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THE FORMATION OF SINGULARITIES IN THE HARMONIC MAP
HEAT FLOW WITH BOUNDARY CONDITIONS

Chi-Cheung Poon

Abstract. Let M be a compact manifold with boundary and N be compact
manifold without boundary. Let u(x, t) be a smooth solution of the harmonic
heat equation from M to N with Dirichlet or Neumann condition. Suppose that
M is strictly convex, we will prove a monotonicity formula for u. Moreover,
if T is the blow-up time for u, and supM |Du|2(x, t) ≤ C/(T − t), we prove
that a subsequence of the rescaled solutions converges to a homothetically
shrinking soliton.

1. INTRODUCTION

Let M and N be compact manifolds and let u(x, t) be a smooth solution of the
harmonic heat equation
(1.1) ut = ∆Mu + ΓN (u)(Du, Du) in M × (0, T ).

Suppose that T is the blow-up time for u, i.e.,

sup
M

|Du|(x, t) → ∞ as t → T.

Let x0 be a singularity point. We define

(1.2) uλ(x, t) = u
(
expx0

λx, T + λ2t
)
.

When M is a compact manifold without boundary and has dimension n, in [2],
Grayson and Hamilton proved that if the singularity forms rapidly, i.e.,

(1.3) sup
M

|Du|2(x, t) ≤ C

T − t
,

there is a sequence λi such that on each compact set in R
n × (−∞, 0), the rescaled

maps {uλi} converges uniformly to a non-constant map ū : R
n × (−∞, 0) → N
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and ū satisfies the harmonic map heat flow on R
n, and is dilation-invariant, i.e.,

for any λ > 0, we have

(1.4) ū(x, t) = ū(λx, λ2t).

We call a solution of the harmonic heat equation (1.1) satisfying the dilation-invariant
condition (1.4) a homothetic soliton.

To prove their results, Grayson and Hamilton made use of a monotonicity for-
mula from [4]: Let u(x, t) : M × (0, T ) → N be a smooth solution to the harmonic
map heat flow, and∫

M
|Du|2(x, t) dx ≤ E0 for 0 < t < T.

If we define
Z(t) = (T − t)

∫
M

|Du|2k dx,

where k is the backward heat kernel on M , then, there are constants B > 0 and
C > 0 such that for any 0 < t < T ,

d

dt

(
e2CϕZ

) ≤ −2e2Cϕ(T − t)
∫

M

∣∣∣∣∆u +
Du · Dk

k

∣∣∣∣
2

k dx + 4CE0e
2Cϕ,

where
ϕ(t) = (T − t)

(n

2
+ log

(
B/(T − t)n/2

))
.

This involves a nontrivial estimates on the matrix of second derivatives of the heat
kernel on a compact manifold M: there are constants B and C depending only on
M such that,

DiDjk − DikDjk

k
+

1
2t

kgij + Ck

(
1 + log

(
Bk

tm/2

))
gij ≥ 0.

See [3].
Here, we would like to consider the case where M has non-empty boundary and

the solution u(x, t) satisfies the Dirichlet boundary condition

(1.5) u(x, t) = h(x) on ∂M × (0, T )

or the Neumann boundary condition

(1.6)
∂u

∂ν
= 0 on ∂M × (0, T ).

Let x0 and x be points in M . We denote r(x0; x) to be the distance between
x0 and x. We define

E(x0; t) = (T − t)
∫

M
|Du|2(x, t)G(x0, T ; x, t) dx,
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where
G(y, s; x, t) =

(
1

4π|s − t|
)n/2

exp
(

r2(y; x)
4(t − s)

)
.

When M = R
n, the function G(y, s; x, t) is the backward heat kernel. When ∂M

is strictly convex and u(x, t) is a smooth solution of the harmonic heat equation
and satisfies the Dirichlet boundary condition (1.5), we will prove a monotonicity
formula: there is a constant A > 0, such that

(1.7)

d

dt

(
exp

(
2|T − t|1/2

)
E(t) + A|T − t|1/2

)

≤− 2 exp
(
2|T − t|1/2

)
|T − t|

∫
M

(
ut +

Du · Dr2

4(t − T )

)2

G dx.

Using this formula, we obtain the similar results as in [2]. Let u λ be the function
defined in (1.2). Suppose that (1.3) holds and (x0, T ) is an interior singularity
point, then there is a sequence λi such that on each compact set in R

n × (−∞, 0),
{uλi} in converges uniformly to a non-constant map ū : R

n × (−∞, 0) → N
and ū satisfies the harmonic map heat flow on R

n, and is dilation-invariant. Let
R

n
+ = {x ∈ R

n : xn > 0}. If (x0, T ) is a boundary singularity point, we show that
there is a sequence λi such that on each compact set in R

n
+ × (−∞, 0), {uλi} in

converges uniformly to a non-constant map ū : R
n
+×(−∞, 0) → N . Also, the limit

function ū satisfies the harmonic map heat flow on R
n
+ × (−∞, 0), and is dilation-

invariant, and is a constant on the hyperplane {(x, t) ∈ R
n × (−∞, 0) : xn = 0}.

It is interesting to know whether boundary singularities exist. This is equivalent
to ask whether there is non-constant solution to the harmonic map heat flow on
R

n
+×(−∞, 0), and is dilation-invariant and is a constant on the hyperplane {(x, t) ∈

R
n × (−∞, 0) : xn = 0}. In fact, there are harmonic maps from B3(1) = {x ∈

R
3 : |x| < 1} to S2 = {x ∈ R

3 : |x| = 1} which is smooth in B3 and have
singularities on the boundary, [6].

Let u : M × [0, T ) → N be a regular solution of (1.1) with Neumann boundary
condition (1.6). Suppose that M is a compact manifold with convex boundary. We
prove that similar results are true. Let E(x0; t) be the energy function defined in
the above, we show that there is a constant B > 0 such that

d

dt

(
exp

(
2|T − t|1/2

)
E(t) + B|T − t|1/2

)

≤− 2 exp
(
2|T − t|1/2

)
|T − t|

∫
M

(
ut +

Du · Dr2

4(t − T )

)2

G dx.

Using this monotonicity formula, it is not difficult to see that the small-energy-
regularity theory also works and the rescaled solution converges to a homothetically
shrinking solition solution.



2248 Chi-Cheung Poon

In a forthcoming paper, we will use similar method to treat the equation

ut = ∆u + up

defined on a compact manifold with convex boundary.

2. MONOTONICITY FORMULA

Let M be a compact manifold with C2,α boundary and N be a compact manifold.
Let u(x, t) be a smooth solution of the harmonic heat equation

(2.1) ut = ∆Mu + ΓN (u)(Du, Du) in M × (0, T ).

The term ΓN (u)(Du, Du) is perpendicular to the tangent plane at u(x) and for
some constant C > 0, depending only on N ,

|ΓN (u)(Du, Du)| ≤ C|Du|2.
We assume that u(x, t) satisfies the Dirichlet boundary condition

(2.2) u(x, t) = h(x) on ∂M × (0, T )

where h is a function in C2,α(M̄, N ). Let x and x0 be in M̄ . We denote r(x0; x)
to be the distance between x0 and x on M . We say ∂M is strictly convex, if there
is a constant γ > 0 so that for any x0 ∈ M̄ ,

(2.3) Dr2 · ν ≥ γr2 > 0 on ∂M,

where ν is the unit outward normal on ∂M .
Suppose that Ω is a strictly convex domain in R

n with smooth boundary. There
exists R > 0 such that for any x ∈ ∂Ω, there is y ∈ R

n, Ω is contained in
B(y, R) = {x : |x − y| < R} and ∂B(y, R) ∩ ∂Ω = {x}. In that case, if v(x) is
the unit outward normal at x, then we have ν(x) = (x− y)/|x− y|. Also, for any
x0 ∈ Ω̄, we have r(x, x0) = |x − x0| and Dr2(x, x0) = 2(x − x0). Thus,

Dr2(x, x0) · ν(x) = 2
(x− x0) · (x − y)

|x − y| =
2|x − y|2 − 2(x0 − y) · (x − y)

|x− y| .

Since |x− y| = R and |x0 − y| ≤ R, we have

Dr2(x, x0) · ν(x) ≥ |x − y|2 − 2(x0 − y) · (x − y) + |x0 − y|2
|x − y| =

r2(x, x0)
R

.

Hence, (2.3) is true with γ = 1/R.
For any x0 ∈ M , we also define the function

G(x0, T ; x, t) =
(

1
4π|T − t|

)n/2

exp
(

r2(x0; x)
4(t − T )

)
.
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Suppose that
max
x∈M

|Du|(x, t) → ∞ as t → T.

For any x0 ∈ M̄ , let

E(x0; t) = (T − t)
∫

M
|Du|2(x, t)G(x0, T ; x, t) dx.

Theorem 2.1. Suppose that ∂M is strictly convex. Let u(x, t) be a smooth
solution of the harmonic heat equation with Dirichlet boundary condition, and

(2.4)
∫

M
|Du|2(x, t) dx ≤ E0 for t ∈ (0, T ).

Then, there is A > 0, depending only on M , N , h, T and E0, so that, for all
t ∈ (0, T ),

(2.5)

d

dt

(
exp

(
2|T − t|1/2

)
E(x0; t) + A|T − t|1/2

)

≤− 2 exp
(
2|T − t|1/2

)
|T − t|

∫
M

(
ut +

Du · Dr2

4(t − T )

)2

G(x0, T ; x, t) dx.

We will need the following propositions. The first one concerns the hessian of
the distance function, the second one concerns an integral on the boundary.

Proposition 2.2. Let x0 ∈ M̄ and r(x) = dist(x, x0). There is a constant C
depending on M so that

|∆r2 − 2n| ≤ Cr2

and ∣∣D2(r2)(X, X)− 2|X |2∣∣ ≤ Cr2|X |2,
where D2(f) denotes the hessian of a function f and X is any tangent vector on
TxM .

Proposition 2.3. There is a constant C > 0, depending on the geometries of
∂M and M only, so that, for any x0 ∈ M̄ ,∫

∂M
G(x0, T ; x, t) dσ ≤ C

|t|1/2
.

Proof. Since ∂M is C2,α and compact, there is R > 0 such that for any
a ∈ M , and dist(a, ∂M) < R, there is ã ∈ ∂M such that dist(a, ∂M)=dist(a, ã).
Moreover, we may choose R small enough, such that for each ã ∈ ∂M , the set

B(ã, R) = {x ∈ M̄ : dist(x, ã) < R}
can be represented by a chart (φ1, ..., φn) so that B(ã, R)∩ M is identified with a
region Ω,



2250 Chi-Cheung Poon

Ω ⊂ {φ ∈ R
n : |φ| ≤ 2R, φn > ϕ(φ1, ..., φn−1},

for some C2,α function ϕ, ϕ(0) = 0. The boundary region ∂M ∩ B(ã, R) is
identified with the graph φn = ϕ(φ1, ..., φn) and the point ã is identified with the
point 0 ∈ R

n. Since ∂M is a compact set, if R is chosen small enough, there is a
constant δ > 0, depending only on M , such that if x, x̄ ∈ B(ã, R) ∩ M , and φ, φ̄

be corresponding points in Ω, we have

δdistM (x, x̄) ≤ distRn(φ, φ̄) ≤ 1
δ
distM (x, x̄).

Furthermore, if we choose R and δ small enough, for x, x̄ ∈ ∂M ∩ B(ã, R), we
also have

δdist∂M(x, x̄) ≤ distRn(φ, φ̄) ≤ 1
δ
dist∂M(x, x̄).

Now, let x0 ∈ M̄ and dist(x0, ∂M) = d < R/2. We can find x̃0 ∈ ∂M and
a chart (φ1, ..., φn) described in the above. After a rotation, we may assume that
the point x̃0 is identified with the origin in the chart and the point x 0 is identified
with the point (0, ..., 0, d). For any x ∈ ∂M ∩B(x̃0, R), which is identified with a
point φ ∈ ∂Ω, we have

1
δ

dist2M(x, x0) ≥ φ2
1 + ... + φ2

n−1 + (φn − d)2 ≥ φ2
1 + ... + φ2

n−1

≥ δdist2∂M (x, x̃0) ≥ δdist2M(x, x̃0).

We let r̃(x) = dist2∂M(x, x̃0) for x ∈ ∂M . Then,

G(x, t) ≤ 1
|t|n/2

exp
(

δ2r̃2(x)
4t

)
when x ∈ ∂M ∩ B(x̃0, R), t < 0,

and

G(x, t) ≤ 1
|t|n/2

exp
(

R2

4t

)
when x ∈ ∂M − B(x̃0, R), t < 0.

Thus, when dist(x0, ∂M) ≤ R/2, we have

(2.6)

∫
∂M

G dσ =
∫

∂M∩B(x̃0,R)
G dσ +

∫
∂M−B(x̃0,R)

G dσ

≤ C2

|t|1/2
+

1
|t|n/2

exp
(

R

4t

)
vol(∂M)

≤ C3

|t|1/2
.

If dist(x0, ∂M) > R/2, then

(2.7)
∫

∂M
G dσ =

1
|t|n/2

∫
∂M

exp
(

r2

4t

)
dx ≤ 1

|t|n/2
exp

(
R2

16t

)
vol(∂M).
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From (2.6) and (2.7), there is a constant C4 > 0 so that

(2.8)
∫

∂M
G dσ ≤ C4

|t|1/2
.

We note that the constant C4 depends on the geometries of ∂M and M only.

Proof of Theorem 2.1. After a translation in time, we may assume the u(x, t)
is defined on (−T, 0). Let x0 ∈ M̄ . We will write r(x) = r(x0; x) = dist(x0, x),
and

E(t) = E(x0; t) = |t|
∫

M
|Du|2(x, t)G(x, t) dx,

where
G(x, t) =

(
1

4π|t|
)n/2

exp
(

r2(x)
4t

)
,

for x ∈ M and t ∈ (−T, 0). By straightforward computations, we have

E ′(t)

= −
∫

M

|Du|2(x, t)G(x, t) dx + |t|
∫

M

(
2Du · DutG + |Du|2Gt

)
dx

= −
∫

M
|Du|2(x, t)G(x, t) dx + 2|t|

∫
M

(
Du · Dut +

Du · D2u · Dr2

4t

)
G dx

+ |t|
∫

M

|Du|2(Gt + ∆G) dx + 2|t|
∫

∂M

|Du|2Dr2 · ν
4t

G dσ

= −
∫

M
|Du|2(x, t)G(x, t) dx + 2|t|

∫
M

Du ·D
(

ut +
Du ·Dr2

4t

)
G dx

− 2|t|
∫

M

Du · D2r2 · Du

4t
G dx + |t|

∫
M

|Du|2(Gt + ∆G) dx

+ 2|t|
∫

∂M
|Du|2Dr2 · ν

4t
G dσ

= − 2|t|
∫

M

(
∆u +

Du · Dr2

4t

)(
ut +

Du · Dr2

4t

)
G dx

−
∫

M
|Du|2(x, t)G(x, t) dx − 2|t|

∫
M

Du ·D2r2 · Du

4t
G dx

+ |t|
∫

M
|Du|2(Gt + ∆G) dx + 2|t|

∫
∂M

|Du|2Dr2 · ν
4t

G dσ

+ 2|t|
∫

∂M

∂u

∂ν

(
ut +

Du · Dr2

4t

)
G dσ.

By equation (2.1), since the term ΓN (u)(Du, Du) is orthogonal to Tu(x)N , we
have
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(2.9)

E ′(t)

= − 2|t|
∫

M

(
ut +

Du ·Dr2

4t

)2

G dx + |t|
∫

M
|Du|2(Gt + ∆G) dx

−
∫

M
|Du|2(x, t)G(x, t) dx− 2|t|

∫
M

Du · D2r2 · Du

4t
G dx

+ 2|t|
∫

∂M
|Du|2Dr2 · ν

4t
Gdσ+2|t|

∫
∂M

∂u

∂ν

(
ut+

Du · Dr2

4t

)
G dσ.

Since ut = 0 on ∂M , from (2.9), we have

(2.10)

E ′(t)

= − 2|t|
∫

M

(
ut +

Du · Dr2

4t

)2

G dx + |t|
∫

M
|Du|2(Gt + ∆G) dx

−
∫

M
|Du|2(x, t)G(x, t) dx − 2|t|

∫
M

Du · D2r2 ·Du

4t
G dx

+ 2|t|
∫

∂M
|Du|2Dr2 · ν

4t
G dσ + 2|t|

∫
∂M

∂u

∂ν

Du · Dr2

4t
G dσ.

On ∂M , we may write

Du =
∂u

∂ν
+ DTu and Dr2 = Dr2 · ν + DT r2.

Then,
∂u

∂ν
(Du · Dr2) =

∂u

∂ν

(
∂u

∂ν
(Dr2 · ν) + DTu · DT r2

)
.

When t ∈ (−T, 0), this gives

2|t|
∫

∂M
|Du|2Dr2 · ν

4t
G dσ + 2|t|

∫
∂M

∂u

∂ν

Du · Dr2

4t
G dσ

= − 1
2

∫
∂M

|DTu|2(Dr2 · ν)G dσ − 1
2

∫
∂M

∂u

∂ν

(
DTu · DT r2

)
G dσ

−
∫

∂M

(
∂u

∂ν

)2

(Dr2 · ν)G dσ

Also, by (2.3), we have

2|t|
∫

∂M
|Du|2Dr2 · ν

4t
G dσ+2|t|

∫
∂M

∂u

∂ν

Du ·Dr2

4t
Gdσ

≤−
∫

∂M

(
∂u

∂ν

)2

(Dr2 · ν)G dσ +
1
2

∫
∂M

∣∣∣∣∂u

∂ν

∣∣∣∣ |DTu||DTr2|G dσ

≤− γ

∫
∂M

(
∂u

∂ν

)2

r2G dσ +
∫

∂M

∣∣∣∣∂u

∂ν

∣∣∣∣ |DTu|r|DTr|G dσ
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≤− γ

∫
∂M

(
∂u

∂ν

)2

r2G dσ+γ

∫
∂M

∣∣∣∣∂u

∂ν

∣∣∣∣
2

r2G dσ+
1
4γ

∫
∂M

|DTu|2|DT r|2G dσ

≤ 1
4γ

∫
∂M

|DTu|2|DT r|2G dσ

Thus, one can see that there is a constant C1, depending only on h and γ and
the geometries of ∂M and M , so that

(2.11)
2|t|

∫
∂M

|Du|2Dr2 · ν
4t

G dσ + 2|t|
∫

∂M

∂u

∂ν

Du · Dr2

4t
G dσ

≤max(DTh)2

4γ

∫
∂M

G dσ = C1

∫
∂M

G dσ.

By Proposition 2.3, we obtain

2|t|
∫

∂M
|Du|2Dr2 · ν

4t
G dσ + 2|t|

∫
∂M

∂u

∂ν

Du · Dr2

4t
G dσ ≤ C5

|t|1/2
.

Then, equation (2.10) becomes

(2.12)

E ′(t)

≤ − 2|t|
∫

M

(
ut +

Du · Dr2

4t

)2

G dx + |t|
∫

M
|Du|2(Gt + ∆G) dx

−
∫

M

|Du|2(x, t)G(x, t) dx − 2|t|
∫

M

Du ·D2r2 ·Du

4t
G dx +

C5

|t|1/2
.

On the other hand, it is easy to compute that

Gt + ∆G =
(
− n

2t
+

∆r2

4t

)
G.

By Proposition 2.2, we have

(2.13) |Gt + ∆G| ≤ C6
r2

|t|G

and

(2.14)
∣∣∣∣ |Du|2

|t| +
DiuDijr

2Dju

2t

∣∣∣∣ ≤ C7
r2

|t| |Du|2.

Let t be fixed and Γ = {x ∈ M : r2(x) < |t|1/2}. Then,∫
M

|Du|2(x, t)
r2

|t|G(x, t) dx

=
∫

Γ

|Du|2(x, t)
r2

|t|G(x, t) dx +
∫

M−Γ

|Du|2(x, t)
r2

|t|G(x, t) dx

≤ 1
|t|1/2

∫
M

|Du|2(x, t)G(x, t) dx +
∫

M
|Du|2 r2

|t|
1

|t|n/2
exp

( −1
4|t|1/2

)
dx
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≤ 1
|t|1/2

∫
M

|Du|2(x, t)G(x, t) dx + C8 exp
( −1

8|t|1/2

)∫
M

|Du|2 dx.

Thus, by (2.4), we have

(2.15)

∫
M

|Du|2(x, t)
r2

|t|G(x, t) dx ≤ 1
|t|1/2

∫
M

|Du|2(x, t)G(x, t) dx

+ C9 exp
( −1

8|t|1/2

)
.

Combining (2.12), (2.13), (2.14) and (2.15), we have

E ′(t) ≤ − 2|t|
∫

M

(
ut +

Du · Dr2

4t

)2

G dx

+
1

|t|1/2
E(t) +

C10

|t|1/2
.

The constant C10 depends only on M , N , h and E0 only. It follows that, for
t ∈ (−T, 0),

d

dt

(
exp

(
2|t|1/2

)
E(t)

)
≤− 2 exp

(
2|t|1/2

)
|t|
∫

M

(
ut +

Du · Dr2

4t

)2

G dx +
C10

|t|1/2
.

By choosing a constant A > 0 large enough, one sees that, for t ∈ (−T, 0),

d

dt

(
exp

(
2|t|1/2

)
E(t) + A|t|1/2

)
≤− 2 exp

(
2|t|1/2

)
|t|
∫

M

(
ut +

Du · Dr2

4t

)2

G dx.

This completes the proof.

3. PARTIAL REGULARITY RESULTS

Let u : M × [−4R2
0, 0] → N be a regular solution of (2.1) with Dirichlet

boundary condition (2.2). Let x0 ∈ M̄ be fixed. Let

r(x) = distM(x, x0),

P (R)(x0) = {(x, t) : x ∈ M, r(x) < R, t ∈ (−R2, 0)},
T (R)(x0) = {(x, t) : x ∈ M, r(x) < R, t ∈ (−4R2,−R2)}.
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Lemma 3.1. Let u : M × [−1, 0] → N be a regular solution of (2.1) with
Dirichlet boundary condition (2.2). Suppose that for some A > 0,

(3.1) |Du|2(x, t) ≤ A on P (2R).

Then, if x0 ∈ M̄ and R > 0 and R is less than the injectivity radius on M , then

‖u‖C2+α,1+α/2(P (R/8)) ≤ C (A + ‖h‖C2+α(∂M)) .

Proof. We first assume that dist(x0, ∂M) > R/4. We note that in equation
(2.1), we have

|ΓN (u)(Du, Du)| ≤ C|Du|2.
By interior regularity theory, ([5], Chap. IV, Theorem 9.1), for any q > 1,

‖u‖
W 2,1

q (P (R/2))
≤ CA,

where for any Q ⊂ R
n × R, and q > 1,

‖u‖
W 2,1

q (Q)
=
(∫ ∫

Q

(|ut|q + |D2u|q + |Du|q + |u|q) dx dt

)1/q

.

We choose q > (n + 2)/(1 − α). Then, by the Sobolev inequality, Lemma 3.3,
Chapter II, [5], Du ∈ Cα,α/2(P (R/4)) and

‖Du‖Cα,α/2(P (R/4)) ≤ C‖u‖W 2,1
q (P (R/2)) ≤ CA.

It follows from the parabolic Schauder’s estimates that

‖u‖C2+α,1+α/2(P (R/8)) ≤ CA.

Suppose that x0 ∈ ∂M . For any q > 1, by the boundary regularity theory, we
have

‖u‖
W 2,1

q (P (2R))
≤ C (A + ‖h‖C2(∂M)) .

We choose q > (n + 2)/(1 − α). Then, by the Sobolev inequality, Lemma 3.3,
Chapter II, [5], Du ∈ Cα,α/2(P (R)) and

‖Du‖Cα,α/2(P (R)) ≤ C‖u‖W 2,1
q (P (2R)) ≤ C (A + ‖h‖C2(∂M)) .

It follows from the parabolic Schauder’s estimates that

‖u‖C2+α,1+α/2(P (R/2)) ≤ C (A + ‖h‖C2+α(∂M)) .

If x0 ∈ M and dist(x0, ∂M) ≤ R/4, we can choose x1 ∈ ∂M such that
P (R/8)(x0) ⊂ P (R/2))(x1). Then we obtain Lemma 3.1.
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Corollary 3.2. Let u : M × [0, T ) → N be a regular solution of (2.1) with
Dirichlet boundary condition (2.2). Suppose that for some C 1 > 0, we have

sup
x∈M

|Du|2(x, t) ≤ C1

T − t
.

Then there is a constant C2 > 0 so that

sup
x∈M

(|D2u|(x, t) + |ut|(x, t)
) ≤ C2

T − t
.

As in the previous section, for any x0 ∈ M̄ , we let r(x) =dist(x, x0) and

G(x, t) =
(

1
4π|t|

)n/2

exp
(

r2(x)
4t

)
.

In [1], Y. Chen proved that

Lemma 3.3. Suppose that M is a compact manifold with non-empty boundary.
There is a constant ε1 > 0 depending only on M , N and h only, such that for
any regular solution u : M × [−4R2

0, 0] → N of (2.1) with Dirichlet boundary
condition (2.2) and∫

M

|Du|2(x, t) dx ≤ E0 < ∞, for t ∈ [−4R2
0, 0),

the following is true: If for some R ∈ (0, R 0) there holds∫
T (R)

|Du|2G dx dt < ε1,

then there are constants δ > 0, depending on M , N , h, E0, and R only, and C > 0
depending on M , N and h only, so that

sup
P (δR)

|Du|2 ≤ C(δR)−2.

From Chen’s result, we have

Theorem 3.4. Suppose that M is a compact manifold with strictly convex
boundary. There are constants ε2 > 0 and β > 0, depending only on M , N and
h only, such that for any regular solution u : M × [−T, 0) → N of (2.1) with
Dirichlet boundary condition (2.2) and∫

M
|Du|2(x, t) dx ≤ E0 < ∞, for t ∈ [−T, 0),

the following is true: If

(3.2) |t0|
∫

M
|Du|2(x, t0)G(x, t0) dx < ε2
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for some t0 ∈ (−β, 0), then there are constants δ > 0, depending on M , N , E0,
and β only, and C > 0 depending on M , N only, so that

sup
P (δ

√
|t0|)

|Du|2 ≤ C

δ2|t0| .

Proof. Let t0 = −4R2. If x0 lies in the interior of M and dist(x0, ∂M) > R,
using the monotonicity formula (2.5), we may follow the arguments in [2] to prove
the Theorem.

Suppose that dist(x0, ∂M) ≤ R. By the monotonicity formula (2.5), if (3.2)
holds, there is C1 > 0 so that∫

T (R)
|Du|2G dx dt ≤

∫ −R2

−4R2

∫
r(x)<R

|Du|2G dx dt

≤ 1
4R2

∫ −R2

−4R2

|t|
∫

M
|Du|2G dx dt

≤ C1ε2.

If ε2 is chosen small enough, by Lemma 3.3, Theorem 3.4 follows.

Let S be a subset in M . We denote the k-dimensional Hausdorff measure of S

by Hk(S). As in [2], using Theorem 3.4, we can prove that

Theorem 3.5. Suppose that M is a compact manifold with strictly convex
boundary. Let u : M × [0, T ) → N be a regular solution of (2.1) with Dirichlet
boundary condition (2.2) and∫

M
|Du|2(x, t) dx ≤ E0 < ∞, for t ∈ [0, T ).

Let n be the dimension of M . Then, there exists a closed set S with finite n − 2
dimensional measure such that u(x, t) converges smoothly to a limit u(x, T ) as
t → T on compact sets in M − S. Moreover, there exists a constant C > 0
depending only on M , N , h and E0 such that if U is any relatively open set
containing S, then

Hn−2(S) ≤ C lim inf
t→T

∫
U

|Du|2(x, t) dx.

4. CONVERGENCE TO THE HOMOTHETICALLY SHRINKING SOLITION

Let M be a compact manifold with non-empty C2,α, strictly convex boundary.
Let u : M × [0, T ) → N be a regular solution of (2.1) with Dirichlet boundary
condition (2.2). We assume that there is a constant C1 > 0 so that

(4.1) sup
x∈M

|Du|2(x, t) ≤ C1

T − t
.
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We denote
B(R) = {x ∈ M : dist(x, x0) < R}

and

P (R) = {(x, t) ∈ M × (0, T ) : dist(x, x0) < R, t ∈ (T − R2, T )}.
Let (x0, T ) be an interior singularity, i.e., x0 ∈ M and there are sequences

xn ∈ M and tn ∈ (0, T ), such that xn → x0 and Tn → T as n → ∞, and

lim
n→∞ |Du|(xn, tn) = ∞.

We let
uλ(x, t) = u

(
expx0

λx, T + λ2t
)
.

Using almost the same arguments as in [2], we can show that there is a sequence
λi such that on each compact set in R

n × (−∞, 0), {uλi} in C∞ converges to a
non-constant map

ū : R
n × (−∞, 0) → N

and ū satisfies the harmonic map heat flow, and is dilation-invariant, i.e., for any
λ > 0, we have

ū(x, t) = ū(λx, λ2t).
Now we examine the boundary singularities in greater detail by blowing them

up. Let u : M × [0, T ) → N be a regular solution of (2.1) with Dirichlet boundary
condition (2.2). Let x0 ∈ ∂M and for λ > 0, let

uλ(x, t) = u
(
expx0

λx, T + λ2t
)
.

Let R > 0 be a number less than the injectivity radius on M . Using a local chart,
we can identify the set {x ∈ M : dist(x, x0) < R} with

Ω = {x ∈ R
n : |x| < R, xn ≥ φ(x1, ..., xn−1},

where φ(x′) is a C2,α function, φ(0) = 0, Dφ(0) = 0. When 0 < λ < 1, uλ(x, t)
is defined on the set Ωλ × (−T/λ, 0), where

Ωλ = {(x, t) : |x| < R/λ, λxn ≥ φ(λx1, ..., λxn−1)}.
For each λ > 0, we have

(4.2) |Duλ|2(x, t) = λ2|Du|2(λx, T + λ2t) ≤ C1

|t| .

By Corollary 3.2,

‖uλ(x, t)‖C2+α,1+α/2(Ωλ×(−R/λ,0)) ≤
C1

|t| .

Hence, there is a subsequence {uλi} such that on each compact set in R
n
+×(−∞, 0),

{uλi} converges in C2+α,1+α/2 to a map
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ū : R
n
+ × (−∞, 0) → N

where R
n
+ = {x ∈ R

n : xn ≥ 0}, and ū satisfies the harmonic map heat flow.
Since the function h in (2.2) is C2,α, we have ū(x) = h(x0) whenever xn = 0. We
claim that the function ū satisfies the dilation-invariant condition:

(4.3) for any λ > 0, ū(x, t) = ū(λx, λ2t).

In fact, from the monotonicity formula Theorem 2.1, we have

(4.4)
∫ T

T−1
(T − t)

∫
M

(
ut +

Du · Dr2

4(t− T )

)2

G dx dt ≤ C < ∞,

where
G(x, t) =

(
1

|T − t|
)n/2

exp
(

dist2(x, x0)
4(t − T )

)
.

Then, for any ε > 0, we can find δ > 0 such that∫ T

T−δ
(T − t)

∫
M

(
ut +

Du · Dr2

4(t − T )

)2

G dx dt ≤ ε.

Let R > 0 be a number less than the injectivity radius on M . From (4.4), for any
λ > 0, ∫ 0

−δ/λ2

|t|
∫

B(R/λ)

(
uλt +

Duλ ·Dr2

4t

)2

Gλ dx dt ≤ ε,

where
Gλ(x, t) =

(
1

π|t|
)n/2

exp

(
dist2M(expx0

(λx), x0)
4λ2t

)
.

When λ → 0, we have∫ 0

−∞
|t|
∫

Rn

(
ūt +

Dū · x
2t

)2

Ḡ dx dt ≤ ε,

where
Ḡ(x, t) =

(
1

4π|t|
)n/2

exp
( |x|2

4t

)
is the backward heat heat kernel on R

n. Since ε can be any positive number, we
have ∫ 0

−∞
|t|
∫

Rn
+

(
ūt +

Dūλ · x
2t

)2

Ḡ dx dt = 0.

It shows that
ūt +

Dū · x
2t

= 0 in R
n
+ × (−∞, 0),

and (4.3) holds.
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By (4.2), when λ → 0, we have

(4.5) |Dū|2(x, t) ≤ C1

|t| .

By the small energy regularity, Theorem 3.4, if x0 ∈ ∂M and (x0, T ) is a singular
point, then, there is β > 0 such that for all T − β ≤ t ≤ T , we have

|T − t|
∫

M
|Du|2(x, t)G(x, t) dx > ε.

Let ρ > 0 be large enough so that∫
dist(x,x0)≥ρ

√
T−t

G(x, t) dx ≤ ε

2C1
.

Then, for all T − β ≤ t ≤ T , we have

|T − t|
∫

dist(x,x0)≤ρ
√

T−t
|Du|2(x, t)G(x, t) dx ≥ ε/2.

Since uλi converges to ū on compact sets in R
n
+ × (−∞, 0), it is not difficult to

see that the same will hold for ū: for t < 0,

|t|
∫
{x∈R

n
+,|x|≤ρ

√
|t|}

|Dū|2(x, t)Ḡ(x, t) dx ≥ ε/2.

This implies that ū is not a constant function.

5. HARMONIC HEAT MAPS WITH NEUMANN BOUNDARY CONDITION

We say ∂M is convex, if for any a ∈ M̄ ,

(5.1) Dr · ν ≥ 0 on ∂M

where r(x) = dist(a, x) and ν is the unit outward normal on ∂M .
Suppose that ∂M is convex. Let u(x, t) : M×(0, T ) → N be a smooth solution

of the harmonic heat equation with Neumann boundary condition. Suppose that

max
x∈M

|Du|(x, t) → ∞ as t → T.

As before, for any x0 ∈ M̄ , let

E(x0; t) = (T − t)
∫

M
|Du|2(x, t)G(x0, T ; x, t) dx,

where
G(x0, T ; x, t) =

(
1

4π|T − t|
)n/2

exp
(

r2(x0; x)
4(t − T )

)
.
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Theorem 5.1. Suppose that ∂M is convex. Let u(x, t) : M × (0, T ) → N be a
smooth solution of the harmonic heat equation with Neumann boundary condition,

(5.2)
∂u

∂ν
= 0 on ∂M × (0, T )

and ∫
M

|Du|2(x, t) dx ≤ E0 for t ∈ (0, T ).

Then there is a constant B > 0, depending only on M , N , T and E 0 only, so that,
for all t ∈ (0, T ),

(5.3)

d

dt

(
exp

(
2|T − t|1/2

)
E(x0; t) + B|T − t|1/2

)

≤− 2 exp
(
2|T − t|1/2

)
|T − t|

∫
M

(
ut +

Du · Dr2

4(t − T )

)2

G(x0, T ; x, t) dx.

Proof. After a translation in time, we may assume that u is defined on
M × [−T, 0). As in section 2, we will write r(x) = r(x0; x) = dist(x0, x), and

E(t) = E(x0; t) = |t|
∫

M
|Du|2(x, t)G(x, t) dx,

where
G(x, t) =

(
1

4π|t|
)n/2

exp
(

r2(x)
4t

)
,

for x ∈ M and t ∈ (−T, 0). By (5.1) and (5.2), equation (2.10) becomes

(5.4)

E ′(t)

≤− 2|t|
∫

M

(
ut +

Du · Dr2

4t

)2

G dx + |t|
∫

M

|Du|2(Gt + ∆G) dx

−
∫

M
|Du|2(x, t)G(x, t) dx − 2|t|

∫
M

Du · D2r2 · Du

4t
G dx

By (2.13) and (2.14), we have

(5.5)
E ′(t) ≤ − 2|t|

∫
M

(
ut +

Du · Dr2

4t

)2

G dx

+ C3|t|
∫

M
|Du|2(x, t)

r2

|t|G(x, t) dx.

The rest of the proof is the same as the proof of Theorem 2.1.
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Lemma 5.2. Let u : M × [−1, 0] → N be a regular solution of (2.1) with
Neumann boundary condition (5.1). Suppose that for some A > 0,

(5.6) |Du|2(x, t) ≤ A on P (2R).

Then,
‖u‖C2+α,1+α/2(M×(−1/8,0)) ≤ CA.

Proof. Suppose that x0 ∈ ∂M . Let R > 0 be a number less than the
injectivity radius of M . By choosing a C2,α chart, we may identify a set Ω ⊂ {x ∈
M : dist(x, x0) < R} with the set

D+(R/2) = {x ∈ R
n : |x| < R/2, xn > 0}.

If R is chosen small enough, the map (y1, y2, ..., yn) is C2,α and its inverse exists
and is C2,α. In D+(R/2), u is a solution of an equation of the form:

(5.7) ut =
n∑

i=1

∂

∂xi

(
aij ∂u

∂xj

)
+ Γ(Du, Du),

where aij and Γ are Cα functions and Γ(Du, Du) ≤ C|Du|2, and

∂u

∂xn
= 0 whenever xn = 0.

Let u(x, t) = u(−x, t) when xn < 0. Then, u(x, t) is a solution of (5.7) in
D(R/2)× (0, T ), where D(R/2) = {x ∈ R

n : |x| < R/2}. As in section 3, using
the regularity theory and Sobolev inequality, we obtain

‖u‖C2+α,1+α/2(B(x0,R/8)×(−R/8,0)) ≤ CA.

If x0 lies in the interior of M , we argue as in Lemma 3.1. This proves the
Lemma.

As in section 3, we have the small-energy-regularity result:

Theorem 5.3. Suppose that M is a compact manifold with convex boundary.
There are constants ε4 > 0 and β > 0, depending only on M , N and h only,
such that for any regular solution u : M × [−T, 0) → N of (2.1) with Neumann
boundary condition (5.2) and∫

M
|Du|2(x, t) dx ≤ E0 < ∞, for t ∈ [−T, 0),

the following is true: If
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|t0|
∫

M
|Du|2(x, t0)G(x, t0) dx < ε4

for some t0 ∈ (−β, 0), then there are constants δ > 0, depending on M , N , E0,
and β only, and C > 0 depending on M , N only, so that

sup
P (δ

√
|t0|)

|Du|2 ≤ C

δ2|t0| .

From Theorem 5.3, we have

Theorem 5.4. Suppose that M is a compact manifold with strictly convex
boundary. Let u : M × [0, T ) → N be a regular solution of (2.1) with Neumann
boundary condition (5.2) and∫

M
|Du|2(x, t) dx ≤ E0 < ∞, for t ∈ [0, T ).

Let n be the dimension of M . Then, there exists a closed set S with finite n − 2
dimensional measure such that u(x, t) converges smoothly to a limit u(x, T ) as
t → T on compact sets in M − S. Moreover, there exists a constant C > 0
depending only on M , N , h and E0 such that if U is any relatively open set
containing S, then

Hn−2(S) ≤ C lim inf
t→T

∫
M

|Du|2(x, t) dx.

Now, suppose that
sup
M

|Du|2(x, t) ≤ C

T − t
.

As in section 4, we let

uλ(x, t) = u
(
expx0

λx, T + λ2t
)
.

Using the almost the same arguments, we can show that if x0 ∈ M is a singular
point, there is a sequence λi such that on each compact set in R

n× (−∞, 0), {uλi}
in C2,α converges to a non-constant map

ū : R
n × (−∞, 0) → N

and ū satisfies the harmonic map heat flow, and is dilation-invariant, i.e., for any
λ > 0, we have

ū(x, t) = ū(λx, λ2t).

If x0 ∈ ∂M is a singular point, there is a sequence λi such that on each compact
set in R

n
+ × (−∞, 0), {uλi} in C2,α converges to a non-constant map

ū : R
n
+ × (−∞, 0) → N
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where R
n
+ = {x ∈ R

n : xn ≥ 0}, and ū satisfies the harmonic map heat flow, and

∂ū

∂xn
(x, t) = 0 whenever xn = 0,

and is dilation-invariant, i.e., for any λ > 0, we have

ū(x, t) = ū(λx, λ2t).
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