3 dx2

E[Zt(0)+1{Wx(0,0)<0} | Z(0) = 0]fZ(0)(0)
,

having the density

f enc
x2,x3,H2,H3

(r, s, u,w)
(7.12)

= he(0, r, s, u,w)

E[Zt(0)+1{Wx(0,0)<0} | Z(0) = 0]fZ(0)(0)
,

where r, s, u > 0 and w < 0.
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Earlier it was shown that the relation between spatial and encountered distri-
bution of slope could be given a physical interpretation in terms of wave ve-
locities. This is also true when it comes to the distribution of distances and
heights of the local extrema closest to a wave center. To see that this is the
case, consider the functions α(x1, x2, x3) and β(t, x2, x3) from Theorems 7.2 and
7.4, respectively. Due to a relation given in the proof of Corollary 6.1, namely
Zt(0)+1{Wx(0,0)<0} = Wx(0,0)−(V − v)+, the functions α and β are related by

β(0, x2, x3) = (V − v)+α(0, x2, x3),

where V = −Wt(0,0)/Wx(0,0) is the wave velocity at the point (x, t) = (0,0).
Moreover, it is easy to see that η(0, x2, x3) = ξ(0, x2, x3) so that, in fact, the func-
tions he(0, x2, x3, y1, y2) and hs(0, x2, x3, y1, y2) only differ by the velocity factor
(V − v)+ that enters into the expectation in the expression for hs .

7.3. Evaluation of the densities. So far it has not been mentioned how the
densities (7.7) and (7.12) can be evaluated. It turns out that for both densities the
denominators can be computed explicitly. In the first, spatial, case, this is straight-
forward and

E[Wx(0)− | W(0) = 0]fW(0)(0) = 1

2π

√
λ20

λ00
.

For the denominator of the encountered density (7.12) this is not as easy. However,
[16] showed that by using certain symmetry properties of the Gaussian distribution
one has

E
[
Zt(0)+1{Wx(0,0)<0} | Z(0) = 0

]
fZ(0)(0)

(7.13)

= 1

4π

√
λ20

λ00

(√
v2 + 2v

λ11

λ20
+ λ02

λ20
− λ11

λ20
− v

)
,

whenever the spectral moments λ00, λ20, λ02 and λ11 are available.
For the numerators, on the other hand, there are no explicit formulas that can

be used. Fortunately, there are very efficient numerical routines. In particular rou-
tines from the Matlab toolbox WAFO (Wave Analysis for Fatigue and Oceanog-
raphy, available gratis at the web page http://www.maths.lth.se/matstat/wafo/),
custom made for this type of calculations can be used; see [6]. However, be-
fore any computations can be done, the infinite dimensional indicators in the
expressions for the densities must be approximated by an indicator on a finite
set of grid points. In both cases, the indicator to be approximated is given by
1{Wx(u,0)≤0,−r≤u≤s}; see (7.5) and (7.10). Therefore, let U = (u1, . . . , un), where
−r < u1 < · · · < un < s, be a subdivision of the interval [−r, s] and approxi-
mate the indicator 1{Wx(u,0)≤0,−r≤u≤s} by 1{Wx(ui,0)≤0,i=1,...,n}. In this way, due to
the inequality 1{Wx(u,0)≤0,−r≤u≤s} ≤ 1{Wx(ui,0)≤0,i=1,...,n}, an upper bound of the
densities is obtained. More information on computational details are given in the
Appendix.

http://www.maths.lth.se/matstat/wafo/
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8. Examples. The methods presented in this paper can be applied to a
Gaussian sea having a general spectrum. In the following examples, we will
evaluate the distributions for the different wave characteristics for a longcrested
Gaussian sea, that is, a Gaussian sea where the spectrum has no angular depen-
dency. To get a longcrested sea let S(ω, θ) = S(ω), for one single fixed direction θ .
In this example θ = π , meaning that the waves are moving in the direction of the
positive x-axis. The spectrum S(ω) will be a JONSWAP frequency spectrum; see
Figure 2. This is a family of spectra fully characterized by the set of parameters
(hs, tp, γ, σa, σb), where hs is the significant wave height, defined as four times the
standard deviation of the sea elevation, and tp the peak period. The parameter γ ,
sometimes called the peak enhancement factor, determines the concentration of the
spectrum around the peak frequency and σa and σb are spectral width parameters.
Here, for illustration reasons only, we choose hs = 11.5 m, tp = 12.25 s, γ = 1,
σa = 0.07 and σb = 0.09. Because γ equals one this is also known as a Pierson–
Moskowitz or Bretschneider spectrum. In this example, we have also specified a
cut-off frequency ωc, that is, a frequency such that S(ω) = 0 for all ω > ωc, namely
ωc = 1.25 rad/s.

8.1. Distribution of slope. The distribution of slope observed at centers of
waves and overtaking encountered waves are given in Theorems 6.1 and 6.2, re-
spectively. In Figure 3, these distributions are shown, in the encountered case for
three different ship velocities. Clearly, the encountered distribution is shifted to-
ward less steep waves and the faster the ship sails, the less steep the waves are.

FIG. 2. The JONSWAP frequency spectrum used in the examples. This spectrum has significant
wave height hs = 11.5 m, peak period tp = 12.25 s and cut-off frequency ωc = 1.25 rad/s.
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FIG. 3. Palm distribution of slope observed at centers of waves in space (solid) and at encountered
centers of waves overtaking a ship sailing with velocity 7 m/s (dashed), 13 m/s (dash-dotted) and
16 m/s (dotted). The computations are done for a JONSWAP frequency spectrum having significant
wave height hs = 11.5 m, peak period tp = 12.25 s and cut-off frequency ωc = 1.25 rad/s.

A simple explanation to this phenomenon is given by the dispersion relation for
deterministic waves. Recall that by Corollary 6.1, the spatial distribution (6.3) is
transformed into its encountered version (6.6) by the factor (V −v)+. The physical
interpretation of this factor is that waves that are likely to be slower than the ship
will cancel. Because the dispersion relation (2.1) implies that steep deterministic
waves are slow, it thus holds that mainly steep waves are canceled, leading to the
shift in the distribution—the steep waves are simply not fast enough. However, to
fully understand the relation between slope and velocity, it is too great a simplifica-
tion to look at deterministic waves, although it gives some insight into the physics
involved in the problem. For a more thorough understanding, one should study the
distribution of the random velocity of the waves conditional on the slope.

8.2. Distribution of waveheight and half-wavelength. Next we consider the
spatial and encountered joint densities of the waveheight H2 − H3 and the half-
wavelength x2 + x3, that can be obtained from Theorems 7.2 and 7.4. In Figure 4
these densities are shown, in the encountered case for two different ship velocities,
namely v = 7,13 m/s. Clearly, the effect of observing the sea surface at waves
overtaking the vessel compared to observing it along a line at a fixed time, is
that the density is shifted toward longer waves in the former case. Moreover, the
shift increases with increasing ship velocity. As for the distribution of slope, this
behavior can to some extent be explained by the dispersion relation. Recall that
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FIG. 4. Density of half-wavelength x2 + x3 and waveheight H2 − H3 observed at wave centers
along a line at a fixed time point (top) and at centers of waves overtaking the ship (bottom). In the
latter case, the velocities of the ship are v = 7 m/s (solid) and v = 13 m/s (dash-dotted). The com-
putations are done for a JONSWAP frequency spectrum having significant wave height hs = 11.5 m,
peak period tp = 12.25 s and cut-off frequency ωc = 1.25 rad/s.
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[see (4.1)] the velocity of deterministic waves satisfying the dispersion relation
is proportional to the square root of the wavelength. This means that long waves
are faster than short ones. Because the factor (V − v)+, explaining the difference
between the spatial and encountered densities, eliminates waves that are slower
than the ship, it thereby eliminates small and moderately high waves in favor of
long and high waves.

APPENDIX: COMPUTATIONAL DETAILS

A.1. Evaluation of densities with WAFO. In this section we discuss the
evaluation of the densities f space and f enc from Theorems 7.2 and 7.4, respec-
tively, using the WAFO-toolbox.

The density f space in (7.7) can be computed by the routine spec2mmtpdf
and it computes the desired density given the spectrum of the process W(x, t).
For the encountered density f enc given by (7.12), however, there is no existing
routine in the toolbox, but the function rind that evaluates Gaussian multivariate
expectations is of great help.

Before the intensity in the numerator in (7.12) can be evaluated, the infinite
dimensional indicator must be approximated by an indicator on a finite set of
grid points of the interval [−r, s]. Let U = (u1, . . . , un), where −r < u1 < · · · <

un < s, be a subdivision of the interval [−r, s] and approximate the indicator
1{Wx(u,0)<0,−r≤u≤s} by 1{Wx(ui,0)<0,i=1,...,n}. To use rind the full distribution, that
is, the means and covariances of all variables involved, must be computed. To sim-
plify notation the variables are collected in the following vectors:

Xt = (Wx(u1,0), . . . ,Wx(un,0)) = Wx(U,0),

Xd = (
Wxx(−r,0),Wxx(s,0), vWx(0,0) + Wt(0,0)

)
,

Xc = (Wx(−r,0),Wx(s,0),W(−r,0),W(s,0),W(0,0)).

Because W(x, t) is a zero mean stationary process, and due to the fact that the
means of the (quadratic mean) derivatives of a stationary process are zero, the
mean of all three vectors above is zero.

Computing the covariances requires more effort. In general, for a stationary field
W(t) with covariance function R(τ) the following differentiation rule holds

Cov
(

∂a+bW(s)
∂asj ∂bsk

,
∂c+dW(t)
∂ctm ∂dtn

)
= (−1)a+b ∂a+b+c+dR(τ)

∂aτj ∂bτk∂cτm∂dτn

∣∣∣∣
τ=t−s

.(1.14)

Let �̃ be the covariance matrix of (Xt ,Xd,Xc) and partition it as

�̃ =
⎛⎝�tt �td �tc

�dd �dc

�cc

⎞⎠ ,
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where it is understood that the lower left part of the matrix is the transpose of the
upper right part. By repeated use of (1.14) one obtains

�tt = (−Rξξ (UT − U,0)
)
,

�td = (−Rξξξ (−r − UT ,0),−Rξξξ (s − UT ,0),

− vRξξ (−UT ,0) − Rξτ (−UT ,0)
)
,

�tc = (−Rξξ (−r − UT ,0),−Rξξ (s − UT ,0),−Rξ(−r − UT ,0), . . . ,

−Rξ(s − UT ,0),−Rξ(−UT ,0)
)
,

where −Rξξ (UT − U,0) should be interpreted as the matrix with element on row
i and column j equal to −Rξξ (ui − uj ,0), and −Rξξξ (−r − UT ,0) is a column
vector with elements −Rξξξ (−r − uj ,0), i, j = 1, . . . , n. The other submatrices
should be interpreted in a similar fashion. The remaining part of � is equal to

�dd =
(

Rξξξξ (0,0) Rξξξξ (s + r,0) vRξξξ (r,0) + Rξξτ (r,0)

Rξξξξ (0,0) vRξξξ (−s,0) + Rξξτ (−s,0)

−v2Rξξ (0,0) − 2vRξτ (0,0) − Rττ (0,0)

)
,

�dc =
( 0 Rξξξ (s + r,0)

Rξξξ (−r − s,0) 0 · · ·
−vRξξ (−r,0) − Rξτ (−r,0) −vRξξ (s,0) − Rξτ (s,0)

Rξξ (0,0) Rξξ (s + r,0) Rξξ (r,0)

· · · Rξξ (−r − s,0) Rξξ (0,0) Rξξ (−s,0)

−vRξ (−r,0) − Rτ (−r,0) −vRξ (s,0) − Rτ (s,0) 0

)
,

�cc =

⎛⎜⎜⎜⎜⎝
−Rξξ (0,0) −Rξξ (s + r,0) 0 −Rξ (s + r,0) −Rξ (r,0)

−Rξξ (0,0) −Rξ (−r − s,0) 0 −Rξ (−s,0)

R(0,0) R(s + r,0) R(r,0)
R(0,0) R(−s,0)

R(0,0)

⎞⎟⎟⎟⎟⎠.

The covariance function and its derivatives can be computed by the WAFO-
function spec2cov, that from a given spectrum computes the covariance function
and its derivatives up to the fourth order.

A.2. Computational issues. When the conditional expectation in the numer-
ator of (7.12) is computed numerically new difficulties arise. If the covariance
matrix is badly scaled, densities can become singular in the numerical computa-
tions. For example, it might happen that variances become negative even though
they should be small and positive. A way to make the algorithms more stable is to
rescale the covariance matrix such that its elements are of comparable sizes.

For the spectra we will consider the average period is about 10 seconds and the
value of the average wave length is about 10 times as large, but measured in meters.
Because the sea elevation takes values in the same range in both time and space, the
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derivatives will be of very different magnitudes. To get a better scaled covariance
matrix the time- and space-coordinates are, therefore, transformed according to

x̃ = x

√
λ20

λ00
, t̃ = t

√
λ02

λ00
.

Making this change of variables the spectral density is transformed to

S̃(ω̃, θ) = S(ω, θ)

√
λ02

λ
3/2
00

.

Note that the angle θ remains unaffected. In this way, the spectral moments λ̃00,
λ̃20 and λ̃02 of S̃(ω̃, θ) all become equal to one; see [17] for a proof. This means
that the average number of waves per transformed meter is equal to 1/2π as well
as the number of waves per transformed second. Also, the variance of the sea ele-
vation is transformed to one. Note that it is common practice in wave data analysis
to normalize the data to have unit variance. However, in this case this is not enough
in order to avoid a badly scaled covariance matrix because the problems arise due
to different spatial and temporal scales. When the coordinates are transformed, the
velocity of the ship changes to

ṽ = v

√
λ20

λ02
.

To relate the spectral moments to the elements in the covariance matrix note that
according to (2.2) and (2.3) it holds that λ00 = R(0,0), λ20 = −Rξξ (0,0) and
λ02 = −Rττ (0,0). Because many of the elements on the diagonal of �̃ are of this
form, we can conclude that the covariance matrix obtained after the coordinate
transformation is better scaled than the original one. After the density is computed
with the transformed coordinates, it is then easily transformed back to the true
units seconds and meters. These kind of transformations are implemented in the
function wnormspec in WAFO.
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