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EXISTENCE OF HOMOCLINIC SOLUTIONS FOR THE
SECOND-ORDER DISCRETE P -LAPLACIAN SYSTEMS

Peng Chen and X. H. Tang*

Abstract. By using critical point theory, we establish some existence criteria
to guarantee the second-order discrete p-Laplacian systems �(ϕp(∆u(n −
1))) − a(n)|u(n)|p−2u(n) + ∇W (n, u(n)) = 0 have at least one homoclinic
orbit, where p > 1, n ∈ Z, u ∈ R

N , a ∈ C(Z, R) and W ∈ C1(Z × R
N , R)

are no periodic in n.

1. INTRODUCTION

Consider the second-order discrete p-Laplacian system

(1.1) �(ϕp(∆u(n− 1)))− a(n)|u(n)|p−2u(n) + ∇W (n, u(n)) = 0,

where p > 1, ϕp(s) = |s|p−2s, n ∈ Z, u ∈ R
N , a : Z → R and W : Z×R

N → R.
As usual, we say that a solution u(n) of (1.1) is homoclinic (to 0) if u(n) → 0
as → ±∞. In addition, if u(n) �≡ 0 then u(n) is called a nontrivial homoclinic
solution.

It is well-known that homoclinic orbits play an important role in analyzing the
chaos of dynamical systems. If a system has the transversely intersected homoclinic
orbits, then it must be chaotic. If it has the smoothly connected homoclinic orbits,
then it cannot stand the perturbation, its perturbed system probably produce chaotic
phenomenon. Therefore, it is of practical importance and mathematical significance
to consider the existence of homoclinic orbits of (1.1) emanating from 0.

In general, system (1.1) may be regarded as a discrete analogue of the following
second order Hamiltonian system

(1.2)
d

dt

(|u̇(t)|p−2u̇(t)
)−a(t)|u(t)|p−2u(t)+∇W (t, u(t)) = 0, t ∈ R, u ∈ R

N .
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When p = 2, system (1.2) reduces to second-order Hamiltonian system

(1.3) ü(t) − a(t)u(t) + ∇W (t, u(t)) = 0.

In recent years, the existence and multiplicity of homoclinic orbits for Hamil-
tonian systems have been investigated in many papers via variational methods and
many results were obtained based on various hypotheses on the potential functions,
see, e.g., [ 3, 6-11, 17, 18, 25-26]. For system (1.2), if a(t) and W (t, x) are
T−periodic in t, Rabinowitz [27] showed the existence of homoclinic orbits as
a limit of 2kT−periodic solutions of system (1.2). Analogous results for general
Hamiltonian systems were obtained by Coti-Zelati, Ekeland and Sere [7], Felmer
[12], Izydorek and Janczewska [17] and Tang and Xiao [32-35].

If a(t) and W (t, x) are no periodic in t, the problem of existence of homoclinic
orbits for system (1.2) is quite different from the ones just described, because of
lack of compactness of the Sobolev embedding. In [29], Rabinowitz and Tanaka
studed (1.2) without a periodicity assumption.

In some recent papers [13-15], the authors studied the existence of periodic
solutions and subharmonic solutions of some special forms of (1.1) by using the
critical point theory. These papers show that the critical point method is an ef-
fective approach to the study of periodic solutions for difference equations. Along
this direction, Ma and Guo [19] (with periodicity assumption) and [20] (without
periodicity assumption) applied the critical point theory to prove the existence of
homoclinic solutions of the following special form of (1.1) (with N = 1)

(1.4) �[p(n)�u(n − 1)] − q(n)u(n) + f(n, u(n)) = 0,

where n ∈ Z, u ∈ R, p, q : Z → R and f : Z × R → R.
Using the original ideas of Omana and Willem [25], Ma and Guo [20] used

mountain pass theorems and compact imbedding lemma to prove following two
theorems.

Theorem A. ([20]). Assume that p, q and f satisfy the following conditions:

(p) p(n) > 0 for all n ∈ Z;

(q) q(n) > 0 for all n ∈ Z and lim|n|→+∞ q(n) = +∞;

(f1) f ∈ C(Z × R, R) and there is a constant µ > 2 such that

0 < µ

∫ x

0
f(n, s)ds ≤ xf(n, x), ∀ (n, x) ∈ Z × (R \ {0});

(f2) limx→0 f(n, x)/x = 0 uniformly with respect to n ∈ Z.

Then the system (1.4) possesses a nontrivial homoclinic solution.
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In fact, condition (f1) is the special form (with N = 1) of the following so-called
global Ambrosetti-Rabinowitz condition on W due to Ambrosetti-Rabinowitz (e.g.,
[4]):

(AR) For every n ∈ Z, W is continuously differentiable in x, and there is a
constant µ > 2 such that

0 < µW (n, x) ≤ (∇W (n, x), x), ∀ (n, x) ∈ Z × (RN \ {0});
which implies that W (n, x) is of superquadratic growth as |x| → +∞, where and
in the sequel, (·, ·) denotes the standard inner product in R

N and | · | is the induced
norm.

In the last decade there has been an increasing interest in the study of ordinary
differential systems driven by the p-Laplacian (or the generalization of Laplacian)
and with periodic boundary conditions, see [21, 23, 37] and the references cited
therein. However, as the authors are aware, there are few papers discussing the ex-
istence of homoclinic solutions for the p-Laplacian systems. Just recently, Tang and
Xiao [34] addressed the existence of homoclinic solutions for a kind of second-order
periodic p-Laplacian systems different from system (1.1). In the present paper, we
are interested in the existence of homoclinic solutions for system (1.1), where a(n)
and W (n, x) are no periodic in n. The intention of this paper is that, under some
relaxed assumptions on W (n, x), we establish some existence criteria to guarantee
that system (1.1) has at least one or infinitely many homoclinic solutions by using
the Mountain Pass Theorem and genus properties. In particular, when p = 2, our
results generalize Theorems A by relaxing condition (f1) and (f2).

Our main results are the following theorems.

Theorem 1.1. Assume that a and W satisfy (A) and the following assumptions:

(A) a(n) : Z → (0,∞) and a(n) → +∞ as |n| → ∞;

(W1) W (n, x) = W1(n, x)− W2(n, x), W1, W2 ∈ C1(Z × R
N , R), and there is

a bounded set J ⊂ Z such that
1

a(n)
|∇W (n, x)| = o(|x|p−1) as x → 0

uniformly in n ∈ Z \ J;

(W2) There is a constant µ > p such that

0 < µW1(n, x) ≤ (∇W1(n, x), x), ∀ (n, x) ∈ Z × R
N \ {0};

(W3) W2(n, 0) ≡ 0 and there is a constant � ∈ [p, µ) such that

W2(n, x) ≥ 0, (∇W2(n, x), x) ≤ �W2(n, x), ∀ (n, x) ∈ Z × R
N .
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Then the system (1.1) possesses a nontrivial homoclinic solution.

Theorem 1.2. Assume that a and W satisfy (A), (W2) and the following
assumptions:

(W1’) W (n, x) = W1(n, x)− W2(n, x), W1, W2 ∈ C1(Z × R
N , R), and

1
a(n)

|∇W (n, x)| = o(|x|p−1) as x → 0

uniformly in n ∈ Z;

(W3’) W2(n, 0) ≡ 0 and there is a constant � ∈ (p, µ) such that

(∇W2(n, x), x) ≤ �W2(n, x), ∀ (n, x) ∈ Z × R
N .

Then the system (1.1) possesses a nontrivial homoclinic solution.

Remark 1.1. Obviously, when p = 2, both conditions (W1) and (W1’) are
weaker than (f2).

When W (n, x) is subquadratic at infinity, as far as the authors are aware, there
is no research about the existence of homoclinic solutions of (1.1). In the present
paper, we are interested in the case that a(n) and W (n, x) are neither autonomous
nor periodic in n. Motivated by paper [38], the intention of this paper is that, under
the assumption that W (n, x) is indefinite sign and subquadratic as |x| → +∞ , we
will establish some existence criteria to guarantee that system (1.1) has at least one
homoclinic solution by using Clark’s Theorem in critical point theory.

When W (t, x) = a(t)|x|γ , where 1 < γ < 2 and a ∈ C(R, R)∩L2/(2−γ)(R, R),
in the recent papers [38], Zhang and Yuan obtained the homoclinic solution by using
a standard minimizing argument.

Now we present the basic hypothesis on a and W in order to announce the
results in this paper.

(W4) For every n ∈ Z, W ∈ C1(Z × RN , R), and there exist two constants
1 < γ1 < γ2 < p and two functions a1, a2 ∈ lp/(p−γ1)(Z, [0, +∞)) such that

|W (n, x)| ≤ a1(n)|x|γ1, ∀ (n, x) ∈ Z × R
N , |x| ≤ 1

and

|W (n, x)| ≤ a2(n)|x|γ2, ∀ (n, x) ∈ Z × R
N , |x| ≥ 1.

(W5) There exist two functions b ∈ lp/(p−γ1)(Z, [0, +∞)) and ϕ ∈ C([0, +∞),
[0, +∞)) such that

|∇W (n, x)| ≤ b(n)ϕ(|x|), ∀ (n, x) ∈ Z × R
N ,
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where ϕ(s) = O(sγ1−1) as s → 0+;
(W6) There exist n0 ∈ Z and two constants η > 0 and γ3 ∈ (1, p) such that

W (n0, x) ≥ η|x|γ3, ∀ x ∈ R
N , |x| ≤ 1.

Then, We have the following theorem.

Theorem 1.3. Assume that a and W satisfy (A), (W4), (W5) and (W6). Then
the system (1.1) possesses at least one nontrivial homoclinic solution.

By Theorem 1.3, we have the following corollary.

Corollary 1.1. Assume that a and W satisfy (A) and the following conditions:

(W7) W (n, x) = a(n)V (x), where V ∈ C1(RN , R) and a ∈ lp/(p−γ1)(Z, [0, +∞)),
γ1 ∈ (1, p) is a constant, such that a(n0) > 0 for some n0 ∈ Z;

(W8) There exist constants M, M ′ > 0, γ2 ∈ [γ1, p) and γ3 ∈ (1, p) such that

M ′|x|γ3 ≤ V (x) ≤ M |x|γ1, ∀ x ∈ R
N , |x| ≤ 1

and
0 < V (x) ≤ M |x|γ2, ∀ x ∈ R

N , |x| ≥ 1;

(W9) ∇V (x) = O(|x|γ1−1) as x → 0.

Then the system (1.1) possesses at least one nontrivial homoclinic solution.
The rest of the this paper is organized as follows. In Section 2, we introduce

some notations and preliminary results. In Section 3, we complete the proofs of
Theorems 1.1-1.3. In Section 4, we give some examples to to illustrate our results.

Throughout this paper, we let q ∈ (1,∞) such that 1/p + 1/q = 1.

2. PRELIMINARIES

Let
S =

{{u(n)}n∈Z : u(n) ∈ R
N , n ∈ Z

}
,

E =

{
u ∈ S :

∑
n∈Z

[|∆u(n− 1)|p + a(n)|u(n)|p] < +∞}

and for u ∈ E , let

‖u‖ =

{∑
n∈Z

[|∆u(n − 1)|p + a(n)|u(n)|p]
}1/p

.(2.1)

Then E is a uniform convex Banach space with this norm, see [16].
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Let I : E → R be defined by

(2.2) I(u) =
1
p
‖u‖p −

∑
n∈Z

W (n, u(n)).

If (A) and (W1) or (W1’) or (W4) hold, then I ∈ C1(E, R) and one can easily
check that

(2.3)

〈I ′(u), v〉 =
∑
n∈Z

[|∆u(n− 1)|p−2(∆u(n− 1), ∆v(n− 1))

+a(n)|u(n)|p−2(u(n), v(n))

−(∇W (n, u(n)), v(n))] .

Furthermore, the critical points of I in E are classical solutions of (1.1) with
u(±∞) = 0.

We will obtain the critical points of I by using the Mountain Pass Theorem.
We recall it and a minimization theorem as:

Lemma 2.1. ([4]). Let E be a real Banach space and I ∈ C 1(E, R) satisfy
(PS)-condition. Suppose that I satisfies the following conditions:
(i) I(0) = 0;
(ii) There exist constants ρ, α > 0 such that I | ∂Bρ(0) ≥ α;
(iii) There exists e ∈ E \ B̄ρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where Bρ(0) is an open ball in E of radius ρ centered at 0, and

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e} .

Lemma 2.2. ([24]). Let E be a real Banach space and I ∈ C 1(E, R) satisfy
the (PS)-condition. If I is bounded from below, then c = inf E I is a critical value
of I .

Lemma 2.3. For u ∈ E ,

(2.4) a‖u‖p
∞ ≤ a‖u‖p

lp ≤ ‖u‖p.

where a = min{a(n) : n ∈ Z}.
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Proof. Since u ∈ E , it follows that lim|n|→∞ |u(n)| = 0. Hence, there exists
n∗ ∈ Z such that

‖u‖∞ = |u(n∗)| = max
n∈Z

|u(n)|.

By (A) and (2.1), we have

‖u‖p ≥
∑
n∈Z

a(n)|u(n)|p ≥ a
∑
n∈Z

|u(n)|p ≥ a‖u‖p
∞.

The proof is complete.

Lemma 2.4. Assume that (W2) and (W3) or (W3’) hold. Then for every
(n, x) ∈ Z × R

N ,

(i) s−µW1(n, sx) is nondecreasing on (0, +∞);
(ii) s−�W2(n, sx) is nonincreasing on (0, +∞).

The proof of Lemma 2.4 is routine and so we omit it.

3. PROOF OF THEOREMS

Proof of Theorem 1.1. It is clear that I(0) = 0. We first show that I satisfies
the (PS)-condition. Assume that {uk}k∈N ⊂ E is a sequence such that {I(uk)}k∈N

is bounded and I ′(uk) → 0 as k → +∞. Then there exists a constant c > 0 such
that

(3.1) |I(uk)| ≤ c, ‖I ′(uk)‖E∗ ≤ µc for k ∈ N.

From (2.1), (2.2), (3.1), (W2) and (W3), we obtain

pc + pc‖uk‖
≥ pI(uk) − p

µ
〈I ′(uk), uk〉

=
µ − p

µ
‖uk‖p + p

∑
n∈Z

[
W2(n, uk(n))− 1

µ
(∇W2(n, uk(n)), uk(n))

]

−p
∑
n∈Z

[
W1(n, uk(n))− 1

µ
(∇W1(n, uk(n)), uk(n))

]

≥ µ − p

µ
‖uk‖p, k ∈ N.

It follows that there exists a constant A > 0 such that

(3.2) ‖uk‖ ≤ A for k ∈ N.
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So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E .
For any given number ε > 0, by (W1), we can choose ξ > 0 such that
(3.3) |∇W (n, x)| ≤ εa(n)|x|p−1 for n ∈ Z \ J, and |x| ≤ ξ.

Since a(n) → ∞, we can also choose an integer Π > max{|k| : k ∈ J} such that

(3.4) a(n) ≥ Ap

ξp
, |n| ≥ Π.

By (2.4), (3.2) and (3.4), we have

(3.5)

|uk(n)|p =
1

a(n)
a(n)|uk(n)|p

≤ ξp

Ap

∑
n∈Z

a(n)|uk(n)|p

≤ ξp

Ap
‖uk‖p

≤ ξp for |n| ≥ Π, k ∈ N.

Since uk ⇀ u0 in E , it is easy to verify that uk(t) converges to u0(t) pointwise
for all n ∈ Z, that is
(3.6) lim

k→∞
uk(n) = u0(n), ∀ n ∈ Z,

Hence, we have by (3.5) and (3.6)
(3.7) |u0(n)| ≤ ζ for |n| ≥ Π.

It follows from (3.6) and the continuity of ∇W (n, x) on x that there exists k0 ∈ N

such that

(3.8)
Π∑

n=−Π

|∇W (n, uk(n))−∇W (n, u0(n))||uk(n)−u0(n)| < ε for k ≥ k0.

On the other hand, it follows from (3.2), (3.3), (3.5), (3.6) and (3.7) that

(3.9)

∑
|n|>Π

|∇W (n, uk(n)) −∇W (n, u0(n))||uk(nt) − u0(n)|

≤
∑
|n|>Π

(|∇W (n, uk(n))|+ |∇W (n, u0(n))|)(|uk(n)|+ |u0(n)|)

≤ ε
∑
|n|>Π

a(n)(|uk(n)|p−1 + |u0(n)|p−1)(|uk(n)|+ |u0(n)|)

≤ 2ε
∑
|n|>Π

a(n)(|uk(n)|p + |u0(n)|p)

≤ 2ε(‖uk‖p + ‖u0‖p)

≤ 2ε(Ap + ‖u0‖p), k ∈ N.
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Combining (3.8) with (3.9) we get

(3.10)
∑
n∈Z

|∇W (n, uk(n)) −∇W (n, u0(n))| |uk(n)−u0(n)| → 0 as k → ∞.

Using the Hölder’s inequality

ac + bd ≤ (ap + bp)1/p(cq + dq)1/q,

where a, b, c, d are nonnegative numbers and 1/p+ 1/q = 1, p > 1, it follows from
(2.3) that

(3.11)

〈I ′(uk) − I ′(u0), uk − u0〉

=
∑
n∈Z

|∆uk(n − 1)|p−2(∆uk(n − 1), ∆uk(n − 1) − ∆u0(n − 1))

+
∑
n∈Z

a(n)|uk(n)|p−2(uk(n), uk(n) − u0(n))

−
∑
n∈Z

|∆u0(n − 1)|p−2(∆u0(n − 1), ∆uk(n − 1)− ∆u0(n − 1))

−
∑
n∈Z

a(n)|u0(n)|p−2(u0(n), uk(n)− u0(n))

−
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n) − u0(n))

= ‖uk‖p + ‖u0‖p −
∑
n∈Z

|∆uk(n − 1)|p−2(∆uk(n − 1), ∆u0(n − 1))

−
∑
n∈Z

a(n)|uk(n)|p−2(uk(n), u0(n))

−
∑
n∈Z

|∆u0(n − 1)|p−2(∆u0(n − 1), ∆uk(n − 1))

−
∑
n∈Z

a(n)|u0(n)|p−2(u0(n), uk(n))

−
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n) − u0(n))

≥ ‖un‖p+‖u0‖p−
(∑

n∈Z

|∆u0(n − 1)|p
)1/p(∑

n∈Z

|∆uk(n − 1)|p
)1/q

−
(∑

n∈Z

a(n)|u0(n)|p
)1/p(∑

n∈Z

a(n)|uk(n)|p
)1/q

−
(∑

n∈Z

|∆uk(n − 1)|p
)1/p(∑

n∈Z

|∆u0(n − 1)|p
)1/q

−
(∑

n∈Z

a(n)|uk(n)|p
)1/p(∑

n∈Z

a(n)|u0(n)|p
)1/q
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−
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n)− u0(n))

≥ ‖uk‖p + ‖u0‖p −
(∑

n∈Z

[|∆u0(n − 1)|p + a(n)|u0(n)|p]
)1/p

(∑
n∈Z

[|∆uk(n − 1)|p + a(n)|uk(n)|p]
)1/q

−
(∑

n∈Z

[|∆uk(n − 1)|p + a(n)|uk(n)|p]
)1/p

(∑
n∈Z

[|∆u0(n − 1)|p + a(n)|u0(n)|p]
)1/q

−
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n)− u0(n))

= ‖uk‖p + ‖u0‖p − ‖u0‖‖uk‖p−1 − ‖uk‖‖u0‖p−1

−
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n)− u0(n))

=
(‖uk‖p−1 − ‖u0‖p−1

)
(‖uk‖ − ‖u0‖)

−
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n)− u0(n)).

Since I ′(uk) → 0 as k → +∞ and uk ⇀ u0 in E , it follows from (3.2) that

〈I ′(uk)− I ′(u0), uk − u0〉 → 0 as k → ∞,

which, together with (3.10) and (3.11), yields ‖uk‖ → ‖u‖ as k → +∞. By
the uniform convexity of E and the fact that uk ⇀ u0 in E , it follows from the
Kadec-Klee property [10] that uk → u0 in E . Hence, I satisfies (PS)-condition.

We now show that there exist constants ρ, α > 0 such that I satisfies assumption
(ii) of Lemma 2.1 with these constants. By (W1), there exists η ∈ (0, 1) such that

(3.12) |∇W (n, x)| ≤ 1
2
a(n)|x|p−1 for n ∈ Z \ J, |x| ≤ η.

Since W (n, 0) = 0, it follows that

(3.13) |W (n, x)| ≤ 1
2p

a(n)|x|p for n ∈ Z \ J, |x| ≤ η.

Set

(3.14) M = sup
{

W1(n, x)
a(n)

∣∣∣∣ n ∈ J, x ∈ R
N , |x| = 1

}
.
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Set δ = min{1/(2pM + 1)1/(µ−p), η}. If ‖u‖ = a1/pδ := ρ, then by (2.4), |u(n)|
≤ δ ≤ η < 1 for n ∈ Z. By (3.14) and Lemma 2.4 (i), we have

(3.15)

∑
n∈J

W1(n, u(n)) ≤
∑

{n∈J, u(n) �=0}
W1

(
n,

u(n)
|u(n)|

)
|u(n)|µ

≤ M
∑
n∈J

a(n)|u(n)|µ

≤ Mδµ−p
∑
n∈J

a(n)|u(n)|p

≤ 1
2p

∑
n∈J

a(n)|u(n)|p.

Set
α =

aδp

2p
.

Hence, from (2.1), (3.13), (3.15) and (W3), we have

(3.16)

I(u) =
1
p
‖u‖p −

∑
n∈Z

W (n, u(n))

=
1
p
‖u‖p −

∑
n∈Z\J

W (n, u(n))−
∑
n∈J

W (n, u(n))

≥ 1
p
‖u‖p − 1

2p

∑
n∈Z\J

a(n)|u(n)|p −
∑
n∈J

W1(n, u(n))

≥ 1
p
‖u‖p − 1

2p

∑
n∈Z\J

a(n)|u(n)|p − 1
2p

∑
n∈J

a(n)|u(n)|p

=
1
p

∑
n∈Z

|∆u(n− 1)|p +
1
2p

∑
n∈Z

a(n)|u(n)|p

≥ 1
2p

∑
n∈Z

[|∆u(n − 1)|p + a(n)|u(n)|p]

=
1
2p

‖u‖p

= α.

(3.16) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., I satisfies assumption (ii) of
Lemma 2.1.

Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. Take
ω ∈ E such that

(3.17) |ω(n)| =
{

1, for |n| ≤ 1,

0, for |n| ≥ 2,
.
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and |ω(n)| ≤ 1 for |n| ∈ (1, 2]. For σ > 1, by Lemma 2.4 (i) and (3.17), we have

(3.18)
1∑

n=−1

W1(n, σω(n)) ≥ σµ
1∑

n=−1

W1(n, ω(n)) = mσµ,

where m =
∑1

n=−1 W1(n, ω(n)) > 0.
For any u ∈ E , it follows from (2.4) and Lemma 2.4 (ii) that

(3.19)

2∑
n=−2

W2(n, u(n))

=
∑

{n∈[−2,2] : |u(n)|>1}
W2(n, u(n)) +

∑
{n∈[−2,2] : |u(n)|≤1}

W2(n, u(n))

≤
∑

{n∈[−2,2] : |u(n)|>1}
W2

(
n,

u(n)
|u(n)|

)
|u(n)|�

+
2∑

n=−2

max
|x|≤1

|W2(n, x)|

≤ ‖u‖�
∞

2∑
n=−2

max
|x|=1

|W2(n, x)|+
2∑

n=−2

max
|x|≤1

|W2(n, x)|

≤ a
−�

p ‖u‖�
2∑

n=−2

max
|x|=1

|W2(n, x)|+
2∑

n=−2

max
|x|≤1

|W2(n, x)|

= M1‖u‖� + M2,

where

M1 = a
−�

p

2∑
n=−2

max
|x|=1

|W2(n, x)|, M2 =
2∑

n=−2

max
|x|≤1

|W2(n, x)|.

By (2.1), (3.17), (3.18) and (3.19), we have for σ > 1

(3.20)

I(σω) =
1
p
‖σω‖p +

∑
n∈Z

[W2(n, σω(n))− W1(n, σω(n))]

≤ σp

p
‖ω‖p +

2∑
n=−2

W2(n, σω(n))−
1∑

n=−1

W1(n, σω(n))

≤ σp

p
‖ω‖p + M1σ

�‖ω‖� + M2 − mσµ.

Since µ > � ≥ p and m > 0, (3.20) implies that there exists σ0 > 1 such that
‖σ0ω‖ > ρ and I(σ0ω) < 0. Set e = σ0ω(t). Then e ∈ E , ‖e‖ = ‖σ0ω‖ > ρ and
I(e) = I(σ0ω) < 0. By Lemma 2.1, I possesses a critical value d ≥ α given by

(3.21) d = inf
g∈Γ

max
s∈[0,1]

I(g(s)),
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where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e} .

Hence, there exists u∗ ∈ E such that

(3.22) I(u∗) = d, and I ′(u∗) = 0.

Then function u∗ is a desired classical solution of system (1.1). Since d > 0, u∗ is
a nontrivial homoclinic solution. The proof is complete.

Proof of Theorem 1.2. In the proof of Theorem 1.1, the condition that W2(n, x) ≥
0 in (W3) is only used in the proofs of (3.2) and assumption (ii) of Lemma 2.1.
Therefore, we only prove (3.2) and assumption (ii) of Lemma 2.1 still holds use
(W1’) and (W3’) instead of (W1) and (W3). We first prove that (3.2) still holds.
From (2.1), (2.2), (3.1), (W2) and (W3’), we obtain

pc +
pcµ

�
‖uk‖

≥ pI(uk)− p

�
〈I ′(uk), uk〉

=
� − p

�
‖uk‖p + p

∑
n∈Z

[
W2(n, uk(n))− 1

�
(∇W2(n, uk(n)), uk(n))

]

−p
∑
n∈Z

[
W1(n, uk(n))− 1

�
(∇W1(n, uk(n)), uk(n))

]

≥ � − p

�
‖uk‖p, k ∈ N.

It follows that there exists a constant A > 0 such that (3.2) holds. Next, we prove
that assumption (ii) of Lemma 2.1 still holds. By (W1’), there exists η ∈ (0, 1)
such that

(3.23) |∇W (n, x)| ≤ 1
2
a(n)|x|p−1 for n ∈ Z, |x| ≤ η.

Since W (n, 0) = 0, it follows that

(3.24) |W (n, x)| ≤ 1
2p

a(n)|x|p for n ∈ Z, |x| ≤ η.

If ‖u‖ = a1/pη := ρ, then by (2.4), |u(n)| ≤ η for n ∈ Z. Set

α =
aηp

2p
.
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Hence, from (2.1) and (3.24), we have

(3.25)

I(u) =
1
p
‖u‖p −

∑
n∈Z

W (n, u(n))

≥ 1
p
‖u‖p − 1

2p

∑
n∈Z

a(n)|u(n)|p

=
1
p

∑
n∈Z

|∆u(n − 1)|p +
1
2p

∑
n∈Z

a(n)|u(n)|p

≥ 1
2p

∑
n∈Z

[|∆u(n− 1)|p + a(n)|u(n)|p]

=
1
2p

‖u‖p

= α.

(3.25) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., assumption (ii) of Lemma
2.1 holds. The proof of Theorem 1.2 is completed.

Proof of Theorem 1.3. In view of Lemma 2.2, I ∈ C1(E, R). In what follows,
we first show that I is bounded from below. By (W4), (2.4) and Hölder inequality,
we have

(3.26)

I(u) =
1
p
‖u‖p −

∑
n∈Z

W (n, u(n))

=
1
p
‖u‖p −

∑
Z(|u(n)|≤1)

W (n, u(n))−
∑

Z(|u(n)|>1)

W (n, u(n))

≥ 1
p
‖u‖p −

∑
Z(|u(n)|≤1)

a1(n)|u(n)|γ1 −
∑

Z(|u(n)|>1)

a2(n)|u(n)|γ2

≥ 1
p
‖u‖p − a−γ1/p


 ∑

Z(|u(n)|≤1)

|a1(n)|p/(p−γ1)




(p−γ1)/p


 ∑

Z(|u(n)|≤1)

a(n)|u(n)|p



γ1/p

−a−γ1/p


 ∑

Z(|u(n)|>1)

|a2(n)|p/(p−γ1)




(p−γ1)/p

×

 ∑

Z(|u(n)|>1)

|u(n)|p(γ2−γ1)/γ1a(n)|u(n)|p



γ1/p
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≥ 1
p
‖u‖p − a−γ1/p


 ∑

Z(|u(n)|≤1)

|a1(n)|p/(p−γ1)




(p−γ1)/p

‖u‖γ1

−a−γ1/p‖u‖γ2−γ1∞


 ∑

Z(|u(n)|>1)

|a2(n)|p/(p−γ1)




(p−γ1)/p

‖u‖γ1

≥ 1
p
‖u‖p − a−γ1/p


 ∑

Z(|u(n)|≤1)

|a1(n)|p/(p−γ1)




(p−γ1)/p

‖u‖γ1

−a−γ2/p


 ∑

Z(|u(n)|>1)

|a2(n)|p/(p−γ1)




(p−γ1)/p

‖u‖γ2

≥ 1
p
‖u‖p − a−γ1/p‖a1‖p/(p−γ1)‖u‖γ1 − a−γ2/p‖a2‖p/(p−γ1)‖u‖γ2.

Since 1 < γ1 < γ2 < p, (3.26) implies that I(u) → +∞ as ‖u‖ → +∞.
Consequently, I is bounded from below.

Next, we prove that I satisfies the (PS)-condition. Assume that {uk}k∈N ⊂ E

is a sequence such that {I(uk)}k∈N is bounded and I ′(uk) → 0 as k → +∞. Then
by (2.4) and (3.26), there exists a constant A > 0 such that

(3.27) ‖uk‖∞ ≤ a−1/p‖uk‖ ≤ A, k ∈ N.

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E . It
is easy to verify that uk(n) converges to u0(n) pointwise for all n ∈ Z, that is

(3.28) lim
k→∞

uk(n) = u0(n), ∀ n ∈ Z.

Hence, we have by (3.27)

(3.29) ‖u0‖∞ ≤ A.

By (W5), there exists M2 > 0 such that

(3.30) ϕ(|x|) ≤ M2|x|γ1−1, ∀ x ∈ R
N , |x| ≤ A.

For any given number ε > 0, by (W5), we can choose an integer Π > 0 such that

(3.31)


∑

|n|>Π

(b(n))p/(p−γ1)




(p−γ1)/p

< ε.
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It follows from (3.28) and the continuity of ∇W (n, x) on x that there exists k0 ∈ N

such that

(3.32)
Π∑

n=−Π

|∇W (n, uk(n))−∇W (n, u0(n))||uk(n)−u0(n)| < ε for k ≥ k0.

On the other hand, it follows from (2.4), (3.27), (3.29), (3.30), (3.31) and (W5) that

(3.33)

∑
|n|>Π

|∇W (n, uk(n))−∇W (n, u0(n))||uk(n) − u0(n)|

≤
∑
|n|>Π

b(n)[ϕ(|uk(n)|) + ϕ(|u0(n)|)](|uk(n)|+ |u0(n)|)

≤ M2

∑
|n|>Π

b(n)(|uk(n)|γ1−1 + |u0(n)|γ1−1)(|uk(n)|+ |u0(n)|)

≤ 2M2

∑
|n|>Π

b(n)(|uk(n)|γ1 + |u0(n)|γ1)

≤ 2M2a
−γ1/p


∑

|n|>Π

|b(n)|p/(p−γ1)




(p−γ1)/p

(‖uk‖γ1 + ‖u0‖γ1)

≤ 2M2a
−γ1/p


∑

|n|>Π

|b(n)|p/(p−γ1)




(p−γ1)/p [
aγ1/pAγ1 + ‖u0‖γ1

]

≤ 2M2a
−γ1/p

[
aγ1/pAγ1 + ‖u0‖γ1

]
ε, k ∈ N.

Since ε is arbitrary, combining (3.32) with (3.33), we get

(3.34)
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n)− u0(n)) → 0 as k → ∞.

Similar to the proof of Theorem 1.1, It follows from (3.11) that

(3.35)

〈I ′(uk) − I ′(u0), uk − u0〉
≥ (‖uk‖p−1 − ‖u0‖p−1

)
(‖uk‖ − ‖u0‖)

−
∑
n∈Z

(∇W (n, uk(n))−∇W (n, u0(n)), uk(n) − u0(n)).

Since 〈I ′(uk) − I ′(u0), uk − u0〉 → 0, it follows from (3.34) and (3.35) that
uk → u0 in E . Hence, I satisfies (PS)-condition.

By Lemma 2.2, c = infE I(u) is a critical value of I , that is there exists a
critical point u∗ ∈ E such that I(u∗) = c.
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Finally, we show that u∗ �= 0. Let u0(n0) = (1, 0, · · · , 0)� ∈ R
N and u0(n) =

0 for n �= n0. Then by (W6), we have

(3.36)

I(su0) =
sp

p
‖u0‖p −

∑
n∈Z

W (n, su0(n))

=
sp

p
‖u0‖p − W (n0, su0(n))

≤ sp

p
‖u0‖p − ηsγ3|u0(n)|γ3, 0 < s < 1.

Since 1 < γ3 < p, it follows from (3.36) that I(su0) < 0 for s > 0 small
enough. Hence I(u∗) = c < 0, therefore u∗ is nontrivial critical point of I , and so
u∗ = u∗(n) is a nontrivial homoclinic solution of (1.1). The proof is complete.

Proof of Corollary 1.1. Obviously, (W7) and (W8) imply (W4) holds, and (W7)
and (W9) imply (W5) holds with a1(n) = a2(n) = b(n) = |a(n)|. In addition, by
(W7) and (W8), we have

W (n0, x) = a(n0)V (x) ≥ M ′a(n0)|x|γ3, ∀ x ∈ R
N , |x| ≤ 1.

This shows that (W7) holds also. Hence, by Theorem 1.3, the conclusion of Corol-
lary 1.1 is true. The proof is complete.

4. EXAMPLES

In this section, we give some examples to illustrate our results.

Example 4.1. Consider the second-order discrete p-Laplacian system

(4.1) ∆(|∆u(n− 1)|∆u(n− 1))− a(n)|u(n)|u(n) + ∇W (n, u(n)) = 0,

where p = 3, n ∈ Z, u ∈ R
N , a ∈ C(Z, (0,∞)) such that a(n) → +∞ as

|n| → ∞. Let

W (n, x) = a(n)


 m∑

i=1

ai|x|µi −
n∑

j=1

bj|x|�j


 ,

where µ1 > µ2 > · · · > µm > �1 > �2 > · · · > �n > 3, ai, bj > 0, i =
1, 2, . . . , m; j = 1, 2, . . . , n. Let µ = µm, � = �1, and

W1(n, x) = a(n)
m∑

i=1

ai|x|µi, W2(n, x) = a(n)
n∑

j=1

bj|x|�j .
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Then it is easy to verify that all conditions of Theorem 1.1 are satisfied. By Theorem
1.1, system (1.1) possess a nontrivial homoclinic solution.

Example 4.2. Consider the second-order discrete p-Laplacian system

(4.2) ∆((∆u(n− 1))3)− a(n)(u(n))3 + ∇W (n, u(n)) = 0,

where p = 4, n ∈ Z, u ∈ R
N , a ∈ C(Z, (0,∞)) such that a(n) → +∞ as

|n| → ∞. Let

W (n, x) = a(n) [a1|x|µ1 + a2|x|µ2 − b1(sinn)|x|�1 − b2|x|�2] ,

where µ1 > µ2 > �1 > �2 > 4, a1, a2 > 0, b1, b2 > 0. Let µ = µ2, � = �1, and

W1(n, x) = a(n) (a1|x|µ1 + a2|x|µ2) , W2(n, x) = a(n) [b1(sinn)|x|�1 + b2|x|�2] .

Then it is easy to verify that all conditions of Theorem 1.2 are satisfied. By Theorem
1.2, system (1.1) possess a nontrivial homoclinic solution.

Example 4.3. Consider the second-order discrete p-Laplacian system

(4.3) ∆(ϕp(∆u(n − 1)))− a(n)|u(n)|p−2u(n) + ∇W (n, u(n)) = 0,

where p > 3/2, n ∈ Z, u ∈ R
N , a ∈ C(Z, (0,∞)) such that a(n) → +∞ as

|n| → ∞. Let

W (n, x) =
cos n

1 + |n| |x|
4/3 +

sinn

1 + |n| |x|
3/2.

Then
∇W (n, x) =

4 cosn

3(1 + |n|) |x|
−2/3x +

3 sinn

2(1 + |n|) |x|
−1/2x,

|W (n, x)| ≤ 2|x|4/3

1 + |n| , ∀ (n, x) ∈ Z × R
N , |x| ≤ 1,

|W (n, x)| ≤ 2|x|3/2

1 + |n| , ∀ (n, x) ∈ Z × R
N , |x| ≥ 1

and
|∇W (n, x)| ≤ 8|x|1/3 + 9|x|1/2

6(1 + |n|) , ∀ (n, x) ∈ Z × R
N .

We can choose n0 such that

cosn0 > 0, sin n0 > 0.

Let
η =

cos n0 + sinn0

1 + |n0| .
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Then
W (n0, x) ≥ η|x|3/2, ∀ x ∈ R

N , |x| ≤ 1.

These show that all conditions of Theorem 1.3 are satisfied, where

1 < 4
3 = γ1 < γ2 = γ3 =

3
2

< p,

a1(n) = a2(n) = b(n) =
2

1 + |n| , ϕ(s) =
8s1/3 + 9s1/2

12
.

By Theorem 1.3, system (1.1) has at least a nontrivial homoclinic solution.
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