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LEVITIN-POLYAK WELL-POSEDNESS OF GENERALIZED VECTOR
EQUILIBRIUM PROBLEMS

Jian-Wen Peng, Yan Wang and Soon-Yi Wu*

Abstract. In this paper, four types of Levitin-Polyak well-posedness of gen-
eralized vector equilibrium problems with both abstract set constraints and
functional constraints are investigated. Criteria and characterizations for these
types of Levitin-Polyak well-posedness of generalized vector equilibrium prob-
lems are obtained.

1. INTRODUCTION

It is well known that the well-posedness is very important for both optimiza-
tion theory and numerical methods of optimization problem, which guarantees that,
for approximating solution sequences, there is a subsequence which converges to
a solution. The study of well-posedness started from Tykhonov [1] and Levitin
and Polyak [2]. Since then, various notions of well-posedness for scalar opti-
mization optimizations have been defined and studied in [3-7] and the references
therein. Recent studies on various notions of well-posedness for vector optimiza-
tion problems can be found in [8-13]. The study of Levitin-Polyak well-posedness
for convex scalar optimization problems with functional constraints originates from
[4]. Recently, this research was extended to nonconvex optimization problems with
both abstract set constraints and functional constraints [6], nonconvex vector op-
timization problems with abstract set constraints and functional constraints [13],
variational inequalities with abstract set constraints and functional constraints [14],
generalized variational inequalities with abstract set constraints and functional con-
straints [15], generalized vector variational inequalities with abstract set constraints
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and functional constraints [16], equilibrium problems with abstract set constraints
and functional constraints [17], and equilibrium problems with abstract set con-
straints and functional constraints [18]. Well-posedness of variational inequalities,
mixed variational inequalities, variational inclusions, mixed quasi-variational-like
inequalities and generalized mixed variational inequalities, vector equilibrium prob-
lems and vector quasi-equilibrium problems without explicit constraints have been
intensively investigated (see [19-32] and the references therein). However, there is
no study for the Levitin-Polyak well-posedness for generalized vector equilibrium
problems with abstract set constraints and functional constraints.

In this paper, we will introduce four types of Levitin-Polyak well-posedness for a
generalized vector equilibrium problem with abstract set constraints and functional
constraints. In section 2, by a gap function for a generalized vector equilibrium
problem, we show equivalent relations between the Levitin-Polyak well-posedness
of the optimization problem and the Levitin-Polyak well-posedness of a generalized
vector equilibrium problem. In section 3, we derive some various criteria and
characterizations for the (generalized) LP well-posedness of a generalized vector
equilibrium problem. The results in this paper unify, generalize and extend some
known results in [14-18, 25].

2. PRELIMINARIES

Throughout this paper, unless otherwise specified, we use the following notations
and assumptions:

Let (X, ‖ · ‖) be a normed space and (Z, d1) be a metric space. Let X1 ⊂ X ,
K ⊂ Z be nonempty and closed sets. Let Y be a locally convex space and C : X →
2Y be a set-valued map such that for any x ∈ X , C(x) is a pointed, closed and
convex cone in Y with nonempty interior intC(x). Let V be a topological space,
and T : X1 → 2V be a strict set-valued map ( i.e., T (x) �= ∅, ∀x ∈ X1). Let X∗ and
Y ∗, respectively, be the dual spaces of X and Y , and X, Y, V be equipped with the
norm topology. Let e : X → Y be a continuous vector-valued map and satisfy that
for any x ∈ X , e(x) ∈ intC(x), g : X1 → Z be a continuous vector-valued map,
and f : X×V ×X1 → Y be a vector-valued map. Let X0 = {x ∈ X1 : g(x) ∈ K}
be nonempty. We consider the following explicit constrained generalized vector
equilibrium problem with variable domination structures: Find a point x̄ ∈ X0 and
some point z̄ ∈ T (x̄), such that

(GVEP) f(x̄, z̄, y) /∈ −intC(x̄), ∀y ∈ X0.

The solution set of (GVEP) is denoted by Ω1.
Let (P, d) be a metric space, P1 ⊆ P and x ∈ P . We denote by d(x, P1) =

inf{d(x, p) : p ∈ P1} the distance function from the point x ∈ P to the set P1.
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Definition 2.1.

(i) A sequence {xn} ⊂ X1 is called a type I Levitin-Polyak (in short LP) ap-
proximating solution sequence for (GVEP) if there exist {εn} ⊆ R+ with
εn → 0 and zn ∈ T (xn) such that

(2.1) d(xn, X0) ≤ εn,

and

(2.2) f(xn, zn, y) + εne(xn) /∈ −intC(xn), ∀y ∈ X0.

(ii) {xn} ⊂ X1 is called type II LP approximating solution sequence for (GVEP)
if there exist {εn} ⊆ R+ with εn → 0 and zn ∈ T (xn) such that (2.1) and
(2.2) hold and for any z ∈ T (xn) there exists yn ∈ X0 such that

(2.3) f(xn, z, yn) − εne(xn) ∈ −C(xn).

(iii) {xn} ⊂ X1 is called a generalized type I LP approximating solution sequence
for (GVEP) if there exist {εn} ⊆ R+ with εn → 0 and zn ∈ T (xn) satisfying

(2.4) d(g(xn), K) ≤ εn,

and (2.2);

(iv) {xn} ⊂ X1 is called a generalized type II LP approximating solution sequence
for (GVEP) if there exist {εn} ⊆ R+ with εn → 0 and zn ∈ T (xn) such that
(2.2) and (2.4) hold and for any z ∈ T (xn) there exists yn ∈ X0 satisfying
(2.3).

Definition 2.2 (GVEP) is said to be type I (resp. type II, generalized type I,
generalized type II) LP well-posed if Ω1 �= ∅ and for any type I (resp. type II,
generalized type I, generalized type II) LP approximating solution sequence {xn} of
(GVEP), there exists a subsequence {xnj} of {xn} and x̄ ∈ Ω1 such that xnj → x̄.

Remark 2.1
(i) It is clear that any (generalized) type II LP approximating solution sequence

of (GVEP) is a (generalized) type I LP approximating solution sequence of
(GVEP). Thus the (generalized) type I LP well-posedness of (GVEP) implies
the (generalized) type II LP well-posedness of (GVEP).

(ii) If there exists some δ0 > 0 such that g is uniformly continuous on the set

S(δ0) = {x ∈ X1 : d(X0, x) ≤ δ0},
then it is not difficult to see that generalized type I (resp. generalized type II)
LP well-posedness of (GVEP) implies type I (resp. type II) LP well-posedness
of (GVEP).
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(iii) Any one type of (generalized) LP well-posedness defined above implies that
the solution set Ω1 of (GVEP) is nonempty and compact.

(iv) If T (x) = z̄ for all x ∈ X1, K = Z and define a function ϕ : X × X1 → Y
as ϕ(x, y) = f(x, z̄, y), then the type I (resp. type II, generalized type I,
generalized type II) LP well-posedness of (GVEP) defined in Definition 2.2
reduces to the type I (resp. type II, generalized type I, generalized type
II) LP well-posedness of the vector equilibrium problem with abstract set
constraints and functional constraints introduced by Peng, Wang and Zhao
[18]. Moreover, if Y = R, C(x) = R+ for all x ∈ X , then the type I (resp.
type II, generalized type I, generalized type II) LP well-posedness of (GVEP)
defined in Definition 2.2 reduces to the type I (resp. type II, generalized type
I, generalized type II) LP well-posedness of the scalar equilibrium problem
with abstract set constraints and functional constraints introduced by Long,
Huang and Teo [17].

(v) Let V = L(X, Y ) be the space of all the linear continuous operators from
X to Y , C(x) = C and e(x) = e for all x ∈ X , and let 〈z, x〉 denote the
function value z(x), where z ∈ L(X, Y ), x ∈ X1. If f(x, z, y) = 〈z, y − x〉
for all x ∈ X, z ∈ V, y ∈ X1, then the type I (resp. type II, generalized type I,
generalized type II) LP well-posedness of (GVEP) reduces to the type I (resp.
type II, generalized type I, generalized type II) LP well-posedness of the set-
valued vector variational inequality problem with abstract set constraints and
functional constraints introduced by Xu, Zhu and Huang [16]. Moreover, if
V = X∗, and C(x) = R+ for all x ∈ X , then the type I (resp. type II,
generalized type I, generalized type II) LP well-posedness of (GVEP) reduces
to the type I (resp. type II, generalized type I, generalized type II) LP well-
posedness of the generalized variational inequality problem with abstract set
constraints and functional constraints introduced by Huang and Yang [15],
which contains as special cases for the type I (resp. type II, generalized type
I, generalized type II) LP well-posedness for the variational inequality with
abstract set constraints and functional constraints introduced by Huang, Yang
and Zhu [14].

Definition 2.3. (GVEP) is said to be type I (resp. generalized type I, type II,
generalized type II) well-set if Ω1 �= ∅ and for any type I (resp. generalized type I,
type II, generalized type II) LP approximating solution sequence {xn} for (GVEP),
we have limn→∞ d(xn, Ω1) → 0.

From Definitions 2.2 and 2.3, we can easily obtain the following result about
the relations between (generalized) type LP well-posedness and (generalized) well
set of (GVEP):
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Proposition 2.1. (GVEP) is type I (resp. type II, generalized type I, generalized
type II) LP well-posed if and only if (GVEP) is type I (resp. type II, generalized
type I, generalized type II) well-set and Ω1 is compact.

To see the various LP well-posednesses of (GVEP) are adaptations of the cor-
responding LP well-posednesses in minimizing problems by using the Auslender
gap function, we consider the following general constrained optimization problem
introduced and researched by Huang and Yang [6]:

(P) min φ(x)

s.t. x ∈ X1, g(x) ∈ K.

We use Ω̄ and v̄ to denote the optimal set and value of (P), respectively.
Now, we recall the following definitions about well-posedness for (P) introduced

by Huang and Yang [6].

Definition 2.4.
(i) A sequence {xn} ⊂ X1 is called a type I LP minimizing sequence for (P) if

(2.5) lim sup
n→+∞

φ(xn) ≤ v̄,

and

(2.6) d(xn, X0) → 0.

(ii) {xn} ⊂ X1 is called a type II LP minimizing sequence for (P) if

(2.7) lim
n→∞φ(xn) = v̄,

and (2.6) hold.
(iii) {xn}⊂X1 is called a generalized type I LP minimizing sequence for (P) if

(2.8) d(g(xn), K) → 0,

and (2.5) hold.
(iv) {xn} ⊂ X1 is called a generalized type II LP minimizing sequence for (P)

if (2.8) and (2.7) hold.

Definition 2.5. (P) is said to be type I (resp: generalized type I, type II,
generalized type II) LP well-posed if Ω̄ �= ∅, and for any type I (resp: generalized
type I, type II, generalized type II) LP minimizing sequence {xn} for (P), there exist
a subsequence {xnj} of {xn} and x̄ ∈ Ω̄ such that xnj → x̄.
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Chen, Yang and Yu [33] introduced a nonlinear scalarization function ξe : X ×
Y → R defined by:

ξe(x, y) = inf{λ ∈ R : y ∈ λe(x)− C(x)}.

Definition 2.6. The function h : X1 → R∪ {+∞} is said to be a gap function
on X0 for (GVEP) if h(x) ≥ 0, ∀x ∈ X0, and for any x∗ ∈ X0, h(x∗) = 0 iff
x∗ ∈ Ω1.

We define a function φ1 on X1 as follows:

(2.9) φ1(x) = inf
z∈T (x)

sup
y∈X0

{−ξe(x, f(x, z, y))},∀x ∈ X1.

Now we present some properties of the function φ1 which are generalizations
and extensions of Lemmas 2.1 and 2.2 in [16], Propositions 4.1 and 4.2 in [25],
and Lemma 1.1 in [15].

Proposition 2.2. Assume that for any x ∈ X0 and z ∈ T (x), there holds
f(x, z, x) ∈ −∂C(x), the set-valued map T is compact-valued on X 1, and for any
(x, y) ∈ X × X1, the vector-valued function z �→ f(x, z, y) is continuous. Then
φ1 defined by (2.9) is a gap function on X0 for (GVEP).

Proof. We now prove that φ1(x) ≥ 0 for all x ∈ X0. Suppose to the contrary
that φ1(x) < 0 for some x ∈ X0. Then, there exists a δ > 0 such that φ1(x) < −δ.
By definition, for δ/2 > 0, there exists a z ∈ T (x), such that

sup
y∈X0

{−ξe(x, f(x, z, y))} ≤ φ1(x) +
δ

2
< −δ

2
< 0

Thus, we have
ξe(x, f(x, z, y)) > 0, ∀y ∈ X0.

It follows from Proposition 2.3 in [33] that

f(x, z, y) /∈ −C(x), ∀y ∈ X0,

which contradicts to the assumption when y = x.
Next we will show that for any x ∈ X0, φ1(x) = 0 if and only if x ∈ Ω1.

Indeed, we suppose that there exists x ∈ X0 such that φ1(x) = 0. Then, there exist
zn ∈ T (x) and 0 < εn → 0 such that

sup
y∈X0

{−ξe(x, f(x, zn, y))} ≤ φ1(x) + εn = εn.

Thus,
ξe(x, f(x, zn, y)) ≥ −εn, ∀y ∈ X0.
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It follows from Proposition 2.3 in [33] that

(2.10) f(x, zn, y) + εne(x) /∈ −intC(x), ∀y ∈ X0.

By the compactness of T (x), there exist a sequence {znj} of {zn} and some
z ∈ T (x) such that

znj → z.

This fact, together with (2.10), implies that f(x, z, y) /∈ −intC(x), ∀y ∈ X0.
Hence x ∈ Ω1.

Conversely, suppose x̃ ∈ Ω1. Then x̃ ∈ X0, and there exists z ∈ T (x̃) such
that f(x̃, z, y) /∈ −intC(x), ∀y ∈ X0. It follows from proposition 2.3 in [33] that

ξe(x̃, f(x̃, z, y)) ≥ 0, ∀y ∈ X0.

Hence
φ1(x̃) = inf

z∈T (x̃)
sup
y∈X0

{−ξe(x̃, f(x̃, z, y))} ≤ 0.

We have proved that φ1(x) ≥ 0 for all x ∈ X0. It follows that φ1(x̃) = 0.
Thus φ1(x) is a gap function of (GVEP). This completes the proof.

Proposition 2.3. Assume that for any y ∈ X1, the vector-valued function
(x, z) �→ f(x, z, y) is continuous, the set-valued map T is upper semi-continuous
and compact-valued on X1, and the set-valued map W : X → 2Y defined by
W (x) = Y \ −intC(x) is upper semi-continuous. Then φ1 defined by (2.9) is a
lower semi-continuous function from X 1 to R ∪ {+∞}. Further assume that the
solution set Ω1 of (GVEP) is nonempty, then Dom(φ1) �= ∅.

Proof. First, it is obvious that φ1(x) > −∞, ∀x ∈ X1. Otherwise, suppose
that there exists x0 ∈ X1 satisfying φ1(x0) = −∞. Then, there exist zn ∈ T (x0)
and {Mn} ⊂ R+ with Mn → +∞ such that

sup
y∈X0

{−ξe(x0, f(x0, zn, y))} ≤ −Mn.

Hence,
ξe(x0, f(x0, zn, y)) ≥ Mn, ∀y ∈ X0.

By the compactness of T (x0), there exist a sequence {znj} of {zn} and some
z ∈ T (x0) such that

znj → z.

It follows from Theorem 2.1 in [33] that ξe is upper semi-continuous, and so

ξe(x0, f(x0, z, y)) ≥ lim sup
j→+∞

ξe(x0, f(x0, znj , y)) = +∞, ∀y ∈ X0,
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which is impossible, since ξe(x0, ·) is a finite function on Y .
Second, we show that φ1 is lower semi-continuous on X1. Let a ∈ R, suppose

that {xn} ⊂ X1 satisfies φ1(xn) ≤ a, ∀n and xn → x0. It follows that for each n

there exist zn ∈ T (xn) and 0 < δn → 0 such that

(2.11) ξe(xn, f(xn, zn, y)) ≥ −a − δn, ∀y ∈ X0.

By the upper semi-continuity of T at x0 and the compactness of T (x0), we
obtain a sequence {znj} of {zn} and some z0 ∈ T (x0) such that znj → z0. It
follows from Theorem 2.1 in [33] and (2.11) that

ξe(x0, f(x0, z0, y)) ≥ lim sup
j→+∞

ξe(x0, f(x0, znj , y)) ≥ −a, ∀y ∈ X0,

which implies that φ1(x0) ≤ a. This completes the proof.

The following result shows the equivalent relationship between the various types
of LP well-posedness of (P) and the corresponding ones of LP well-posedness of
(GVEP), which is a generalization of Lemma 2.3 in [16] and Theorem 3.13 in [18].

Theorem 2.1. Assume that for any x ∈ X0 and z ∈ T (x), there holds
f(x, z, x) ∈ −∂C(x), the set-valued map T is compact-valued on X 1, and for
any (x, y) ∈ X × X1, the vector-valued map z �→ f(x, z, y) is continuous, the
set-valued map W : X → 2Y defined by W (x) = Y \ −intC(x) is upper semi-
continuous and the function φ(x) is replaced by φ 1(x) defined by (2.9). Then
(GVEP) is type I (resp. generalized type I, type II, generalized type II) LP well-
posed if and only if (P) is type I (resp. generalized type I, type II, generalized type
II) LP well-posed.

Proof. We only need to prove that (GVEP) is type I LP well-posed if and only
if (P) is type I LP well-posed. The others can be proved similarly and they are
omitted here.

By Proposition 2.2, we know that φ1 is a gap function of (GVEP) on X0, x̄ ∈ Ω1

if and only if x̄ ∈ X0 with v̄ = φ1(x̄) = 0.
Assume that {xn} is any type I LP approximating solution sequence for (GVEP).

Then there exist εn > 0 with εn → 0 and zn ∈ T (xn) such that (2.1) and (2.2)
hold. It follows from (2.1) that (2.6) holds. It follows from proposition 2.3 in [33]
and (2.2) that

ξe(xn, f(xn, zn, y)) ≥ −εn, ∀y ∈ X0.

Hence, we obtain

φ1(xn) = inf
z∈T (xn)

sup
y∈X0

{−ξe(xn, f(xn, z, y))} ≤ εn.
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Thus,
lim sup

n→∞
φ1(xn) ≤ 0 since εn → 0,

which implies that {xn} is a type I LP approximating solution sequence for (P).
Conversely, assume that {xn} is any type I LP approximating solution sequence

for (P). Then d(xn, X0) → 0 and lim sup
n→∞

φ1(xn) ≤ 0.

Thus, there exists εn > 0 with εn → 0 satisfying (2.1) and

φ1(xn) = inf
z∈T (xn)

sup
y∈X0

{−ξe(xn, f(xn, z, y))} ≤ εn.

It follows from the upper semi-continuity of ξe, we know that

∃zn ∈ T (xn), s.t. ξe(xn, f(xn, zn, y)) ≥ −εn, ∀y ∈ X0.

Equivalently, (2.2) holds. Hence, {xn} is a type I LP approximating solution
sequence for (GVEP). Hence, (GVEP) is type I LP well-posed if and only if (P) is
type I LP well-posed. This completes the proof.

3. CRITERIA AND CHARACTERIZATIONS FOR LP WELL-POSEDNESSES OF (GVEP)

In this section, we present necessary and/or sufficient conditions for those types
of (generalized) LP well-posedness of (GVEP) defined in section 2.

Now we introduce the Kuratowski measure of noncompactness for a nonempty
subset A of X (see [34]) defined by

α(A) = inf{ε > 0 : A ⊂ ∪n
i=1Ai, for every Ai, diamAi < ε},

where diamAi is the diameter of Ai defined by

diamAi = sup{d(x1, x2) : x1, x2 ∈ Ai}.
Given two nonempty subsets A and B of X , the excess of set A to set B is

defined by
e(A, B) = sup{d(a, B) : a ∈ A}

and the Hausdorff distance between A and B is defined by

H(A, B) = max{e(A, B), e(B, A)}.
For any ε>0, two types of approximating solution sets for (GVEP) are defined

by

Θ1(ε) := {x ∈ X1 : d(x, X0)

≤ εand ∃z ∈ T (x), s.t. f(x, z, y) + εe(x) /∈ −intC(x), ∀y ∈ X0},
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Θ2(ε) := {x ∈ X1 : d(g(x), K)

≤ εand ∃z ∈ T (x), s.t. f(x, z, y) + εe(x) /∈ −intC(x), ∀y ∈ X0}.
Now we will present some metric characterizations of various types of LP well-

posedness of (GVEP).

Theorem 3.1. Assume that for any y ∈ X1, the vector-valued function (x, z) �→
f(x, z, y) is continuous, the set-valued map T is upper semi-continuous and compact-
valued on X1 and the set-valued map W : X → 2Y defined by W (x) = Y \
−intC(x) is closed. Then the following results hold:

(a) (GVEP) is type I LP well-posed if and only if the solution set Ω 1 is nonempty,
compact and

(3.1) e(Θ1(ε), Ω1) → 0 as ε → 0.

(b) (GVEP) is type I LP well-posed if and only if

(3.2) Θ1(ε) �= ∅, ∀ε > 0 and lim
ε→0

α(Θ1(ε)) = 0.

(c) (GVEP) is generalized type I LP well-posed if and only if the solution set
Ω1 is nonempty, compact and

e(Θ2(ε), Ω1) → 0 as ε → 0.

(d) (GVEP) is generalized type I LP well-posed if and only if

T2(ε) �= ∅, ∀ε > 0 and lim
ε→0

α(T2(ε)) = 0.

Proof. We only prove (a) and (b). The proofs of (c) and (d) are similar and
they are omitted here.

(a) Let (GVEP) be type I LP well-posed. Then Ω1 is nonempty and compact.
Now we show that (3.1) holds. Suppose to the contrary that there exist l > 0,
εn > 0 with εn → 0 and xn ∈ Θ1(εn) such that

(3.3) d(xn, Ω1) ≥ l.

Since {xn} ⊂ Θ1(εn) we know that {xn} is type I LP approximating solution
for (GVEP). By the type I LP well-posedness of (GVEP), there exists a subsequence
{xnj} of {xn} converging to some element of Ω1. This contradicts (3.3). Hence
(3.1) holds.

Conversely, suppose that Ω1 is nonempty, compact and (3.1) holds. Let {xn} be
a type I LP approximating solution for (GVEP). Then there exist a sequence {εn}
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with {εn} ⊆ R1
+ and εn → 0 such that (2.1) and (2.2) hold. Thus, {xn} ⊂ Θ1(ε).

It follows from (3.1) that there exists a sequence {ωn} ⊆ Ω1 such that

d(xn, ωn) = d(xn, Ω1) ≤ e(T1(ε), Ω) → 0.

Since Ω1 is compact, there exists a subsequence {ωnk
} of {ωn} converging to

x0 ∈ Ω1. And so the corresponding subsequence {xnk
} of {xn} converges to x0.

Therefore (GVEP) is type I LP well-posed.
(b) First we show that for every ε > 0, Θ1(ε) is closed. In fact, let {xn} ⊂ Θ1(ε)

and xn → x̄. Then

(3.4) d(xn, X0) ≤ ε,

and

(3.5) ∃zn ∈ T (xn), s.t. f(xn, zn, y) + εe(xn) /∈ −intC(xn), ∀y ∈ X0.

From (3.4) and (3.5), we get
d(x̄, X0) ≤ ε,

and

(3.6) f(xn, zn, y) + εe(xn) ∈ W (xn), ∀y ∈ X0.

By the upper semi-continuity of T at x̄ and the compactness of T (x̄), there exist
a subsequence {znj} ⊂ {zn} and some z̄ ∈ T (x̄) such that znj → z̄. It follows
from (3.6) that f(x̄, z̄, y) + εe(x̄) /∈ −intC(x̄), ∀y ∈ X0. Hence x̄ ∈ Θ1(ε).

Second, we show that

(3.7) Ω1 = ∩ε>0Θ1(ε).

It is obvious that Ω1 ⊂ ∩ε>0Θ1(ε).
Now suppose that εn > 0 with εn → 0 and x∗ ∈ ∩∞

n=1Θ1(εn). Then

(3.8) d(x∗, X0) ≤ εn, ∀n ∈ N,

and

(3.9) ∃z ∈ T (x∗), s.t. f(x∗, z, y) + εne(x∗) /∈ −intC(x∗), ∀y ∈ X0.

It is easy to see that X0 is closed. By (3.8), we get x∗ ∈ X0. By (3.9) and
closedness of W (x∗), we know that

∃z ∈ T (x∗), s.t. f(x∗, z, y) ∈ W (x∗), ∀y ∈ X0.
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That is, x∗ ∈ Ω1. Hence (3.7) holds.
Now we assume that (3.1) holds. Clearly, Θ1(.) is increasing with ε > 0. By

the Kuratowski theorem (see [34]), we have

H(Θ1(ε), Ω1) → 0, as ε → 0.

where Ω1 = ∩ε>0Θ1(ε) is nonempty and compact. Since

H(Θ1(ε), Ω1) = max{e(Θ1(ε), Ω1), e(Ω1, Θ1(ε))} = e(Θ1(ε), Ω1),

we get lim
ε→0

e(Θ1(ε), Ω1) → 0. It follows from (a) that (GVEP) is type I LP well-
posed.

Conversely, let (GVEP) be type I LP well-posed. Note that for every ε > 0, we
have

α(Θ1(ε)) ≤ 2H(Θ1(ε), Ω1) + α(Ω1) = 2e(Θ1(ε), Ω1),

where α(Ω1) = 0 since Ω1 is compact. It follows from (a) that lim
ε→0

α(Θ1(ε)) =

lim
ε→0

e(Θ1(ε), Ω1) = 0. This completes the proof.

Theorem 3.2. Let X be finite dimensional. Assume that for any y ∈ X 1, the
vector-valued map (x, z) �→ f(x, z, y) is continuous, the set-valued map T is upper
semi-continuous and compact-valued on X 1, the set-valued map W : X → 2Y

defined by W (x) = Y \ −intC(x) is closed, and Ω1 is nonempty.
(i) If there exists ε0 > 0 such that Θ1(ε0) is bounded, then (GVEP) is type I LP

well-posed.
(ii) If there exists ε0 > 0 such that Θ2(ε0) is bounded, then (GVEP) is generalized

type I LP well-posed.

Proof. We only prove (i). The proof of (ii) is similar and they are omitted here.
Let {xn} be a type I LP approximating solution sequence for (GVEP). Then there
exist a sequence {εn} with {εn} ⊆ R+ and εn → 0 and zn ∈ T (xn) such that (2.1)
and (2.2) hold. From (2.1) and (2.2), without loss of generality, we can assume that
{xn} ⊂ Θ1(ε0). Hence, {xn} is bounded. Since X is finite dimensional, let {xnj}
be any subsequence of {xn} such that xnj → x̄ ∈ X1. From (2.1) and (2.2), we
get

(3.10) d(xnj , X0) ≤ εnj ,

and

(3.11) ∃znj ∈ T (xnj ), s.t. f(xnj , znj , y) + εnj e(xnj) /∈ −intC(xnj ), ∀y ∈ X0.

Since X0 is closed and by (3.10), we get x̄ ∈ X0. By the upper semi-continuity
of T at x̄ and the compactness of T (x̄), there exist a subsequence {znjk

} ⊂ {znj}
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and some z̄ ∈ T (x̄) such that znjk
→ z̄. It follows from (3.12) that f(x̄, z̄, y) /∈

−intC(x̄), ∀y ∈ X0. Hence, x̄ ∈ Ω1 and (GVEP) is type I LP well-posed. This
completes the proof.

Corollary 3.1. Assume that for any y ∈ X 1, the vector-valued function
(x, z) �→ f(x, z, y) is continuous, the set-valued map T is upper semi-continuous
and compact-valued on X1, the set-valued map W : X → 2Y defined by W (x) =
Y \ −intC(x) is closed, and there exists ε0 > 0 such that Θ1(ε0) (resp. Θ2(ε0))
is compact. If Ω1 is nonempty, then (GVEP) is type I (resp. generalized type I) LP
well-posed.

Proof. The proof is similar to that of Theorem 3.3 and is omitted. This
completes the proof.

Remark 3.1 Theorems 3.1 is an extension and generalization of Theorem 2.3
in [14], Theorem 2.3 in [15], Lemma 2.6 in [16], Theorems 3.1 and 3.4-3.5 in
[17], Theorems 3.1 and 3.2 in [18], and Theorem 3.1 in [25]. Theorem 3.2 and
Corollary 3.1, respectively, extend and generalize Theorem 3.3 and Corollary 3.1 in
[25], Theorem 3.6 and Corollary 3.7 in [18].

The following results show the equivalent relations between the (generalized)
type II LP well-posedness of (GVEP) and the (generalized) type II LP well-posedness
of (P).

Now we consider a real-valued function c = c(t, s) defined for t, s ≥ 0 suffi-
ciently small, such that

(3.12) c(t, s) ≥ 0, ∀t, s, c(0, 0) = 0,

(3.13) sn → 0, tn ≥ 0, c(tn, sn) → 0 imply tn → 0.

The following theorem follows immediately from Theorem 2.1 in [6] and The-
orem 2.1 with v̄ = 0.

Theorem 3.3. Assume that for any x ∈ X0 and z ∈ T (x), there holds
f(x, z, x) ∈ −∂C(x), the set-valued map T is compact-valued on X 1, and for
any (x, y) ∈ X × X1, the vector-valued map z �→ f(x, z, y) is continuous, the
set-valued map W : X → 2Y defined by W (x) = Y \ −intC(x) is upper semi-
continuous and the function φ(x) is replaced by φ 1(x) defined by (2.9).

(i) If (GVEP) is type II LP well-posed, then there exists a function c satisfying
(3.13) and (3.14) such that

(3.14) |φ1(x)| ≥ c(d(x, Ω), d(x,X0)), ∀x ∈ X1.
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(ii) If Ω1 is nonempty compact, and (3.15) holds for some c satisfying (3.13) and
(3.14), then (GVEP) is type II LP well-posed.

The following theorem follows immediately from Theorem 2.2 in [6] and The-
orem 2.1 with v̄ = 0.

Theorem 3.4. Assume that for any x ∈ X0 and z ∈ T (x), there holds
f(x, z, x) ∈ −∂C(x), the set-valued map T is compact-valued on X 1, and for
any (x, y) ∈ X × X1, the vector-valued map z �→ f(x, z, y) is continuous, the
set-valued map W : X → 2Y defined by W (x) = Y \ −intC(x) is upper semi-
continuous and the function φ(x) is replaced by φ 1(x) defined by (2.9).

(i) If (GVEP) is generalized type II LP well-posed, then there exists a function
c satisfying (3.13) and (3.14) such that

(3.15) |φ1(x)| ≥ c(d(x, Ω1), d(g(x),K)),∀x ∈ X1;

(ii) If Ω1 is nonempty compact, and (3.16) holds for some c satisfying (3.13) and
(3.14), then (GVEP) is generalized type II LP well-posed.

It is easy to see that Theorems 3.4 and 3.5 generalize and extend the correspond-
ing results in [14-18] and [25].

Definition 3.5.

(i) Let Z be a topological space and let Z1 ⊂ Z be a nonempty subset. Suppose
that G : Z → R ∪ {+∞} is an extend real-valued function. Then function
G is said to be level-compact on Z1 if for any s ∈ R the subset {z ∈ Z1 :
G(z) ≤ s} is compact.

(ii) Let Z be a finite dimensional normed space and Z1 ⊂ Z be nonempty. A
function h : Z → R ∪ {+∞} is said to be level-bounded on Z1 if Z1 is
bounded or

lim
z∈Z1,||z||→+∞

h(z) = +∞.

Now we give some sufficient conditions for the (generalized) type I LP well-
posedness of (GVEP) as follows:

Proposition 3.1. Assume that for any y ∈ X1, the vector-valued map (x, z) �→
f(x, z, y) is continuous, the set-valued map T is upper semi-continuous and compact-
valued on X1, the set-valued map W : X → 2Y defined by W (x) = Y \−intC(x)
is upper semi-continuous, and Ω 1 is nonempty. Then, (GVEP) is type I LP well-
posed if one of the following conditions holds:
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(i) there exists δ1 > 0 such that S(δ1) is compact, where

(3.16) S(δ1) = {x ∈ X1 : d(x, X0) ≤ δ1};

(ii) the function φ1 defined by (2.9) is level-compact on X1;

(iii) X is a finite-dimensional normed space and

(3.17) lim
x∈X1,||x||→+∞

max{φ1(x), d(x, X0)} = +∞;

(iv) there exists δ1 > 0 such that φ1 is level-compact on S(δ1) defined by
(3.17);

Proof. It is easy to see that condition (i) and (ii) imply condition (iv). Now we
show that condition (iii) implies condition (iv). It follows from Proposition 2.3 that
the function φ1 defined by (2.9) is lower semi-continuous, and thus for any t ∈ R,
the set {x ∈ S(δ1) : φ(x) ≤ t} is closed. Since X is a finite dimensional space, we
only need to show that for any t ∈ R, the set {x ∈ S(δ1) : φ(x) ≤ t} is bounded.
Suppose to the contrary, there exist t ∈ R and {x′n} ⊂ S(δ1) and φ(x′

n) ≤ t such
that ||x′

n|| → +∞. It follows from {x′n} ⊂ S(δ1) that d(x′
n, X0) ≤ δ1 and so

max{φ(x′
n), d(x′

n, X0)} ≤ max{t, δ1},
which contradicts with (3.18).

Therefore, we only need to prove that if condition (iv) holds, then (GVEP)
is type I LP well-posed. Suppose that condition (iv) holds and {xn} is a type
I LP approximating solution sequence for (GVEP). Then there exist {εn} ⊂ R+

with εn > 0 and zn ∈ T (xn) such that (2.1) and (2.2) hold. By (2.1), we can
assume without loss of generality that {xn} ⊂ S(δ1). It follows from (2.2) that
ξe(xn, f(xn, zn, y)) ≥ −εn, ∀y ∈ X0. Thus

(3.18) φ(xn) ≤ εn, ∀n.

From (3.19), without loss of generality that {xn} ⊆ {x ∈ S(δ1) : φ(x) ≤ b} for
some b > 0. Since φ is level-compact on S(δ1), the subset {x ∈ S(δ1) : φ(x) ≤ b}
is compact. It follows that there exist a subsequence {xnj} of {xn} and x̄ ∈ S(δ1)
such that xnj → x̄. The rest of the proof is similar with that of Theorem 3.3. This
completes the proof.

Similarly, we can prove the following results:

Proposition 3.2. Assume that for any y ∈ X1, the vector-valued map (x, z) �→
f(x, z, y) is continuous, the set-valued map T is upper semi-continuous and compact-
valued on X1, the set-valued map W : X → 2Y defined by W (x) = Y \−intC(x)
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is upper semi-continuous, and Ω 1 is nonempty. Then, (GVEP) is generalized type
I LP well-posed if one of the following conditions holds:

(i) there exists δ1 > 0 such that S1(δ1) is compact where

(3.20) S1(δ1) = {x ∈ X1 : d(g(x), K) ≤ δ1};
(ii) the function φ1 defined by (2.9) is level-compact on X1;
(iii) X is a finite-dimensional normed space and

lim
x∈X1,||x||→+∞

max{φ1(x), d(g(x),K)}= +∞;

(iv) there exists δ1 > 0 such that φ1 is level-compact on S1(δ1) defined by
(3.19).

Definition 3.5. Let ∅ �= D ⊂ X1. A vector-valued map t(x) from D to
Z (resp. L(X, Y )) is called a selection of the set-valued map T (resp. Q) if
t(x) ∈ T (x)(resp., t(x) ∈ Q(x)) ∀ ∈ D.

Proposition 3.3. Let X be finite dimensional. Assume that for any y ∈ X 1, the
vector-valued map (x, z) �→ f(x, z, y) is continuous, the set-valued map T is upper
semi-continuous and compact-valued on X 1, the set-valued map W : X → 2Y

defined by W (x) = Y \ −intC(x) is closed, and Ω1 is nonempty. If there exist
δ1 > 0 and x0 ∈ X0 such that

(3.20) lim
x∈S(δ1),‖x‖→+∞

ξe(x, f(x, z(x), x0)) = −∞,

for any selection z(x) of T , where S(δ1) is defined by (3.17), then, (GVEP) is type
I LP well-posed.

Proof. Let {xn} be a type I LP approximating solution sequence for (GVEP).
Then there exists {εn} ⊂ R+ with εn > 0 and zn ∈ T (xn) such that (2.1) and
(2.2) hold. By (2.1), we can assume without loss of generality that {xn} ⊂ S(δ1).
It follows from (2.2) that

(3.21) ξe(xn, f(xn, zn, y)) ≥ −εn, ∀y ∈ X0.

Next we show that {xn} is bounded. Otherwise, we assume without loss of gener-
ality that ‖ xn ‖→ +∞. By (3.21), We have

lim
n→+∞ ξe(xn, f(xn, zn, x0)) = −∞,

contradicting (3.22) (with y is replaced by x0) when n is sufficiently large. Con-
sequently, we can assume without loss of generality that xn → x̄ ∈ X1. This fact,
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together with (2.1), yields x̄ ∈ X0. Furthermore, from the upper semi-continuity
of T at x̄, the compactness of T (x̄), we deduce that there exist {znj} ⊂ {zn} and
some z ∈ T (x̄) such that znj → t̄. Taking the limit in (2.2) with zn replaced by
znj as j → +∞, by the continuity of f and the closedness of W , we have x̄ ∈ Ω1.

Similarly, we can prove the next proposition.

Proposition 3.4. Let X be finite dimensional. Assume that for any y ∈ X 1, the
vector-valued map (x, z) �→ f(x, z, y) is continuous, the set-valued map T is upper
semi-continuous and compact-valued on X 1, the set-valued map W : X → 2Y

defined by W (x) = Y \ −intC(x) is closed, and Ω1 is nonempty. If there exist
δ1 > 0 and x0 ∈ X0 such that

lim
x∈S1(δ1),‖x‖→+∞

ξe(x, f(x, z(x), x0)) = −∞,

for any selection z(x) of T , where S1(δ1) is defined by (3.20), then, (GVEP) is
generalized type I LP well-posed.

Remark 3.2.

(i) If X is a finite dimensional space, then the ”level-compactness” condition in
Propositions 3.1 - 3.2 can be replaced by the ”level-boundedness” condition.

(ii) Propositions 3.1-3.4 are generalizations of Propositions 2.2-2.5 in [14] and
[16], Propositions 2.1, 2.2 and 2.5 in [15], and Propositions 4.2-4.4 and
4.6 in [17]. Propositions 3.1 and 3.2, respectively, generalize and extend
Propositions 3.18 and 3.17 in [18].
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