Vol. 15, No. 5, pp. 2195-2212, October 2011

This paper is available online at http://tjm.math.ntu.edu.tw/index.php/TJM

ULAM-HYERS STABILITY FOR OPERATORIAL EQUATIONS AND INCLUSIONS VIA NONSELF OPERATORS

T. P. Petru, A. Petruşel and J.-C. Yao*

Abstract. Using the weakly Picard operator technique, we present some abstract Ulam-Hyers stability results for operatorial equations and inclusions involving nonself single-valued and multivalued operators.

1. Introduction

Let (X, d) be a metric space, $\mathcal{P}(X)$ be the family of all subsets of X and consider the following families of subsets of X:

$$P(X) := \{Y \in \mathcal{P}(X) | Y \neq \emptyset\}, P_b(X) := \{Y \in P(X) | Y \text{ is bounded}\},$$

$$P_{cl}(X) := \{ Y \in P(X) | Y \text{ is closed} \}, P_{cp}(X) := \{ Y \in P(X) | Y \text{ is compact} \}.$$

We will denote by $\bar{B}(x_0,r)$ the closure of $B(x_0,r)$ in (X,d), where $B(x_0,r):=\{x\in X|d(x_0,x)< r\}$ is the open ball centered in $x_0\in X$ with radius r>0 and by $\tilde{B}(x_0,r)$ the closed ball centered in $x_0\in X$ with radius r>0, i.e., $\tilde{B}(x_0,r):=\{x\in X|d(x_0,x)\leq r\}.$

If (X, d) is a metric space, then the gap functional in P(X) is defined as

$$D_d: P(X) \times P(X) \to \mathbb{R}_+, \ D_d(A, B) = \inf\{d(a, b) \mid a \in A, \ b \in B\}.$$

In particular, if $x_0 \in X$ then $D_d(x_0, B) := D_d(\{x_0\}, B)$.

We will denote by H the generalized Pompeiu-Hausdorff functional on P(X), defined as

$$H_d: P(X) \times P(X) \rightarrow \mathbb{R}_+ \cup \{+\infty\}, \ H_d(A,B) = \max\{\sup_{a \in A} D_d(a,B), \sup_{b \in B} D_d(b,A)\}.$$

Received June 3, 2010.

2010 Mathematics Subject Classification: 47H10, 54H25, 54C60.

Key words and phrases: Ulam-Hyers stability, Generalized Ulam-Hyers, Nonself operator, Multivalued operator, Weakly Picard operator, *c*-Weakly Picard operator, Fixed point, Strict fixed point. The work of this author was partially supported by the Grant NSC 98-2923-E-110-003-MY3. *Corresponding author.

Let (X,d) be a metric space. If $F:X\to P(X)$ is a multivalued operator, then $x\in X$ is called fixed point for F if and only if $x\in F(x)$. The set $Fix(F):=\{x\in X|\ x\in F(x)\}$ is called the fixed point set of T, while $SFix(F)=\{x\in X|\ \{x\}=F(x)\}$ is called the strict fixed point set of F.

Let Y be a nonempty set and $T, S: X \to P(Y)$ be two multivalued operators. An element $x^* \in X$ is a coincidence point for T and S if $T(x^*) \cap S(x^*) \neq \emptyset$. We denote by C(T,S) the set of all coincidence points for T and S.

Let $T,S:X\to P(X)$ be two multivalued operators. An element $x^*\in X$ is called a common fixed point for T and S if $x^*\in T(x^*)\cap S(x^*)$. We denote by $CM(T,S):=Fix(T)\cap Fix(S)$ the set of all common fixed points for the multivalued operators T and S.

For a multivalued opertor $T: X \to P(Y)$ we will denote by

$$Graph(T) := \{(x, y) \in X \times Y : y \in T(x)\}\$$

The graphic of T. Notice that $t: X \to Y$ is a selection for $T: X \to P(Y)$ if $t(x) \in T(x)$, for each $x \in X$. Also, $T: X \to P(Y)$ is said to be onto if and only if for each $y \in Y$ there exists $x \in X$ such that $y \in T(x)$.

In particular, when F (or T and S) is a singlevalued operator, we obtain the similar well-known concepts in fixed point theory.

For the following notions see I. A. Rus [16] and [14], I. A. Rus, A. Petruşel, A. Sîntămărian [23] and A. Petruşel [13].

Definition 1.1. Let (X,d) be a metric space and $f:X\to X$ be an operator. By definition, f is a weakly Picard operator (briefly WPO) if the sequence $(f^n(x))_{n\in\mathbb{N}}$ of successive approximations for f starting from $x\in X$ converges, for all $x\in X$ and its limit is a fixed point of f.

If f is WPO, then we consider the operator

$$f^{\infty}: X \to X$$
 defined by $f^{\infty}(x) := \lim_{n \to \infty} f^{n}(x)$.

Notice that $f^{\infty}(X) = Fix(f)$.

Definition 1.2. Let (X, d) be a metric space, $f: X \to X$ be a WPO and c > 0 be a real number. By definition, the operator f is said to be a c-weakly Picard operator (briefly c-WPO) if and only if

$$d(x, f^{\infty}(x)) \le c \ d(x, f(x)), \text{ for all } x \in X.$$

Definition 1.3. Let (X,d) be a metric space, and $F:X\to P_{cl}(X)$ be a multivalued operator. By definition, F is a multivalued weakly Picard (briefly MWP) operator if for each $x\in X$ and each $y\in F(x)$ there exists a sequence $(x_n)_{n\in\mathbb{N}}$ such that:

- (i) $x_0 = x$, $x_1 = y$;
- (ii) $x_{n+1} \in F(x_n)$, for each $n \in \mathbb{N}$;
- (iii) the sequence $(x_n)_{n\in\mathbb{N}}$ is convergent and its limit is a fixed point of F.

Remark 1.1. A sequence $(x_n)_{n\in\mathbb{N}}$ satisfying the condition (i) and (ii), in the Definition 1.3 is called a sequence of successive approximations of F starting from $(x,y)\in Graph(F)$.

If $F: X \to P(X)$ is a MWP operator, then we define $F^{\infty}: Graph(F) \to P(FixF)$ by the formula $F^{\infty}(x,y) := \{ z \in Fix(F) \mid \text{ there exists a sequence of successive approximations of } F \text{ starting from } (x,y) \text{ that converges to } z \}.$

Definition 1.4. Let (X,d) be a metric space and $F:X\to P(X)$ be a MWP operator. Then, F is called a c-multivalued weakly Picard operator (briefly c-MWP operator) if and only if there exists a selection f^{∞} of F^{∞} such that

$$d(x, f^{\infty}(x, y)) \le c \ d(x, y)$$
, for all $(x, y) \in Graph(F)$.

For the theory of weakly Picard operators, see [16] for the singlevalued case and [23] and [13] for the multivalued one.

The purpose of this paper is to extend and generalize some results given in [14], concerning the Ulam-Hyers stability of some operatorial equations and inclusions by using the weakly Picard operator technique.

2. Ulam-hyers Stability for Fixed Point Equations and Inclusions with Non-self Operators

Let (X, d) be a metric space, Y be a nonempty subset of X and $f: Y \to X$ be an operator. In this section we shall use the following notations and notions (see [14, 3]):

$$I(f) := \{ Z \subset Y \mid f(Z) \subset Z, \ Z \neq \emptyset \} \text{ - the set of all invariant subsets of } f \\ (MI)_f \text{ - the maximal invariant subset of } f, \text{ i.e., } (MI)_f := \bigcup_{Z \in I(f)} Z ;$$

 $(AB)_f(x^*) := \{x \in Y \mid f^n(x) \text{ is defined for all } n \in \mathbb{N} \text{ and } f^n(x) \xrightarrow{d} x^* \in Fix(f)\}$ - the attraction basin of $x^* \in Fix(f)$ with respect to f

$$(AB)_f := \bigcup_{x^* \in Fix(f)} (AB)_f(x^*)$$
 - the attraction basin of f .

Definition 2.1. (A. Chiş-Novac, R. Precup, I. A. Rus [3]). By definition, $f: Y \to X$ is called a nonself weakly Picard operator if $Fix(f) \neq \emptyset$ and $(MI)_f = (AB)_f$. If $Fix(f) = \{x^*\}$, then a nonself weakly Picard operator is said to be nonself Picard operator.

Definition 2.2. (A. Chiş-Novac, R. Precup, I. A. Rus [3]). For each nonself weakly Picard operator $f: Y \to X$ we define the operator $f^{\infty}: (AB)_f \to Fix(f) \subset (AB)_f$, by $f^{\infty}(x) = \lim_{n \to \infty} f^n(x)$.

Definition 2.3. (A. Chiş-Novac, R. Precup, I. A. Rus [3]). Let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function which is continuous in 0 and $\psi(0) = 0$. An operator $f: Y \to X$ is said to be a nonself ψ -weakly Picard operator if it is nonself weakly Picard operator and

$$d(x, f^{\infty}(x)) \leq \psi(d(x, f(x))), \text{ for all } x \in (MI)_f.$$

In the case that $\psi(t) := ct$ (for some c > 0), for each $t \in \mathbb{R}_+$, we say that f is c-weakly Picard operator.

For some examples of nonself weakly Picard operators and ψ -weakly Picard operators, see [3].

If $f: Y \to X$ is an operator, let us consider the fixed point equation

$$(2.1) x = f(x), x \in Y$$

and the inequation

$$(2.2) d(y, f(y)) \le \varepsilon.$$

Definition 2.4. (I. A. Rus [14]). The equation (2.1) is called generalized Ulam-Hyers stable if there exists $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi(0) = 0$ such that for each $\varepsilon > 0$ and for each solution $y^* \in (AB)_f$ of (2.2) there exists a solution x^* of the fixed point equation (2.1) such that

$$d(y^*, x^*) \le \psi(\varepsilon).$$

If there exists c>0 such that $\psi(t):=ct$, for each $\in \mathbb{R}_+$, the equation (2.1) is said to be Ulam-Hyers stable.

The following abstract result is presented in [14].

Theorem 2.1. (I.A. Rus [14]). Let (X, d) be a metric space, Y be a nonempty subset of X and $f: Y \to X$ be a ψ -weakly Picard operator. Then, the fixed point equation (2.1) is generalized Ulam-Hyers stable. In particular, if f is c-weakly Picard operator, then the equation (2.1) is Ulam-Hyers stable.

Proof. Let $\varepsilon > 0$ and $y^* \in (AB)_f$ be a solution of (2.2), i.e., $d(y^*, f(y^*)) \le \varepsilon$. Since f is a ψ -weakly Picard operator, for each $x \in (MI)_f$ we have

$$d(x, f^{\infty}(x)) \le \psi(d(x, \psi(x))).$$

Hence, taking into account that $(MI)_f = (AB)_f$, we can choose $x^* := f^{\infty}(y^*)$ and thus we get that x^* is a solution of the fixed point equation (2.1) and

$$d(y^*, x^*) \le \psi(\varepsilon).$$

We will present now some consequences of the above result. We need first some definitions, see [15] for details.

A mapping $\varphi:\mathbb{R}_+\to\mathbb{R}_+$ is called a comparison function if it is increasing and $\varphi^k(t)\to 0$ as $k\to +\infty$. As a consequence, we also have $\varphi(t)< t$, for each $t>0,\ \varphi(0)=0$ and φ is continuous in 0. The mapping $\varphi:\mathbb{R}_+\to\mathbb{R}_+$ is said to be a strict comparison function if it is strictly increasing and $\sum_{n=1}^\infty \varphi^n(t)<+\infty$, for each t>0.

Recall that if (X, d) is a metric space, Y is a nonempty subset of X and $f: Y \to X$ is an operator, then f is called:

(i) α -contraction if $\alpha \in [0, 1]$ and

$$d(f(x_1), f(x_2)) \le \alpha d(x_1, x_2)$$
 for all $x_1, x_2 \in Y$.

(ii) φ -contraction if $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function and

$$d(f(x_1), f(x_2)) \le \varphi(d(x_1, x_2))$$
 for all $x_1, x_2 \in Y$.

Theorem 2.2. Let (X,d) be a complete metric space, $x_0 \in X$, r > 0 and $f: \tilde{B}(x_0,r) \to X$ be an α -contraction, such that $d(x_0,f(x_0)) \leq (1-\alpha)r$. Then the fixed point equation (2.1) is Ulam-Hyers stable.

Proof. It is easy to see that $(MI)_f = (AB)_f = \tilde{B}(x_0, r)$ and hence, by Banach-Caccioppoli fixed point principle, we have that $Fix(f) = \{x^*\}$ and for each $x \in \tilde{B}(x_0, r)$

$$d(x, x^*) \le \frac{1}{1 - \alpha} d(x, f(x)).$$

Thus, f is a c-WPO with $c:=\frac{1}{1-\alpha}>0$. Hence, by Theorem 2.1 the fixed point equation (2.1) is Ulam-Hyers stable.

Another result of this type is the following.

Theorem 2.3. Let (X,d) be a complete metric space, $x_0 \in X$, r > 0 and $f: \tilde{B}(x_0,r) \to X$ be a φ -contraction, such that $d(x_0,f(x_0)) \leq r - \varphi(r)$. Suppose also that the function $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ $\psi(t) := t - \varphi(t)$ is strictly continuous and onto. Then, the fixed point equation (2.1) is generalized Ulam-Hyers stable.

Proof. Notice that, by our hypotheses, we have $(MI)_f = (AB)_f = \tilde{B}(x_0, r)$ and hence, by Matkowski-Rus fixed point principle (see [9] and [15]), we have that $Fix(f) = \{x^*\}$. Then, for each $x \in \tilde{B}(x_0, r)$ we have

$$d(x, x^*) \le d(x, f(x)) + d(f(x), x^*) \le d(x, f(x)) + \varphi(d(x, x^*)).$$

Notice that $\psi^{-1}: \mathbb{R}_+ \to \mathbb{R}_+$ exists, is increasing, continuous at 0 and $\psi^{-1}(0) = 0$. Thus,

$$d(x, x^*) \le \psi^{-1}(d(x, f(x))), \text{ for each } x \in \tilde{B}(x_0, r)$$

proving that f is a nonself ψ^{-1} -weakly Picard operator. Hence, by Theorem 2.1 the fixed point equation (2.1) is generalized Ulam-Hyers stable.

Remark 2.2. If $f: \tilde{B}(x_0, r) \to X$, then similar results concerning the Ulam-Hyers stability of the fixed point equation (2.1) can be given for:

(a) generalized contractions of Ćirić-Reich-Rus type, i.e., there exists $\alpha,\beta,\gamma\in\mathbb{R}_+$ with $\alpha+\beta+\gamma<1$ such that

$$d(f(x),f(y)) \leq \alpha d(x,y) + \beta d(x,f(x)) + \gamma d(y,f(y)), \text{ for all } x,y \in \tilde{B}(x_0,r),$$
 where $c:=\frac{1-\beta}{1-\alpha-\beta-\gamma}>0;$

(b) generalized contractions of Ćirić type, i.e., there exists $q \in [0, \frac{1}{2}[$, such that for all $x, y \in \tilde{B}(x_0, r)$ one have

$$d(f(x),f(y)) \leq q \max\{d(x,y),d(x,f(x)),d(y,f(y)),d(x,f(y)),d(y,f(x))\},$$

where
$$c := \frac{1 - q}{1 - 2q}$$
.

For details, rigorous statements and other results see [3].

We will consider now the multivalued case.

Let (X,d) be a metric space, Y be a nonempty subset of X and $F:Y\to P(X)$ be a multivalued operator.

In the sequel, we shall use the following notations and notions: $I(F) := \{Z \subset Y : F(Z) \subset Z, \ Z \neq \emptyset\}$ - the set of all invariant subsets of F;

$$(MI)_F$$
 - the maximal invariant subset of $F,$ i.e., $(MI)_F:=\bigcup_{Z\in I(F)}Z$;

$$(AB)_F(x^*) := \{x \in Y : \text{ for each } y \in F(x), \text{ there exists in Y a sequence, } (x_n)_{n \in \mathbb{N}},$$

of successive approximations for F starting from (x, y), which converges to x^* } - the attraction basin of $x^* \in Fix(F)$ with respect to F;

$$(AB)_F := \bigcup_{x^* \in Fix(F)} (AB)_F(x^*)$$
 - the attraction basin of $F.$

Definition 2.5. Let (X, d) be a metric space, $Y \in P(X)$ and $F : Y \to P(X)$ be a multivalued operator. By definition, F is a nonself multivalued weakly Picard operator if $Fix(F) \neq \emptyset$ and $(MI)_F = (AB)_F$.

If Y = X, then F having the above properties is said to be a multivalued weakly Picard operator.

Let $F: Y \to P(X)$ be a nonself multivalued weakly Picard operator. Denote

$$D_F^\infty:=\{(x,y)\in X\times X:x\in (AB)_F\text{ and }y\in F(x)\}.$$

Then, we consider the multivalued operator $F^{\infty}:D_F^{\infty}\to P(Fix(F))$ defined by the following formula:

 $F^{\infty}(x,y)$:= the set of all fixed points of F that are limits of a successive approximations sequence starting from (x,y).

Definition 2.6. Let (X,d) be a metric space and $Y \in P(X)$. Let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function which is continuous in 0 and $\psi(0) = 0$. Then $F: Y \to P(X)$ is said to be a nonself multivalued ψ -weakly Picard operator if it is a nonself multivalued weakly Picard operator and there exists a selection $f^{\infty}: D_F^{\infty} \to Fix(F)$ of F^{∞} such that

$$d(x, f^{\infty}(x, y)) < \psi(d(x, y)), \text{ for all } (x, y) \in D_F^{\infty}.$$

If Y=X, then F having the above property is said to be a multivalued ψ -weakly Picard operator. If there exists c>0 such that $\psi(t)=ct$, for each $t\in\mathbb{R}_+$, then we say that F is a nonself multivalued c-weakly Picard operator.

Definition 2.7. Let (X, d) be a metric space, Y be a nonempty subset of X and $F: Y \to P(X)$ be a multivalued operator. The fixed point inclusion

$$(2.3) x \in F(x), x \in Y$$

is called generalized Ulam-Hyers stable if and only if there exists $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi(0)=0$ such that for each $\varepsilon>0$ and for each solution $y^*\in (AB)_F$ of the inequation

$$(2.4) D(y, F(y)) \le \varepsilon$$

there exists a solution x^* of the fixed point inclusion (2.3) such that

$$d(y^*, x^*) \le \psi(\varepsilon).$$

If there exists c > 0 such that $\psi(t) := ct$, for each $t \in \mathbb{R}_+$, then the fixed point inclusion (2.3) is said to be Ulam-Hyers stable.

The following theorem is an abstract result concerning the Ulam-Hyers stability of the fixed point inclusion (2.3) with nonself multivalued operators with compact values.

Theorem 2.4. Let (X, d) be a metric space, Y be a nonempty subset of X and $F: Y \to P_{cp}(X)$ be a nonself multivalued ψ -weakly Picard operator. Then, the fixed point inclusion (2.3) is generalized Ulam-Hyers stable.

Proof. Let $\varepsilon > 0$ and $y^* \in (AB)_F$ be a solution of (2.4), i.e., $D(y^*, F(y^*)) \le \varepsilon$. Let $u^* \in F(y^*)$ such that $d(y^*, u^*) = D(y^*, F(y^*))$. Since F is a nonself multivalued ψ -weakly Picard operator, for each $(x, y) \in D_F^{\infty}$ we have

$$d(x, f^{\infty}(x, y)) \le \psi(d(x, y)).$$

Hence, taking into account that $(y^*, u^*) \in D_F^{\infty}$, we can choose $x^* := f^{\infty}(y^*, u^*)$ and thus we get that x^* is a solution of the fixed point inclusion (2.3) and

$$d(y^*, x^*) = d(y^*, f^{\infty}(y^*, u^*)) \le \psi(d(y^*, u^*)) \le \psi(\varepsilon).$$

In particular, if the multivalued operator is self, then Theorem 2.4 gives a theorem concerning Ulam-Hyers stability of the fixed point inclusion with multivalued self operators, which was presented in [14]. We list here this result.

Corollary 2.1. Let (X,d) be a metric space and $F: X \to P_{cp}(X)$ be a multivalued ψ -weakly Picard operator. Then, the fixed point inclusion (2.3) is generalized Ulam-Hyers stable.

We will present now some consequences of the above result. We need first some definitions.

Definition 2.8. Let (X, d), (Y, d') be metric spaces and $F: X \to P_{cl}(Y)$ be a multivalued operator. Then, F is called:

- (i) a-contraction, if $a \in [0,1[$ and $H_{d'}(F(x_1),F(x_2)) \leq ad(x_1,x_2),$ for all $x_1,x_2 \in X;$
- (ii) φ -contraction, if $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ is a strict comparison function and for all $x_1, x_2 \in X$ we have that $H_{d'}(F(x_1), F(x_2)) \leq \varphi(d(x_1, x_2));$

Theorem 2.5. Let (X,d) be a complete metric space, $x_0 \in X$ and r > 0. Let $F: \tilde{B}(x_0;r) \to P_{cp}(X)$ be a multivalued a-contraction such that $H(x_0,F(x_0)) < (1-a)r$. Then, the fixed point inclusion (2.3) is Ulam-Hyers stable.

Proof. By Theorem 4.5 in [8], the set $\tilde{B}(x_0;r)$ is invariant with respect to F, i.e., $(MI)_F = \tilde{B}(x_0;r)$. Thus, by Nadler's contraction principle (see [10]), we get that F is a nonself multivalued weakly Picard operator. Moreover, F is a nonself multivalued c-weakly Picard operator with $c := \frac{1}{1-a}$ (see [23]). Hence, Theorem 2.4 applies and the conclusion follows.

The following result is known in the literature as Węgrzyk's theorem (see [25]).

Theorem 2.6. Let (X, d) be a complete metric space and $F: X \to P_{cl}(X)$ be a multivalued φ -contraction. Then F is a multivalued weakly Picard operator.

A Ulam-Hyers stability result for nonself multivalued φ -contractions is the following.

Theorem 2.7. Let (X,d) be a complete metric space, $x_0 \in X$ and r > 0. Let $F : \tilde{B}(x_0;r) \to P_{cp}(X)$ be a multivalued φ -contraction such that the function $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ given by $\psi(t) = t - \varphi(t)$ is strictly increasing and onto. Suppose $H(x_0, F(x_0)) < r - \varphi(r)$ and $SFix(F) \neq \emptyset$. Then, the fixed point inclusion (2.3) is generalized Ulam-Hyers stable.

Proof. Since F is a φ -contraction, using the assumption $H(x_0,F(x_0)) < r - \varphi(r)$, we obtain (see [8]) that the set $\tilde{B}(x_0;r)$ is invariant with respect to F, i.e., $(MI)_F = \tilde{B}(x_0;r)$. Thus, by Węgrzyk's Theorem 2.6, we get that $F: \tilde{B}(x_0;r) \to P_{cp}(X)$ is a nonself multivalued weakly Picard operator.

Moreover, F is a nonself multivalued ψ^{-1} -weakly Picard operator. Indeed, let $x^* \in SFix(F)$ and $x \in Fix(F)$ be arbitrary. Then $d(x,x^*) = D(x,F(x^*)) \le H(F(x),F(x^*)) \le \varphi(d(x,x^*))$. By the properties of φ we get that $d(x,x^*) = 0$ and hence $Fix(F) \subset \{x^*\}$. Since $SFix(F) \subset Fix(F)$, we get that $Fix(F) = SFix(F) = \{x^*\}$. Hence for each $x \in \tilde{B}(x_0;r)$ and $y \in F(x)$ we have

$$d(x, x^*) \le d(x, y) + H(F(x), F(x^*)) \le d(x, y) + \varphi(d(x, x^*)).$$

Thus, since ψ is a strictly increasing bijection we obtain that

$$d(x,x^*) \leq \psi^{-1}(d(x,y)), \text{ for each } (x,y) \in \tilde{B}(x_0;r).$$

Thus, Theorem 2.4 applies and the conclusion follows.

A similar concept will be given in the last part of the section.

We denote by

 $(SAB)_F(x^*) := \{x \in Y : F^n(x) \text{ is defined and } F^n(x) \xrightarrow{H} \{x^*\}\}$ - the strict attraction basin of $x^* \in SFix(F)$ with respect to F;

$$(SAB)_F := \bigcup_{x^* \in SFix(F)} (SAB)_F(x^*)$$
 - the strict attraction basin of F .

Definition 2.9. Let (X, d) be a metric space, $Y \in P(X)$ and $F: Y \to P(X)$ be a multivalued operator. By definition, F is a nonself multivalued Picard operator if $SFix(F) = Fix(F) = \{x^*\}$ and $(MI)_F = (SAB)_F$.

Definition 2.10. Let $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function which is continuous in 0 and $\psi(0) = 0$. Then $F: Y \to P(X)$ is said to be a nonself multivalued ψ -Picard operator if it is a nonself multivalued Picard operator and

$$d(x, x^*) \le \psi(H(x, F(x))), \text{ for all } x \in (SAB)_F.$$

If there exists c > 0 such that $\psi(t) = ct$, for each $t \in \mathbb{R}_+$, then we say that F is a nonself multivalued c-Picard operator.

Moreover, if Y=X, then F is said multivalued ψ -Picard operator, respectively multivalued c-Picard operator.

Definition 2.11. Let (X, d) be a metric space, Y be a nonempty subset of X and $F: Y \to P(X)$ be a multivalued operator. The strict fixed point inclusion

$$(2.5) {x} = F(x), x \in Y$$

is called generalized Ulam-Hyers stable if and only if there exists $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi(0) = 0$ such that for each $\varepsilon > 0$ and for each solution $y^* \in (SAB)_F$ of the inequation

$$(2.6) H(y, F(y)) \le \varepsilon$$

there exists a solution x^* of the strict fixed point inclusion (2.5) such that

$$d(y^*, x^*) \le \psi(\varepsilon).$$

If there exists c > 0 such that $\psi(t) := ct$, for each $t \in \mathbb{R}_+$, then the strict fixed point inclusion (2.5) is said to be Ulam-Hyers stable.

Remark 2.3. It is worth to note that the above definition can briefly re-written as follows: the strict fixed point inclusion is generalized Ulam-Hyers stable if and only if the fixed point (set) equation

$$\{x\} = F(x), x \in Y$$

is generalized Ulam-Hyers stable in $(P_{cl}(X), H)$.

The following theorem is an abstract result concerning the Ulam-Hyers stability of the strict fixed point inclusion (2.5) with nonself multivalued operators with closed values.

Theorem 2.8. Let (X, d) be a metric space, Y be a nonempty subset of X and $F: Y \to P_{cl}(X)$ be a nonself multivalued ψ -Picard operator. Then, the strict fixed point inclusion (2.5) is generalized Ulam-Hyers stable.

Proof. Let $\varepsilon > 0$ and $y^* \in (SAB)_F$ be a solution of (2.6), i.e., $H(y^*, F(y^*)) \le \varepsilon$. Since F is a nonself multivalued ψ -Picard operator, we have

$$d(x, x^*) \le \psi(H(x, F(x))), \text{ for all } x \in (SAB)_F.$$

Hence
$$d(y^*, x^*) \le \psi(H(y^*, F(y^*))) \le \psi(\varepsilon)$$
.

As a consequence of Theorem 2.8, we immediately obtain:

Theorem 2.9. Let (X,d) be a complete metric space, $x_0 \in X$ and r > 0. Let $F : \tilde{B}(x_0; r) \to P_{cl}(X)$ be a multivalued a-contraction such that $H(x_0, F(x_0)) < (1-a)r$ and $SFix(F) \neq \emptyset$. Then, the strict fixed point inclusion (2.5) is Ulam-Hyers stable.

Proof. By the contraction condition and using the fact that $H(x_0, F(x_0)) < (1-a)r$ we obtain that $(MI)_F = \tilde{B}(x_0; r)$. Since $SFix(F) \neq \emptyset$, we obtain (see I.A. Rus [17]) that $Fix(F) = SFix(F) = \{x^*\}$. Hence, F is a nonself multivalued Picard operator.

Then, for each $x \in \tilde{B}(x_0; r)$ we have $d(x, x^*) \leq D(x, F(x)) + H(F(x), F(x^*))$ $\leq D(x, F(x)) + ad(x, x^*)$. Hence

$$d(x, x^*) \le \frac{1}{1-a} D(x, F(x)) \le \frac{1}{1-a} H(x, F(x)), \text{ for each } x \in \tilde{B}(x_0; r).$$

Thus, F is a nonself multivalued c-Picard operator with $c:=\frac{1}{1-a}$. The conclusion follows from Theorem 2.8.

3. Some Applications to Operatorial Inclusions

As a first application, let us consider the following integral inclusion of Fredholm type.

(3.1)
$$x(t) \in \int_{a}^{b} K(t, s, x(s)) ds + g(t), \ t \in [a, b].$$

Throughout this section we will denote by $\|\cdot\|$ the supremum norm in $C([a,b],\mathbb{R}^n)$.

The main result concerning the stability of the Fredholm integral incusion (3.1) is the following.

Theorem 3.1. Let $K:[a,b]\times[a,b]\times\mathbb{R}^n\to P_{cl,cv}(\mathbb{R}^n)$ and $g:[a,b]\to\mathbb{R}^n$ such that:

- (a) there exists an integrable function $M:[a,b] \to \mathbb{R}_+$ such that for each $t \in [a,b]$ and $u \in \mathbb{R}^n$ we have $K(t,s,u) \subset M(s)B(0;1)$, a.e. $s \in [a,b]$;
 - (b) for each $u \in \mathbb{R}^n$ $K(\cdot, \cdot, u) : [a, b] \times [a, b] \to P_{cl,cv}(\mathbb{R}^n)$ is jointly measurable;
- (c) for each $(s,u) \in [a,b] \times \mathbb{R}^n$ $K(\cdot,s,u) : [a,b] \to P_{cl,cv}(\mathbb{R}^n)$ is lower semi-continuous;
- (d) there exists a continuous function $p:[a,b]\times[a,b]\to\mathbb{R}_+$ with $\sup_{t\in[a,b]}\int_a^b p(t,s)ds\leq\alpha<1 \text{ such that for each } (t,s)\in[a,b]\times[a,b] \text{ and each } u,v\in\mathbb{R}^n \text{ we have that}$

(3.2)
$$H(K(t, s, u), K(t, s, v)) \le p(t, s) \cdot |u - v|;$$

(e) g is continuous.

Then the follwing conclusions hold:

- (a) the integral inclusion (3.1) has least one solution, i.e., there exists $x^* \in C([a,b],\mathbb{R}^n)$ which satisfies (3.1), for each $t \in [a,b]$.
- (b) The integral inclusion (3.1) is Ulam-Hyers stable, i.e., there exists c > 0, such that for each $\varepsilon > 0$ and for any ε -solution y of (3.1), i.e., any $y \in C([a,b],\mathbb{R}^n)$ for which there exists $u \in C([a,b],\mathbb{R}^n)$ such that

$$u(t) \in \int_a^b K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and

$$|u(t) - y(t)| \le \varepsilon$$
, for each $t \in [a, b]$,

there exists a solution x^* of the integral inclusion (3.1) such that

$$|y(t) - x^*(t)| < c \cdot \varepsilon$$
, for each $t \in [a, b]$.

Proof. (a) Define the multivalued operator T : $C([a,b],\mathbb{R}^n) \to \mathcal{P}(C([a,b],\mathbb{R}^n))$ by

$$T(x):=\left\{v\in C([a,b],\mathbb{R}^n)|\ v(t)\in \int_a^b K(t,s,x(s))ds+g(t),\ t\in [a,b]\right\}.$$

Then, (3.1) is equivalent to the fixed point inclusion

$$(3.3) x \in T(x), x \in C([a,b], \mathbb{R}^n).$$

The proof is organized in several steps.

1.
$$T(x) \in P_{cp}(C([a, b], \mathbb{R}^n)).$$

From (e) and Theorem 2 in Rybiński [24] we have that for each $x \in C([a,b],\mathbb{R}^n)$ there exists $k(t,s) \in K(t,s,x(s))$, for all $(t,s) \in [a,b]$, such that k(t,s) is integrable with respect to s and continuous with respect to t. Then $v(t) := \int_a^b k(t,s)ds + g(t)$, has the property $v \in T(x)$. Moreover, from (a) and (b), via Theorem 8.6.3. in Aubin and Frankowska [1], we get that T(x) is a compact set, for each $x \in C([a,b],\mathbb{R}^n)$.

2. $H(T(x_1), T(x_2)) \le \alpha \cdot ||x_1 - x_2||$, for each $x_1, x_2 \in C([a, b], \mathbb{R}^n)$.

Notice first that one may suppose (without affecting the generality of the Lipschitz condition) that the inequality (3.2) is strict. Let $x_1,x_2\in C([a,b],\mathbb{R}^n)$ and $v_1\in T(x_1)$. Then $v_1(t)\in \int_a^b K(t,s,x_1(s))ds+g(t),\ t\in [a,b].$ It follows that $v_1(t)=\int_a^b k_1(t,s)ds+g(t),\ t\in [a,b],$ for some $k_1(t,s)\in K(t,s,x_1(s)),$ $(t,s)\in [a,b]\times [a,b].$

From (d) we have $H(K(t,s,x_1(s)),K(t,s,x_2(s)) < p(t,s)|x_1(s)-x_2(s)| \le p(t,s)||x_1-x_2||$. Thus, there exists $w \in K(t,s,x_2(s))$ such that $|k_1(t,s)-w| \le p(t,s)||x_1-x_2||$, for $t,s \in [a,b]$.

Let us define $U:[a,b]\times [a,b]\to \mathcal{P}(\mathbb{R}^n)$, by $U(t,s)=\{w|\ |k_1(t,s)-w|\le p(t,s)\|x_1-x_2\|\}$. Since the multi-valued operator $V(t,s):=U(t,s)\cap K(t,s,x_2(s))$ is jointly measurable and lower semi-continuous in t there exists $k_2(t,s)$ a selection for V, jointly measurable (and, hence, integrable in s) and continuous in t. Hence, $k_2(t,s)\in K(t,s,x_2(s))$ and $|k_1(t,s)-k_2(t,s)|\le p(t,s)\|x_1-x_2\|$, for each $t,s\in [a,b]$.

Consider $v_2(t) = \int_a^b k_2(t,s)ds + g(t), \ t \in [a,b].$ Then, we have: $|v_1(t) - v_2(t)| \le \int_a^b |k_1(t,s) - k_2(t,s)| ds \le \int_a^b p(t,s) \|x_1 - x_2\| ds \le \alpha \|x_1 - x_2\|.$

A similar relation can be obtained by interchanging the roles of x_1 and x_2 . Thus the second step follows.

The first conclusion follows by Covitz-Nadler's fixed point theorem, see [4].

(b) We will prove that the fixed point inclusion problem (3.3) is Ulam-Hyers stable. Indeed, let $\varepsilon > 0$ and $y \in C([a,b],\mathbb{R}^n)$ for which there exists $u \in C([a,b],\mathbb{R}^n)$ such that

$$u(t) \in \int_a^b K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and

$$||u - y|| \le \varepsilon.$$

Then $D_{\|\cdot\|}(y,T(y)) \leq \varepsilon$. Moreover, since T is a multivalued α -contraction, we obtain that T is a multivalued c-weakly Picard operator with $c:=\frac{1}{1-\alpha}$. The conclusion follows by Corollary 2.1.

A second application concerns an integral inclusion of Volterra type.

(3.4)
$$x(t) \in \int_{a}^{t} K(t, s, x(s)) ds + g(t), \ t \in [a, b].$$

By a similar method, we can prove the following.

Theorem 3.2. Let $K:[a,b]\times[a,b]\times\mathbb{R}^n\to P_{cl,cv}(\mathbb{R}^n)$ and $g:[a,b]\to\mathbb{R}^n$ such that:

- (a) there exists an integrable function $M:[a,b] \to \mathbb{R}_+$ such that for each $t \in [a,b]$ and $u \in \mathbb{R}^n$ we have $K(t,s,u) \subset M(s)B(0;1)$, a.e. $s \in [a,b]$;
 - (b) for each $u \in \mathbb{R}^n$ $K(\cdot, \cdot, u) : [a, b] \times [a, b] \rightarrow P_{cl,cv}(\mathbb{R}^n)$ is jointly measurable;
- (c) for each $(s, u) \in [a, b] \times \mathbb{R}^n$ $K(\cdot, s, u) : [a, b] \to P_{cl,cv}(\mathbb{R}^n)$ is lower semi-continuous:
- (d) there exists a continuous function $p:[a,b] \to \mathbb{R}_+$ such that for each $(t,s) \in [a,b] \times [a,b]$ and each $u,v \in \mathbb{R}^n$ we have that

(3.5)
$$H(K(t, s, u), K(t, s, v)) \le p(s) \cdot |u - v|;$$

(e) g is continuous.

Then the follwing conclusions hold:

- (a) the integral inclusion (3.4) has at least one solution, i.e., there exists $x^8 \in C([a,b],\mathbb{R}^n)$ which satisfies (3.4) for each $t \in [a,b]$;
- (b) The integral inclusion (3.4) is Ulam-Hyers stable, i.e., there exists c > 0 such that for each $\varepsilon > 0$ and for any ε -solution y of (3.4), i.e., any $y \in C([a,b], \mathbb{R}^n)$ for which there exists $u \in C([a,b], \mathbb{R}^n)$ such that

$$u(t) \in \int_a^t K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and

$$|u(t) - y(t)| \le \varepsilon$$
, for each $t \in [a, b]$,

there exists a solution x^* of the integral inclusion (3.4) such that

$$|y(t) - x^*(t)| \le c \cdot \varepsilon$$
, for each $t \in [a, b]$.

Proof. We consider the multi-valued operator $T: C([a,b],\mathbb{R}^n) \to \mathcal{P}(C([a,b],\mathbb{R}^n))$

$$T(x) := \left\{ v \in C([a, b], \mathbb{R}^n) | \ v(t) \in \int_a^t K(t, s, x(s)) ds + g(t), \ t \in [a, b] \right\}.$$

Then, (3.4) is equivalent to the fixed point inclusion

$$(3.6) x \in T(x), x \in C([a, b], \mathbb{R}^n).$$

As in the proof of Theorem 3.1 we obtain $T(x) \in P_{cp}(C([a, b], \mathbb{R}^n))$. Next, we will prove that T is a multivalued contraction on $C([a, b], \mathbb{R}^n)$.

Notice first that one may suppose (without affecting the generality of the Lipschitz condition) that the inequality (3.5) is strict. Let $x_1, x_2 \in C([a,b], \mathbb{R}^n)$ and $v_1 \in T(x_1)$. Then $v_1(t) \in \int_a^t K(t,s,x_1(s))ds + g(t), \ t \in [a,b]$. It follows that $v_1(t) = \int_a^b k_1(t,s)ds + g(t), \ t \in [a,b]$, for some $k_1(t,s) \in K(t,s,x_1(s)), \ (t,s) \in [a,b] \times [a,b]$.

From (d) we have $H(K(t,s,x_1(s)),K(t,s,x_2(s))) < p(s)|x_1(s)-x_2(s)|$. Thus, there exists $w \in K(t,s,x_2(s))$ such that $|k_1(t,s)-w| \leq p(s)|x_1(s)-x_2(s)|$, for $t,s \in [a,b]$.

Let us define $U:[a,b]\times [a,b]\to \mathcal{P}(\mathbb{R}^n)$, by $U(t,s)=\{w|\ |k_1(t,s)-w|\le p(t,s)|x_1(s)-x_2(s)|\}$. Since the multivalued operator $V(t,s):=U(t,s)\cap K(t,s,x_2(s))$ is jointly measurable and lower semi-continuous in t there exists $k_2(t,s)$ a selection for V, jointly measurable (and, hence, integrable in s) and continuous in t. Hence, $k_2(t,s)\in K(t,s,x_2(s))$ and $|k_1(t,s)-k_2(t,s)|\le p(s)|x_1(s)-x_2(s)|$, for each $t,s\in [a,b]$.

Consider $v_2(t) = \int_a^t k_2(t,s)ds + g(t), t \in [a,b]$. We denote by $\|\cdot\|_B$ a Bieleckitype norm in $C([a,b],\mathbb{R}^n)$, given by $\|x\|_B := \sup_{t \in [a,b]} (|x(t)|e^{-\tau q(t)})$, where $q(t) := \int_a^t p(s)ds$.

Then, for each $t \in [a, b]$, we have:

 $|v_1(t) - v_2(t)| \leq \int_a^t |k_1(t,s) - k_2(t,s)| ds \leq \int_a^t p(s)|x_1(s) - x_2(s)| ds = \int_a^t p(s)e^{\tau q(s)}|x_1(s) - x_2(s)|e^{-\tau q(s)} ds \leq \int_a^t p(s)e^{\tau q(s)}|x_1 - x_2|_B ds = \frac{1}{\tau} ||x_1 - x_2|_B (e^{\tau q(t)} - e^{\tau q(a)}) \leq \frac{1}{\tau} ||x_1 - x_2|_B e^{\tau q(t)}.$ Thus, we immediately get

$$||v_1 - v_2||_B \le \frac{1}{\tau} ||x_1 - x_2||_B.$$

A similar relation can be obtained by interchanging the roles of x_1 and x_2 . By choosing now $\tau > 1$ we get that $H_{\|\cdot\|_B}(T(x_1), T(x_2)) \leq \frac{1}{\tau} \|x_1 - x_2\|_B$, which proves that T is a multivalued contraction with constant $\alpha := \frac{1}{\tau}$. Hence, conclusion (a) follows by Covitz-Nadler's fixed point theorem [4].

For the second conclusion, let $\varepsilon > 0$ and $y \in C([a, b], \mathbb{R}^n)$ for which there exists $u \in C([a, b], \mathbb{R}^n)$ such that

$$u(t) \in \int_a^t K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and

$$|u(t) - y(t)| \le \varepsilon$$
, for each $t \in [a, b]$.

Notice that

$$\|\cdot\|_B \le \|\cdot\| \le \|\cdot\|_B e^{\tau q(b)}$$
.

Then, we obtain that $\|u-y\|_B \leq \|u-y\| \leq \varepsilon$. Thus, $D_{\|\cdot\|_B}(y,T(y)) \leq \varepsilon$. Moreover, since T is a multivalued α -contraction with respect to $\|\cdot\|_B$, we obtain that T is a multivalued c-weakly Picard operator with $c:=\frac{1}{1-\alpha}$. The conclusion (b) is a consequence of Corollary 2.1. Hence, there exists a solution x^* of the integral inclusion (3.4) such that

$$||y - x^*||_B \le c\varepsilon.$$

Hence,

$$|y(t)-x^*(t)| \le ce^{\tau q(b)}\varepsilon$$
, for each $t \in [a,b]$.

REFERENCES

- 1. J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Basel, 1990.
- 2. L. P. Castro and A. Ramos, Hyers-Ulam-Rassias stability for a class of Volterra integral equations, *Banach J. Math. Anal.*, **3(1)** (2009), 36-43.
- 3. A. Chiş-Novac, R. Precup and I. A. Rus, Data dependence of fixed point for non-self generalized contractions, *Fixed Point Theory*, **10** (2009), 73-87.
- 4. H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, *Israel J. Math.*, **8** (1970) 5-11.
- 5. M. Frigon and A. Granas, Résultats du type de Leray-Schauder pour les contractions multivoques, *Topol. Methods Nonlinear Anal.*, **4** (1994), 197-208.
- 6. S. Hu and N. S. Papageorgiou, *Handbook of Multivalued Analysis, Vol. I and II*, Kluwer Acad. Publ., Dordrecht, 1997 and 1999.
- 7. S.-M. Jung, *A fixed point approach to the stability of a Volterra integral equation*, Fixed Point Theory and Applications, Vol. 2007, Article ID 57064, 9 pages.
- 8. T. A. Lazăr, A. Petruşel and N. Shahzad, Fixed points for non-self operators and domain invariance theorems, *Nonlinear Analysis*, **70** (2009), 117-125.
- 9. J. Matkowski, Integrable solutions of functional equations, *Dissertationes Math.* (*Rozprawy Mat.*), **127** (1975), 68.
- 10. S. B. Nadler Jr., Multivalued contraction mappings, *Pacific J. Math.*, **30** (1969), 475-488.
- 11. T. P. Petru, Fixed point results for φ -contractions on a set with two separating gauge structures, *Anal. Știintifice Univ. Ovidius Constanța*, **18(1)** (2010), 263-286.
- 12. T. P. Petru and M. Boriceanu, Fixed point results for generalized φ -contraction on a set with two metrics, *Topological Methods in Nonlinear Analysis*, **33** (2009), 315-326.

- 13. A. Petruşel, Multivalued weakly Picard operators and applications, *Scienticae Mathematicae Japonicae*, **59** (2004), 169-202.
- 14. I. A. Rus, Remarks on Ulam stability of the operatorial equations, *Fixed Point Theory*, **10(2)** (2009), 305-320.
- 15. I. A. Rus, *Generalized Contractions and Applications*, Cluj University Press, Cluj-Napoca, 2001.
- 16. I. A. Rus, Picard operators and applications, Sci. Math. Japon., 58 (2003), 191-219.
- 17. I. A. Rus, Strict fixed point theory, Fixed Point Theory, 4 (2003), 177-183.
- 18. I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, *Fixed Point Theory*, **9** (2008), 541-559.
- 19. I. A. Rus, Ulam stability of ordinary differential equations, *Studia Univ. Babeş-Bolyai Math.*, **54** (2009), 125-133.
- I. A. Rus, Gronwall lemma approach to the Ulam-Hyers-Rassias stability of an integral equation, Nonlinear Analysis and Variational Problems (P. M. Pardalos et al. eds.), Vol. 147, Springer Optimization and Its Applications 35, New York, 147-152.
- 21. I. A. Rus, Gronwall lemmas: ten open problems, *Scientiae Mathematicae Japonicae Online*, e-2009, 257-264.
- 22. I. A. Rus, A. Petruşel and G. Petruşel, *Fixed Point Theory*, Cluj University Press, 2008.
- 23. I. A. Rus, A. Petruşel and A. Sîntămărian, Data dependence of the fixed points set of some multivalued weakly Picard operators, *Nonlinear Anal.*, **52** (2003), 1947-1959.
- 24. L. Rybinski, On Carathédory type selections, Fund. Math., 125 (1985), 187-193.
- 25. R. Węgrzyk, Fixed point theorems for multifunctions and their applications to functional equations, *Diss. Math.*, **201** (1982).

T. P. Petru

Faculty of Economics and Business Administration Babeş-Bolyai University Teodor-Mihali Str., No. 58-60 400591, Cluj-Napoca, Romania E-mail: petra.petru@econ.ubbcluj.ro

A. Petruşel

Department of Applied Mathematics Babeş-Bolyai University Kogalniceanu Street No. 1 400084 Cluj-Napoca, Romania E-mail: petrusel@math.ubbcluj.ro J.-C. Yao Center for General Education Kaohsiung Medical University Kaohsiung 807, Taiwan E-mail: yaojc@kmu.edu.tw