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STOCHASTIC NETWORKS WITH MULTIPLE STABLE POINTS
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This paper analyzes stochastic networks consisting of a set of finite ca-
pacity sites where different classes of individuals move according to some
routing policy. The associated Markov jump processes are analyzed under a
thermodynamic limit regime, that is, when the networks have some symme-
try properties and when the number of nodes goes to infinity. An intriguing
stability property is proved: under some conditions on the parameters, it is
shown that, in the limit, several stable equilibrium points coexist for the em-
pirical distribution. The key ingredient of the proof of this property is a di-
mension reduction achieved by the introduction of two energy functions and
a convenient mapping of their local minima and saddle points. Networks with
a unique equilibrium point are also presented.

1. Introduction. This paper studies the asymptotic behavior of a class of sto-
chastic networks. A general description of the basic mechanisms of these systems
is given in terms of a finite particle system or in terms of a queueing network.

Description. As for some classical stochastic processes, like the zero range
process (see Liggett [17]), one can give two alternative presentations for these
networks.

A particle system. It can be thought of as a set of sites where K different types
of particles coexist. At a given site, for 1 ≤ k ≤ K , external particles of type k with
mass Ak ∈ N arrive at rate λk . A type k particle stays an exponential time with
parameter γk at a site and then moves randomly to another site. A type k particle
leaves the system at rate µk . Mass constraint: The total mass of particles at any
site must be less than C ∈ N, so that a particle arriving at a site is accepted only if
this constraint is satisfied, otherwise it is rejected from the system.

A queueing network. It can be described as a set of identical finite capacity
nodes where customers move from one node to another node uniformly chosen
at random, being accepted if there is enough room and, otherwise, being rejected.
If he is not rejected during his travel through the network, a customer leaves the
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network after his total service time. Different classes of customers access the net-
work: Classes differ by their arrival rates, total service times, residence times at the
nodes and also by the capacities they require at the nodes they visit. For example,
a “light” customer will require one unit of capacity while a “heavy” customer may
ask for a significant proportion of the total capacity of the node. External class k

customers arrive at rate λk at any node. During their total service time, which ends
at rate µk , class k customers are transferred from a node to another one at rate γk .
A class k customer occupies Ak ∈ N units of capacity at any visited node, if this
amount of capacity is not available, he is rejected.

Large distributed networks and statistical mechanics. These stochastic net-
works have been introduced in Antunes, Fricker, Robert and Tibi [1] to represent
the time evolution of a wireless network. Recent developments of mobile or sensor
networks have given a strong impetus to the analysis of the associated mathemat-
ical models. See Borst, Hegde and Proutière [2], Gupta and Kumar [11] and Ker-
marrec, Massoulié and Ganesh [16], for example. The point of view of statistical
mathematics has been introduced in the analysis of stochastic networks some time
ago by Dobrushin to study various aspects of queueing networks such as departure
processes of queues, capacity regions or occupancy problems. See Karpelevich,
Pechersky and Suhov [12] for a survey. The networks considered quite recently
have a very large number of nodes, of the order of 105–106 nodes in practice,
this establishes an even stronger connection with classical models of statistical
physics. At the same time, due to the variety of possible topological structures and
algorithms governing the behavior of these networks, new classes of mathemati-
cal models are emerging. This is clearly a promising research area for statistical
mechanics methods.

Outline of the paper. Assuming Poisson arrivals and exponential distributions
for the various service times and residence times, the time evolution of such a net-
work is described by a Markov jump process with values in some finite (but large)
state space. These associated Markov processes are, in general, not reversible, and
little is known on the corresponding invariant distributions.

Mean-field convergence. These networks are analyzed under a thermodynamic
scaling, that is, when the number of nodes N goes to infinity. It is shown, Section 2,
that the process of the empirical distribution (YN(t)) of the system converges to
some dynamical system (y(t)) verifying

d

dt
y(t) = V (y(t)), t ≥ 0,(1)

where (V (y), y ∈ P (X)) is a vector field on P (X), the set of probability distrib-
utions on the finite set X defined by

X = {n = (nk) ∈ N
K :A1n1 + · · · + AKnK ≤ C}.
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The dynamical system (y(t)) is therefore a limiting description of the original
Markov process (YN(t)).

In general, the dimension of the state space P (X) of (y(t)) is quite large so
that it is difficult to study this dynamical system in practice (an important example
considered at the end of the paper is of dimension 22). The classification of the
equilibrium points of (y(t)) with regard to the stability property is the main prob-
lem addressed in this paper. As it will be seen (cf. Proposition 5) the analysis of
these points gives also insight on the limiting behavior of the invariant distribution
of Markov process (YN(t)).

As a first result, it is shown that the equilibrium points are indexed by a “small”
K-dimensional subset of R

K+ (the number K of different classes of customers is
usually quite small). They are identified as those elements of the family of proba-
bility distributions νρ on X indexed by ρ = (ρk) ∈ R

K+ ,

νρ(n) = 1

Z(ρ)

K∏
k=1

ρ
nk

k

nk! , n ∈ X,

where Z(ρ) is the partition function, for which ρ satisfies the fixed point equations

ρk = λk + γk

∑
m∈X mkνρ(m)

γk + µk

, 1 ≤ k ≤ K.(2)

The probability νρ can also be seen as the invariant distribution of a multiclass
M/M/C/C queue. In fact the explicit limiting dynamics for the empirical distrib-
ution of the nodes is formally similar to the evolution equation for the probability
distribution of the multiclass M/M/C/C queue with arrival rates λk , service rates
µk + γk and capacity requirements Ak , with the following crucial difference: the
“external” arrival rates λk are supplemented by “internal” arrival rates (correspond-
ing to the mean arrival rates due to transfers from other nodes) which depend on
the current state of the network.

Although the equilibrium points are indexed by a subset of R
K+ , a dimension

reduction of the dynamical system (y(t)) on P (X) to some dynamical system
of R

K+ does not seem to hold. This intriguing phenomenon has also been noticed
by Gibbens, Hunt and Kelly [10] for a different class of loss networks. See below.

It is shown in Section 3 that there is a unique equilibrium point when all the
capacity requirements of customers are equal. For arbitrary capacity requirements,
a limiting regime of the fixed point equations with respect to ρ is also analyzed:
The common capacity C of the nodes goes to infinity and the arrival rates are
proportional to C. In this context, Theorem 2 shows that there is essentially one
unique solution: It is shown that, if ρ̄C is a solution of equation (2) for capacity C

then, in the limit, ρ̄C ∼ ηC, where η is some vector with an explicit representation
in terms of the parameters of the network.
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A Lyapunov function. In Section 4, going back to the general case, a key
entropy-like function g is then introduced and shown to be a Lyapunov function
for (y(t)) so that the local minima of g on P (X) correspond to the stable points
of (y(t)). Because of the order of magnitude of dimP (X), the identification of
the local minima of g on P (X) is still not simple. Using this Lyapunov function,
it is proved that, if πN is the invariant distribution of the process of the empirical
distributions (YN(t)), then the support of any limiting point of (πN) is carried by
the set of equilibrium points of (y(t)). In particular, when there is a unique equilib-
rium point y∞ for (y(t)), the sequence of invariant distributions (πN) converges
to the Dirac mass at y∞.

A dimension reduction. A second key function φ on the lower dimensional
space R

K+ is introduced in Section 5. The main result of the paper, Theorem 3,
establishes a one to one correspondence between the local minima of g on P (X)

and the local minima of φ. The dimension reduction for the problem of stability
of the equilibrium points is therefore achieved not through dynamical systems but
through the energy functions g and φ. This result is interesting in its own right and
seems to be a promising way of studying other classes of large networks.

Phenomenon of bistability for (y(t)). With these results, an example of a net-
work with two classes of customers and at least three zeroes for V is exhibited in
Section 6, two of them being “stable” and the other one being a saddle point. In
this case the asymptotic dynamical system (y(t)) has therefore a bistability prop-
erty. This suggests the following (conjectured) bistability property for the original
process describing the state of the network: it lives for a very long time in a re-
gion corresponding to one of the stable points and then, due to some rare events,
it reaches, via a saddle point, the region of another stable point and so on. This
conjectured phenomenon is known as metastability in statistical physics. A for-
mal proof of this phenomenon seems to be quite difficult to obtain. The only tools
available in this domain use either the Gibbsian characteristics of the dynamics
(see Olivieri and Vares [19]) or at least the reversibility of the Markov process,
Bovier [3, 4]. None of these properties holds in our case.

Note that in Antunes et al. [1] it is proved that, for similar networks under
Kelly’s scaling, there is a unique equilibrium point. Contrary to the model con-
sidered here, the capacity requirement of a customer in [1] does not depend on his
class. On the other hand, the networks analyzed here have a symmetrical structure:
all the nodes have the same capacity and the routing is uniform among all the other
nodes. In Antunes et al. [1], the routing mechanisms are quite general.

Multiple stable equilibrium points and local dynamics in stochastic networks.
Asymptotic dynamical systems with multiple stable points are quite rare in sto-
chastic networks. Gibbens, Hunt and Kelly [10] have shown, via an approximated
model, that such an interesting phenomenon may occur in a loss network with a
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rerouting policy. Marbukh [18] analyzes, also through some approximation, the
bistability properties of similar loss networks. The dynamics of the networks of
Gibbens, Hunt and Kelly [10], Marbukh [18] and of this paper are local in the
following sense: The interaction between two nodes only depends on the states of
these two nodes and not on the state of the whole network.

A key feature of these models is the subtle interplay between the local de-
scription of the dynamics and its impact on the macroscopic state of the network
through the existence of several equilibrium points. In statistical physics these
phenomena have been known for some time. See den Hollander [8], Olivieri and
Vares [19] and the references therein for a general presentation of these questions.
See also Bovier [3, 4] for a potential theoretical approach in the case of reversible
Markov processes and Catoni and Cerf [6] for a study of the saddle points of per-
turbed Markov chains. For the more classical setting of global dynamics, the large
deviation approach is developed in Freidlin and Wentzell [9].

Phase transitions in uncontrolled loss networks. This is a related topic. It is
known that, for some loss networks on infinite graphs, there may be several equi-
librium distributions. If the loss network is restricted to a finite sub-graph F of the
infinite graph G, its equilibrium distribution πF is uniquely determined. It turns
out that, depending on the boundary conditions on F , the sequence (πF , F ⊂ G),
may have distinct limiting values which are invariant distributions for the case of
the infinite graph. Significant results have already been obtained in this domain.
See Spitzer [22], Kelly [15] for a survey, Zachary [24], Zachary and Ziedins [25]
and Ramanan, Sengupta, Ziedins and Mitra [20].

2. The asymptotic dynamical system. Two nodes i, j ∈ {1, . . . ,N} of the
network interact through the exchange of customers at rate of the order of 1/N .
Due to the symmetrical structure of the network, a stronger statement holds: the
impact on i of all nodes different from i appears only through some averaged
quantity. For 1 ≤ k ≤ K , the input rate of class k customers at node i from the
other nodes is

1

N − 1

∑
1≤j≤N,j �=i

γkX
N
j,k(t).

If this quantity is close to γkE(XN
1,k(t)), a mean field property is said to hold. Note

that, if the network starts from some symmetrical initial state, the random variables
XN

j,k(t), j = 1, . . . ,N , have the same distribution.

THEOREM 1. If YN(0) converges weakly to z ∈ P (X) as N tends to infin-
ity, then (YN(t)) converges in the Skorohod topology to the solution (y(t)) of the
ordinary differential equation

y′(t) = V (y(t)),(3)
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where (y(t)) is the solution starting from y(0) = z and, for y ∈ P (X), the vector
field V (y) = (Vn(y), n ∈ X) on P (X) is defined by

Vn(y) =
K∑

k=1

(λk + γk〈Ik, y〉)(yn−fk
1{nk≥1} − yn1{n+fk∈X}

)
(4)

+
K∑

k=1

(γk + µk)
(
(nk + 1)yn+fk

1{n+fk∈X} − nkyn

)
,

where 〈Ik, y〉 = ∑
m∈X mkym and fk is the kth unit vector of R

K .

By convergence in the Skorohod topology, one means the convergence in distri-
bution for Skorohod topology on the space of trajectories.

Note that equation (4) gives the derivative dyn(t)/dt = Vn(y(t)) of yn(t) as
increasing proportionally to the difference yn−fk

−yn by some factor λk +γk〈Ik, y〉
which measures the speed at which nodes in state n − fk turn to state n (due to an
arrival of some type k customer). In this factor, γk〈Ik, y〉 is added to the external
arrival rate λk of class k customers at any node, and hence appears as the internal
arrival rate of class k customers at any node. This feature characterizes the mean
field property. Indeed, 〈Ik, y〉 is the mean number of class k customers per node
when the empirical distribution of the N nodes is y; so that γk〈Ik, y〉 is the mean
emission rate per node of class k customers to the rest of the network.

PROOF OF THEOREM 1. The martingale characterization of the Markov jump
process (YN

n (t)), see Rogers and Williams [21], shows that

MN
n (t) = YN

n (t) − YN
n (0) −

∫ t

0

∑
w∈P (X)\{YN(s)}

�N(YN(s),w)
(
wn − YN

n (s)
)
ds

is a martingale with respect to the natural filtration associated to the Poisson
processes involved in the arrival processes, service times and residence times. By
using the explicit expression of the Q-matrix �N , trite (and careful) calculations
finally show that the following relation holds:

YN
n (t) = YN

n (0) + MN
n (t)

+
∫ t

0

K∑
k=1

(
λk + γkN

N − 1

∑
m∈X

mkY
N
m (s)

)

× (
YN

n−fk
(s)1{nk≥1} − YN

n (s)1{n+fk∈X}
)
ds(5)

+
∫ t

0

K∑
k=1

(γk + µk)
(
(nk + 1)YN

n+fk
(s)1{n+fk∈X} − nkY

N
n (s)

)
ds

+
∫ t

0

K∑
k=1

γk

N − 1

(
nkY

N
n (s) − (nk − 1)YN

n−fk
(s)1{nk≥1}

)
ds.
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From there, with a similar method as in Darling and Norris [7], it is not difficult
to prove that if YN(0) converges to z then:

— the sequence (YN(t)) of process is tight for the Skorohod topology;
— any limit (y(t)) of (YN(t)) is continuous and satisfies the following determin-

istic differential equation, y(0) = z and

y′
n(t) =

K∑
k=1

[
λk + γk

∑
m∈X

mkym(t)

][
yn−fk

(t)1{nk≥1} − yn(t)1{n+fk∈X}
]

+
K∑

k=1

(γk + µk)
[
(nk + 1)yn+fk

(t)1{n+fk∈X} − nkyn(t)
]
.

This is exactly equation (4). The uniqueness of the solution of this differential
equation implies that such a limiting point (y(t)) is necessarily unique and there-
fore that (YN(t)) converges in distribution to (y(t)). The proposition is proved.

�

The equilibrium points of the dynamical system defined by equation (4) are the
probability distributions y ∈ P (X) on X such that V (y) is zero. This condition
can be written as follows: For n ∈ X,(

K∑
k=1

[
(λk + γk〈Ik, y〉)1{n+fk∈X} + (γk + µk)nk

])
yn

=
K∑

k=1

(λk + γk〈Ik, y〉)yn−fk
1{nk≥1}(6)

+ (γk + µk)(nk + 1)yn+fk
1{n+fk∈X}.

These equations are equivalent to local balance equations for the numbers of cus-
tomers of a classical M/M/C/C queue with K classes of customers such that, for
1 ≤ k ≤ K , class k customers:

— arrive at rate λk + γk〈Ik, y〉;
— are served at rate γk + µk ;
— require capacity Ak .

Consequently, (yn) is the invariant distribution of this queue. It is well known (see
Kelly [13], e.g.) that necessarily

yn = νρ(n)
def.= 1

Z(ρ)

K∏
k=1

ρ
nk

k

nk! , n ∈ X,(7)

where, for 1 ≤ k ≤ K , ρk is the ratio of the kth arrival and service rates,

ρk = λk + γk〈Ik, νρ〉
γk + µk

,(8)
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where 〈Ik, νρ〉 is the average value of the kth component under the probability
distribution νρ on X and Z(ρ) is the normalization constant; in other words, the
partition function

Z(ρ) = ∑
n∈X

K∏
k=1

ρ
nk

k

nk! .

The equilibrium points of the dynamical system (y(t)) are indexed by R
K+ whose

dimension is much smaller than P (X) thereby suggesting a possible simpler de-
scription of the asymptotic behavior of the network. Despite this quite appealing
perspective, it turns out that such a dimension reduction cannot be achieved di-
rectly since the subset {νρ, ρ∈R

K+} of P (X) is not left invariant by the dynamical
system (y(t)).

Denote by Bk(ρ) the blocking probability of a class k customer in an
M/M/C/C queue at equilibrium with K classes and loads ρ1, . . . , ρK , that is,

Bk(ρ) = 1

Z(ρ)

∑
n:n+fk /∈X

K∏
h=1

ρ
nh

h

nh! ,

it is easily checked that 〈Ik, νρ〉 = ρk(1 − Bk(ρ)), so equation (8) becomes then

µkρk = λk − γkρkBk(ρ).

The following proposition summarizes these results.

PROPOSITION 1. The equilibrium points of the dynamical system (y(t)) de-
fined by equation (3) are exactly the probability distributions νρ on X,

νρ(n) = 1

Z(ρ)

K∏
	=1

ρ
n	

	

n	! , n = (n	) ∈ X,(9)

where Z(ρ) is the partition function,

Z(ρ) = ∑
m∈X

K∏
	=1

ρ
m	

	

m	!

and ρ = (ρk,1 ≤ k ≤ K) is a vector of R
K+ satisfying the system of equations

λk = ρk

(
µk + γk

∑
n : n+fk /∈X

K∏
	=1

ρ
n	

	

n	!
/ ∑

n∈X

K∏
	=1

ρ
n	

	

n	!
)
, 1 ≤ k ≤ K.(10)

There always exists at least one equilibrium point.
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PROOF. Only the existence result has to be proved. According to equations
(7) and (8), y is an equilibrium point if and only if it is a fixed point of the function

P (X) −→ P (X),

y −→ νρ(y),

with ρ(y) = (ρk(y)) and, for 1 ≤ k ≤ K , ρk(y) = (λk +γk〈Ik, y〉)/(µk +γk). This
functional being continuous on the convex compact set P (X), it necessarily has a
fixed point by Brouwer’s theorem. �

A similar situation occurs in Gibbens, Hunt and Kelly [10] where the equilib-
rium points are also indexed by the solutions ρ ∈ R+ of some fixed point equations
and the bistability properties of the system are analyzed through numerical esti-
mates. Here, a detailed study of the stability properties of the equilibrium points is
achieved.

Notation. In the following, we will denote

ρn

n! =
K∏

k=1

ρ
nk

k

nk! ,

for n = (nk) ∈ X and ρ = (ρk) ∈ R
K+ . The system of equations (10) can then be

rewritten as

λk = ρk

(
µk + γk

∑
n : n+fk /∈X ρn/n!∑

n∈X ρn/n!
)
, 1 ≤ k ≤ K.

3. Uniqueness results. In this section, several situations in which the asymp-
totic dynamical system (3) has a unique equilibrium point, that is, when the fixed
point equation (10) have a unique solution, are presented.

3.1. Networks with constant requirements. It is assumed that all classes of
customers require the same capacity, that is, that Ak = A for k = 1, . . . ,K . By
replacing C by �C/A
, it can be assumed that A = 1. In this case, if |n| denotes
the sum of the coordinates of n ∈ X,

Bk(ρ) = ∑
n : n+fk /∈X

ρn

n!
/ ∑

n∈X

ρn

n!

= ∑
|n|=C

ρn

n!
/ ∑

n∈X

ρn

n!

= 1

C!
(

K∑
k=1

ρk

)C/ C∑
	=0

1

	!
(

K∑
k=1

ρk

)	

def.= B1

(∑
k

ρk

)
,
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B1(θ) can be represented as the stationary blocking probability of an M/M/C/C

queue with one class of customers and arrival rate θ and service rate 1.
In this case, fixed point equation (10) are

ρk = λk/
(
µk + γkB1(S)

)
, k = 1, . . . ,K,(11)

with S = ρ1 + · · · + ρK . By summing up these equations, one gets that S is the
solution of the equation

S =
K∑

k=1

λk

µk + γkB1(S)
.

It is easily checked that S → B1(S) is nondecreasing and therefore that the above
equation has a unique solution. The uniqueness of the vector (ρk) follows from
equations (11). The following proposition has been proved.

PROPOSITION 2. The asymptotic dynamical system (y(t)) has a unique equi-
librium point when capacity requirements are equal.

In particular, when there is only one class of customers, there is a unique solu-
tion to equation (10).

3.2. A limiting regime of fixed point equations. Here, the fixed point equa-
tions (10) are analyzed under Kelly’s scaling, that is, when the capacity C goes to
infinity and the arrival rates are proportional to C, of the order of λkC for the kth
class. For 1 ≤ k ≤ K , the total service rate µk and the rate of residence time γk are
kept fixed. It will be shown that, in this case, there is a unique equilibrium point.
Let (Nk , 1 ≤ k ≤ K) be a sequence of K independent Poisson processes with in-
tensity 1. As usual Nk(A) will denote the number of points of the kth process in
the subset A of R+. For C > 0, denote by ρC = (ρk(C),1 ≤ k ≤ K), a solution of
the fixed point equations

λkC = ρk(C)

(
µk + γk

∑
n : n+fk /∈X

ρn
C

n!
/ ∑

n∈X

ρn
C

n!
)
, 1 ≤ k ≤ K,

this can be rewritten as

λk = ρk(C)

C

(
µk + γk − γk

P(C − ∑K
i=1 AiNi ([0, ρi(C)]) ≥ Ak)

P(C − ∑K
i=1 AiNi ([0, ρi(C)]) ≥ 0)

)
.(12)

This problem is related to the limit of the loss probabilities investigated and solved
by Kelly [14] in a general setting in terms of an optimization problem. The propo-
sition below is a consequence of Kelly’s result.
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PROPOSITION 3 (Kelly’s scaling). If (ρk(C),1 ≤ k ≤ K) ∈ R
K+ is such that

lim
C→+∞ρk(C)/C = ρ̄k, 1 ≤ k ≤ K,

with (ρ̄k) ∈ R
K+ and

ρ̄1A1 + ρ̄2A2 + · · · + ρ̄KAK ≥ 1,(13)

then, for a ∈ N,

lim
C→+∞

P(C − ∑K
k=1 AkNk([0, ρk(C)]) ≥ a)

P(C − ∑K
k=1 AkNk([0, ρk(C)]) ≥ 0)

= e−ωa,

where ω is the unique nonnegative solution of the equation

ρ̄1A1e
−ωA1 + ρ̄2A2e

−ωA2 + · · · + ρ̄KAKe−ωAK = 1.(14)

The main result of this section can now be stated. Basically, it states that, under
Kelly’s scaling, the fixed point equation (10) have a unique solution when the
capacity gets large.

THEOREM 2. If µk > 0 for all 1 ≤ k ≤ K and if for any C > 0 the vector
(ρk(C,λC)) is any solution of equation (10) then, for 1 ≤ k ≤ K ,

lim
C→+∞

ρk(C,λC)

C
= λk

µk + γk − γke−ωAk
,

where ω ≥ 0 is defined as

ω = inf

{
x ≥ 0 :

K∑
k=1

λkAke
−xAk

µk + γk − γke−xAk
≤ 1

}
.

PROOF. For 1 ≤ k ≤ K , the function C → ρ̄k(C) = ρk(C,λC)/C is bounded
by λk/µk . By taking a subsequence, it can be assumed that ρ̄k(C) converges to
some finite ρ̄k as C goes to infinity. Under the condition

A1
λ1

µ1
+ A2

λ2

µ2
+ · · · + AK

λK

µK

≥ 1,

then necessarily ρ̄1A1 + ρ̄2A2 + · · · + ρKAK ≥ 1, otherwise one would have, via
the law of large numbers for Poisson processes, for a ≥ 0,

lim
C→+∞P

(
C −

K∑
i=1

AiNi ([0,Cρ̄i(C)]) ≥ a

)
= 1,(15)

and equation (12) would then give the relation ρ̄k = λk/µk for 1 ≤ k ≤ K , so that

ρ̄1A1 + ρ̄2A2 + · · · + ρKAK ≥ 1,
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contradiction. From Proposition 3 and equation (12), one gets that

λk = ρ̄k(µk + γk − γke
−ωAk), 1 ≤ k ≤ K,

were ω is the solution of equation (14) associated to (ρ̄k). Equation (14) can then
be rewritten as

K∑
1

λkAke
−ωAk

µk + γk − γke−ωAk
= 1.

The statement of the theorem is proved in this case.
Now, if it is assumed that A1λ1/µ1 + A2λ2/µ2 + · · · + AKλK/µK < 1 then,

since ρ̄k ≤ λk/µk for all k, relation (15) holds and equation (12) finally gives that
ρ̄k = λk/µk , 1 ≤ k ≤ K . The theorem is proved. �

4. An energy function on P (X). In this section, a Lyapunov function is
introduced. As it will be seen, it plays a key role in the analysis of the fixed points
of the asymptotic dynamical system. Define the function g on the set P (X) of
probability distributions on X,

g(y) = ∑
n∈X

yn log(n!yn) −
K∑

k=1

∫ 〈Ik,y〉
0

log
λk + γkx

µk + γk

dx, y ∈ P (X).(16)

Recall that, for y ∈ P (X), 〈Ik, y〉 = ∑
m∈X mkym and

◦
P (X) denotes the interior

of the set P (X).

PROPOSITION 4. The function g is a Lyapunov function for the asymptotic
dynamical system (y(t)), that is,

〈V (y),∇g(y)〉 = ∑
n∈X

Vn(y)
∂g

∂yn

(y) ≤ 0 ∀y ∈ ◦
P (X),

and, for y ∈ ◦
P (X), the following assertions are equivalent:

(a) 〈V (y),∇g(y)〉 = 0;
(b) The coordinates of ∇g(y) are equal;
(c) y is an equilibrium point of (y(t)), that is, V (y) = 0.

PROOF. The vector field V (y) = (Vn(y)) can be written as

Vn(y) =
K∑

k=1

[
(λk + γk〈Ik, y〉)yn−fk

1{nk≥1} + (µk + γk)(nk + 1)yn+fk
1{n+fk∈X}

− (
(λk + γk〈Ik, y〉)1{n+fk∈X} + (µk + γk)nk

)
yn

]
=

K∑
k=1

(
Fk

n+fk
(y) − Fk

n (y)
)
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where, for n ∈ X, Fk
n (y) = (µk + γk)nkyn − (λk + γk〈Ik, y〉)yn−fk

1{nk≥1} and
Fk

n (y) = 0 when n /∈ X; note that Fk
n = 0 whenever nk = 0.

For y ∈ ◦
P (X),

〈V (y),∇g(y)〉 = ∑
n∈X

K∑
k=1

∂g

∂yn

(y)
(
Fk

n+fk
(y) − Fk

n (y)
)

=
K∑

k=1

∑
n∈X

Fk
n (y)

(
∂g

∂yn−fk

(y) − ∂g

∂yn

(y)

)
.

Since, for n ∈ X,

∂g

∂yn

(y) = 1 + log(n!yn) −
K∑

k=1

nk log
λk + γk〈Ik, y〉

µk + γk

,

one finally gets that the relation

〈V (y),∇g(y)〉 =
K∑

k=1

∑
n∈X

Fk
n (y) log

(λk + γk〈Ik, y〉)yn−fk

(µk + γk)nkyn

(17)

holds. The quantity 〈V (y),∇g(y)〉 is thus clearly nonpositive. On the other hand,
for k and n such that nk ≥ 1,

∂g

∂yn

(y) − ∂g

∂yn−fk

(y) = log
(

(µk + γk)nkyn

(λk + γk〈Ik, y〉)yn−fk

)
,

hence 〈V (y),∇g(y)〉 is zero if and only if the coordinates of ∇g(y) are equal and
this is equivalent to the system of equations

(λk + γk〈Ik, y〉)yn−fk
= (µk + γk)nkyn

for all k and n such that nk ≥ 1, so that y is an equilibrium point of the asymptotic
dynamical system. The equivalence (a), (b) and (c) is proved. �

Convergence of the stationary distribution. If F is some real-valued function
on R

X and y ∈ P (X), the functional operator associated to the Q-matrix �N is
given by

�N(F)(y) = ∑
z∈P (X)\{y}

�N(y, z)
(
F(z) − F(y)

)

= ∑
n∈X

[
K∑

k=1

λkynN1{n+fk∈X}
(
F

(
y + 1

N
(en+fk

− en)

)
− F(y)

)

+
K∑

k=1

µknkynN

(
F

(
y + 1

N
(en−fk

− en)

)
− F(y)

)
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+ ∑
1≤k≤K

m∈X

γkN

N − 1
nkyn

(
Nym − 1{m=n}

)

×
(
F

(
y + en−fk

− en

N
+ em+fk

− em

N
1{m+fk∈X}

)

− F(y)

)]
.

If it is assumed that the function F is of class C2 on R
K , then it is easy to check

that the sequence (�N(F )(y)) converges to the following expression:

∑
n∈X

[
K∑

k=1

λkyn1{n+fk∈X}〈∇F(y), en+fk
−en〉 +

K∑
k=1

µknkyn〈∇F(y), en−fk
−en〉

+ ∑
1≤k≤K

m∈X

γknkynym

(〈∇F(y), en−fk
−en〉

+ 〈∇F(y), em+fk
−em〉1{m+fk∈X}

)]
which is defined as �∞(F )(y). Moreover, by using Taylor’s formula at the second
order, this convergence is uniform with respect to y ∈ P (X). By Theorem 1, one
necessarily has

�∞(F )(y) = 〈∇F(y),V (y)〉, y ∈ P (X).

Note that this identity can also be checked directly with the above equation.

PROPOSITION 5. If πN denotes the invariant probability distribution of
(YN(t)) on P (X), then any limiting point of (πN) is a probability distribution
carried by the equilibrium points of the asymptotic dynamical system (y(t)) of
Theorem 1.

In particular, if (y(t)) has a unique equilibrium point y∞, then the sequence of
invariant distributions (πN) converges to the Dirac mass at y∞.

PROOF. The set P (X) being compact, the sequence of distributions (πN) is
relatively compact. Let π̃ be the limit of some subsequence (πNp). If F is a func-
tion of class C2 on R

X, then for p ≥ 0,∫
P (X)

�Np(F )(y)πNp(dy) = 0.

The uniform convergence of �Np(F ) to �∞(F ) implies that

0 =
∫
P (X)

�∞(F )(y)π̃(dy) =
∫
P (X)

〈∇F(y),V (y)〉π̃ (dy),
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so that π̃ is an invariant distribution of the (deterministic) Markov process associ-
ated to the infinitesimal generator �∞.

For t ≥ 0, denote (temporarily) by (y(x, t)) the dynamical system starting
from y(0) = x ∈ P (X). Assume that there exist x ∈ P (X) and s > 0 such
that y(x, s) ∈ ∂P (X), that is, there exists n ∈ X such that yn(x, s) = 0. Since
(yn(x, t)) is nonnegative and since the function t → y(x, t) is of class C1, it im-
plies that Vn(y(x, s)) = ẏn(x, s) = 0. This last relation, (4) defining the vector
field (Vn(y)) and the equation yn(x, s) = 0 give that yn±fk

(x, s) = 0 for any k

such that n ± fk ∈ X and consequently, by repeating the argument, all the coor-
dinates of y(x, s) are null. Contradiction since y(x, s) is a probability distribution
on X. Hence, the boundary ∂P (X) of P (X) cannot be reached in positive time
by (y(x, t)). This entails, in particular, that ∂P (X) is negligible for any invariant
distribution of (y(x, t)).

For x ∈ P (X) and 0 < s′ < s, since the function g(y(x, ·)) is of class C1 on
[s′, s] and its derivative is 〈∇(g)(y(x, ·)),V (y(x, ·))〉, one has

g(y(x, s)) − g(y(x, s′)) =
∫ s

s′
�∞(g)(y(x,u)) du.(18)

By integrating with respect to π̃ this relation, the invariance of π̃ for the process
(y(x, t)) and Fubini’s theorem show that∫

P (X)
g(y(x, s))π̃(dx) −

∫
P (X)

g(y(x, s′))π̃(dx)

= 0 =
∫
P (X)

∫ s

s′
�∞(g)(y(x,u)) du π̃(dx)

= (s − s′)
∫
P (X)

�∞(g)(x)π̃(dx).

The integrand �∞(g)(x) = 〈∇g(x),V (x)〉 = 0 having a constant sign by Propo-
sition 4, one deduces that π̃ -almost surely, �∞(g)(x) = 0. The probability π̃ is
thus carried by the equilibrium points of the dynamical system. The proposition is
proved. �

Asymptotic independence. In the case where (y(t)) has a unique equilibrium
point y∞, by using the convergence of the invariant distributions πN to the Dirac
distribution δy∞ and the fact that the coordinates of (XN

i (t)) are exchangeable, it is
easy (and quite classical) to show that for any subset I of coordinates, the random
variables (XN

i (t), i ∈ I ) at equilibrium are asymptotically independent with y∞ as
a common limiting distribution. See Sznitman [23], for example. To summarize,
the uniqueness of an equilibrium point implies that, asymptotically, the invariant
distribution of the Markov process (XN

i (t)) has a product form.
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5. A dimension reduction on R
K . In this section, a function φ on R

K+ is
introduced such that ρ ∈ R

K+ is a zero of ∇φ if and only if the corresponding prob-
ability distribution νρ is an equilibrium point of (y(t)). Furthermore, it is shown
that ρ is a local minimum of φ if and only if νρ is a local minimum of g on the set
of probability distributions on X. In the next section, the function φ will be used
to prove the bistability of the dynamical system (y(t)) in some cases.

For ρ = (ρk) ∈ R
K+ , define

φ(ρ) = − logZ(ρ) +
K∑

k=1

(
βkρk − αk log(ρk)

)
(19)

with αk = λk/γk , βk = (γk + µk)/γk , and Z is the partition function

Z(ρ) = ∑
n∈X

ρn

n! .

PROPOSITION 6. The probability distribution νρ on X is an equilibrium point
of the asymptotic dynamical system (y(t)) if and only if ∇φ(ρ) = 0.

PROOF. Remark that, for 1 ≤ k ≤ K ,

∂Z

∂ρk

(ρ) = ∑
n : n+fk∈X

ρn

n! ,

so that

∂φ

∂ρk

(ρ) = µk

γk

− λk

ρkγk

+ ∑
n : n+fk /∈X

ρn

n!
/ ∑

n∈X

ρn

n! ,

hence this quantity is 0 if and only if the fixed point equation (10) holds. The
proposition is proved. �

Local minima of φ and g. Proposition 1 has shown that an equilibrium point
is necessarily a probability vector νρ on X for some ρ ∈ R

K+ . It has been shown
that the function g defined in Section 4 decreases along any trajectory of the dy-
namical system (y(t)) by Proposition 4 so that if it starts in the neighborhood of a
local minimum of g, ultimately it reaches this point. At the normal scale, that is,
for a finite network, it implies that, with an appropriate initial state, the state of the
network (XN(t)) will live for some (likely long) time in a subset of the states cor-
responding, up to a scaling, to this local minimum. For this reason, it is important
to be able to distinguish stable from unstable equilibrium points of (y(t)). Due to
the quite complicated expression defining g, it is not clear how the stability prop-
erties of the equilibrium points can be established directly with g. The function φ

plays a key role in this respect, it reduces the complexity of the classification of
the equilibrium points according to their stability properties.
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Let y ∈ ◦
P (X). Taylor’s formula for g gives the relation, for y′ ∈ P (X),

g(y′) = g(y) + 〈∇g(y), y′ − y〉 + t(y′ − y)Hy
g (y′ − y) + o(‖y′ − y‖2),

where H
y
g is the Hessian matrix of g,

Hy
g =

(
∂2g

∂ym ∂yn

(y),m,n ∈ X

)
,

and tz is the transpose of vector z.
Propositions 1, 4 and 6 give the equivalence between:

— y ∈ P (X) is an equilibrium point;
— y = νρ with ∇φ(ρ) = 0;

— y ∈ ◦
P (X) and 〈∇g(y), y′ − y〉 = 0, ∀y′ ∈ P (X);

hence the relation

g(y′) = g(νρ) + t (y′ − νρ)H
νρ
g (y′ − νρ) + o(‖y′ − νρ‖2)

holds.
It is assumed throughout this section that the Hessian matrix has nonzero eigen-

values at νρ such that ∇φ(ρ) = 0. Consequently, for ρ such that ∇φ(ρ) = 0, the
probability vector νρ is a local minimum of g, that is, a stable equilibrium point of
(y(t)) if and only if the quadratic form associated to H

νρ
g satisfies the following

property:

thH
νρ
g h ≥ 0 for all h = (hn) with

∑
n∈X

hn = 0.(20)

It will be shown in the following theorem that relation (20) is equivalent to the fact
that the Hessian of φ at ρ is a positive quadratic form, thereby establishing the
dimension reduction for the problem of classification.

THEOREM 3 (Correspondence between the extrema of g and φ).

1. A vector ρ ∈ R
K+ is a local minimum of the function φ if and only if νρ is a local

minimum of the Lyapunov function g.
2. If ρ is a saddle point for φ, then νρ is a saddle point for g.

PROOF. According to the above remarks, one has to study, on one hand, the
sign of the quadratic form h → thH

y
g h associated to g at y = νρ , ρ ∈ R

K+ , on the
vector space of elements h = (hn) ∈ R

X such that the sum of the coordinates of h

is 0; and on the other hand, the sign of the quadratic form φ at ρ.
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The Hessian of g and its quadratic form. It is easily checked that

∂2g

∂yn ∂ym

(y) = 1

yn

1{n=m} −
K∑

k=1

nkmk

γk

λk + γk〈Ik, y〉 .

The quadratic form can be expressed as

thHy
g h = ∑

n∈X

h2
n

yn

−
K∑

k=1

γk

λk + γk〈Ik, y〉
( ∑

n∈X

nkhn

)2

.

The change of variable (hn) → (hn/
√

yn) shows that if

H =
{
h = (hn) ∈ R

X :
∑
n∈X

√
ynhn = 0

}
,

then it is enough to study the sign of the quadratic form Gy on H given by

Gy(h) = ∑
n∈X

h2
n −

K∑
k=1

γk

λk + γk〈Ik, y〉
( ∑

n∈X

nk
√

ynhn

)2

= 〈h,h〉 −
K∑

k=1

〈vy
k , h〉2,

where, for 1 ≤ k ≤ K , v
y
k ∈ RX+ is defined as

v
y
k =

√
γk√

λk + γk〈Ik, y〉
(
nk

√
yn,n ∈ X

)
.

Set

w
y
k

def.=
√

γk√
λk + γk〈Ik, y〉

(√
yn(nk − 〈Ik, y〉), n ∈ X

)
,

then it is easy to check that w
y
k is the orthogonal projection of v

y
k in the vector

space H , therefore

Gy(h) = 〈h,h〉 −
K∑

k=1

〈wy
k ,h〉2.

If Wy is the subvector space of H generated by the vectors w
y
k , 1 ≤ k ≤ K and PWy

(resp., PW⊥
y

) is the orthogonal projection on Wy (resp., on the orthogonal of Wy),
then

Gy(h) = 〈
PW⊥

y
(h),PW⊥

y
(h)

〉 + 〈PWy (h),PWy (h)〉 −
K∑

k=1

〈wy
k ,PWy (h)〉2

(21)
= 〈

PW⊥
y
(h),PW⊥

y
(h)

〉 + Gy(PWy (h)).
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To determine the sign Gy on H , it is thus enough to have the sign of Gy(h) for h ∈
Wy , such an element can be written as h = a1w

y
1 + · · · + aKw

y
K with (ak) ∈ R

K ,

Gy(h) = ∑
1≤i,j≤K

aiaj

(
〈wy

i ,w
y
j 〉 −

K∑
k=1

〈wy
k ,w

y
i 〉〈wy

k ,w
y
j 〉

)

hence, if Wy is the K × K matrix defined by Wy = (〈wy
k ,w

y
l 〉,1 ≤ k, l ≤ K),

Gy(h) = t aWy(I − Wy)a for h =
K∑

k=1

akw
y
k .(22)

The eigenvalues of the matrix Wy being all real (it is symmetrical) and nonnegative
since its associated quadratic form is nonnegative, therefore Gy is positive on Wy

if and only if all the eigenvalues of Wy are in the interval (0,1).

The Hessian of φ and its quadratic form. For ρ ∈ R
K+ ,

∂2φ

∂ρk ∂ρl

(ρ) = −∂2 logZ

∂ρk ∂ρl

(ρ) + αk

ρ2
k

1{k=l}

with (αk) = (λk/γk), for 1 ≤ k, l ≤ K . The derivatives of logZ have the following
properties:

ρk

∂ logZ

∂ρk

(ρ) = 1

Z(ρ)

∑
n∈X

nk

ρn

n! = 〈Ik, νρ〉(23)

and

−ρkρl

∂2 logZ

∂ρk ∂ρl

(ρ) = − 1

Z(ρ)

∑
n∈X

nknl

ρn

n!

+
(

1

Z(ρ)

∑
n∈X

nk

ρn

n!
)(

1

Z(ρ)

∑
n∈X

nl

ρn

n!
)

+ 1{k=l}
1

Z(ρ)

∑
n∈X

nk

ρn

n! ,

hence

−ρkρl

∂2 logZ

∂ρk ∂ρl

(ρ) = 〈Ik, νρ〉〈Il , νρ〉 − 〈Ik,l, νρ〉 + 1{k=l}〈Ik, νρ〉,

where

〈Ik,l, νρ〉 = 1

Z(ρ)

∑
n∈X

nknl

ρn

n! .
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The quadratic form associated to φ at ρ ∈ R
K+ is given by, for a = (ak) ∈ R

K ,

�ρ(a) = ∑
1≤k,l≤K

(〈Ik, νρ〉〈Il , νρ〉 − 〈Ik,l, νρ〉) ak

ρk

al

ρl

+
K∑

k=1

(αk + 〈Ik, νρ〉) a2
k

ρ2
k

.

By using the change of variable (recall that αk = λk/γk),

a = (ak) →
(√

λk + γk〈Ik, νρ〉
√

γk

ak

ρk

)
,

one gets that the sign of φρ has the same range as the sign of �ρ , where

�ρ(a) = 〈a, a〉 + ∑
1≤k,l≤K

√
γk√

λk + γk〈Ik, νρ〉

√
γl√

λl + γl〈Il , νρ〉
× (〈Ik, νρ〉〈Il , νρ〉 − 〈Ik,l, νρ〉)akal

= 〈a, a〉 − ∑
1≤k,l≤K

〈wνρ

k ,w
νρ

l 〉akal,

with the above notation. Therefore, the sign of the quadratic form associated to φ

at ρ has the same values as the sign of �ρ(a) defined by

�ρ(a) = t a(I − Wνρ )a, a = (ak) ∈ R
K.(24)

Equations (22) and (24) show that Gνρ is positive on Wνρ if and only if �ρ is
positive on R

K+ which proves assertion 1 of the theorem. Similarly, if ρ is a saddle
point of φ, equation (24) shows that the matrix Wνρ has eigenvalues in (0,1) and
in (1,+∞), so that Gνρ takes positive and negative values on W , and hence on H ,
νρ is thus a saddle point of g. The theorem is proved. �

6. Bistability of the asymptotic dynamical system. This section gives an ex-
ample where the asymptotic dynamical system has at least three fixed points: Two
of them are stable and the other is a saddle point. The corresponding stochastic
network therefore exhibits a metastability property. In the limit, it suggests that its
state switches from one stable point to the other after a long residence time. See
Figure 2. The problem of estimating the residence time in the neighborhood of a
stable point is not addressed here. According to examples from statistical physics,
the expected value of this residence time should be of exponential order with re-
spect to the size N of the network. For reversible Markov processes, Bovier [3–5]
presents a potential theoretical approach to get lower and upper bounds for this
expected value.
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A network with two classes. A simple setting is considered here: There are
two classes of customers, K = 2, the capacity requirements are A1 = 1 (small
customers) and A2 = C (large ones) so that, at a given node, there may be n class 1
customers, 0 ≤ n ≤ C, or only one class 2 customer. It is assumed that γ1 = γ2 = 1
and µ1 = µ2 = 0 so that a customer leaves the network only when it is rejected at
some node.

The two classes cannot coexist at a given node and, moreover, when a node
contains class 1 customers, it has to get completely empty before accommodating
a class 2 customer. Moreover, when the network is mostly filled with class 1 cus-
tomers, the competition for capacity at each node should be favorable to class 1
customers, due to their large internal arrival rate (i.e., their arrival rate from all the
other nodes). This can explain the stability of a state with a high density in class
1 customers. The same intuitive argument holds for the existence of a stable state
with a comparatively higher density in class 2 customers, though it is clear that
the occurrence of this phenomenon should depend on the compared values of the
different arrivals, services and transfers rates.

PROPOSITION 7. For a network with two classes of customers such that
A1 = 1, A2 = C, γ1 = γ2 = 1, µ1 = µ2 = 0, for C sufficiently large, there exist
λ1 and λ2 ∈ R+ such that the corresponding energy function φ has at least one
saddle point and two local minima.

From Theorem 3, one deduces that there exists a stochastic network whose as-
ymptotic dynamical system has at least two stable points.

PROOF OF PROPOSITION 7. Fix ρ ∈ R
2+ and choose (λ1, λ2) ∈ R

2+ so that ρ

satisfies equations (8), that is,

λk = ρk − 〈Ik, νρ〉 = ρk

(
1 − ∂ logZ

∂ρk

(ρ)

)
, k = 1,2,(25)

by relation (23), so that νρ is an equilibrium point for the limiting dynamics. It will
be assumed for the moment that C = +∞. The corresponding function φ is then
given by

φ̃(ρ) = − log(ρ2 + eρ1) + ρ1 + ρ2 − λ1 logρ1 − λ2 logρ2.

Using equation (25), one gets that

∂2φ̃

∂ρ2
1

(ρ) = λ1

ρ2
1

− ρ2e
ρ1

(ρ2 + eρ1)2

= ρ2(ρ2 + (1 − ρ1)e
ρ1)

ρ1(ρ2 + eρ1)2
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FIG. 1. Function φ with one saddle point and two stable equilibrium points. Two classes with
λ1 = 0.68, λ2 = 9.0, A1 = 1 and A2 = C = 20.

and

∂2φ̃

∂ρ2
2

(ρ) = λ2

ρ2
2

+ 1

(ρ2 + eρ1)2 > 0.

If ρ̄ = (ρ̄1, ρ̄1) is chosen such that the inequality ρ̄2 < (ρ̄1 −1) exp(ρ̄1) holds, then

∂2φ̃

∂ρ2
1

(ρ̄) < 0 and
∂2φ̃

∂ρ2
2

(ρ̄) > 0.

The constant C is now assumed to be finite and sufficiently large so that the above
inequalities with φ in place of φ̃ are satisfied, ρ̄ is a saddle point for φ. The function
φ is given by

φ(ρ) = − log

(
ρ2 +

C∑
n=0

ρn
1

n!
)

+ ρ1 + ρ2 − λ1 logρ1 − λ2 logρ2.

The function ρ2 → φ(ρ̄1, ρ2) is convex, ρ̄2 is a strict local minimum by construc-
tion and therefore a global minimum. Similarly, the function ρ1 → φ(ρ1, ρ̄2) has
a strict local maximum at ρ̄1,

inf{φ(ρ) :ρ = (ρ1, ρ̄2), ρ1 < ρ̄1} < φ(ρ̄),

inf{φ(ρ) :ρ = (ρ1, ρ̄2), ρ̄1 < ρ1} < φ(ρ̄) = inf{φ(ρ) :ρ ∈ �},
with � = {(ρ̄1, ρ2) :ρ2 ∈ R+ \ {0}}. Since φ((ρ1, ρ2)) converges to +∞ when ρ1
or ρ2 converges to 0 or +∞, one concludes that the function φ has at least two
local finite minima, one on each side of �. The proposition is proved. Figure 1
gives an example of such a situation. �
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FIG. 2. Time evolution of the proportion of nodes without class 2 particle. Case N = 12000 nodes,
A1 = 1, A2 = C = 5, λ1 = 0.64, λ2 = 2.71, µ1 = µ2 = 0 and γ1 = γ2 = 1.
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