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DISCONTINUOUS GENERALIZED QUASI-VARIATIONAL
INEQUALITIES WITH APPLICATION TO FIXED POINTS

Paolo Cubiotti and Jen-Chih Yao*

Abstract. We consider the following generalized quasi-variational inequality
problem introduced in [7]: given a real normed space X with topological
dual X∗, two sets C, D ⊆ X and two multifunctions S : C → 2D and
T : C → 2X∗

, find (x̂, ϕ̂) ∈ C × X∗ such that

x̂ ∈ S(x̂), ϕ̂ ∈ T (x̂) and 〈ϕ̂, x̂− y〉 ≤ 0 for all y ∈ S(x̂).

We prove an existence theorem where T is not assumed to have any continuity
or monotonicity property, improving some aspects of the main result of [7].
In particular, the coercivity assumption is meaningfully weakened. As an
application, we prove a theorem of the alternative for the fixed points of
a Hausdorff lower semicontinuous multifunction. In particular, we obtain
sufficient conditions for the existence of a fixed point which belongs to the
relative boundary of the corresponding value.

1. INTRODUCTION

Given a real topological vector space X with topological dual X∗, a closed
convex set C ⊆ X , and two multifunctions S : C → 2C and T : C → 2X∗,
the classical generalized quasi-variational inequality problem associated with C,
T and S (which will be shortly denoted by GQVI(C, T , S)) is to find a pair
(x̂, ϕ̂) ∈ C × X∗ such that

(1) x̂ ∈ S(x̂), ϕ̂ ∈ T (x̂) and 〈ϕ̂, x̂− y〉 ≤ 0 for all y ∈ S(x̂).

The problem GQVI(C, T , S) was firstly introduced in finite-dimensional setting
by Chan and Pang [6], while, in the above infinite-dimensional form, it was firstly
considered by Shih and Tan [31].
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When the multifunction T is single-valued, the prefix “generalized” is usually
omitted. In this latter form, it was firstly studied by Bensoussans and Lions in
connection with impulse control theory [3-5].

When T is single-valued and the multifunction S is identically equal to the
set C, the problem GQVI(C, T , S) reduces to the classical variational inequality
problem [23].

During the last decades, the existence of solutions for the problem GQVI(C,
T , S) has been widely investigated, due to the wide range of applications of the
variational inequality theory (including mechanics, game theory, complementarity
problems, control theory, network equilibrium and so on; see, for instance [2, 16-
18, 20-22, 27, 33] and the references therein).

In the last years, moreover, a great effort has been made to investigate the case
where the multifunction T is not assumed to have any continuity or monotonicity
property, going out from these two typical research lines. In this direction, we
refer to the papers [8, 9, 11-15, 26, 29, 32, 34-37] and to references therein. In
particular, we refer to the paper [26, 35] for discussions and comparisons about the
basic regularity assumptions imposed on T .

Very recently, in the paper [7], Chu and Lin have considered the case where
the multifunction S can take its values outside the set C. More precisely, given
the sets X and C and the multifunction T as above, and given a closed convex set
D ⊆ X and a multifunction S : C → 2D, they considered the following extended
generalized quasi-variational inequality problem associated with C, D, T and S:

EGQVI(C, D, T , S): find (x̂, ϕ̂) ∈ C × X∗ such that condition (1) holds.

It is worth noticing that condition (1) implies in particular that C ∩ D �= ∅,
since x̂ ∈ C and S(x̂) ⊆ D (as it is correctly remarked in [7], it is not restrictive
to assume that C ⊆ D). It should be observed that the above generalization brings
further technical problems while trying to investigate existence results. Indeed, the
fact that S takes its values in the whole set D makes some of the known techniques
not applicable.

In the paper [7], the authors prove an existence result for the problem EGQVI(C,
D, T , S) associated with a non-monotone and discontinuous multifunction T , in
the spirit of the papers [11, 12, 13]. The following is their result (where “ aff(D) ”
denotes the affine hull of the set D).

Theorem 1.1. (Theorem 2.7 of [7]). Let (X, ‖ · ‖X) be a real normed space,
C and D two closed convex subsets of X , and let T : X → 2X∗ and S : C → 2D

two multifunctions. Let H and K be two nonempty compact subsets of C, such
that H ⊆ K and H is finite-dimensional. Assume that:

(i) S(x) ∩ H �= ∅ for all x ∈ C;
(ii) the multifunction S is Hausdorff continuous with closed convex values;
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(iii) intaff(D)(S(x)) �= ∅ for all x ∈ C;
(iv) T (x) is nonempty, convex and weakly-star compact for each x ∈ D;
(v) for each y ∈ D, the set {x ∈ D : infϕ∈T (x)〈ϕ, x− y〉 ≤ 0} is closed;
(vi) T and S satisfy the generalized V 0-Karamardian condition on (D, H, K) for

some neighborhood V0 of the origin in X: for each x ∈ (D + V0) \ K and
each ϕ ∈ T (x), one has

sup
y∈S(x)∩H

〈ϕ, x− y〉 > 0.

Then there exists (x̂, ϕ̂) ∈ K × X ∗ which solves EGQVI(C, D, T , S).

Before going on, we remark that the regularity condition (v) on the multifunc-
tion T does not imply any kind of continuity for T over the set D (see [12, 13,
35]). Moreover (see [35]), it is independent (although similar) from the analogous
assumption on T made in [8, 9, 11, 29, 30].

If we compare Theorem 1.1 with similar results (see [8,,9, 11-13, 15, 26, 30,
36, 37] and references therein), it appears clearly that the possibility for S to take
its values in the whole set D is obtained via the heavy coercivity condition (vi).
Indeed, the spirit of coercivity conditions of Karamardian’s type is to force possible
solutions of the GQVI problem to stay in the compact set K. Consequently, it seems
reasonable that it should be required only for the fixed points of S (again, see [9,
11-13, 15, 26, 30, 36, 37]). Moreover, such a requirement is very important in view
of possible applications, as showed in [10].

In Theorem 1.1, conversely, the coercivity condition (vi) applies not only to all
points of D (without considering if they are fixed points of S or not), but also to
all points of D + V0 (V0 being a suitable neighborhood of the origin). This forces,
in particular, the multifunction T to be defined over the whole space X (and not
only over C).

The aim of this paper is to prove an existence result for the problem EGQVI(C,
D, T , S) where, while retaining the basic regularity assumptions (i)–(v) on the mul-
tifunctions T and S as in Theorem 1.1, we replace the generalized V0-Karamardian
condition (vi) by the following weaker coercivity condition:

(A) for each x ∈ C \ K, with x ∈ S(x), and each ϕ ∈ T (x), one has

sup
y∈S(x)∩H

〈ϕ, x− y〉 > 0.

Beyond the pure theoretic generality, it is quite easy to check how condition
(A) is really more manageable than assumption (vi) of Theorem 1.1, since it can be
satisfied by assuming ”natural” conditions over the data. Indeed, assumption (A) is
satified, for instance, if the multifunction S satisfies assumption (i) of Theorem 1.1
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and its fixed-point set Fix(S) := {x ∈ C : x ∈ S(x)} (which is closed by (ii)) is
compact. In this occurrence, one can choose K := H ∪ Fix(S), and condition (A)
is automatically satisfied since there is no fixed point of S outside the set K. We
shall return on this fact later.

The result we want to prove, in its full generality, is the following (in what
follows, we shall put SC(x) := S(x) ∩ C).

Theorem 1.2. Let (X, ‖ · ‖X) be a real Banach space with topological dual
X∗, C ⊆ D ⊆ X closed convex sets, and let H ⊆ K be two compact subsets of
C, where H is finite-dimensional. Let S : C → 2D and T : C → 2X∗ be two
multifunctions. Assume that:

(i) S(x) ∩ H �= ∅ for all x ∈ C;
(ii) the multifunction S is Hausdorff lower semicontinuous with closed graph and

convex values;
(iii) intaff(D)(S(x)∩ C) �= ∅ for all x ∈ C;
(iv) T (x) is nonempty and weakly-star compact for each x ∈ C, and convex for

each x ∈ C, with x ∈ S(x);
(v) for each y ∈ C, the set {x ∈ C : infϕ∈T (x)〈ϕ, x − y〉 ≤ 0} is compactly

closed;
(vi) for each x ∈ C \ K, with x ∈ S(x), and each ϕ ∈ T (x), one has

sup
y∈S(x)∩H

〈ϕ, x− y〉 > 0.

Then there exists (x̂, ϕ̂) ∈ K × X ∗ which solves GQVI(C, T , SC). Moreover, if
x̂ ∈ intaff(D)(C), then the pair (x̂, ϕ̂) solves EGQVI(C, D, T , S).

Theorem 1.2 will be proved in Section 3, while in Section 2 we will fix some
notations and preliminaries. In Section 4, starting from the above remarks, we shall
derive some corollaries and consequences of Theorem 1.2. As an application, we
shall prove a theorem of the alternative for the fixed points of a Hausdorff lower
semicontinuos multifunction S (Theorem 4.3), which extends to infinite-dimensional
setting a recent result of the author (Theorem 3.1 of [10]). In particular, our result
admits the following corollary, which gives sufficient conditions for the existence
of a fixed point x̂ which lies on the relative boundary of the corresponding value
S(x̂) (that is, the boundary of S(x̂) in its affine hull).

Theorem 1.3. Let X be a real separable Hilbert space with scalar product
〈·, ·〉 , let C ⊆ X be a closed convex set which contains more than one point, and
whose affine hull aff(C) is closed in X , and let S : C → 2 C be a multifunction.
Assume that:



Discontinuous GQVI 2063

(i) the multifunction S is Hausdorff lower semicontinuous with closed graph and
convex values;

(ii) intaff(C)(S(x)) �= ∅ for all x ∈ C;
(iii) there exists a finite-dimensional compact set H ⊆ C such that S(x)∩H �= ∅

for all x ∈ C.

Then, at least one of the following assertions holds:
(A) The set Fix(S) := {x ∈ C : x ∈ S(x)} is not totally bounded.
(B) There exists x̂ ∈ C such that x̂ ∈ ∂rS(x̂).

Before ending this section, we remark that in the proof of Theorem 1.2 we
employ a technical construction which is deeply different from the one used in [7].

2. PRELIMINARIES

Let U and V be topological spaces. A multifunction F : U → 2V is said to be
lower semicontinuos [resp., upper semicontinuous] at x0 ∈ U if for each open set
A ⊆ V , with F (x0) ∩ A �= ∅ [resp., with F (x0) ⊆ A], there exists a neighborhood
W of x0 in U such that

F (x) ∩ A �= ∅ for all x ∈ W

[resp., F (x) ⊆ A for all x ∈ W ].

We say that F is lower [resp., upper] semicontinuous in U if it is lower [resp.,
upper] semicontinuous at each point x ∈ U . The graph of F is the set

Gr(F ) := {(x, y) ∈ U × V : y ∈ F (x)}.
We recall (see [24]) that if Gr(F ) is closed, then each set F (x) is closed; if F
is upper semicontinuos in U with closed values, then Gr(F ) is closed; if Gr(F )
is closed and V is compact, then F is upper semicontinuous. A selection of the
multifunction F is a (single-valued) function f : U → V such that f(x) ∈ F (x)
for all x ∈ U .

Let (X, ‖ · ‖X) be a normed space (whose origin will be denoted by 0X). If
x0 ∈ X and r > 0, we denote by B(x0, r) [resp., B(x0, r)] the open [resp., closed]
ball in X centered at x0 with radius r.

If A ⊆ X , we denote by aff(A) and span(A), respectively, the affine hull and
the linear hull of the set A. If A ⊆ B ⊆ X , we denote by intB(A) and ∂BA,
respectively, the interior and the boundary of A in B. Finally, we denote by ri(A)
and ∂rA, respectively, the relative interior and the relative boundary of the set A.
That is, we put

ri(A) := intaff(A)(A), ∂rA := ∂aff(A)A.
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We say that the set A ⊆ X is compactly closed if its intersection with each
compact subset of X is closed. Of course, each closed subset of X is compactly
closed. Finally, we denote by co (A) the closed convex hull of the set A.

If U is a topological space, a multifunction F : U → 2X is said to be Hausdorff-
lower semicontinuos [resp., Hausdorff upper semicontinuous] at x0 ∈ U if for each
ε > 0 there exists a neighborhood W of x0 in U such that

F (x0) ⊆ F (x) + B(0X , ε) for all x ∈ W

[resp., F (x) ⊆ F (x0) + B(0X , ε) for all x ∈ W ].

As before, we say that F is Hausdorff lower [resp., upper] semicontinuous in U

if it is Hausdorff lower [resp., upper] semicontinuous at each point x ∈ U . It
is known that Hausdorff lower semicontinuity implies lower semicontinuity, while
upper semicontinuity implies Hausdorff upper semicontinuity. The converse impli-
cations are true if each set F (x) is nonempty and compact (see Theorem 7.1.14 of
[24])

The following result, which is a particular case of Theorem 3.1′′′ of [28], will
be a fundamental tool in the sequel.

Theorem 2.1. (Michael). Let U be a metric space, (X, ‖ · ‖X) a separable
Banach space, and Φ : U → 2X a lower semicontinuous multifunction whose values
are convex and have nonempty interior. Then Φ admits a continuous selection.

If (X, 〈 · , · 〉) a Hilbert space and A ⊆ X , we put

A⊥ := { x ∈ X : 〈x, v〉 = 0 ∀ v ∈ A }.
We observe the following fact.

Proposition 2.2. Let (X, 〈·, ·〉) be a Hilbert space, A ⊆ X a convex set with
nonempty relative interior, and let z ∈ X , x ∈ ri(A) be such that

〈z, x− y〉 ≤ 0 for all y ∈ A.

Then z ∈ (A − A)⊥.

Proof. Let v, w ∈ A. Then we have

aff(A) = v + span(A − v) = v + F,

where we put F := span(A − v). Since x ∈ intv+F (A), we get

x − v ∈ intF (A − v).

Consequently, there exists σ > 0 such that

x − v + [B(0X , σ) ∩ F ] ⊆ A − v.
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Since w − v ∈ F , there exists µ > 0 such that

x − v + µ(w − v) ∈ A − v,

hence x + µ(w − v) ∈ A. By assumption, we get

〈z, x− (x + µ(w − v))〉 ≤ 0,

hence 〈z, w−v〉≥0. Since v and w were any points in A, the conclusion follows.

Finally, we recall the following result.

Proposition 2.3. [11]. Let U be a topological space, (X, ‖ · ‖X) a real
normed space, M an affine manifold of X , and F : U → 2 M a Hausdorff lower
semicontinuous multifunction with nonempty closed convex values. Let x 0 ∈ U ,
y0 ∈ intM(F (x0)).

Then, there exists a neighborhood Z of x0 in U such that

y0 ∈ intM

( ⋂
x∈Z

F (x)
)
.

3. PROOF OF THEOREM 1.2

For the reader’s convenience, we shall divide the proof into steps.

Step 1. First of all, we observe that by Theorem 6 at p.416 of [19], the set
coK is compact. Moreover, in what follows we shall put M := aff(D).

Let B0 be an open ball in X such that co (K) ⊆ B0, and let

C0 := C ∩ B0

(of course, B0 denotes the closure of B0 in X). By assumptions, we have that

H ⊆ K ⊆ co (K) ⊆ C0.

Let S0 : C0 → 2C0 be the multifunction defined by putting, for each x ∈ C0,

S0(x) := S(x) ∩ C0.

We observe the following facts.

(i)′ S0(x) ∩ H �= ∅ for all x ∈ C0 (this follows at once by(i), since H ⊆ C0).
(ii)′ The multifunction S0 is Hausdorff lower semicontinuous with convex values

and closed graph.
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The fact that S0 has convex values follows from the convexity of C0 and of
each set S(x). Moreover, S0 has closed graph by (ii). In order to prove that S0 is
Hausdorff lower semicontinuous, we first prove that

(2) intM [S(x) ∩ C0] �= ∅, for all x ∈ C.

To this aim, let x ∈ C be fixed, and let v be any point in S(x) ∩ H (which is
nonempty by assumption (i)). By (iii), we have that

intM [S(x) ∩ C] �= ∅.
Choose any point u ∈ intM [S(x) ∩ C]. Since M \ B0 �= ∅ (recall that B0 is
bounded), the set M \B0 is closed in M , H ⊆ B0 and H is compact, we have that

(3) ρ := inf
{
d(a, M \ B0) : a ∈ H

}
> 0

By convexity, we have that

ut := v + t (u − v) ∈ intM [S(x) ∩ C], for all t ∈ ]0, 1].

Choose t̄ ∈ ]0, 1] in such a way that

‖ut̄ − v‖X <
ρ

4
.

Since ut̄ ∈ intM [S(x)∩ C], there exists σ > 0 such that

(4) B(ut̄, σ)∩ M ⊆ S(x) ∩ C.

Let
α := min {σ,

ρ

4
}.

Now, observe that

(5) B(ut̄, α) ∩ M ⊆ B0 ∩ M.

To prove (5), observe that if we choose any point x ∈ B(ūt, α) ∩ M , we have that

‖x − v‖X ≤ ‖x − ut̄‖X + ‖ut̄ − v‖X ≤ ρ

4
+

ρ

4
=

ρ

2
.

Since v ∈ H , (3) implies that d(v, M \ B0) ≥ ρ, hence x ∈ M ∩ B0, as desired.
By (4) and (5) it follows that

B(ut̄, α) ∩ M ⊆ B0 ∩ M ∩ S(x) ∩ C = S(x) ∩ C ∩ B0,

hence
ut̄ ∈ intM [S(x) ∩ C ∩ B0],
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and (2) follows.
Now we can prove the Hausdorff lower semicontinuity of the multifunction S0.

To this aim, observe that by (2) and Theorem A of [25] (setted in the affine manifold
M = aff(D) by an obvious translation), the multifunction

x ∈ C → S(x) ∩ C0 ⊆ M

is Hausdorff lower semicontinuous (since S is Hausdorff lower semicontinuous with
closed convex values, C0 is closed and convex and each set S(x)∩ C0 is bounded
and has nonempty interior in M ). At this point, the Hausdorff lower semicontinuity
of S0 : C0 → 2C0 follows at once.

(iii)′ intaff(C0)(S0(x)) �= ∅ for all x ∈ C0.

To see this, observe that (2) implies, in particular, that intM(C0) �= ∅. Of
course, this implies that aff(C0) = aff(C) = aff(D) = M. Consequently, by
(2) our claim follows.

(V)′ For each y ∈ C0, the set {x ∈ C0 : infϕ∈T (x)〈ϕ, x − y〉 ≤ 0} is compactly
closed.

To see this, observe that, for each fixed y ∈ C0, one has

{x ∈ C0 : inf
ϕ∈T (x)

〈ϕ, x− y〉 ≤ 0} = C0 ∩ {x ∈ C : inf
ϕ∈T (x)

〈ϕ, x− y〉 ≤ 0}.

Since y ∈ C and C0 is closed, our claim follows at once by assumption (v).

(Vi)′ For each x ∈ C0 \ K, with x ∈ S0(x), and each ϕ ∈ T (x), one has
sup

y∈S0(x)∩H
〈ϕ, x− y〉 > 0.

To see this, let x ∈ C0 \K, with x ∈ S0(x), and ϕ ∈ T (x) be fixed. Since, in
particular, x ∈ C \K and x ∈ S(x), by assumption (vi) there exists y∗ ∈ S(x)∩H
such that 〈ϕ, x − y∗〉 > 0. Since H ⊆ C ∩ B0, it follows that y∗ ∈ C0, hence
y∗ ∈ S0(x) ∩ H . Our claim follows at once.

Step 2. Let M0 be the linear subspace of X corresponding to M , and observe
that M0 may not be closed in X .

For each z ∈ coK, choose any point uz ∈ intM S0(z) (which is nonempty by
(iii)′). By Proposition 2.3, taking into account (ii)′, there exists an open bounded
neighborhood Uz of z in X such that

(6) uz ∈ intM
( ⋂

v∈Uz∩C0

S0(v)
)
.
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Since the set coK is compact, there exist z1, . . . , zm ∈ co K such that

(7) co K ⊆
m⋃

i=1

(
Uzi ∩ M

)
.

Put
Σ0 :=

m⋃
i=1

(
Uzi ∩ M

)
.

Since M \ Σ0 �= ∅ (note that Σ0 is bounded), M \ Σ0 is closed in M , and coK is
compact, by (7) we get

(8) ξ := inf
{
d(a, M \ Σ0) : a ∈ co K

}
> 0.

If we put

(9) Σ := co K +
[
B(0X ,

ξ

2
) ∩ M0

]
,

we have that Σ is convex and closed in M , and also Σ ⊆ Σ0.

Step 3. Let V be the family of all finite-dimensional linear subspaces of X
containing the set

H ∪ {uz1 , . . . , uzm}.
At this point, fix V ∈ V . Put

Ω := C0 ∩ Σ ∩ V .

Note that
H ⊆ C0 ∩ Σ ∩ V ⊆ Ω ⊆ C0 ∩ V.

In particular, Ω �= ∅. Let SV : Ω → 2Ω be the multifunction defined by setting, for
each x ∈ Ω,

SV (x) := S0(x) ∩ Ω = S0(x) ∩ C0 ∩ Σ ∩ V .

Now, let J : X∗ → V ∗ be the function defined by putting, for each ϕ ∈ X∗,

〈J(ϕ), u〉 := 〈ϕ, u〉 for all u ∈ V,

and let TV : Ω → 2V ∗ be the multifunction defined by setting, for each x ∈ Ω,

TV (x) := J(T (x)).

Now we want to apply Theorem 4.2(a) of [12] to the finite-dimensional problem
GQVI(Ω, TV , SV ). To this aim, observe what follows.

(a) The set Ω is a nonempty closed convex subset of V .
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(b) The multifunction SV : Ω → 2Ω has closed graph and nonempty convex
values. Indeed, since H ⊆ Ω, by (i)′ we have that SV (x) �= ∅ for all x ∈ Ω.
Moreover, since S0 has closed graph and convex values, by the definition of SV

and the convexity of Ω it follows that SV has closed graph and convex values.

(c) The multifunction SV : Ω → 2Ω is lower semicontinuous. In order to prove
this, we first observe that

(10) Σ ∩ V ∩ intMS0(x) �= ∅ for all x ∈ Ω.

Indeed, let x ∈ Ω be fixed, and choose x′ ∈ C0∩Σ∩V such that ‖x−x′‖X ≤ ξ/4.
Hence,

x − x′ ∈ M0 ∩ B(0X ,
ξ

4
).

Since x′ ∈ Σ, by (8) and (9) it follows that

x ∈ co K +
[
B(0X ,

3ξ

4
) ∩ M0

]
⊆ Σ0.

Consequently, there is i ∈ {1, . . . , m} such that x ∈ Uzi . By (6), we get in particular
that uzi ∈ intMS0(x), hence

uzi ∈ V ∩ intMS0(x) �= ∅.

Fix any v ∈ S0(x)∩H (which is nonempty by (i)′). By the convexity of S0(x) we
have that

(11) v + t(uzi − v) ∈ V ∩ intMS0(x) for all t ∈ ]0, 1].

On the other hand, since by (9) we have

v +
[
B(0X ,

ξ

2
) ∩ M0

]
⊆ Σ,

then there exists t′ ∈ ]0, 1] such that

(12) v + t(uzi − v) ∈ Σ for all t ∈ ]0, t′[ .

In particular, by (11) and (12) we have

V ∩ Σ ∩ intMS0(x) �= ∅,

as claimed. Thus, (10) holds. Now we can prove the lower semicontinuity of SV .
Let x̄ ∈ Ω and let W be an open set in M such that

SV (x̄) ∩ W �= ∅.
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By (10), we can choose a point v such that

v ∈ Σ ∩ V ∩ intMS0(x̄) ⊆ SV (x̄).

Fix v̄ ∈ W ∩ SV (x̄). By the convexity of S0(x̄) we have that

(13) v̄ + t(v − v̄) ∈ Ω ∩ intMS0(x̄) for all t ∈ ]0, 1].

On the other hand, since W is open in M , there exists ϑ > 0 such that

(14) v̄ +
[
B(0X , ϑ) ∩ M0

]
⊆ W.

Consequently, by (13) and (14), there exists τ ∈ ]0, 1] such that

(15) v̄ + τ(v − v̄) ∈ Ω ∩ W ∩ intMS0(x̄).

By Proposition 2.3, there is a neighborhood Zx̄ of x̄ in C0 such that

(16) v̄ + τ(v − v̄) ∈ intM
( ⋂

x∈Zx̄

S0(x)
)
.

By (15) and (16), we get

v̄ + τ(v − v̄) ∈ Ω ∩ W ∩ intMS0(x) ⊆ W ∩ SV (x) for all x ∈ Zx̄,

hence
SV (x) ∩ W �= ∅ for all x ∈ Zx̄,

as desired.

(d) The set TV (x) is nonempty and compact for each x ∈ Ω, and convex for
each x ∈ Ω, with x ∈ SV (x). This follows directly from assumption (iv) and the
definition of TV .

(e) One has aff(SV(x)) = aff(Ω) for all x ∈ Ω. To see this, fix x ∈ Ω. Observe
that the set

A := intMS0(x) ∩ aff(Ω)

is open in aff(Ω) and by (10) one has

∅ �= Σ ∩ V ∩ intMS0(x)

= C0 ∩ Σ ∩ V ∩ intMS0(x)

⊆ Ω ∩ intMS0(x)

= Ω ∩ aff(Ω) ∩ intMS0(x)

= A ∩ Ω,
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hence A ∩ Ω �= ∅. Consequently, by Proposition 2.1 of [12] (setted in the affine
manifold aff(Ω) by an obvious translation), we get

(17) aff(A∩ Ω) = aff(Ω).

Since
A ∩ Ω ⊆ SV (x) ⊆ Ω,

by (17) we get our claim.

(f) For each y ∈ Ω, the set
{
x ∈ Ω : inf

ϕ̃∈TV (x)
〈ϕ̃, x− y〉 ≤ 0

}

is closed. Indeed, if we fix y ∈ Ω, we have
{

x ∈ Ω : infϕ̃∈TV (x)〈ϕ̃, x− y〉 ≤ 0
}

=
{
x ∈ Ω : inf

ϕ∈T (x)
〈ϕ, x− y〉 ≤ 0

}

=
{
x ∈ C0 : inf

ϕ∈T (x)
〈ϕ, x− y〉 ≤ 0

}
∩ Ω,

which is closed by (v)′ (taking into account that Ω is closed, Ω ⊆ V and V is
finite-dimensional).

(g) The set KΩ := K ∩ Ω is compact and

SV (x) ∩ KΩ �= ∅ for all x ∈ Ω

(taking into account that H ⊆ Ω ∩ K , this follows easily by (i)′ and the definition
of SV ).

(h) For each fixed x ∈ Ω \ KΩ, with x ∈ SV (x), and each fixed ϕ̃ ∈ TV (x),
there exists y ∈ SV (x) ∩ KΩ such that 〈ϕ̃, x − y〉 > 0. Indeed, let x and ϕ̃ be as
above, and let ϕ ∈ T (x) be such that ϕ̃ = J(ϕ). By the definitions of KΩ and SV

one has that x ∈ C0 \ K and x ∈ S0(x). Therefore, by (vi)′, there exists a point

y ∈ S0(x) ∩ H ⊆ SV (x) ∩ KΩ

such that 〈ϕ, x− y〉 > 0. Since x, y ∈ V , then we have 〈ϕ̃, x− y〉 > 0, as desired.

Thus, all the assumptions of Theorem 4.2(a) of [12] are satisfied. Consequently,
there exists a pair (xV , ϕ̃V ) ∈ Ω × V ∗ such that

(18) xV ∈ SV (xV ), ϕ̃V ∈ TV (xV ) and 〈ϕ̃V , xV − y〉 ≤ 0 ∀ y ∈ SV (xV ).

Let ϕV ∈ T (xV ) be such that ϕ̃V = J(ϕV ). By (18) we get

(19) 〈ϕV , xV − y〉 ≤ 0 for all y ∈ S0(xV ) ∩ Ω.
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By (19) and (vi)′, taking into account that H ⊆ Ω, we have that xV ∈ K. We now
prove that

(20) 〈ϕV , xV − y〉 ≤ 0 for all y ∈ S0(xV ) ∩ V.

Indeed, if y ∈ S0(xV ) ∩ V is fixed, since

xV ∈ K ⊆ co K ⊆ C0 ⊆ M,

y ∈ S0(xV ) ⊆ C0 ⊆ M,

M − M ⊆ M0,

and C0 is convex, we have that

xV + t(y − xV ) ∈ C0 ∩
[
coK +

(
B(0X ,

ξ

2
) ∩ M0

)]
= C0 ∩ Σ

for a sufficiently small t ∈ ]0, 1[ . Hence, by the convexity of S0(xV ) and by the
definition of Ω, we have

xV + t(y − xV ) ∈ C0 ∩ Σ ∩ V ∩ S0(xV ) ⊆ Ω ∩ S0(xV ).

By (19) we get

0 ≥ 〈ϕV , xV − (xV + t(y − xV ))〉 = t〈ϕV , xV − y〉,
hence (20) is proved.

Resuming, we have proved that for each V ∈ V there exists a pair (xV , ϕV ) ∈
(K ∩ V )× X∗ such that

(21) xV ∈ S0(xV ), ϕV ∈ T (xV ) and 〈ϕV , xV −y〉 ≤ 0 ∀ y ∈ S0(xV )∩V.

Step 4. Now we consider the net {xV }V ∈V , with V ordered by the ordinary
set inclusion ⊆. Since K is compact, the net {xV }V ∈V has a cluster point x̂ ∈ K.
Since the multifunction S0 has closed graph, by (21) we get x̂ ∈ S0(x̂). Moreover,
by (iii)′ we have that intMS0(x̂) �= ∅. We now claim that

(22) inf
ϕ∈T (x̂)

〈ϕ, x̂− y〉 ≤ 0 for all y ∈ intMS0(x̂).

On the contrary, assume that there exists ỹ ∈ intMS0(x̂) such that

(23) inf
ϕ∈T (x̂)

〈ϕ, x̂− ỹ〉 > 0.

By Proposition 2.3, there exists σ > 0 such that

(24) ỹ ∈ intM
( ⋂

x∈B(x̂,σ)∩C0

S0(x)
)
.
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By (23) and (v)′, since the set
{
x ∈ K : inf

ϕ∈T (x)
〈ϕ, x− ỹ〉 > 0

}

is open in K, there exists α ∈ ]0, σ[ such that

(25) inf
ϕ∈T (x)

〈ϕ, x− ỹ〉 > 0 for all x ∈ B(x̂, α) ∩ K.

By construction, there exists V̂ ∈ V such that ỹ ∈ V̂ and xV̂ ∈ B(x̂, α). By (24)
we get ỹ ∈ S0(xV̂ ) ∩ V̂ . Consequently, (21) implies that

(26) 〈ϕV̂ , xV̂ − ỹ〉 ≤ 0.

On the other hand, (25) implies that

inf
ϕ∈T (xV̂ )

〈ϕ, xV̂ − ỹ〉 > 0,

hence, in particular,
〈ϕV̂ , xV̂ − ỹ〉 > 0,

which contradicts (26). Hence, (22) holds.
Applying Theorem 5 at p. 216 of [1], and taking into account (ii)′, assumption

(iv) and the inequality (22), it follows that there exists ϕ̂ ∈ T (x̂) such that

supy∈intM S0(x̂)〈ϕ̂, x̂− y〉 = inf
ϕ∈T (x̂)

sup
y∈intMS0(x̂)

〈ϕ, x̂− y〉
= sup

y∈intMS0(x̂)
inf

ϕ∈T (x̂)
〈ϕ, x̂− y〉 ≤ 0.

Of course, this implies

(27) sup
y∈S0(x̂)

〈ϕ̂, x̂− y〉 ≤ 0.

We now prove that

(28) 〈ϕ̂, x̂ − y〉 ≤ 0 for all y ∈ S(x̂) ∩ C.

To this aim, let y′ be any point in S(x̂) ∩ C. Since x̂ ∈ K ⊆ B0, and B0 is open
in X , we have that

wt := x̂ + t (y′ − x̂) ∈ S(x̂) ∩ C ∩ B0 ⊆ S0(x̂)

for sufficiently small t ∈ ]0, 1[. By (27), for such t we have

0 ≥ 〈ϕ̂, x̂− wt〉 = t 〈ϕ̂, x̂ − y′〉,
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as desired. Hence, (28) holds and the first part of the conclusion is proved.
Finally, we prove the last part of the conclusion. To this aim, assume that

x̂ ∈ intM(C), and fix any y∗ ∈ S(x̂) . Since x̂ ∈ intM (C), there exists ε > 0 such
that

(29) x̂ + [B(0, ε)∩ M0] ⊆ C.

Since y∗ ∈ S(x̂) ⊆ D ⊆ M , M − M ⊆ M0, and S(x̂) is convex, by (29) we have
that

vτ := x̂ + τ (y∗ − x̂) ∈ C ∩ S(x̂)

for sufficiently small τ ∈ ]0, 1[. By (28), for such τ we have

0 ≥ 〈ϕ̂, x̂− vτ 〉 = τ 〈ϕ̂, x̂− y∗〉,

as desired. The proof is now complete.

4. AN APPLICATION

We now present an application of Theorem 1.2. First of all, following the
argument announced in the introduction, we prove the following result (as before,
we put SC(x) := S(x) ∩ C).

Theorem 4.1. Let (X, ‖ · ‖X) be a real Banach space with topological dual
X∗, let C ⊆ D ⊆ X be closed convex sets, and let H be a finite-dimensional
compact subset of C. Let S : C → 2D and T : C → 2X∗ be two multifunctions
such that assumptions (i)–(v) of Theorem 1.2 are satisfied. Moreover, assume that
the set

Fix(S) := {x ∈ C : x ∈ S(x)}
is compact. Then, there exists (x̂, ϕ̂) ∈ C × X ∗ which solves GQVI(C, T , SC ).
Moreover, if x̂ ∈ ri(C), then (x̂, ϕ̂) solves EGQVI(C, D, T , S).

Proof. Put K := H ∪ Fix(S), and observe that the set K is compact and also
K ⊆ C. At this point, it is immediate to check that assumption (vi) of Theorem
1.2 is satisfied, since

(C \ K) ∩ Fix(S) = ∅.
Consequently, our conclusion follows at once by Theorem 1.2, taking into account
that by (iii) one has aff(C) = aff(D), hence intaff(D)(C) = ri(C).

In the particular case where S(C) ⊆ C, Theorem 4.1 gives the following exis-
tence result for the classical GQVI(C, T , S) problem, which we state explicitly for
further use.
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Corollary 4.2. Let (X, ‖ · ‖X) be a real Banach space with topological dual
X∗, C ⊆ X a closed convex sets, H a finite-dimensional compact subset of C. Let
S : C → 2C and T : C → 2X∗ be two multifunctions. Assume that:

(i) S(x) ∩ H �= ∅ for all x ∈ C;
(ii) the multifunction S is Hausdorff lower semicontinuous with closed graph and

convex values;
(iii) intaff(C)(S(x)) �= ∅ for all x ∈ C;
(iv) T (x) is nonempty and weakly-star compact for each x ∈ C, and convex for

each x ∈ C, with x ∈ S(x);
(v) for each y ∈ C, the set {x ∈ C : infϕ∈T (x)〈ϕ, x − y〉 ≤ 0} is compactly

closed;
(vi) the set Fix(S) is compact.

Then there exists (x̂, ϕ̂) ∈ C × X ∗ which solves GQVI(C, T , S).

As an application of the latter result, we now prove the following theorem of the
alternative, which extends a recent finite-dimensional result (Theorem 3.1 of [10])
to infinite-dimensional setting.

Theorem 4.3. Let X be a real separable Hilbert space with scalar product
〈·, ·〉 , let C ⊆ X be a closed convex set whose affine hull aff(C) is closed in X ,
and let S : C → 2C be a multifunction. Assume that:

(i) the multifunction S is Hausdorff lower semicontinuous with closed graph and
convex values;

(ii) intaff(C)(S(x)) �= ∅ for all x ∈ C;
(iii) there exists a finite-dimensional compact set H ⊆ C such that S(x)∩H �= ∅

for all x ∈ C.
Then, at least one of the following assertions holds:

(A) There exists x0 ∈ X such that S(x) ≡ C = {x0}.
(B) The set Fix(S) := {x ∈ C : x ∈ S(x)} is not totally bounded.
(C) There exists x̂ ∈ C such that x̂ ∈ ∂rS(x̂).

Proof. Let H0 := co (H). By Theorem 6 at p.416 of [19], the set H0 is compact.
Moreover, we have that H0 ⊆ C. Let us consider the multifunction S : H0 → 2H0

defined by putting, for each x ∈ H0,

S0(x) = S(x) ∩ H0.

By assumption (i), it follows that the multifunction S0 has closed graph. Conse-
quently, taking into account (iii), the compactness of H0 and Theorem 7.1.16 of
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[24], the multifunction S0 is upper semicontinuous with nonempty compact convex
values. Therefore, by the classical Fan-Kakutani fixed-point theorem, there exists
x∗ ∈ H0 such that x∗ ∈ S0(x∗) ⊆ S(x∗), hence the set Fix(S) is nonempty.
Moreover, observe that Fix(S) is closed by (i).

Now, assume that assertions (A) and (B) do not hold. Therefore, the set Fix(S)
is compact and C contains more than one point. Let M := aff(C), and let M0 be
the linear subspace associated to M (note that M0 is closed since M is closed by
assumption). Since C contains more than one point, then M0 �= {0X}. Choose any
point z ∈ M0 \ {0X}. We claim that

(30) sup
v∈S(x)−S(x)

〈z, v〉 > 0 for all x ∈ C.

To this aim, fix x ∈ C. By (ii), there exists u ∈ C such that

u ∈ intM(S(x)).

Since M0 = span(C − u), M = u + M0, and S(x)− S(x) ⊆ M0, then we get

(31) 0X ∈ intM0(S(x)− u) ⊆ intM0(S(x)− S(x)).

Consequently, there exists ε > 0 be such that

B(0X , ε) ∩ M0 ⊆ S(x)− S(x).

Then, we have that tz ∈ S(x)−S(x) for sufficiently small t > 0. Since 〈z, tz〉 > 0,
the claim (30) follows.

Let Φ : C → 2M0 be the multifunction defined by putting, for each x ∈ C,

Φ(x) :=
[
S(x)− S(x)

]∩ {
v ∈ M0 : 〈z, v〉 > 0

}
.

By (30), and taking into account that S(x) − S(x) ⊆ M0, we have that the mul-
tifunction Φ has nonempty convex values. Moreover, observe that by Theorems
7.3.11 and 7.3.15 of [24] the multifunction

x ∈ C → S(x)− S(x)

is lower semicontinuous. Since the set {v ∈ M0 : 〈z, v〉 > 0} is open in M0, the
multifunction Φ is lower semicontinuous. We now show that

intM0(Φ(x)) �= ∅ for all x ∈ C.

To this aim, fix x ∈ C. Observe that by (31) the set S(x) − S(x) has nonempty
interior in M0, hence by convexity we get

{
v ∈ M0 : 〈z, v〉 > 0

} ∩ intM0(S(x)− S(x)) �= ∅.



Discontinuous GQVI 2077

Since the above set is open in M0 and it is contained in Φ(x), the claim follows.
Consequently, since M0 is a separable Banach space, by Theorem 2.1 the multi-
function Φ admits a continuous selection. That is, there exists a (single-valued)
function f : C → M0 such that f(x) ∈ Φ(x) for each x ∈ C.

Applying Corollary 4.2 (with T (x) = {f(x)}), we have that there exists a point
x̂ ∈ C such that

x̂ ∈ S(x̂) and 〈f(x̂), x̂− y〉 ≤ 0 for all y ∈ S(x̂).

Now, observe that by (ii) we have that aff(S(x̂)) = M, hence

ri(S(x̂)) = intM (S(x̂)) and ∂r(S(x̂)) = ∂M (S(x̂)).

In particular, ri(S(x̂)) �= ∅.
Now, assume that x̂ ∈ intM(S(x̂)) = ri(S(x̂)). By Proposition 2.2, we get

f(x̂) ∈ (S(x̂) − S(x̂))⊥.

Since
f(x̂) ∈ Φ(x̂) ⊆ S(x̂) − S(x̂),

it follows that f(x̂) = 0X . On the other hand, since

f(x̂) ∈ Φ(x̂) ⊆ {
v ∈ M0 : 〈z, v〉 > 0

}
,

we get f(x̂) �= 0X , a contradiction. Such a contradiction implies that x̂ ∈ ∂r(S(x̂)),
as desired. The proof is complete.

Finally, we observe that Theorem 1.3 follows at once from Theorem 4.3.
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29. B. Riccert, Un théoreme d’existence pour les inéquations variationelles, C. R. Acad.
Sci. Paris Sér. I Math., 301 (1985), 885-888.

30. B. Riccert, Basic existence theorems for generalized variational and quasi-variatio-
nal inequalities, in Variational Inequalities and Network Equilibrium Problems, (F.
Giannessi and A. Maugeri, eds.), Plenum Press, New York, 1995.

31. M. H. Shih and K. K. Tan, Generalized quasi-variational inequalities in locally convex
topological vector spaces, J. Math. Anal. Appl., 108 (1985), 333-343.

32. E. Tarafdar and X. Z. Yuan, Non-compact generalized quasi-variational inequalities
in locally convex topological vector spaces, Nonlin. World, 1 (1994), 373-383.

33. J. C. Yao, The generalized quasi-variational inequality problem with applications, J.
Math. Anal. Appl., 158 (1991), 139-160.

34. J. C. Yao, Generalized quasi-variational inequality problems with discontinuous map-
pings, Math. Oper. Res., 20 (1995), 465-478.

35. J. C. Yao and J. S. Guo, Variational and generalized variational inequalities with
discontinuous mappings, J. Math. Anal. Appl., 182 (1994), 371-392.

36. N. D. Yen, On a class of discontinuous vector-valued functions and the associated
quasi-variational inequalities, Optimization, 30 (1994), 197-203.

37. N. D. Yen, On an existence theorem for generalized quasi-variational inequalities,
Set-Valued Anal., 3 (1995), 1-10.



2080 Paolo Cubiotti and Jen-Chih Yao

Paolo Cubiotti
Department of Mathematics
University of Messina
Viale F. Stagno d’Alcontres 31
98166 Messina
Italy
E-mail: cubiotti@dipmat.unime.it

Jen-Chih Yao
Center for General Education
Kaohsiung Medical University
Kaohsiung 80707, Taiwan
E-mail: yaojc@kmu.edu.tw


