THE FORMATION OF SINGULARITIES IN THE HARMONIC MAP HEAT FLOW WITH BOUNDARY CONDITIONS

Chi-Cheung Poon

Abstract

Let M be a compact manifold with boundary and N be compact manifold without boundary. Let $u(x, t)$ be a smooth solution of the harmonic heat equation from M to N with Dirichlet or Neumann condition. Suppose that M is strictly convex, we will prove a monotonicity formula for u. Moreover, if T is the blow-up time for u, and $\sup _{M}|D u|^{2}(x, t) \leq C /(T-t)$, we prove that a subsequence of the rescaled solutions converges to a homothetically shrinking soliton.

1. Introduction

Let M and N be compact manifolds and let $u(x, t)$ be a smooth solution of the harmonic heat equation

$$
\begin{equation*}
u_{t}=\Delta_{M} u+\Gamma_{N}(u)(D u, D u) \quad \text { in } \quad M \times(0, T) \tag{1.1}
\end{equation*}
$$

Suppose that T is the blow-up time for u, i.e.,

$$
\sup _{M}|D u|(x, t) \rightarrow \infty \quad \text { as } \quad t \rightarrow T
$$

Let x_{0} be a singularity point. We define

$$
\begin{equation*}
u_{\lambda}(x, t)=u\left(\exp _{x_{0}} \lambda x, T+\lambda^{2} t\right) \tag{1.2}
\end{equation*}
$$

When M is a compact manifold without boundary and has dimension n, in [2], Grayson and Hamilton proved that if the singularity forms rapidly, i.e.,

$$
\begin{equation*}
\sup _{M}|D u|^{2}(x, t) \leq \frac{C}{T-t} \tag{1.3}
\end{equation*}
$$

there is a sequence λ_{i} such that on each compact set in $\mathbb{R}^{n} \times(-\infty, 0)$, the rescaled maps $\left\{u_{\lambda_{i}}\right\}$ converges uniformly to a non-constant map $\bar{u}: \mathbb{R}^{n} \times(-\infty, 0) \rightarrow N$

[^0]and \bar{u} satisfies the harmonic map heat flow on \mathbb{R}^{n}, and is dilation-invariant, i.e., for any $\lambda>0$, we have
\[

$$
\begin{equation*}
\bar{u}(x, t)=\bar{u}\left(\lambda x, \lambda^{2} t\right) . \tag{1.4}
\end{equation*}
$$

\]

We call a solution of the harmonic heat equation (1.1) satisfying the dilation-invariant condition (1.4) a homothetic soliton.

To prove their results, Grayson and Hamilton made use of a monotonicity formula from [4]: Let $u(x, t): M \times(0, T) \rightarrow N$ be a smooth solution to the harmonic map heat flow, and

$$
\int_{M}|D u|^{2}(x, t) d x \leq E_{0} \quad \text { for } \quad 0<t<T
$$

If we define

$$
Z(t)=(T-t) \int_{M}|D u|^{2} k d x
$$

where k is the backward heat kernel on M, then, there are constants $B>0$ and $C>0$ such that for any $0<t<T$,

$$
\frac{d}{d t}\left(e^{2 C \varphi} Z\right) \leq-2 e^{2 C \varphi}(T-t) \int_{M}\left|\Delta u+\frac{D u \cdot D k}{k}\right|^{2} k d x+4 C E_{0} e^{2 C \varphi}
$$

where

$$
\varphi(t)=(T-t)\left(\frac{n}{2}+\log \left(B /(T-t)^{n / 2}\right)\right)
$$

This involves a nontrivial estimates on the matrix of second derivatives of the heat kernel on a compact manifold M : there are constants B and C depending only on M such that,

$$
D_{i} D_{j} k-\frac{D_{i} k D_{j} k}{k}+\frac{1}{2 t} k g_{i j}+C k\left(1+\log \left(\frac{B k}{t^{m / 2}}\right)\right) g_{i j} \geq 0 .
$$

See [3].
Here, we would like to consider the case where M has non-empty boundary and the solution $u(x, t)$ satisfies the Dirichlet boundary condition

$$
\begin{equation*}
u(x, t)=h(x) \quad \text { on } \quad \partial M \times(0, T) \tag{1.5}
\end{equation*}
$$

or the Neumann boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad \partial M \times(0, T) . \tag{1.6}
\end{equation*}
$$

Let x_{0} and x be points in M. We denote $r\left(x_{0} ; x\right)$ to be the distance between x_{0} and x. We define

$$
\mathcal{E}\left(x_{0} ; t\right)=(T-t) \int_{M}|D u|^{2}(x, t) G\left(x_{0}, T ; x, t\right) d x
$$

where

$$
G(y, s ; x, t)=\left(\frac{1}{4 \pi|s-t|}\right)^{n / 2} \exp \left(\frac{r^{2}(y ; x)}{4(t-s)}\right)
$$

When $M=\mathbb{R}^{n}$, the function $G(y, s ; x, t)$ is the backward heat kernel. When ∂M is strictly convex and $u(x, t)$ is a smooth solution of the harmonic heat equation and satisfies the Dirichlet boundary condition (1.5), we will prove a monotonicity formula: there is a constant $A>0$, such that

$$
\begin{align*}
& \frac{d}{d t}\left(\exp \left(2|T-t|^{1 / 2}\right) \mathcal{E}(t)+A|T-t|^{1 / 2}\right) \\
\leq & -2 \exp \left(2|T-t|^{1 / 2}\right)|T-t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4(t-T)}\right)^{2} G d x \tag{1.7}
\end{align*}
$$

Using this formula, we obtain the similar results as in [2]. Let u_{λ} be the function defined in (1.2). Suppose that (1.3) holds and $\left(x_{0}, T\right)$ is an interior singularity point, then there is a sequence λ_{i} such that on each compact set in $\mathbb{R}^{n} \times(-\infty, 0)$, $\left\{u_{\lambda_{i}}\right\}$ in converges uniformly to a non-constant map $\bar{u}: \mathbb{R}^{n} \times(-\infty, 0) \rightarrow N$ and \bar{u} satisfies the harmonic map heat flow on \mathbb{R}^{n}, and is dilation-invariant. Let $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{n}>0\right\}$. If $\left(x_{0}, T\right)$ is a boundary singularity point, we show that there is a sequence λ_{i} such that on each compact set in $\mathbb{R}_{+}^{n} \times(-\infty, 0),\left\{u_{\lambda_{i}}\right\}$ in converges uniformly to a non-constant map $\bar{u}: \mathbb{R}_{+}^{n} \times(-\infty, 0) \rightarrow N$. Also, the limit function \bar{u} satisfies the harmonic map heat flow on $\mathbb{R}_{+}^{n} \times(-\infty, 0)$, and is dilationinvariant, and is a constant on the hyperplane $\left\{(x, t) \in \mathbb{R}^{n} \times(-\infty, 0): x_{n}=0\right\}$.

It is interesting to know whether boundary singularities exist. This is equivalent to ask whether there is non-constant solution to the harmonic map heat flow on $\mathbb{R}_{+}^{n} \times(-\infty, 0)$, and is dilation-invariant and is a constant on the hyperplane $\{(x, t) \in$ $\left.\mathbb{R}^{n} \times(-\infty, 0): x_{n}=0\right\}$. In fact, there are harmonic maps from $B^{3}(1)=\{x \in$ $\left.\mathbb{R}^{3}:|x|<1\right\}$ to $S^{2}=\left\{x \in \mathbb{R}^{3}:|x|=1\right\}$ which is smooth in B^{3} and have singularities on the boundary, [6].

Let $u: M \times[0, T) \rightarrow N$ be a regular solution of (1.1) with Neumann boundary condition (1.6). Suppose that M is a compact manifold with convex boundary. We prove that similar results are true. Let $\mathcal{E}\left(x_{0} ; t\right)$ be the energy function defined in the above, we show that there is a constant $B>0$ such that

$$
\begin{aligned}
& \frac{d}{d t}\left(\exp \left(2|T-t|^{1 / 2}\right) \mathcal{E}(t)+B|T-t|^{1 / 2}\right) \\
\leq & -2 \exp \left(2|T-t|^{1 / 2}\right)|T-t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4(t-T)}\right)^{2} G d x
\end{aligned}
$$

Using this monotonicity formula, it is not difficult to see that the small-energyregularity theory also works and the rescaled solution converges to a homothetically shrinking solition solution.

In a forthcoming paper, we will use similar method to treat the equation

$$
u_{t}=\Delta u+u^{p}
$$

defined on a compact manifold with convex boundary.

2. Monotonicity Formula

Let M be a compact manifold with $C^{2, \alpha}$ boundary and N be a compact manifold. Let $u(x, t)$ be a smooth solution of the harmonic heat equation

$$
\begin{equation*}
u_{t}=\Delta_{M} u+\Gamma_{N}(u)(D u, D u) \quad \text { in } \quad M \times(0, T) . \tag{2.1}
\end{equation*}
$$

The term $\Gamma_{N}(u)(D u, D u)$ is perpendicular to the tangent plane at $u(x)$ and for some constant $C>0$, depending only on N,

$$
\left|\Gamma_{N}(u)(D u, D u)\right| \leq C|D u|^{2} .
$$

We assume that $u(x, t)$ satisfies the Dirichlet boundary condition

$$
\begin{equation*}
u(x, t)=h(x) \quad \text { on } \quad \partial M \times(0, T) \tag{2.2}
\end{equation*}
$$

where h is a function in $C^{2, \alpha}(\bar{M}, N)$. Let x and x_{0} be in \bar{M}. We denote $r\left(x_{0} ; x\right)$ to be the distance between x_{0} and x on M. We say ∂M is strictly convex, if there is a constant $\gamma>0$ so that for any $x_{0} \in \bar{M}$,

$$
\begin{equation*}
D r^{2} \cdot \nu \geq \gamma r^{2}>0 \quad \text { on } \quad \partial M, \tag{2.3}
\end{equation*}
$$

where ν is the unit outward normal on ∂M.
Suppose that Ω is a strictly convex domain in \mathbb{R}^{n} with smooth boundary. There exists $R>0$ such that for any $x \in \partial \Omega$, there is $y \in \mathbb{R}^{n}, \Omega$ is contained in $B(y, R)=\{x:|x-y|<R\}$ and $\partial B(y, R) \cap \partial \Omega=\{x\}$. In that case, if $v(x)$ is the unit outward normal at x, then we have $\nu(x)=(x-y) /|x-y|$. Also, for any $x_{0} \in \bar{\Omega}$, we have $r\left(x, x_{0}\right)=\left|x-x_{0}\right|$ and $D r^{2}\left(x, x_{0}\right)=2\left(x-x_{0}\right)$. Thus,

$$
D r^{2}\left(x, x_{0}\right) \cdot \nu(x)=2 \frac{\left(x-x_{0}\right) \cdot(x-y)}{|x-y|}=\frac{2|x-y|^{2}-2\left(x_{0}-y\right) \cdot(x-y)}{|x-y|} .
$$

Since $|x-y|=R$ and $\left|x_{0}-y\right| \leq R$, we have

$$
D r^{2}\left(x, x_{0}\right) \cdot \nu(x) \geq \frac{|x-y|^{2}-2\left(x_{0}-y\right) \cdot(x-y)+\left|x_{0}-y\right|^{2}}{|x-y|}=\frac{r^{2}\left(x, x_{0}\right)}{R} .
$$

Hence, (2.3) is true with $\gamma=1 / R$.
For any $x_{0} \in M$, we also define the function

$$
G\left(x_{0}, T ; x, t\right)=\left(\frac{1}{4 \pi|T-t|}\right)^{n / 2} \exp \left(\frac{r^{2}\left(x_{0} ; x\right)}{4(t-T)}\right) .
$$

Suppose that

$$
\max _{x \in M}|D u|(x, t) \rightarrow \infty \quad \text { as } \quad t \rightarrow T .
$$

For any $x_{0} \in \bar{M}$, let

$$
\mathcal{E}\left(x_{0} ; t\right)=(T-t) \int_{M}|D u|^{2}(x, t) G\left(x_{0}, T ; x, t\right) d x
$$

Theorem 2.1. Suppose that ∂M is strictly convex. Let $u(x, t)$ be a smooth solution of the harmonic heat equation with Dirichlet boundary condition, and

$$
\begin{equation*}
\int_{M}|D u|^{2}(x, t) d x \leq E_{0} \quad \text { for } \quad t \in(0, T) \tag{2.4}
\end{equation*}
$$

Then, there is $A>0$, depending only on M, N, h, T and E_{0}, so that, for all $t \in(0, T)$,

$$
\begin{align*}
& \frac{d}{d t}\left(\exp \left(2|T-t|^{1 / 2}\right) \mathcal{E}\left(x_{0} ; t\right)+A|T-t|^{1 / 2}\right) \\
\leq & -2 \exp \left(2|T-t|^{1 / 2}\right)|T-t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4(t-T)}\right)^{2} G\left(x_{0}, T ; x, t\right) d x \tag{2.5}
\end{align*}
$$

We will need the following propositions. The first one concerns the hessian of the distance function, the second one concerns an integral on the boundary.

Proposition 2.2. Let $x_{0} \in \bar{M}$ and $r(x)=\operatorname{dist}\left(x, x_{0}\right)$. There is a constant C depending on M so that

$$
\left|\Delta r^{2}-2 n\right| \leq C r^{2}
$$

and

$$
\left.\left.\left|D^{2}\left(r^{2}\right)(X, X)-2\right| X\right|^{2}\left|\leq C r^{2}\right| X\right|^{2}
$$

where $D^{2}(f)$ denotes the hessian of a function f and X is any tangent vector on $T_{x} M$.

Proposition 2.3. There is a constant $C>0$, depending on the geometries of ∂M and M only, so that, for any $x_{0} \in \bar{M}$,

$$
\int_{\partial M} G\left(x_{0}, T ; x, t\right) d \sigma \leq \frac{C}{|t|^{1 / 2}}
$$

Proof. Since ∂M is $C^{2, \alpha}$ and compact, there is $R>0$ such that for any $a \in M$, and $\operatorname{dist}(a, \partial M)<R$, there is $\tilde{a} \in \partial M$ such that $\operatorname{dist}(a, \partial M)=\operatorname{dist}(a, \tilde{a})$. Moreover, we may choose R small enough, such that for each $\tilde{a} \in \partial M$, the set

$$
B(\tilde{a}, R)=\{x \in \bar{M}: \operatorname{dist}(x, \tilde{a})<R\}
$$

can be represented by a chart $\left(\phi_{1}, \ldots, \phi_{n}\right)$ so that $B(\tilde{a}, R) \cap M$ is identified with a region Ω,

$$
\Omega \subset\left\{\phi \in \mathbb{R}^{n}:|\phi| \leq 2 R, \phi_{n}>\varphi\left(\phi_{1}, \ldots, \phi_{n-1}\right\}\right.
$$

for some $C^{2, \alpha}$ function $\varphi, \varphi(0)=0$. The boundary region $\partial M \cap B(\tilde{a}, R)$ is identified with the graph $\phi_{n}=\varphi\left(\phi_{1}, \ldots, \phi_{n}\right)$ and the point \tilde{a} is identified with the point $0 \in \mathbb{R}^{n}$. Since ∂M is a compact set, if R is chosen small enough, there is a constant $\delta>0$, depending only on M, such that if $x, \bar{x} \in B(\tilde{a}, R) \cap M$, and $\phi, \bar{\phi}$ be corresponding points in Ω, we have

$$
\delta \operatorname{dist}_{M}(x, \bar{x}) \leq \operatorname{dist}_{\mathbb{R}^{n}}(\phi, \bar{\phi}) \leq \frac{1}{\delta} \operatorname{dist}_{M}(x, \bar{x})
$$

Furthermore, if we choose R and δ small enough, for $x, \bar{x} \in \partial M \cap B(\tilde{a}, R)$, we also have

$$
\delta \operatorname{dist}_{\partial M}(x, \bar{x}) \leq \operatorname{dist}_{\mathbb{R}^{n}}(\phi, \bar{\phi}) \leq \frac{1}{\delta} \operatorname{dist}_{\partial M}(x, \bar{x})
$$

Now, let $x_{0} \in \bar{M}$ and $\operatorname{dist}\left(x_{0}, \partial M\right)=d<R / 2$. We can find $\tilde{x}_{0} \in \partial M$ and a chart $\left(\phi_{1}, \ldots, \phi_{n}\right)$ described in the above. After a rotation, we may assume that the point \tilde{x}_{0} is identified with the origin in the chart and the point x_{0} is identified with the point $(0, \ldots, 0, d)$. For any $x \in \partial M \cap B\left(\tilde{x}_{0}, R\right)$, which is identified with a point $\phi \in \partial \Omega$, we have

$$
\begin{aligned}
\frac{1}{\delta} \operatorname{dist}_{M}^{2}\left(x, x_{0}\right) & \geq \phi_{1}^{2}+\ldots+\phi_{n-1}^{2}+\left(\phi_{n}-d\right)^{2} \geq \phi_{1}^{2}+\ldots+\phi_{n-1}^{2} \\
& \geq \delta \operatorname{dist}_{\partial M}^{2}\left(x, \tilde{x}_{0}\right) \geq \delta \operatorname{dist}_{M}^{2}\left(x, \tilde{x}_{0}\right)
\end{aligned}
$$

We let $\tilde{r}(x)=\operatorname{dist}_{\partial M}^{2}\left(x, \tilde{x}_{0}\right)$ for $x \in \partial M$. Then,

$$
G(x, t) \leq \frac{1}{|t|^{n / 2}} \exp \left(\frac{\delta^{2} \tilde{r}^{2}(x)}{4 t}\right) \quad \text { when } \quad x \in \partial M \cap B\left(\tilde{x}_{0}, R\right), \quad t<0
$$

and

$$
G(x, t) \leq \frac{1}{|t|^{n / 2}} \exp \left(\frac{R^{2}}{4 t}\right) \quad \text { when } \quad x \in \partial M-B\left(\tilde{x}_{0}, R\right), \quad t<0
$$

Thus, when $\operatorname{dist}\left(x_{0}, \partial M\right) \leq R / 2$, we have

$$
\begin{align*}
\int_{\partial M} G d \sigma & =\int_{\partial M \cap B\left(\tilde{x}_{0}, R\right)} G d \sigma+\int_{\partial M-B\left(\tilde{x}_{0}, R\right)} G d \sigma \\
& \leq \frac{C_{2}}{|t|^{1 / 2}}+\frac{1}{|t|^{n / 2}} \exp \left(\frac{R}{4 t}\right) \operatorname{vol}(\partial M) \tag{2.6}\\
& \leq \frac{C_{3}}{|t|^{1 / 2}}
\end{align*}
$$

If $\operatorname{dist}\left(x_{0}, \partial M\right)>R / 2$, then

$$
\begin{equation*}
\int_{\partial M} G d \sigma=\frac{1}{|t|^{n / 2}} \int_{\partial M} \exp \left(\frac{r^{2}}{4 t}\right) d x \leq \frac{1}{|t|^{n / 2}} \exp \left(\frac{R^{2}}{16 t}\right) \operatorname{vol}(\partial M) \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7), there is a constant $C_{4}>0$ so that

$$
\begin{equation*}
\int_{\partial M} G d \sigma \leq \frac{C_{4}}{|t|^{1 / 2}} \tag{2.8}
\end{equation*}
$$

We note that the constant C_{4} depends on the geometries of ∂M and M only.
Proof of Theorem 2.1. After a translation in time, we may assume the $u(x, t)$ is defined on $(-T, 0)$. Let $x_{0} \in \bar{M}$. We will write $r(x)=r\left(x_{0} ; x\right)=\operatorname{dist}\left(x_{0}, x\right)$, and

$$
\mathcal{E}(t)=\mathcal{E}\left(x_{0} ; t\right)=|t| \int_{M}|D u|^{2}(x, t) G(x, t) d x
$$

where

$$
G(x, t)=\left(\frac{1}{4 \pi|t|}\right)^{n / 2} \exp \left(\frac{r^{2}(x)}{4 t}\right)
$$

for $x \in M$ and $t \in(-T, 0)$. By straightforward computations, we have

$$
\begin{aligned}
& \mathcal{E}^{\prime}(t) \\
&=-\int_{M}|D u|^{2}(x, t) G(x, t) d x+|t| \int_{M}\left(2 D u \cdot D u_{t} G+|D u|^{2} G_{t}\right) d x \\
&=-\int_{M}|D u|^{2}(x, t) G(x, t) d x+2|t| \int_{M}\left(D u \cdot D u_{t}+\frac{D u \cdot D^{2} u \cdot D r^{2}}{4 t}\right) G d x \\
&+|t| \int_{M}|D u|^{2}\left(G_{t}+\Delta G\right) d x+2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma \\
&=-\int_{M}|D u|^{2}(x, t) G(x, t) d x+2|t| \int_{M} D u \cdot D\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right) G d x \\
&-2|t| \int_{M} \frac{D u \cdot D^{2} r^{2} \cdot D u}{4 t} G d x+|t| \int_{M}|D u|^{2}\left(G_{t}+\Delta G\right) d x \\
&+2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma \\
&=-2|t| \int_{M}\left(\Delta u+\frac{D u \cdot D r^{2}}{4 t}\right)\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right) G d x \\
&-\int_{M}|D u|^{2}(x, t) G(x, t) d x-2|t| \int_{M} \frac{D u \cdot D^{2} r^{2} \cdot D u}{4 t} G d x \\
&+|t| \int_{M}|D u|^{2}\left(G_{t}+\Delta G\right) d x+2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma \\
&+2|t| \int_{\partial M} \frac{\partial u}{\partial \nu}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right) G d \sigma .
\end{aligned}
$$

By equation (2.1), since the term $\Gamma_{N}(u)(D u, D u)$ is orthogonal to $T_{u(x)} N$, we have

$$
\begin{aligned}
& \mathcal{E}^{\prime}(t) \\
&=-2|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x+|t| \int_{M}|D u|^{2}\left(G_{t}+\Delta G\right) d x \\
&-\int_{M}|D u|^{2}(x, t) G(x, t) d x-2|t| \int_{M} \frac{D u \cdot D^{2} r^{2} \cdot D u}{4 t} G d x \\
&+2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma+2|t| \int_{\partial M} \frac{\partial u}{\partial \nu}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right) G d \sigma .
\end{aligned}
$$

Since $u_{t}=0$ on ∂M, from (2.9), we have

$$
\begin{aligned}
& \mathcal{E}^{\prime}(t) \\
&=-2|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x+|t| \int_{M}|D u|^{2}\left(G_{t}+\Delta G\right) d x \\
&-\int_{M}|D u|^{2}(x, t) G(x, t) d x-2|t| \int_{M} \frac{D u \cdot D^{2} r^{2} \cdot D u}{4 t} G d x \\
&+2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma+2|t| \int_{\partial M} \frac{\partial u}{\partial \nu} \frac{D u \cdot D r^{2}}{4 t} G d \sigma .
\end{aligned}
$$

On ∂M, we may write

$$
D u=\frac{\partial u}{\partial \nu}+D_{T} u \quad \text { and } \quad D r^{2}=D r^{2} \cdot \nu+D D_{T} r^{2} .
$$

Then,

$$
\frac{\partial u}{\partial \nu}\left(D u \cdot D r^{2}\right)=\frac{\partial u}{\partial \nu}\left(\frac{\partial u}{\partial \nu}\left(D r^{2} \cdot \nu\right)+D_{T} u \cdot D_{T} r^{2}\right) .
$$

When $t \in(-T, 0)$, this gives

$$
\begin{aligned}
& 2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma+2|t| \int_{\partial M} \frac{\partial u}{\partial \nu} \frac{D u \cdot D r^{2}}{4 t} G d \sigma \\
= & -\frac{1}{2} \int_{\partial M}\left|D_{T} u\right|^{2}\left(D r^{2} \cdot \nu\right) G d \sigma-\frac{1}{2} \int_{\partial M} \frac{\partial u}{\partial \nu}\left(D_{T} u \cdot D_{T} r^{2}\right) G d \sigma \\
& -\int_{\partial M}\left(\frac{\partial u}{\partial \nu}\right)^{2}\left(D r^{2} \cdot \nu\right) G d \sigma
\end{aligned}
$$

Also, by (2.3), we have

$$
\begin{aligned}
& 2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma+2|t| \int_{\partial M} \frac{\partial u}{\partial \nu} \frac{D u \cdot D r^{2}}{4 t} G d \sigma \\
\leq & -\int_{\partial M}\left(\frac{\partial u}{\partial \nu}\right)^{2}\left(D r^{2} \cdot \nu\right) G d \sigma+\frac{1}{2} \int_{\partial M}\left|\frac{\partial u}{\partial \nu}\right|\left|D_{T} u\right|\left|D_{T} r^{2}\right| G d \sigma \\
\leq & -\gamma \int_{\partial M}\left(\frac{\partial u}{\partial \nu}\right)^{2} r^{2} G d \sigma+\int_{\partial M}\left|\frac{\partial u}{\partial \nu}\right|\left|D_{T} u\right| r\left|D_{T} r\right| G d \sigma
\end{aligned}
$$

$$
\begin{aligned}
& \leq-\gamma \int_{\partial M}\left(\frac{\partial u}{\partial \nu}\right)^{2} r^{2} G d \sigma+\gamma \int_{\partial M}\left|\frac{\partial u}{\partial \nu}\right|^{2} r^{2} G d \sigma+\frac{1}{4 \gamma} \int_{\partial M}\left|D_{T} u\right|^{2}\left|D_{T} r\right|^{2} G d \sigma \\
& \leq \frac{1}{4 \gamma} \int_{\partial M}\left|D_{T} u\right|^{2}\left|D_{T} r\right|^{2} G d \sigma
\end{aligned}
$$

Thus, one can see that there is a constant C_{1}, depending only on h and γ and the geometries of ∂M and M, so that

$$
\begin{align*}
& 2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma+2|t| \int_{\partial M} \frac{\partial u}{\partial \nu} \frac{D u \cdot D r^{2}}{4 t} G d \sigma \tag{2.11}\\
\leq & \frac{\max \left(D_{T} h\right)^{2}}{4 \gamma} \int_{\partial M} G d \sigma=C_{1} \int_{\partial M} G d \sigma .
\end{align*}
$$

By Proposition 2.3, we obtain

$$
2|t| \int_{\partial M}|D u|^{2} \frac{D r^{2} \cdot \nu}{4 t} G d \sigma+2|t| \int_{\partial M} \frac{\partial u}{\partial \nu} \frac{D u \cdot D r^{2}}{4 t} G d \sigma \leq \frac{C_{5}}{|t|^{1 / 2}} .
$$

Then, equation (2.10) becomes

$$
\begin{aligned}
& \mathcal{E}^{\prime}(t) \\
\text { (2.12) } & -2|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x+|t| \int_{M}|D u|^{2}\left(G_{t}+\Delta G\right) d x \\
& -\int_{M}|D u|^{2}(x, t) G(x, t) d x-2|t| \int_{M} \frac{D u \cdot D^{2} r^{2} \cdot D u}{4 t} G d x+\frac{C_{5}}{|t|^{1 / 2}} .
\end{aligned}
$$

On the other hand, it is easy to compute that

$$
G_{t}+\Delta G=\left(-\frac{n}{2 t}+\frac{\Delta r^{2}}{4 t}\right) G .
$$

By Proposition 2.2, we have

$$
\begin{equation*}
\left|G_{t}+\Delta G\right| \leq C_{6} \frac{r^{2}}{|t|} G \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{|D u|^{2}}{|t|}+\frac{D_{i} u D_{i j} r^{2} D_{j} u}{2 t}\right| \leq C_{7} \frac{r^{2}}{|t|}|D u|^{2} . \tag{2.14}
\end{equation*}
$$

Let t be fixed and $\Gamma=\left\{x \in M: r^{2}(x)<|t|^{1 / 2}\right\}$. Then,

$$
\begin{aligned}
& \int_{M}|D u|^{2}(x, t) \frac{r^{2}}{|t|} G(x, t) d x \\
= & \int_{\Gamma}|D u|^{2}(x, t) \frac{r^{2}}{|t|} G(x, t) d x+\int_{M-\Gamma}|D u|^{2}(x, t) \frac{r^{2}}{|t|} G(x, t) d x \\
= & \frac{1}{|t|^{1 / 2}} \int_{M}|D u|^{2}(x, t) G(x, t) d x+\int_{M}|D u|^{2} \frac{r^{2}}{|t|} \frac{1}{|t|^{n / 2}} \exp \left(\frac{-1}{4|t|^{1 / 2}}\right) d x
\end{aligned}
$$

$$
\leq \frac{1}{|t|^{1 / 2}} \int_{M}|D u|^{2}(x, t) G(x, t) d x+C_{8} \exp \left(\frac{-1}{8|t|^{1 / 2}}\right) \int_{M}|D u|^{2} d x .
$$

Thus, by (2.4), we have

$$
\begin{align*}
\int_{M}|D u|^{2}(x, t) \frac{r^{2}}{|t|} G(x, t) d x \leq & \frac{1}{|t|^{1 / 2}} \int_{M}|D u|^{2}(x, t) G(x, t) d x \tag{2.15}\\
& +C_{9} \exp \left(\frac{-1}{8|t|^{1 / 2}}\right) .
\end{align*}
$$

Combining (2.12), (2.13), (2.14) and (2.15), we have

$$
\begin{aligned}
\mathcal{E}^{\prime}(t) \leq & -2|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x \\
& +\frac{1}{|t|^{1 / 2}} \mathcal{E}(t)+\frac{C_{10}}{|t|^{1 / 2}}
\end{aligned}
$$

The constant C_{10} depends only on M, N, h and E_{0} only. It follows that, for $t \in(-T, 0)$,

$$
\begin{aligned}
& \frac{d}{d t}\left(\exp \left(2|t|^{1 / 2}\right) \mathcal{E}(t)\right) \\
\leq & -2 \exp \left(2|t|^{1 / 2}\right)|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x+\frac{C_{10}}{|t|^{1 / 2}} .
\end{aligned}
$$

By choosing a constant $A>0$ large enough, one sees that, for $t \in(-T, 0)$,

$$
\begin{aligned}
& \frac{d}{d t}\left(\exp \left(2|t|^{1 / 2}\right) \mathcal{E}(t)+A|t|^{1 / 2}\right) \\
\leq & -2 \exp \left(2|t|^{1 / 2}\right)|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x
\end{aligned}
$$

This completes the proof.

3. Partial Regularity Results

Let $u: M \times\left[-4 R_{0}^{2}, 0\right] \rightarrow N$ be a regular solution of (2.1) with Dirichlet boundary condition (2.2). Let $x_{0} \in \bar{M}$ be fixed. Let

$$
\begin{gathered}
r(x)=\operatorname{dist}_{M}\left(x, x_{0}\right), \\
P(R)\left(x_{0}\right)=\left\{(x, t): x \in M, r(x)<R, t \in\left(-R^{2}, 0\right)\right\}, \\
T(R)\left(x_{0}\right)=\left\{(x, t): x \in M, r(x)<R, t \in\left(-4 R^{2},-R^{2}\right)\right\} .
\end{gathered}
$$

Lemma 3.1. Let $u: M \times[-1,0] \rightarrow N$ be a regular solution of (2.1) with Dirichlet boundary condition (2.2). Suppose that for some $A>0$,

$$
\begin{equation*}
|D u|^{2}(x, t) \leq A \quad \text { on } \quad P(2 R) . \tag{3.1}
\end{equation*}
$$

Then, if $x_{0} \in \bar{M}$ and $R>0$ and R is less than the injectivity radius on M, then

$$
\|u\|_{C^{2+\alpha, 1+\alpha / 2}(P(R / 8))} \leq C\left(A+\|h\|_{C^{2+\alpha}}(\partial M)\right) .
$$

Proof. We first assume that $\operatorname{dist}\left(x_{0}, \partial M\right)>R / 4$. We note that in equation (2.1), we have

$$
\left|\Gamma_{N}(u)(D u, D u)\right| \leq C|D u|^{2} .
$$

By interior regularity theory, ([5], Chap. IV, Theorem 9.1), for any $q>1$,

$$
\|u\|_{W_{q}^{2,1}(P(R / 2))} \leq C A,
$$

where for any $Q \subset \mathbb{R}^{n} \times \mathbb{R}$, and $q>1$,

$$
\|u\|_{W_{q}^{2,1}(Q)}=\left(\iint_{Q}\left(\left|u_{t}\right|^{q}+\left|D^{2} u\right|^{q}+|D u|^{q}+|u|^{q}\right) d x d t\right)^{1 / q} .
$$

We choose $q>(n+2) /(1-\alpha)$. Then, by the Sobolev inequality, Lemma 3.3, Chapter II, [5], $D u \in C^{\alpha, \alpha / 2}(P(R / 4))$ and

$$
\|D u\|_{C^{\alpha, \alpha / 2}(P(R / 4))} \leq C\|u\|_{W_{q}^{2,1}(P(R / 2))} \leq C A .
$$

It follows from the parabolic Schauder's estimates that

$$
\|u\|_{C^{2+\alpha, 1+\alpha / 2}(P(R / 8))} \leq C A .
$$

Suppose that $x_{0} \in \partial M$. For any $q>1$, by the boundary regularity theory, we have

$$
\|u\|_{W_{q}^{2,1}(P(2 R))} \leq C\left(A+\|h\|_{C^{2}}(\partial M)\right) .
$$

We choose $q>(n+2) /(1-\alpha)$. Then, by the Sobolev inequality, Lemma 3.3, Chapter II, [5], $D u \in C^{\alpha, \alpha / 2}(P(R))$ and

$$
\|D u\|_{C^{\alpha, \alpha / 2}(P(R))} \leq C\|u\|_{W_{q}^{2,1}(P(2 R))} \leq C\left(A+\|h\|_{C^{2}}(\partial M)\right) .
$$

It follows from the parabolic Schauder's estimates that

$$
\|u\|_{C^{2+\alpha, 1+\alpha / 2}(P(R / 2))} \leq C\left(A+\|h\|_{C^{2+\alpha}}(\partial M)\right) .
$$

If $x_{0} \in M$ and $\operatorname{dist}\left(x_{0}, \partial M\right) \leq R / 4$, we can choose $x_{1} \in \partial M$ such that $\left.P(R / 8)\left(x_{0}\right) \subset P(R / 2)\right)\left(x_{1}\right)$. Then we obtain Lemma 3.1.

Corollary 3.2. Let $u: M \times[0, T) \rightarrow N$ be a regular solution of (2.1) with Dirichlet boundary condition (2.2). Suppose that for some $C_{1}>0$, we have

$$
\sup _{x \in M}|D u|^{2}(x, t) \leq \frac{C_{1}}{T-t}
$$

Then there is a constant $C_{2}>0$ so that

$$
\sup _{x \in M}\left(\left|D^{2} u\right|(x, t)+\left|u_{t}\right|(x, t)\right) \leq \frac{C_{2}}{T-t}
$$

As in the previous section, for any $x_{0} \in \bar{M}$, we let $r(x)=\operatorname{dist}\left(x, x_{0}\right)$ and

$$
G(x, t)=\left(\frac{1}{4 \pi|t|}\right)^{n / 2} \exp \left(\frac{r^{2}(x)}{4 t}\right)
$$

In [1], Y. Chen proved that
Lemma 3.3. Suppose that M is a compact manifold with non-empty boundary. There is a constant $\epsilon_{1}>0$ depending only on M, N and h only, such that for any regular solution $u: M \times\left[-4 R_{0}^{2}, 0\right] \rightarrow N$ of (2.1) with Dirichlet boundary condition (2.2) and

$$
\int_{M}|D u|^{2}(x, t) d x \leq E_{0}<\infty, \quad \text { for } \quad t \in\left[-4 R_{0}^{2}, 0\right)
$$

the following is true: If for some $R \in\left(0, R_{0}\right)$ there holds

$$
\int_{T(R)}|D u|^{2} G d x d t<\epsilon_{1}
$$

then there are constants $\delta>0$, depending on M, N, h, E_{0}, and R only, and $C>0$ depending on M, N and h only, so that

$$
\sup _{P(\delta R)}|D u|^{2} \leq C(\delta R)^{-2}
$$

From Chen's result, we have
Theorem 3.4. Suppose that M is a compact manifold with strictly convex boundary. There are constants $\epsilon_{2}>0$ and $\beta>0$, depending only on M, N and h only, such that for any regular solution $u: M \times[-T, 0) \rightarrow N$ of (2.1) with Dirichlet boundary condition (2.2) and

$$
\int_{M}|D u|^{2}(x, t) d x \leq E_{0}<\infty, \quad \text { for } \quad t \in[-T, 0)
$$

the following is true: If

$$
\begin{equation*}
\left|t_{0}\right| \int_{M}|D u|^{2}\left(x, t_{0}\right) G\left(x, t_{0}\right) d x<\epsilon_{2} \tag{3.2}
\end{equation*}
$$

for some $t_{0} \in(-\beta, 0)$, then there are constants $\delta>0$, depending on M, N, E_{0}, and β only, and $C>0$ depending on M, N only, so that

$$
\sup _{P\left(\delta \sqrt{\left|t_{0}\right|}\right)}|D u|^{2} \leq \frac{C}{\delta^{2}\left|t_{0}\right|} .
$$

Proof. Let $t_{0}=-4 R^{2}$. If x_{0} lies in the interior of M and dist $\left(x_{0}, \partial M\right)>R$, using the monotonicity formula (2.5), we may follow the arguments in [2] to prove the Theorem.

Suppose that dist $\left(x_{0}, \partial M\right) \leq R$. By the monotonicity formula (2.5), if (3.2) holds, there is $C_{1}>0$ so that

$$
\begin{aligned}
\int_{T(R)}|D u|^{2} G d x d t & \leq \int_{-4 R^{2}}^{-R^{2}} \int_{r(x)<R}|D u|^{2} G d x d t \\
& \leq \frac{1}{4 R^{2}} \int_{-4 R^{2}}^{-R^{2}}|t| \int_{M}|D u|^{2} G d x d t \\
& \leq C_{1} \epsilon_{2} .
\end{aligned}
$$

If ϵ_{2} is chosen small enough, by Lemma 3.3, Theorem 3.4 follows.
Let S be a subset in M. We denote the k-dimensional Hausdorff measure of S by $\mathcal{H}_{k}(S)$. As in [2], using Theorem 3.4, we can prove that

Theorem 3.5. Suppose that M is a compact manifold with strictly convex boundary. Let $u: M \times[0, T) \rightarrow N$ be a regular solution of (2.1) with Dirichlet boundary condition (2.2) and

$$
\int_{M}|D u|^{2}(x, t) d x \leq E_{0}<\infty, \quad \text { for } \quad t \in[0, T)
$$

Let n be the dimension of M. Then, there exists a closed set S with finite $n-2$ dimensional measure such that $u(x, t)$ converges smoothly to a limit $u(x, T)$ as $t \rightarrow T$ on compact sets in $M-S$. Moreover, there exists a constant $C>0$ depending only on M, N, h and E_{0} such that if U is any relatively open set containing S, then

$$
\mathcal{H}_{n-2}(S) \leq C \liminf _{t \rightarrow T} \int_{U}|D u|^{2}(x, t) d x
$$

4. Convergence to the Homothetically Shrinking Solition

Let M be a compact manifold with non-empty $C^{2, \alpha}$, strictly convex boundary. Let $u: M \times[0, T) \rightarrow N$ be a regular solution of (2.1) with Dirichlet boundary condition (2.2). We assume that there is a constant $C_{1}>0$ so that

$$
\begin{equation*}
\sup _{x \in M}|D u|^{2}(x, t) \leq \frac{C_{1}}{T-t} . \tag{4.1}
\end{equation*}
$$

We denote

$$
B(R)=\left\{x \in M: \operatorname{dist}\left(x, x_{0}\right)<R\right\}
$$

and

$$
P(R)=\left\{(x, t) \in M \times(0, T): \operatorname{dist}\left(x, x_{0}\right)<R, t \in\left(T-R^{2}, T\right)\right\} .
$$

Let $\left(x_{0}, T\right)$ be an interior singularity, i.e., $x_{0} \in M$ and there are sequences $x_{n} \in M$ and $t_{n} \in(0, T)$, such that $x_{n} \rightarrow x_{0}$ and $T_{n} \rightarrow T$ as $n \rightarrow \infty$, and

$$
\lim _{n \rightarrow \infty}|D u|\left(x_{n}, t_{n}\right)=\infty .
$$

We let

$$
u_{\lambda}(x, t)=u\left(\exp _{x_{0}} \lambda x, T+\lambda^{2} t\right) .
$$

Using almost the same arguments as in [2], we can show that there is a sequence λ_{i} such that on each compact set in $\mathbb{R}^{n} \times(-\infty, 0),\left\{u_{\lambda_{i}}\right\}$ in C^{∞} converges to a non-constant map

$$
\bar{u}: \mathbb{R}^{n} \times(-\infty, 0) \rightarrow N
$$

and \bar{u} satisfies the harmonic map heat flow, and is dilation-invariant, i.e., for any $\lambda>0$, we have

$$
\bar{u}(x, t)=\bar{u}\left(\lambda x, \lambda^{2} t\right) .
$$

Now we examine the boundary singularities in greater detail by blowing them up. Let $u: M \times[0, T) \rightarrow N$ be a regular solution of (2.1) with Dirichlet boundary condition (2.2). Let $x_{0} \in \partial M$ and for $\lambda>0$, let

$$
u_{\lambda}(x, t)=u\left(\exp _{x_{0}} \lambda x, T+\lambda^{2} t\right) .
$$

Let $R>0$ be a number less than the injectivity radius on M. Using a local chart, we can identify the set $\left\{x \in M: \operatorname{dist}\left(x, x_{0}\right)<R\right\}$ with

$$
\Omega=\left\{x \in \mathbb{R}^{n}:|x|<R, x_{n} \geq \phi\left(x_{1}, \ldots, x_{n-1}\right\}\right.
$$

where $\phi\left(x^{\prime}\right)$ is a $C^{2, \alpha}$ function, $\phi(0)=0, D \phi(0)=0$. When $0<\lambda<1, u_{\lambda}(x, t)$ is defined on the set $\Omega_{\lambda} \times(-T / \lambda, 0)$, where

$$
\Omega_{\lambda}=\left\{(x, t):|x|<R / \lambda, \lambda x_{n} \geq \phi\left(\lambda x_{1}, \ldots, \lambda x_{n-1}\right)\right\} .
$$

For each $\lambda>0$, we have

$$
\begin{equation*}
\left|D u_{\lambda}\right|^{2}(x, t)=\lambda^{2}|D u|^{2}\left(\lambda x, T+\lambda^{2} t\right) \leq \frac{C_{1}}{|t|} . \tag{4.2}
\end{equation*}
$$

By Corollary 3.2,

$$
\left\|u_{\lambda}(x, t)\right\|_{C^{2+\alpha, 1+\alpha / 2}\left(\Omega_{\lambda} \times(-R / \lambda, 0)\right)} \leq \frac{C_{1}}{|t|} .
$$

Hence, there is a subsequence $\left\{u_{\lambda_{i}}\right\}$ such that on each compact set in $\mathbb{R}_{+}^{n} \times(-\infty, 0)$, $\left\{u_{\lambda_{i}}\right\}$ converges in $C^{2+\alpha, 1+\alpha / 2}$ to a map

$$
\bar{u}: \mathbb{R}_{+}^{n} \times(-\infty, 0) \rightarrow N
$$

where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{n} \geq 0\right\}$, and \bar{u} satisfies the harmonic map heat flow. Since the function h in (2.2) is $C^{2, \alpha}$, we have $\bar{u}(x)=h\left(x_{0}\right)$ whenever $x_{n}=0$. We claim that the function \bar{u} satisfies the dilation-invariant condition:

$$
\begin{equation*}
\text { for any } \lambda>0, \quad \bar{u}(x, t)=\bar{u}\left(\lambda x, \lambda^{2} t\right) \tag{4.3}
\end{equation*}
$$

In fact, from the monotonicity formula Theorem 2.1, we have

$$
\begin{equation*}
\int_{T-1}^{T}(T-t) \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4(t-T)}\right)^{2} G d x d t \leq C<\infty \tag{4.4}
\end{equation*}
$$

where

$$
G(x, t)=\left(\frac{1}{|T-t|}\right)^{n / 2} \exp \left(\frac{\operatorname{dist}^{2}\left(x, x_{0}\right)}{4(t-T)}\right)
$$

Then, for any $\epsilon>0$, we can find $\delta>0$ such that

$$
\int_{T-\delta}^{T}(T-t) \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4(t-T)}\right)^{2} G d x d t \leq \epsilon
$$

Let $R>0$ be a number less than the injectivity radius on M. From (4.4), for any $\lambda>0$,

$$
\int_{-\delta / \lambda^{2}}^{0}|t| \int_{B(R / \lambda)}\left(u_{\lambda t}+\frac{D u_{\lambda} \cdot D r^{2}}{4 t}\right)^{2} G_{\lambda} d x d t \leq \epsilon
$$

where

$$
G_{\lambda}(x, t)=\left(\frac{1}{\pi|t|}\right)^{n / 2} \exp \left(\frac{\operatorname{dist}_{M}^{2}\left(\exp _{x_{0}}(\lambda x), x_{0}\right)}{4 \lambda^{2} t}\right)
$$

When $\lambda \rightarrow 0$, we have

$$
\int_{-\infty}^{0}|t| \int_{\mathbb{R}^{n}}\left(\bar{u}_{t}+\frac{D \bar{u} \cdot x}{2 t}\right)^{2} \bar{G} d x d t \leq \epsilon
$$

where

$$
\bar{G}(x, t)=\left(\frac{1}{4 \pi|t|}\right)^{n / 2} \exp \left(\frac{|x|^{2}}{4 t}\right)
$$

is the backward heat heat kernel on \mathbb{R}^{n}. Since ϵ can be any positive number, we have

$$
\int_{-\infty}^{0}|t| \int_{\mathbb{R}_{+}^{n}}\left(\bar{u}_{t}+\frac{D \bar{u}_{\lambda} \cdot x}{2 t}\right)^{2} \bar{G} d x d t=0
$$

It shows that

$$
\bar{u}_{t}+\frac{D \bar{u} \cdot x}{2 t}=0 \quad \text { in } \quad \mathbb{R}_{+}^{n} \times(-\infty, 0)
$$

and (4.3) holds.

By (4.2), when $\lambda \rightarrow 0$, we have

$$
\begin{equation*}
|D \bar{u}|^{2}(x, t) \leq \frac{C_{1}}{|t|} \tag{4.5}
\end{equation*}
$$

By the small energy regularity, Theorem 3.4, if $x_{0} \in \partial M$ and $\left(x_{0}, T\right)$ is a singular point, then, there is $\beta>0$ such that for all $T-\beta \leq t \leq T$, we have

$$
|T-t| \int_{M}|D u|^{2}(x, t) G(x, t) d x>\epsilon
$$

Let $\rho>0$ be large enough so that

$$
\int_{\operatorname{dist}\left(x, x_{0}\right) \geq \rho \sqrt{T-t}} G(x, t) d x \leq \frac{\epsilon}{2 C_{1}}
$$

Then, for all $T-\beta \leq t \leq T$, we have

$$
|T-t| \int_{\operatorname{dist}\left(x, x_{0}\right) \leq \rho \sqrt{T-t}}|D u|^{2}(x, t) G(x, t) d x \geq \epsilon / 2
$$

Since $u_{\lambda_{i}}$ converges to \bar{u} on compact sets in $\mathbb{R}_{+}^{n} \times(-\infty, 0)$, it is not difficult to see that the same will hold for \bar{u} : for $t<0$,

$$
|t| \int_{\left\{x \in \mathbb{R}_{+}^{n},|x| \leq \rho \sqrt{|t|}\right\}}|D \bar{u}|^{2}(x, t) \bar{G}(x, t) d x \geq \epsilon / 2
$$

This implies that \bar{u} is not a constant function.

5. Harmonic Heat Maps with Neumann Boundary Condition

We say ∂M is convex, if for any $a \in \bar{M}$,

$$
\begin{equation*}
D r \cdot \nu \geq 0 \quad \text { on } \quad \partial M \tag{5.1}
\end{equation*}
$$

where $r(x)=\operatorname{dist}(a, x)$ and ν is the unit outward normal on ∂M.
Suppose that ∂M is convex. Let $u(x, t): M \times(0, T) \rightarrow N$ be a smooth solution of the harmonic heat equation with Neumann boundary condition. Suppose that

$$
\max _{x \in M}|D u|(x, t) \rightarrow \infty \quad \text { as } \quad t \rightarrow T
$$

As before, for any $x_{0} \in \bar{M}$, let

$$
\mathcal{E}\left(x_{0} ; t\right)=(T-t) \int_{M}|D u|^{2}(x, t) G\left(x_{0}, T ; x, t\right) d x
$$

where

$$
G\left(x_{0}, T ; x, t\right)=\left(\frac{1}{4 \pi|T-t|}\right)^{n / 2} \exp \left(\frac{r^{2}\left(x_{0} ; x\right)}{4(t-T)}\right)
$$

Theorem 5.1. Suppose that ∂M is convex. Let $u(x, t): M \times(0, T) \rightarrow N$ be a smooth solution of the harmonic heat equation with Neumann boundary condition,

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad \partial M \times(0, T) \tag{5.2}
\end{equation*}
$$

and

$$
\int_{M}|D u|^{2}(x, t) d x \leq E_{0} \quad \text { for } \quad t \in(0, T)
$$

Then there is a constant $B>0$, depending only on M, N, T and E_{0} only, so that, for all $t \in(0, T)$,

$$
\begin{align*}
& \frac{d}{d t}\left(\exp \left(2|T-t|^{1 / 2}\right) \mathcal{E}\left(x_{0} ; t\right)+B|T-t|^{1 / 2}\right) \\
\leq & -2 \exp \left(2|T-t|^{1 / 2}\right)|T-t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4(t-T)}\right)^{2} G\left(x_{0}, T ; x, t\right) d x \tag{5.3}
\end{align*}
$$

Proof. After a translation in time, we may assume that u is defined on $M \times[-T, 0)$. As in section 2 , we will write $r(x)=r\left(x_{0} ; x\right)=\operatorname{dist}\left(x_{0}, x\right)$, and

$$
\mathcal{E}(t)=\mathcal{E}\left(x_{0} ; t\right)=|t| \int_{M}|D u|^{2}(x, t) G(x, t) d x
$$

where

$$
G(x, t)=\left(\frac{1}{4 \pi|t|}\right)^{n / 2} \exp \left(\frac{r^{2}(x)}{4 t}\right)
$$

for $x \in M$ and $t \in(-T, 0)$. By (5.1) and (5.2), equation (2.10) becomes

$$
\mathcal{E}^{\prime}(t)
$$

$$
\begin{align*}
\leq & -2|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x+|t| \int_{M}|D u|^{2}\left(G_{t}+\Delta G\right) d x \tag{5.4}\\
& -\int_{M}|D u|^{2}(x, t) G(x, t) d x-2|t| \int_{M} \frac{D u \cdot D^{2} r^{2} \cdot D u}{4 t} G d x
\end{align*}
$$

By (2.13) and (2.14), we have

$$
\begin{align*}
\mathcal{E}^{\prime}(t) \leq & -2|t| \int_{M}\left(u_{t}+\frac{D u \cdot D r^{2}}{4 t}\right)^{2} G d x \tag{5.5}\\
& +C_{3}|t| \int_{M}|D u|^{2}(x, t) \frac{r^{2}}{|t|} G(x, t) d x
\end{align*}
$$

The rest of the proof is the same as the proof of Theorem 2.1.

Lemma 5.2. Let $u: M \times[-1,0] \rightarrow N$ be a regular solution of (2.1) with Neumann boundary condition (5.1). Suppose that for some $A>0$,

$$
\begin{equation*}
|D u|^{2}(x, t) \leq A \quad \text { on } \quad P(2 R) \tag{5.6}
\end{equation*}
$$

Then,

$$
\|u\|_{C^{2+\alpha, 1+\alpha / 2}(M \times(-1 / 8,0))} \leq C A
$$

Proof. \quad Suppose that $x_{0} \in \partial M$. Let $R>0$ be a number less than the injectivity radius of M. By choosing a $C^{2, \alpha}$ chart, we may identify a set $\Omega \subset\{x \in$ $\left.M: \operatorname{dist}\left(x, x_{0}\right)<R\right\}$ with the set

$$
D_{+}(R / 2)=\left\{x \in \mathbb{R}^{n}:|x|<R / 2, x_{n}>0\right\}
$$

If R is chosen small enough, the map $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is $C^{2, \alpha}$ and its inverse exists and is $C^{2, \alpha}$. In $D_{+}(R / 2), u$ is a solution of an equation of the form:

$$
\begin{equation*}
u_{t}=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a^{i j} \frac{\partial u}{\partial x_{j}}\right)+\Gamma(D u, D u), \tag{5.7}
\end{equation*}
$$

where $a^{i j}$ and Γ are C^{α} functions and $\Gamma(D u, D u) \leq C|D u|^{2}$, and

$$
\frac{\partial u}{\partial x_{n}}=0 \quad \text { whenever } \quad x_{n}=0
$$

Let $u(x, t)=u(-x, t)$ when $x_{n}<0$. Then, $u(x, t)$ is a solution of (5.7) in $D(R / 2) \times(0, T)$, where $D(R / 2)=\left\{x \in \mathbb{R}^{n}:|x|<R / 2\right\}$. As in section 3 , using the regularity theory and Sobolev inequality, we obtain

$$
\|u\|_{C^{2+\alpha, 1+\alpha / 2}\left(B\left(x_{0}, R / 8\right) \times(-R / 8,0)\right)} \leq C A .
$$

If x_{0} lies in the interior of M, we argue as in Lemma 3.1. This proves the Lemma.

As in section 3, we have the small-energy-regularity result:
Theorem 5.3. Suppose that M is a compact manifold with convex boundary. There are constants $\epsilon_{4}>0$ and $\beta>0$, depending only on M, N and h only, such that for any regular solution $u: M \times[-T, 0) \rightarrow N$ of (2.1) with Neumann boundary condition (5.2) and

$$
\int_{M}|D u|^{2}(x, t) d x \leq E_{0}<\infty, \quad \text { for } \quad t \in[-T, 0)
$$

the following is true: If

$$
\left|t_{0}\right| \int_{M}|D u|^{2}\left(x, t_{0}\right) G\left(x, t_{0}\right) d x<\epsilon_{4}
$$

for some $t_{0} \in(-\beta, 0)$, then there are constants $\delta>0$, depending on M, N, E_{0}, and β only, and $C>0$ depending on M, N only, so that

$$
\sup _{P\left(\delta \sqrt{\left|t_{0}\right|}\right)}|D u|^{2} \leq \frac{C}{\delta^{2}\left|t_{0}\right|} .
$$

From Theorem 5.3, we have
Theorem 5.4. Suppose that M is a compact manifold with strictly convex boundary. Let $u: M \times[0, T) \rightarrow N$ be a regular solution of (2.1) with Neumann boundary condition (5.2) and

$$
\int_{M}|D u|^{2}(x, t) d x \leq E_{0}<\infty, \quad \text { for } \quad t \in[0, T)
$$

Let n be the dimension of M. Then, there exists a closed set S with finite $n-2$ dimensional measure such that $u(x, t)$ converges smoothly to a limit $u(x, T)$ as $t \rightarrow T$ on compact sets in $M-S$. Moreover, there exists a constant $C>0$ depending only on M, N, h and E_{0} such that if U is any relatively open set containing S, then

$$
\mathcal{H}_{n-2}(S) \leq C \liminf _{t \rightarrow T} \int_{M}|D u|^{2}(x, t) d x .
$$

Now, suppose that

$$
\sup _{M}|D u|^{2}(x, t) \leq \frac{C}{T-t} .
$$

As in section 4, we let

$$
u_{\lambda}(x, t)=u\left(\exp _{x_{0}} \lambda x, T+\lambda^{2} t\right) .
$$

Using the almost the same arguments, we can show that if $x_{0} \in M$ is a singular point, there is a sequence λ_{i} such that on each compact set in $\mathbb{R}^{n} \times(-\infty, 0),\left\{u_{\lambda_{i}}\right\}$ in $C^{2, \alpha}$ converges to a non-constant map

$$
\bar{u}: \mathbb{R}^{n} \times(-\infty, 0) \rightarrow N
$$

and \bar{u} satisfies the harmonic map heat flow, and is dilation-invariant, i.e., for any $\lambda>0$, we have

$$
\bar{u}(x, t)=\bar{u}\left(\lambda x, \lambda^{2} t\right) .
$$

If $x_{0} \in \partial M$ is a singular point, there is a sequence λ_{i} such that on each compact set in $\mathbb{R}_{+}^{n} \times(-\infty, 0),\left\{u_{\lambda_{i}}\right\}$ in $C^{2, \alpha}$ converges to a non-constant map

$$
\bar{u}: \mathbb{R}_{+}^{n} \times(-\infty, 0) \rightarrow N
$$

where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{n} \geq 0\right\}$, and \bar{u} satisfies the harmonic map heat flow, and

$$
\frac{\partial \bar{u}}{\partial x_{n}}(x, t)=0 \quad \text { whenever } \quad x_{n}=0
$$

and is dilation-invariant, i.e., for any $\lambda>0$, we have

$$
\bar{u}(x, t)=\bar{u}\left(\lambda x, \lambda^{2} t\right) .
$$

References

1. Y. Chen, Existence and partial regularity results for the heat flow for harmonic maps, E Math. Z., 201 (1989), 83-103.
2. M. Grayson and R. Hamilton, The formation of singularities in the harmonic map heat flow, Comm. Anal. Geom., 4 (1996), 525-546.
3. R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. on Analysis and Geometry, 1 (1993), 88-99.
4. R. S. Hamilton, Monotonicity formulas for parabolic flows on manifolds, Comm. on Analysis and Geometry, 1 (1993), 100-108.
5. O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1968.
6. C.-C. Poon, Some new harmonic maps from B^{3} to S^{2}, J. Differential Geometry, $\mathbf{3 4}$ (1991), 165-168.

Chi-Cheung Poon
Department of Mathematics
National Chung Cheng University
Minghsiung, Chiayi 621, Taiwan
E-mail: ccpoon@math.ccu.edu.tw

[^0]: Received January 8, 2010, accepted June 17, 2010.
 Communicated by Jenn-Nan Wang.
 2010 Mathematics Subject Classification: 35K55.
 Key words and phrases: Nonlinear heat equations, Blow-up behavior.

