
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 15, No. 5, pp. 2195-2212, October 2011
This paper is available online at http://tjm.math.ntu.edu.tw/index.php/TJM

ULAM-HYERS STABILITY FOR OPERATORIAL EQUATIONS AND
INCLUSIONS VIA NONSELF OPERATORS

T. P. Petru, A. Petruşel and J.-C. Yao*

Abstract. Using the weakly Picard operator technique, we present some
abstract Ulam-Hyers stability results for operatorial equations and inclusions
involving nonself single-valued and multivalued operators.

1. INTRODUCTION

Let (X, d) be a metric space, P(X) be the family of all subsets of X and
consider the following families of subsets of X :

P (X) := {Y ∈ P(X)| Y �= ∅}, Pb(X) := {Y ∈ P (X)| Y is bounded},

Pcl(X) := {Y ∈ P (X)| Y is closed}, Pcp(X) := {Y ∈ P (X)| Y is compact}.
We will denote by B̄(x0, r) the closure of B(x0, r) in (X, d), whereB(x0, r) :=

{x ∈ X |d(x0, x) < r} is the open ball centered in x0 ∈ X with radius r > 0
and by B̃(x0, r) the closed ball centered in x0 ∈ X with radius r > 0, i.e.,
B̃(x0, r) := {x ∈ X |d(x0, x) ≤ r}.

If (X, d) is a metric space, then the gap functional in P (X) is defined as

Dd : P (X)× P (X) → R+, Dd(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.

In particular, if x0 ∈ X then Dd(x0, B) := Dd({x0}, B).
We will denote by H the generalized Pompeiu-Hausdorff functional on P (X),

defined as

Hd : P (X)×P (X) → R+∪{+∞}, Hd(A,B) = max{sup
a∈A

Dd(a, B), sup
b∈B

Dd(b, A)}.

Received June 3, 2010.
2010 Mathematics Subject Classification: 47H10, 54H25, 54C60.
Key words and phrases: Ulam-Hyers stability, Generalized Ulam-Hyers, Nonself operator, Multivalued
operator, Weakly Picard operator, c-Weakly Picard operator, Fixed point, Strict fixed point.
The work of this author was partially supported by the Grant NSC 98-2923-E-110-003-MY3.
*Corresponding author.

2195



2196 T. P. Petru, A. Petruşel and J.-C. Yao

Let (X, d) be a metric space. If F : X → P (X) is a multivalued operator, then
x ∈ X is called fixed point for F if and only if x ∈ F (x). The set Fix(F ) :=
{x ∈ X | x ∈ F (x)} is called the fixed point set of T , while SFix(F ) = {x ∈
X | {x} = F (x)} is called the strict fixed point set of F .

Let Y be a nonempty set and T, S : X → P (Y ) be two multivalued operators.
An element x∗ ∈ X is a coincidence point for T and S if T (x∗) ∩ S(x∗) �= ∅. We
denote by C(T, S) the set of all coincidence points for T and S.

Let T, S : X → P (X) be two multivalued operators. An element x∗ ∈ X

is called a common fixed point for T and S if x∗ ∈ T (x∗) ∩ S(x∗). We denote
by CM(T, S) := Fix(T ) ∩ Fix(S) the set of all common fixed points for the
multivalued operators T and S.

For a multivalued opertor T : X → P (Y ) we will denote by

Graph(T ) := {(x, y) ∈ X × Y : y ∈ T (x)}

The graphic of T . Notice that t : X → Y is a selection for T : X → P (Y ) if
t(x) ∈ T (x), for each x ∈ X . Also, T : X → P (Y ) is said to be onto if and only
if for each y ∈ Y there exists x ∈ X such that y ∈ T (x).

In particular, when F (or T and S) is a singlevalued operator, we obtain the
similar well-known concepts in fixed point theory.

For the following notions see I. A. Rus [16] and [14], I. A. Rus, A. Petruşel,
A. Sîntǎmǎrian [23] and A. Petruşel [13].

Definition 1.1. Let (X, d) be a metric space and f : X → X be an operator. By
definition, f is a weakly Picard operator (briefly WPO) if the sequence (fn(x))n∈N

of successive approximations for f starting from x ∈ X converges, for all x ∈ X

and its limit is a fixed point of f .

If f is WPO, then we consider the operator

f∞ : X → X defined by f∞(x) := lim
n→∞ fn(x).

Notice that f∞(X) = Fix(f).

Definition 1.2. Let (X, d) be a metric space, f : X → X be a WPO and c > 0
be a real number. By definition, the operator f is said to be a c-weakly Picard
operator (briefly c-WPO) if and only if

d(x, f∞(x)) ≤ c d(x, f(x)), for all x ∈ X.
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Definition 1.3. Let (X, d) be a metric space, and F : X → Pcl(X) be a
multivalued operator. By definition, F is a multivalued weakly Picard (briefly
MWP) operator if for each x ∈ X and each y ∈ F (x) there exists a sequence
(xn)n∈N such that:

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ F (xn), for each n ∈ N;
(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of F .

Remark 1.1. A sequence (xn)n∈N satisfying the condition (i) and (ii), in the
Definition 1.3 is called a sequence of successive approximations of F starting from
(x, y) ∈ Graph(F ).

If F : X → P (X) is a MWP operator, then we define F∞ : Graph(F ) →
P (FixF ) by the formula F∞(x, y) := { z ∈ Fix(F ) | there exists a sequence of
successive approximations of F starting from (x, y) that converges to z }.

Definition 1.4. Let (X, d) be a metric space and F : X → P (X) be a MWP
operator. Then, F is called a c-multivalued weakly Picard operator (briefly c-MWP
operator) if and only if there exists a selection f∞ of F∞ such that

d(x, f∞(x, y)) ≤ c d(x, y), for all (x, y) ∈ Graph(F ).

For the theory of weakly Picard operators, see [16] for the singlevalued case
and [23] and [13] for the multivalued one.

The purpose of this paper is to extend and generalize some results given in [14],
concerning the Ulam-Hyers stability of some operatorial equations and inclusions
by using the weakly Picard operator technique.

2. ULAM-HYERS STABILITY FOR FIXED POINT EQUATIONS AND

INCLUSIONS WITH NON-SELF OPERATORS

Let (X, d) be a metric space, Y be a nonempty subset of X and f : Y → X
be an operator. In this section we shall use the following notations and notions (see
[14, 3]):
I(f) := {Z ⊂ Y | f(Z) ⊂ Z, Z �= ∅} - the set of all invariant subsets of f
(MI)f - the maximal invariant subset of f , i.e., (MI)f :=

⋃
Z∈I(f)

Z ;

(AB)f (x∗) := {x ∈ Y | fn(x) is defined for all n ∈ N and fn(x) d→ x∗ ∈ Fix(f)}
- the attraction basin of x∗ ∈ Fix(f) with respect to f
(AB)f :=

⋃
x∗∈Fix(f)

(AB)f (x∗) - the attraction basin of f .
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Definition 2.1. (A. Chiş-Novac, R. Precup, I. A. Rus [3]). By definition,
f : Y → X is called a nonself weakly Picard operator if Fix(f) �= ∅ and (MI)f =
(AB)f . If Fix(f) = {x∗}, then a nonself weakly Picard operator is said to be
nonself Picard operator.

Definition 2.2. (A. Chiş-Novac, R. Precup, I. A. Rus [3]). For each nonself
weakly Picard operator f : Y → X we define the operator f∞ : (AB)f →
Fix(f) ⊂ (AB)f , by f∞(x) = lim

n→∞ fn(x).

Definition 2.3. (A. Chiş-Novac, R. Precup, I. A. Rus [3]). Let ψ : R+ → R+

be an increasing function which is continuous in 0 and ψ(0) = 0. An operator
f : Y → X is said to be a nonself ψ-weakly Picard operator if it is nonself weakly
Picard operator and

d(x, f∞(x)) ≤ ψ(d(x, f(x))), for all x ∈ (MI)f .

In the case that ψ(t) := ct (for some c > 0), for each t ∈ R+, we say that f is
c-weakly Picard operator.

For some examples of nonself weakly Picard operators and ψ-weakly Picard
operators, see [3].

If f : Y → X is an operator, let us consider the fixed point equation

(2.1) x = f(x), x ∈ Y

and the inequation

(2.2) d(y, f(y)) ≤ ε.

Definition 2.4. (I. A. Rus [14]). The equation (2.1) is called generalized Ulam-
Hyers stable if there exists ψ : R+ → R+ increasing, continuous in 0 and ψ(0) = 0
such that for each ε > 0 and for each solution y∗ ∈ (AB)f of (2.2) there exists a
solution x∗ of the fixed point equation (2.1) such that

d(y∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) := ct, for each ∈ R+, the equation (2.1) is
said to be Ulam-Hyers stable.

The following abstract result is presented in [14].

Theorem 2.1. (I.A. Rus [14]). Let (X, d) be a metric space, Y be a nonempty
subset of X and f : Y → X be a ψ-weakly Picard operator. Then, the fixed point
equation (2.1) is generalized Ulam-Hyers stable. In particular, if f is c-weakly
Picard operator, then the equation (2.1) is Ulam-Hyers stable.
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Proof. Let ε > 0 and y∗ ∈ (AB)f be a solution of (2.2), i.e., d(y∗, f(y∗)) ≤ ε.
Since f is a ψ-weakly Picard operator, for each x ∈ (MI)f we have

d(x, f∞(x)) ≤ ψ(d(x, ψ(x))).

Hence, taking into account that (MI)f = (AB)f , we can choose x∗ := f∞(y∗)
and thus we get that x∗ is a solution of the fixed point equation (2.1) and

d(y∗, x∗) ≤ ψ(ε).

We will present now some consequences of the above result. We need first some
definitions, see [15] for details.

A mapping ϕ : R+ → R+ is called a comparison function if it is increasing
and ϕk(t) → 0 as k → +∞. As a consequence, we also have ϕ(t) < t, for each
t > 0, ϕ(0) = 0 and ϕ is continuous in 0. The mapping ϕ : R+ → R+ is said to

be a strict comparison function if it is strictly increasing and
∞∑

n=1

ϕn(t) < +∞, for

each t > 0.
Recall that if (X, d) is a metric space, Y is a nonempty subset of X and

f : Y → X is an operator, then f is called:

(i) α-contraction if α ∈ [0, 1[ and

d(f(x1), f(x2)) ≤ αd(x1, x2) for all x1, x2 ∈ Y.

(ii) ϕ-contraction if ϕ : R+ → R+ is a comparison function and

d(f(x1), f(x2)) ≤ ϕ(d(x1, x2)) for all x1, x2 ∈ Y.

Theorem 2.2. Let (X, d) be a complete metric space, x0 ∈ X , r > 0 and
f : B̃(x0, r) → X be an α−contraction, such that d(x0, f(x0)) ≤ (1 − α)r.

Then the fixed point equation (2.1) is Ulam-Hyers stable.

Proof. It is easy to see that (MI)f=(AB)f=B̃(x0, r) and hence, by Banach-
Caccioppoli fixed point principle, we have that Fix(f) = {x∗} and for each x ∈
B̃(x0, r)

d(x, x∗) ≤ 1
1− α

d(x, f(x)).

Thus, f is a c-WPO with c := 1
1−α > 0. Hence, by Theorem 2.1 the fixed point

equation (2.1) is Ulam-Hyers stable.

Another result of this type is the following.
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Theorem 2.3. Let (X, d) be a complete metric space, x0 ∈ X , r > 0 and
f : B̃(x0, r) → X be a ϕ-contraction, such that d(x0, f(x0)) ≤ r−ϕ(r). Suppose
also that the function ψ : R+ → R+ ψ(t) := t− ϕ(t) is strictly continuous and
onto. Then, the fixed point equation (2.1) is generalized Ulam-Hyers stable.

Proof. Notice that, by our hypotheses, we have (MI)f = (AB)f = B̃(x0, r)
and hence, by Matkowski-Rus fixed point principle (see [9] and [15]), we have that
Fix(f) = {x∗}. Then, for each x ∈ B̃(x0, r) we have

d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ d(x, f(x)) + ϕ(d(x, x∗)).

Notice that ψ−1 : R+ → R+ exists, is increasing, continuous at 0 and ψ−1(0) = 0.
Thus,

d(x, x∗) ≤ ψ−1(d(x, f(x))), for each x ∈ B̃(x0, r)

proving that f is a nonself ψ−1-weakly Picard operator. Hence, by Theorem 2.1
the fixed point equation (2.1) is generalized Ulam-Hyers stable.

Remark 2.2. If f : B̃(x0, r) → X , then similar results concerning the Ulam-
Hyers stablility of the fixed point equation (2.1) can be given for:

(a) generalized contractions of Ćirić-Reich-Rus type, i.e., there exists α, β, γ ∈
R+ with α+ β + γ < 1 such that

d(f(x), f(y))≤ αd(x, y)+βd(x, f(x))+γd(y, f(y)), for all x, y ∈ B̃(x0, r),

where c := 1−β
1−α−β−γ > 0;

(b) generalized contractions of Ćirić type, i.e., there exists q ∈ [0, 1
2 [, such that

for all x, y ∈ B̃(x0, r) one have

d(f(x), f(y))≤qmax{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))},

where c :=
1 − q

1 − 2q
.

For details, rigorous statements and other results see [3].

We will consider now the multivalued case.
Let (X, d) be a metric space, Y be a nonempty subset of X and F : Y → P (X)

be a multivalued operator.
In the sequel, we shall use the following notations and notions: I(F ) := {Z ⊂

Y : F (Z) ⊂ Z, Z �= ∅} - the set of all invariant subsets of F ;
(MI)F - the maximal invariant subset of F , i.e., (MI)F :=

⋃
Z∈I(F )

Z ;

(AB)F (x∗) :={x∈Y : for each y∈F (x), there exists in Y a sequence, (xn)n∈N,
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of successive approximations for F starting from (x, y),which converges to x∗}
- the attraction basin of x∗ ∈ Fix(F ) with respect to F ;

(AB)F :=
⋃

x∗∈Fix(F )

(AB)F (x∗) - the attraction basin of F .

Definition 2.5. Let (X, d) be a metric space, Y ∈ P (X) and F : Y → P (X)
be a multivalued operator. By definition, F is a nonself multivalued weakly Picard
operator if Fix(F ) �= ∅ and (MI)F = (AB)F .
If Y = X , then F having the above properties is said to be a multivalued weakly
Picard operator.

Let F : Y → P (X) be a nonself multivalued weakly Picard operator. Denote

D∞
F := {(x, y) ∈ X ×X : x ∈ (AB)F and y ∈ F (x)}.

Then, we consider the multivalued operator F∞ : D∞
F → P (Fix(F )) defined by

the following formula:
F∞(x, y):= the set of all fixed points of F that are limits of a successive approxi-
mations sequence starting from (x, y).

Definition 2.6. Let (X, d) be a metric space and Y ∈ P (X). Let ψ : R+ →
R+ be an increasing function which is continuous in 0 and ψ(0) = 0. Then
F : Y → P (X) is said to be a nonself multivalued ψ-weakly Picard operator
if it is a nonself multivalued weakly Picard operator and there exists a selection
f∞ : D∞

F → Fix(F ) of F∞ such that

d(x, f∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ D∞
F .

If Y = X , then F having the above property is said to be a multivalued ψ-weakly
Picard operator. If there exists c > 0 such that ψ(t) = ct, for each t ∈ R+, then
we say that F is a nonself multivalued c-weakly Picard operator.

Definition 2.7. Let (X, d) be a metric space, Y be a nonempty subset of X and
F : Y → P (X) be a multivalued operator. The fixed point inclusion

(2.3) x ∈ F (x), x ∈ Y

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+

increasing, continuous in 0 and ψ(0) = 0 such that for each ε > 0 and for each
solution y∗ ∈ (AB)F of the inequation

(2.4) D(y, F (y)) ≤ ε

there exists a solution x∗ of the fixed point inclusion (2.3) such that

d(y∗, x∗) ≤ ψ(ε).
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If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, then the fixed point
inclusion (2.3) is said to be Ulam-Hyers stable.

The following theorem is an abstract result concerning the Ulam-Hyers stability
of the fixed point inclusion (2.3) with nonself multivalued operators with compact
values.

Theorem 2.4. Let (X, d) be a metric space, Y be a nonempty subset of X and
F : Y → Pcp(X) be a nonself multivalued ψ-weakly Picard operator. Then, the
fixed point inclusion (2.3) is generalized Ulam-Hyers stable.

Proof. Let ε > 0 and y∗ ∈ (AB)F be a solution of (2.4), i.e., D(y∗, F (y∗)) ≤
ε. Let u∗ ∈ F (y∗) such that d(y∗, u∗) = D(y∗, F (y∗)). Since F is a nonself
multivalued ψ-weakly Picard operator, for each (x, y) ∈ D∞

F we have

d(x, f∞(x, y)) ≤ ψ(d(x, y)).

Hence, taking into account that (y∗, u∗) ∈ D∞
F , we can choose x∗ := f∞(y∗, u∗)

and thus we get that x∗ is a solution of the fixed point inclusion (2.3) and

d(y∗, x∗) = d(y∗, f∞(y∗, u∗)) ≤ ψ(d(y∗, u∗)) ≤ ψ(ε).

In particular, if the multivalued operator is self, then Theorem 2.4 gives a theo-
rem concerning Ulam-Hyers stability of the fixed point inclusion with multivalued
self operators, which was presented in [14]. We list here this result.

Corollary 2.1. Let (X, d) be a metric space and F : X → Pcp(X) be a
multivalued ψ-weakly Picard operator. Then, the fixed point inclusion (2.3) is
generalized Ulam-Hyers stable.

We will present now some consequences of the above result. We need first some
definitions.

Definition 2.8. Let (X, d), (Y, d′) be metric spaces and F : X → Pcl(Y ) be a
multivalued operator. Then, F is called:

(i) a-contraction, if a ∈ [0, 1[ and Hd′(F (x1), F (x2)) ≤ ad(x1, x2), for all
x1, x2 ∈ X ;

(ii) ϕ-contraction, if ϕ : R+ → R+ is a strict comparison function and for all
x1, x2 ∈ X we have that Hd′(F (x1), F (x2)) ≤ ϕ(d(x1, x2));

Theorem 2.5. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let
F : B̃(x0; r) → Pcp(X) be a multivalued a-contraction such that H(x 0, F (x0)) <
(1− a)r. Then, the fixed point inclusion (2.3) is Ulam-Hyers stable.
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Proof. By Theorem 4.5 in [8], the set B̃(x0; r) is invariant with respect to F ,
i.e., (MI)F = B̃(x0; r). Thus, by Nadler’s contraction principle (see [10]), we get
that F is a nonself multivalued weakly Picard operator. Moreover, F is a nonself
multivalued c-weakly Picard operator with c := 1

1−a (see [23]). Hence, Theorem
2.4 applies and the conclusion follows.

The following result is known in the literature as Wȩgrzyk’s theorem (see [25]).

Theorem 2.6. Let (X, d) be a complete metric space and F : X → Pcl(X) be
a multivalued ϕ-contraction. Then F is a multivalued weakly Picard operator.

A Ulam-Hyers stability result for nonself multivalued ϕ-contractions is the fol-
lowing.

Theorem 2.7. Let (X, d) be a complete metric space, x0 ∈ X and r > 0.
Let F : B̃(x0; r) → Pcp(X) be a multivalued ϕ-contraction such that the function
ψ : R+ → R+ given by ψ(t) = t− ϕ(t) is strictly increasing and onto. Suppose
H(x0, F (x0)) < r−ϕ(r) and SFix(F ) �= ∅. Then, the fixed point inclusion (2.3)
is generalized Ulam-Hyers stable.

Proof. Since F is a ϕ-contraction, using the assumption H(x0, F (x0)) < r−
ϕ(r), we obtain (see [8]) that the set B̃(x0; r) is invariant with respect to F , i.e.,
(MI)F = B̃(x0; r). Thus, by Wȩgrzyk’s Theorem 2.6, we get that F : B̃(x0; r) →
Pcp(X) is a nonself multivalued weakly Picard operator.

Moreover, F is a nonself multivalued ψ−1-weakly Picard operator. Indeed, let
x∗ ∈ SFix(F ) and x ∈ Fix(F ) be arbitrary. Then d(x, x∗) = D(x, F (x∗)) ≤
H(F (x), F (x∗)) ≤ ϕ(d(x, x∗)). By the properties of ϕ we get that d(x, x∗) = 0
and hence Fix(F ) ⊂ {x∗}. Since SFix(F ) ⊂ Fix(F ), we get that Fix(F ) =
SFix(F ) = {x∗}. Hence for each x ∈ B̃(x0; r) and y ∈ F (x) we have

d(x, x∗) ≤ d(x, y) +H(F (x), F (x∗)) ≤ d(x, y) + ϕ(d(x, x∗)).

Thus, since ψ is a strictly increasing bijection we obtain that

d(x, x∗) ≤ ψ−1(d(x, y)), for each (x, y) ∈ B̃(x0; r).

Thus, Theorem 2.4 applies and the conclusion follows.

A similar concept will be given in the last part of the section.

We denote by
(SAB)F (x∗) := {x ∈ Y : Fn(x) is defined and F n(x) H→ {x∗}} - the strict

attraction basin of x∗ ∈ SFix(F ) with respect to F ;
(SAB)F :=

⋃
x∗∈SFix(F )

(SAB)F (x∗) - the strict attraction basin of F .
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Definition 2.9. Let (X, d) be a metric space, Y ∈ P (X) and F : Y → P (X)
be a multivalued operator. By definition, F is a nonself multivalued Picard operator
if SFix(F ) = Fix(F ) = {x∗} and (MI)F = (SAB)F .

Definition 2.10. Let ψ : R+ → R+ be an increasing function which is contin-
uous in 0 and ψ(0) = 0. Then F : Y → P (X) is said to be a nonself multivalued
ψ-Picard operator if it is a nonself multivalued Picard operator and

d(x, x∗) ≤ ψ(H(x, F (x))), for all x ∈ (SAB)F .

If there exists c > 0 such that ψ(t) = ct, for each t ∈ R+, then we say that F
is a nonself multivalued c-Picard operator.

Moreover, if Y = X , then F is said multivalued ψ-Picard operator, respectively
multivalued c-Picard operator.

Definition 2.11. Let (X, d) be a metric space, Y be a nonempty subset of X
and F : Y → P (X) be a multivalued operator. The strict fixed point inclusion

(2.5) {x} = F (x), x ∈ Y

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+

increasing, continuous in 0 and ψ(0) = 0 such that for each ε > 0 and for each
solution y∗ ∈ (SAB)F of the inequation

(2.6) H(y, F (y)) ≤ ε

there exists a solution x∗ of the strict fixed point inclusion (2.5) such that

d(y∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, then the strict fixed
point inclusion (2.5) is said to be Ulam-Hyers stable.

Remark 2.3. It is worth to note that the above definition can briefly re-written
as follows: the strict fixed point inclusion is generalized Ulam-Hyers stable if and
only if the fixed point (set) equation

{x} = F (x), x ∈ Y

is generalized Ulam-Hyers stable in (Pcl(X), H).

The following theorem is an abstract result concerning the Ulam-Hyers stability
of the strict fixed point inclusion (2.5) with nonself multivalued operators with
closed values.
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Theorem 2.8. Let (X, d) be a metric space, Y be a nonempty subset of X and
F : Y → Pcl(X) be a nonself multivalued ψ-Picard operator. Then, the strict fixed
point inclusion (2.5) is generalized Ulam-Hyers stable.

Proof. Let ε > 0 and y∗ ∈ (SAB)F be a solution of (2.6), i.e., H(y∗, F (y∗)) ≤
ε. Since F is a nonself multivalued ψ-Picard operator, we have

d(x, x∗) ≤ ψ(H(x, F (x))), for all x ∈ (SAB)F .

Hence d(y∗, x∗) ≤ ψ(H(y∗, F (y∗))) ≤ ψ(ε).

As a consequence of Theorem 2.8, we immediately obtain:

Theorem 2.9. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let
F : B̃(x0; r) → Pcl(X) be a multivalued a-contraction such that H(x 0, F (x0)) <
(1 − a)r and SFix(F ) �= ∅. Then, the strict fixed point inclusion (2.5) is Ulam-
Hyers stable.

Proof. By the contraction condition and using the fact that H(x0, F (x0)) <
(1 − a)r we obtain that (MI)F = B̃(x0; r). Since SFix(F ) �= ∅, we obtain (see
I.A. Rus [17]) that Fix(F ) = SFix(F ) = {x∗}. Hence, F is a nonself multivalued
Picard operator.

Then, for each x ∈ B̃(x0; r) we have d(x, x∗) ≤ D(x, F (x))+H(F (x), F (x∗))
≤ D(x, F (x)) + ad(x, x∗). Hence

d(x, x∗) ≤ 1
1 − a

D(x, F (x)) ≤ 1
1 − a

H(x, F (x)), for each x ∈ B̃(x0; r).

Thus, F is a nonself multivalued c-Picard operator with c := 1
1−a . The conclusion

follows from Theorem 2.8.

3. SOME APPLICATIONS TO OPERATORIAL INCLUSIONS

As a first application, let us consider the following integral inclusion of Fredholm
type.

(3.1) x(t) ∈
∫ b

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b].

Throughout this section we will denote by ‖·‖ the supremum norm inC([a, b],Rn).
The main result concerning the stability of the Fredholm integral incusion (3.1)

is the following.
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Theorem 3.1. Let K : [a, b] × [a, b]× R
n → Pcl,cv(Rn) and g : [a, b] → R

n

such that:
(a) there exists an integrable function M : [a, b] → R + such that for each

t ∈ [a, b] and u ∈ R
n we have K(t, s, u) ⊂M(s)B(0; 1), a.e. s ∈ [a, b];

(b) for each u ∈ R
n K(·, ·, u) : [a, b]×[a, b] → Pcl,cv(Rn) is jointly measurable;

(c) for each (s, u) ∈ [a, b] × R
n K(·, s, u) : [a, b] → Pcl,cv(Rn) is lower

semi-continuous;
(d) there exists a continuous function p : [a, b] × [a, b] → R + with

sup
t∈[a,b]

∫ b

a
p(t, s)ds ≤ α < 1 such that for each (t, s) ∈ [a, b] × [a, b] and each

u, v ∈ R
n we have that

(3.2) H(K(t, s, u),K(t, s, v)) ≤ p(t, s) · |u− v|;

(e) g is continuous.
Then the follwing conclusions hold:
(a) the integral inclusion (3.1) has least one solution, i.e., there exists x ∗ ∈

C([a, b],Rn) which satisfies (3.1), for each t ∈ [a, b].
(b) The integral inclusion (3.1) is Ulam-Hyers stable, i.e., there exists c > 0,

such that for each ε > 0 and for any ε-solution y of (3.1), i.e., any y ∈ C([a, b],R n)
for which there exists u ∈ C([a, b],Rn) such that

u(t) ∈
∫ b

a

K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and
|u(t)− y(t)| ≤ ε, for each t ∈ [a, b]),

there exists a solution x∗ of the integral inclusion (3.1) such that

|y(t)− x∗(t)| ≤ c · ε, for each t ∈ [a, b].

Proof. (a) Define the multivalued operator T :C([a, b],Rn) → P(C([a, b],Rn))
by

T (x) :=
{
v ∈ C([a, b],Rn)| v(t) ∈

∫ b

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b]

}
.

Then, (3.1) is equivalent to the fixed point inclusion

(3.3) x ∈ T (x), x ∈ C([a, b],Rn).

The proof is organized in several steps.
1. T (x) ∈ Pcp(C([a, b],Rn)).
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From (e) and Theorem 2 in Rybiński [24] we have that for each x ∈ C([a, b],Rn)
there exists k(t, s) ∈ K(t, s, x(s)), for all (t, s) ∈ [a, b], such that k(t, s) is
integrable with respect to s and continuous with respect to t. Then v(t) :=∫ b
a k(t, s)ds + g(t), has the property v ∈ T (x). Moreover, from (a) and (b), via

Theorem 8.6.3. in Aubin and Frankowska [1], we get that T (x) is a compact set,
for each x ∈ C([a, b],Rn).

2. H(T (x1), T (x2)) ≤ α · ‖x1 − x2‖, for each x1, x2 ∈ C([a, b],Rn).
Notice first that one may suppose (without affecting the generality of the Lip-

schitz condition) that the inequality (3.2) is strict. Let x1, x2 ∈ C([a, b],Rn) and

v1 ∈ T (x1). Then v1(t) ∈
∫ b

a
K(t, s, x1(s))ds + g(t), t ∈ [a, b]. It follows

that v1(t) =
∫ b

a
k1(t, s)ds + g(t), t ∈ [a, b], for some k1(t, s) ∈ K(t, s, x1(s)),

(t, s) ∈ [a, b]× [a, b].
From (d) we have H(K(t, s, x1(s)), K(t, s, x2(s)) < p(t, s)|x1(s) − x2(s)| ≤

p(t, s)‖x1 − x2‖. Thus, there exists w ∈ K(t, s, x2(s)) such that |k1(t, s) − w| ≤
p(t, s)‖x1 − x2‖, for t, s ∈ [a, b].

Let us define U : [a, b] × [a, b] → P(Rn), by U(t, s) = {w| |k1(t, s) −
w| ≤ p(t, s)‖x1 − x2‖}. Since the multi-valued operator V (t, s) := U(t, s) ∩
K(t, s, x2(s)) is jointly measurable and lower semi-continuous in t there exists
k2(t, s) a selection for V , jointly measurable (and, hence, integrable in s) and
continuous in t. Hence, k2(t, s) ∈ K(t, s, x2(s)) and |k1(t, s) − k2(t, s)| ≤
p(t, s)‖x1 − x2‖, for each t, s ∈ [a, b].

Consider v2(t) =
∫ b

a
k2(t, s)ds+ g(t), t ∈ [a, b]. Then, we have:

|v1(t) − v2(t)| ≤
∫ b
a |k1(t, s) − k2(t, s)|ds ≤

∫ b
a p(t, s)‖x1 − x2‖ds ≤ α‖x1 −

x2‖.
A similar relation can be obtained by interchanging the roles of x1 and x2. Thus

the second step follows.
The first conclusion follows by Covitz-Nadler’s fixed point theorem, see [4].
(b) We will prove that the fixed point inclusion problem (3.3) is Ulam-Hyers sta-

ble. Indeed, let ε > 0 and y ∈ C([a, b],Rn) for which there exists u ∈ C([a, b],Rn)
such that

u(t) ∈
∫ b

a
K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and
‖u− y‖ ≤ ε.

Then D‖·‖(y, T (y)) ≤ ε. Moreover, since T is a multivalued α-contraction, we
obtain that T is a multivalued c-weakly Picard operator with c := 1

1−α . The
conclusion follows by Corollary 2.1.
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A second application concerns an integral inclusion of Volterra type.

(3.4) x(t) ∈
∫ t

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b].

By a similar method, we can prove the following.

Theorem 3.2. Let K : [a, b] × [a, b]× R
n → Pcl,cv(Rn) and g : [a, b] → R

n

such that:
(a) there exists an integrable function M : [a, b] → R+ such that for each

t ∈ [a, b] and u ∈ R
n we have K(t, s, u) ⊂M(s)B(0; 1), a.e. s ∈ [a, b];

(b) for each u ∈ R
n K(·, ·, u) : [a, b]×[a, b]→ Pcl,cv(Rn) is jointly measurable;

(c) for each (s, u) ∈ [a, b]× R
n K(·, s, u) : [a, b] → Pcl,cv(Rn) is lower semi-

continuous;
(d) there exists a continuous function p : [a, b] → R+ such that for each

(t, s) ∈ [a, b]× [a, b] and each u, v ∈ R
n we have that

(3.5) H(K(t, s, u), K(t, s, v))≤ p(s) · |u− v|;
(e) g is continuous.

Then the follwing conclusions hold:
(a) the integral inclusion (3.4) has at least one solution, i.e., there exists x 8 ∈

C([a, b],Rn) which satisfies (3.4) for each t ∈ [a, b];
(b) The integral inclusion (3.4) is Ulam-Hyers stable, i.e., there exists c > 0

such that for each ε > 0 and for any ε-solution y of (3.4), i.e., any y ∈ C([a, b],R n)
for which there exists u ∈ C([a, b],Rn) such that

u(t) ∈
∫ t

a
K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and
|u(t)− y(t)| ≤ ε, for each t ∈ [a, b]),

there exists a solution x∗ of the integral inclusion (3.4) such that

|y(t)− x∗(t)| ≤ c · ε, for each t ∈ [a, b].

Proof. We consider the multi-valued operator T :C([a, b],Rn)→P(C([a, b],Rn))

T (x) :=
{
v ∈ C([a, b],Rn)| v(t) ∈

∫ t

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b]

}
.

Then, (3.4) is equivalent to the fixed point inclusion

(3.6) x ∈ T (x), x ∈ C([a, b],Rn).



Ulam-Hyers Stability for Operatorial Equations and Inclusions Via Nonself Operators 2209

As in the proof of Theorem 3.1 we obtain T (x) ∈ Pcp(C([a, b],Rn)). Next, we
will prove that T is a multivalued contraction on C([a, b],Rn).

Notice first that one may suppose (without affecting the generality of the Lip-
schitz condition) that the inequality (3.5) is strict. Let x1, x2 ∈ C([a, b],Rn) and

v1 ∈ T (x1). Then v1(t) ∈
∫ t

a

K(t, s, x1(s))ds + g(t), t ∈ [a, b]. It follows

that v1(t) =
∫ b

a
k1(t, s)ds + g(t), t ∈ [a, b], for some k1(t, s) ∈ K(t, s, x1(s)),

(t, s) ∈ [a, b]× [a, b].
From (d) we have H(K(t, s, x1(s)), K(t, s, x2(s))) < p(s)|x1(s) − x2(s)|.

Thus, there exists w ∈ K(t, s, x2(s)) such that |k1(t, s)−w| ≤ p(s)|x1(s)−x2(s)|,
for t, s ∈ [a, b].

Let us define U : [a, b] × [a, b] → P(Rn), by U(t, s) = {w| |k1(t, s) −
w| ≤ p(t, s)|x1(s) − x2(s)|}. Since the multivalued operator V (t, s) := U(t, s) ∩
K(t, s, x2(s)) is jointly measurable and lower semi-continuous in t there exists
k2(t, s) a selection for V , jointly measurable (and, hence, integrable in s) and
continuous in t. Hence, k2(t, s) ∈ K(t, s, x2(s)) and |k1(t, s) − k2(t, s)| ≤
p(s)|x1(s) − x2(s)|, for each t, s ∈ [a, b].

Consider v2(t) =
∫ t

a
k2(t, s)ds+g(t), t ∈ [a, b]. We denote by ‖·‖B a Bielecki-

type norm in C([a, b],Rn), given by ‖x‖B := sup
t∈[a,b]

(|x(t)|e−τq(t))), where q(t) :=
∫ t
a p(s)ds.

Then, for each t ∈ [a, b], we have:
|v1(t) − v2(t)| ≤ ∫ t

a |k1(t, s) − k2(t, s)|ds ≤ ∫ t
a p(s)|x1(s) − x2(s)|ds =∫ t

a p(s)e
τq(s)|x1(s) − x2(s)|e−τq(s)ds ≤ ∫ t

a p(s)e
τq(s)‖x1 − x2‖Bds =

1
τ ‖x1 − x2‖B(eτq(t) − eτq(a))≤ 1

τ ‖x1 − x2‖Be
τq(t). Thus, we immediately get

‖v1 − v2‖B ≤ 1
τ
‖x1 − x2‖B.

A similar relation can be obtained by interchanging the roles of x1 and x2. By
choosing now τ > 1 we get that H‖·‖B

(T (x1), T (x2)) ≤ 1
τ ‖x1 − x2‖B, which

proves that T is a multivalued contraction with constant α := 1
τ . Hence, conclusion

(a) follows by Covitz-Nadler’s fixed point theorem [4].
For the second conclusion, let ε > 0 and y ∈ C([a, b],Rn) for which there

exists u ∈ C([a, b],Rn) such that

u(t) ∈
∫ t

a

K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and
|u(t)− y(t)| ≤ ε, for each t ∈ [a, b].
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Notice that
‖·‖B ≤ ‖·‖ ≤ ‖·‖B e

τq(b).

Then, we obtain that ‖u− y‖B ≤ ‖u− y‖ ≤ ε. Thus, D‖·‖B
(y, T (y)) ≤ ε.

Moreover, since T is a multivalued α-contraction with respect to ‖·‖B , we obtain
that T is a multivalued c-weakly Picard operator with c := 1

1−α . The conclusion (b)
is a consequence of Corollary 2.1. Hence, there exists a solution x∗ of the integral
inclusion (3.4) such that

‖y − x∗‖B ≤ cε.

Hence,

|y(t)−x∗(t)| ≤ ceτq(b)ε, for each t ∈ [a, b].
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Math., 54 (2009), 125-133.

20. I. A. Rus, Gronwall lemma approach to the Ulam-Hyers-Rassias stability of an
integral equation, Nonlinear Analysis and Variational Problems (P. M. Pardalos et
al. eds.), Vol. 147, Springer Optimization and Its Applications 35, New York,
147-152.

21. I. A. Rus, Gronwall lemmas: ten open problems, Scientiae Mathematicae Japonicae
Online, e-2009, 257-264.
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