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SHIFT PRESERVING OPERATORS ON
LOCALLY COMPACT ABELIAN GROUPS

R. A. Kamyabi Gol and R. Raisi Tousi

Abstract. We investigate shift preserving operators on locally compact abelian
groups. We show that there is a one-to-one correspondence between shift pre-
serving operators and range operators on L2(G) where G is a locally compact
abelian group. We conclude that a shift preserving operator has several prop-
erties in common with its associated range operator, especially compactness
of one implies compactness of the other. Moreover, we obtain a necessary
condition for a shift preserving operator to be Hilbert Schmidt or of finite
trace in terms of its range function.

1. INTRODUCTION AND PRELIMINARIES

A bounded linear operator U : L2(Rn) → L2(Rn) is called shift preserving
(which will be abbreviated to “SP”) if UTk = TkU for all k ∈ Z

n, where Tk is
the shift operator. As a special case of a shift operator is the time delay operator
Tk : l2 → l2 defined by Tku(n) = u(n− k), u ∈ l2, k, n ∈ Z where the action is
to delay the signal u by k units. A digital filter U is a SP operator on l2. In other
words a filter is a time invariant operator in which delaying the input by k units of
time is just to delay the output by k units. These operators play an important role
in signal processing, such as to analyse, code, reconstruct signals and so on. They
are often used to extract required frequency components from signals. For example,
high frequency components of a signal usually contain the noise and fluctuations,
which often have to be removed from the signal using different kinds of filters. For
more details and examples of filters cf. [10, 4].

SP operators on R
n have been studied by Bownik in [3]. He gave a charac-

terization of these operators in terms of range operators. Our goal in this paper is
to investigate SP operators on locally compact abelian (which will be abbreviated
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to “LCA”) groups. The major result in this paper is a novel characterization of
SP operators on L2(G), where G is a LCA group. This allows us to handel SP
operators (specially filters) on L2(G) in a unified manner. As an application of this
approach, one is able to extend several results from the theory of filters on R

n to a
general LCA group.

In what follows G is a LCA group with the dual group Ĝ. We denote the Haar
measure of G and Ĝ by dx and dξ, respectively. As general references to the theory
of LCA groups we mention [6, 9]. The Fourier transform f̂ of any f ∈ L1(G) is
defined by f̂(ξ) =

∫
G f(x)ξ(x)dx, where ξ is an element in Ĝ. The transformation

f → f̂ , L1(G)∩L2(G) → C0(Ĝ) extends uniquely to a Hilbert space isomorphism
from L2(G) onto L2(Ĝ), the so called Plancherel’s transform. In the sequal, the
Palncherel transform of a function f ∈ L2(G) will also be denoted by f̂ .

A subgroup L of G is called a uniform lattice if it is discrete and co-compact
(i.e G/L is compact). A fundamental domain for L is a measurable subset SL ⊆ G
such that every x ∈ G can be uniquely written in the form x = sd for some s ∈ SL
and d ∈ L. It is shown in [13] that such a fundamental domain always exists in a
second countable locally compact abelian group.

Let L be a uniform lattice in G. A bounded linear operator U : L2(G) → L2(G)
is called SP (with respect to L) if UTk = TkU , for all k ∈ L, where Tk is the
general shift operator Tkf(x) = f(k−1x). Let L⊥ denote the annihilator of L in
Ĝ, i.e. the subgroup {ξ ∈ Ĝ; ξ(L) = {1}}, which is a uniform lattice in Ĝ.
Suppose SL⊥ is a fundamental domain for L⊥. Let L2(SL⊥ , l2(L⊥)) denote the
Hilbert space of square integrable functions from SL⊥ to l2(L⊥) with inner product
< f, g >=

∫
S

L⊥
< f(ξ), g(ξ) >l2(L⊥) dξ. It is readily verified that this Hilbert

space is isometrically isomorphic to L2(G). In fact the mapping T : L2(G) −→
L2(SL⊥, l2(L⊥)), defined by T f(ξ) = (f̂(ξη))η∈L⊥ is an isometric isomorphism
between these two Hilbert spaces; [11] (see also [18, Proposition 1.3.2] for the case
where G = Rn).

A closed subspace V ⊆ L2(G) is called shift invariant (with respect to L)
if f ∈ V implies Tkf ∈ V , for any k ∈ L. For any subset φ ⊆ L2(G), let
S(φ) = span{Tkϕ; ϕ ∈ φ, k ∈ L} be the shift invariant space generated by φ.
For ϕ ∈ L2(G), S({ϕ}) is the principle shift invariant space generated by ϕ and
will be denoted by S(ϕ). For a general orientation concerning shift invariant spaces
on LCA groups the reader may consult [11, 12].

A range function is a mapping

J : SL⊥ → {closed subspaces of l2(L⊥)},

where SL⊥ is the fundamental domain for L⊥ in Ĝ. J is called measurable if
the associated orthogonal projections P (ξ) : l2(L⊥) → J(ξ) are measurable in the
sense that ξ �→< P (ξ)a, b > is measurable for all a, b ∈ l2(L⊥). The following
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theorem which is [11, Theorem 3.1] asserts that there is a one to one correspondence
between shift invariant subspaces of L2(G) and range functions.

Theorem 1.1. Suppose G is a second countable LCA group, L is a uniform
lattice inG, and SL⊥ is a fundamental domain for L⊥ in Ĝ. A closed subspace V ⊆
L2(G) is shift invariant (with respect to the uniform lattice L) if and only if V =
{f ∈ L2(G), T f(ξ) ∈ J(ξ) for a.e. ξ ∈ SL⊥}, where J is a measurable range
function and T is the isometric isomorphism, between L 2(G) and L2(SL⊥, l2(L⊥)).
The correspondence between V and J is one to one if the range functions are
identified when they are equal a.e. Moreover, if V = S(φ), for some countable set
φ ⊆ L2(G) then

(1.1) J(ξ) = span{T ϕ(ξ);ϕ ∈ φ}.

Suppose H is a Hilbert space. X ⊆ H is called a frame (for span(X)), if there
exist two numbers A and B with 0 < A ≤ B <∞ such that

(1.2) A‖h‖2 ≤
∑
η∈X

| < h, η > |2 ≤ B‖h‖2 for h ∈ span(X).

The numbers A and B are called the frame bounds. Those sequences which satisfy
only the upper inequality in (1.2), are called Bessel sequences.

The following proposition which is [11, Theorem 4.1] shows the relation be-
tween {Tkϕ; ϕ ∈ φ, k ∈ L} being a frame for S(φ) (Bessel sequence) and
{T ϕ(ξ); ϕ ∈ φ} being a frame for J(ξ) for a.e. ξ ∈ SL⊥ (Bessel sequence).

Proposition 1.2. Suppose G is a second countable LCA group, L is a uniform
lattice in G, SL⊥ is a fundamental domain for L⊥ in Ĝ, φ ⊆ L2(G) is a countable
set. Then {Tkϕ; ϕ ∈ φ, k ∈ L} is a frame (Bessel sequence with bound B) for
S(φ) with bounds A and B if and only if {T ϕ(ξ); ϕ ∈ φ} is a frame (Bessel
sequence with bound B) for J(ξ) with bounds A and B, for a.e. ξ ∈ SL⊥ .

We now would like to define the (generalized) Gramian and dual Gramian
operators on LCA groups, which play important roles in the study of shift invariant
spaces (see [16]).

Let φ be a countable subset of L2(G). Define the (generalized) Gramian and
dual Gramian operators Gφ : l2(N) → l2(N) and G̃φ : l2(L⊥) → l2(L⊥) of the
system {T ϕn(ξ); n ∈ N} for some fixed ξ ∈ SL⊥ (or briefly “Gramian and dual
Gramian operators associated with J”) by Gφ := K∗K and G̃φ := KK∗, where K
denotes the operator defined as follows:

K : l2(N) → l2(L⊥), K((cn)n∈N) =
∑
n∈N

cnT ϕn(ξ),
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for (cn)n∈N with compact support, and K∗ denotes the adjoint of K given by

K∗ : l2(L⊥) → l2(N), K∗((aη)η∈L⊥) = (< (aη)η∈L⊥, (T ϕn(ξ)(η))η∈L⊥ >)n∈N.

In fact we easily see

Gφ =

∑
η∈L⊥

ϕ̂n(ξη)ϕ̂m(ξη)


m,n∈N

,

and
G̃φ =

(∑
n∈N

ϕ̂n(ξη)ϕ̂n(ξγ)

)
η,γ∈L⊥

.

The following corollary is an immediate consequence of Proposition 1.2, which
is also a generalization of [16, Theorem 2.2.7].

Corollary 1.3. Retain the assumptions of Proposition 1.2. Suppose that G φ and
G̃φ are the (generalized) Gramian and dual Gramian operators associated with the
system {T ϕn(ξ); n ∈ N} for some fixed ξ ∈ SL⊥ . Then

(i) {Tkϕ; ϕ ∈ φ, k ∈ L} is a Bessel sequence with bound B if and only if

esssupξ∈S
L⊥‖Gφ(ξ)‖ ≤ B.

(ii) {Tkϕ; ϕ ∈ φ, k ∈ L} is a frame for S(φ) with bounds A and B if and only
if

A‖a‖2 ≤< G̃φ(ξ)a, a >≤ B‖a‖2,

for a ∈ span{T ϕn(ξ); n ∈ N}, for a.e. ξ ∈ SL⊥ .

For a comprehensive account of shift invariant spaces on L2(Rn) see [2, 16, 17].
Now suppose that G is a second countable LCA group, L is a uniform lattice

in G, SL⊥ is a fundamental domain for L⊥, V is a shift invariant subspace of
L2(G) with the associated range function J , and P (ξ) is the projection onto J(ξ),
for ξ ∈ SL⊥ . A range operator on J is a mapping R from the fundamental domain
SL⊥ to the set of bounded linear operators on closed subspaces of l2(L⊥), so that
the domain of R(ξ) equals J(ξ) for a.e. ξ ∈ SL⊥ . R is called measurable if
ξ �→< R(ξ)P (ξ)a, b > is a measurable scalar function for all a, b ∈ l2(L⊥).

The rest of this paper is organized as follows:
In Section 2 we show that there is a one to one correspondence between SP

operators on a LCA group and range operators defined as above. In section 3 we
obtain some consequences of this characterization theorem. We conclude that a
shift preserving operator has several properties in common with its associated range
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operator. We show that a shift preserving operator is an isometry (self adjoint) if and
only if its corresponding range operator is an isometry (self adjoint). Moreover, we
obtain a necessary condition for a shift preserving operator to be compact, Hilbert
Schmidt or of finite trace in terms of its corresponding range operator. Finally we
determine the range operator associated with the frame operator generated by shifts.

2. A CHARACTERIZATION OF SHIFT PRESERVING OPERATORS

Throughout this paper we always assume that G is a second countable LCA
group, L is a uniform lattice in G, SL⊥ is a fundamental domain for L⊥ and U is
a SP operator on L2(G). The notation will be as in the previous section.

In this section we generalize a characterization of SP operators in terms of range
operators. The main result is the following theorem:

Theorem 2.1. (The Characterization Theorem). Suppose V ⊆ L2(G) is a shift
invariant space and J is its associated range function. For every SP operator
U : V → L2(G), there exists a measurable range operator R on J such that

(2.1) (T ◦ U)f(ξ) = R(ξ)(T f(ξ)) for a.e. ξ ∈ SL⊥ , for all f ∈ V,

where T is the isometric isomorphism between L 2(G) and L2(SL⊥ , l2(L⊥)). Con-
versely, given a measurable range operatorR on J with ess sup ξ∈S

L⊥‖R(ξ)‖ <∞,
there is a bounded SP operator U : V → L 2(G), such that (2.1) holds. The cor-
respondence between U and R is one-to-one under the usual convention that the
range operators are identified if they are equal a.e.

An immediate consequence of Theorem 2.1 is [3, Theorem 4.5] which is ob-
tained by putting G = R

n, L = Z
n, L⊥ = Z

n, SL⊥ = T
n in Theorem 2.1.

Before proving Theorem 2.1, we need some preparations. Also in the proof of
this theorem we use some results of [12] that for the readers’ convenience we state
them here.

Let ϕ ∈ L2(G). We say ϕ0 ∈ L2(G) is a Parseval frame generator of S(ϕ) if∑
k∈L | < Tkϕ0, f > |2 = ‖f‖2, for all f ∈ S(ϕ).
Suppose T is the isometric isomorphism, between L2(G) and L2(SL⊥, l2(L⊥)).

In [12] we have characterized all Parseval frame generators of S(ϕ) as follows.

Proposition 2.2. Let ϕ ∈ L2(G). Then ϕ is a Parseval frame generator of
S(ϕ), if and only if ‖T ϕ(ξ)‖2

l2(L⊥)
(=
∑

η∈L⊥ |ϕ̂(ξη)|2) = χΩϕ(ξ), for a.e. ξ ∈
SL⊥ , where Ωϕ = {ξ ∈ SL⊥ ; T ϕ(ξ) 
= 0}.

Also we have shown the existence of a decomposition of a shift invariant sub-
space of L2(G) into an orthogonal sum of spaces each of which is generated by a
single function whose shifts form a Parseval frame.
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Proposition 2.3. Let G be a second countable locally compact abelian group.
If V is a shift invariant subspace in L 2(G), then there exists a family of functions
{ϕn} ⊆ L2(G) such that V =

⊕∞
n=1 S(ϕn), where each ϕn is a Parseval frame

generator of S(ϕn), for every n ∈ N.

Moreover, in the proof of Theorem 2.1 we need to determine how the infor-
mation about orthogonality of S(ϕ1) and S(ϕ2) can be transferred into some other
information about the generators ϕ1 and ϕ2 in L2(G). We have done this in [12]
via the following proposition.

Proposition 2.4. The spaces S(ϕ1) and S(ϕ2) are orthogonal if and only if∑
η∈L⊥

ϕ̂1(ξη)ϕ̂2(ξη) = 0 a.e. ξ ∈ Ĝ.

Remark 2.5. If ϕ is a Parseval frame generator of S(ϕ) and m ∈ L2(SL⊥)
then obviously mT ϕ ∈ L2(SL⊥ , l2(L⊥)). Indeed, by Proposition 2.2 we have

‖mT ϕ‖2 =
∫
S

L⊥
‖mT ϕ(ξ)‖2dξ

=
∫
S

L⊥
|m(ξ)|2‖T ϕ(ξ)‖2dξ

=
∫
S

L⊥∩Ωϕ

|m(ξ)|2dξ

≤ ‖m‖2 <∞.

The following lemma will be needed in the proof of Theorem 2.1.

Lemma 2.6. Let ϕ ∈ L2(G) be a Parseval frame generator of S(ϕ), and
U : S(ϕ) → L2(G) be a SP operator. Then for every m ∈ L2(SL⊥),

(2.2) (T ◦U ◦ T −1)(mT ϕ)(ξ) = m(ξ)(T ◦ U)ϕ(ξ) for a.e. ξ ∈ SL⊥

(Note that by Remark 2.5 the left hand side of (2.2) is well defined).

Proof. First we show that (2.2) holds for polynomials. For k ∈ L, define
Mk ∈ L2(SL⊥) by Mk(ξ) = ξ(k), for ξ ∈ SL⊥ and note that MkT ϕ = T Tkϕ, a.e.
for all k ∈ L. Then we have

(T ◦ U ◦ T −1)(MkT ϕ) = (T ◦ U ◦ T −1)(T Tkϕ)

= (T ◦ U ◦ Tk)ϕ
= (T ◦ Tk ◦ U)ϕ

= Mk(T ◦U)ϕ.
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So, by linearity (2.2) holds for all polynomials p(ξ) =
∑

k∈L akξ(k) ∈ L2(SL⊥).
Moreover,

(2.3)

∫
S

L⊥
|p(ξ)|2‖(T ◦ U)ϕ(ξ)‖2dξ =

∫
S

L⊥
‖(T ◦ U ◦ T −1)(pT ϕ)(ξ)‖2dξ

= ‖(T ◦U ◦ T −1)(pT ϕ)‖2

≤ ‖(T ◦U ◦ T −1)‖2‖pT ϕ‖2

= ‖U‖2

∫
S

L⊥
|p(ξ)|2‖T ϕ(ξ)‖2dξ.

Let r ∈ L∞(L̂) ⊆ L2(L̂). Lusin’s Theorem, together with compactness of L̂
[6, Proposition 4.4], imply that there exists a sequence (pn)n∈N of polynomials
such that pn(ξ) −→ r(ξ) as n −→ ∞, for a.e. ξ ∈ L̂. By the Lebesgue
Dominated Convergence Theorem, and the fact that L2(L̂) is isometrically iso-
morphic to L2(SL⊥) [13], (2.3) implies that,

∫
S

L⊥
|r(ξ)|2‖(T ◦ U)ϕ(ξ)‖2dξ ≤

‖U‖2
∫
S

L⊥
|r(ξ)|2‖(T ϕ(ξ)‖2dξ. Since r ∈ L∞(L̂) was arbitrary, we get

(2.4) ‖(T ◦ U)ϕ(ξ)‖ ≤ ‖U‖‖T ϕ(ξ)‖, for a.e. ξ ∈ SL⊥ .

Now, let m ∈ L2(SL⊥). Then there exists a sequence (pn)n∈N of polynomials such
that pn −→ m in L2(SL⊥). Also pnT ϕ −→ mT ϕ, and since T ◦ U ◦ T −1 is
continuous, (T ◦U ◦ T −1)(pnT ϕ) −→ (T ◦U ◦ T −1)(mT ϕ). On the other hand,
passing to a subsequence we have

(2.5) pn(ξ) −→ m(ξ) for a.e. ξ ∈ SL⊥ ,

and

(2.6) (T ◦ U ◦ T −1)pnT ϕ(ξ) −→ (T ◦ U ◦ T −1)mT ϕ(ξ) for a.e. ξ ∈ SL⊥ .

Moreover, (2.4) and (2.5) imply that

(2.7) pn(ξ)(T ◦ U)ϕ(ξ) −→ m(ξ)(T ◦ U)ϕ(ξ) for a.e. ξ ∈ SL⊥ .

Since (2.2) holds for all polynomials, (2.6) and (2.7) imply that (T ◦U◦T −1)mT ϕ(ξ)
= m(ξ)(T ◦ U)ϕ(ξ) for a. e. ξ ∈ SL⊥ .

Proof of Theorem 2.1. By Proposition 2.3, there exists a family of functions
{ϕn} ⊆ L2(G) such that V =

⊕∞
n=1 S(ϕn), and each ϕn is a Parseval frame gen-

erator of S(ϕn), for each n ∈ N. Consider Vk =
⊕k

i=1 S(ϕi), with the associated
range function Jk . Note that since S(ϕi)⊥S(ϕj) for i 
= j, by Proposition 2.4 we
have < T ϕi(ξ), T ϕj(ξ) >=

∑
η∈L⊥ ϕ̂i(ξη)ϕ̂j(ξη) = 0, for i 
= j. So by (1.1)
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and Proposition 2.2, {T ϕi(ξ)}ki=1 − {0} is an orthonormal basis of Jk(ξ), for a.e.
ξ ∈ SL⊥ . Define Rk(ξ) : Jk(ξ) −→ l2(L⊥) by

(2.8) Rk(ξ)(
k∑
i=1

αiT ϕi(ξ)) =
k∑
i=1

αi(T ◦ U)ϕi(ξ).

By (2.4) Rk(ξ) is well defined. Obviously Rk is measurable. Choose f ∈ Vk
and write it as f =

∑k
i=1 fi, for some fi ∈ S(ϕi), i = 1, ..., k. Then T f =∑k

i=1 miT ϕi, where mi ∈ L2(SL⊥), i = 1, ..., k. So

(2.9) (T ◦ U)f(ξ) = Rk(ξ)(T f(ξ)), for a.e. ξ ∈ SL⊥ .

Indeed by Lemma 2.6,

(T ◦ U)f(ξ) = (T ◦ U ◦ T −1)(T f(ξ))

= (T ◦ U ◦ T −1)(
k∑
i=1

miT ϕi)(ξ)

=
k∑
i=1

mi(ξ)(T ◦ U)ϕi(ξ)

=
k∑
i=1

mi(ξ)Rk(ξ)((T ϕi)(ξ))

= Rk(ξ)(
k∑
i=1

mi(ξ)(T ϕi)(ξ))

= Rk(ξ)(T f(ξ)).

We claim that ‖Rk(ξ)‖ ≤ ‖U‖, for a.e. ξ ∈ SL⊥ . To prove this, define
ψs ∈ L2(SL⊥ , l2(L⊥)), by ψs(ξ) =

∑k
i=1 siT ϕi(ξ), for any s = (s1, .., sk) ∈

C
k, ‖s‖ = 1. Then ess supξ∈S

L⊥‖Rk(ξ)(ψs(ξ))‖ ≤ ‖U‖. Indeed, if not then there
would exist ε > 0, a measurable set D ⊆ SL⊥ with positive measure, such that
‖Rk(ξ)(ψs(ξ))‖ > ε+ ‖U‖ for ξ ∈ D. So,

(2.10)

‖T ◦ U(T −1ψs.χD)‖ = ‖U(T −1ψs.χD)‖

≤ ‖U‖‖T −1ψsχD‖

= ‖U‖‖T ◦ T −1ψsχD‖
≤ ‖U‖‖ψsχD‖.

On the other hand
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(2.11)

‖T ◦ U(T −1ψs.χD)‖ =
∫
S

L⊥
‖(T ◦U)(T −1 ◦ ψsχD)(ξ)‖2dξ

=
∫
D

‖(T ◦ U)(
k∑
i=1

siϕi)(ξ)‖2dξ

=
∫
D

‖Rk(ξ)(ψs(ξ))‖2dξ

≥ (ε+ ‖U‖)2
∫
D

dξ

≥ (ε+ ‖U‖)2
∫
D
‖ψs(ξ)‖2dξ

= (ε+ ‖U‖)2‖ψsχD‖2,

which contradicts (2.10). This easily implies ‖Rk(ξ)‖ ≤ ‖U‖, for a.e. ξ ∈
SL⊥ . For any l ≤ k ∈ N we have Rl(x) = Rk(x)|Jl(x). So we can define
R(ξ) :

⋃
k∈N

Jk(ξ) → l2(L⊥) by R(ξ)(a) = Rk(ξ)(a), if a ∈ Jk(ξ), for some
k ∈ N. Since ‖Rl(ξ)‖ ≤ ‖U‖, we have ‖R(ξ)(a)‖ ≤ ‖U‖‖a‖ for a ∈

⋃
l∈N

Jl(ξ).
Moreover, since

⋃
k∈N

Jk(ξ) = J(ξ) we can extend R(ξ) uniquely to J(ξ) with the
desired properties.

Conversely, let R be a measurable range operator on J(ξ) with ess supξ∈S
L⊥

‖R(ξ)‖ < ∞. Define, U : V → L2(G) by Uf = T −1F , where F : SL⊥ →
l2(L⊥), F (ξ) = R(ξ)(T f(ξ)). Then U is linear and also bounded:

‖Uf‖2 = ‖T ◦ Uf‖2 = ‖F‖2

=
∫
S

L⊥
‖F (ξ)‖2dξ

=
∫
S

L⊥
‖R(ξ)(T f(ξ))‖2dξ

≤ ess sup
ξ∈S

L⊥
‖R(ξ)‖2

∫
S

L⊥
‖T f(ξ)‖2dξ

= ess sup
ξ∈S

L⊥
‖R(ξ)‖2‖f‖2.

Moreover U is shift preserving, since

(T ◦U)Tkf(ξ) = R(ξ)(T Tkf(ξ))

= R(ξ)(Mk(ξ)T f(ξ))

= Mk(ξ)R(ξ)((T f)(ξ))

= Mk(ξ)(T ◦ U)f(ξ)

= T (Tk ◦ U)f(ξ),



1948 R. A. Kamyabi Gol and R. Raisi Tousi

where Mk(ξ) = ξ(k). Since T is one-to-one, TkU = UTk. Moreover, by (2.1) the
correspondence between U and R is unique.

3. SOME CONSEQUENCES OF THE CHARACTERIZATION THEOREM

Our goal in this section is to investigate some properties of a SP operator in
view of its corresponding range operator, as consequences of Theorem 2.1. In
fact we propose some properties of a SP operator in view of its corresponding
range operator. In other words, we derive some necessary, and some necessary and
sufficient conditions for a shift preserving operator in terms of its corresponding
range operator, as consequences of Theorem 2.1.

In the following two propositions we establish a necessary condition for a shift
preserving operator to be a compact operator, a Hilbert Schmidt operator or of finite
trace. Let H be a Hilbert space. A linear map U : H → H is compact if U(B) is
relatively compact in H , where B is the closed unit ball of H .
Note that if a bounded operator is of finite rank, then it is compact.

Let U be an operator on a Hilbert spaceH , and suppose thatE is an orthonormal
basis for H . The Hilbert-Schmidt norm of U , denoted by ‖U‖HS, is defined as
(
∑

x∈E ‖U(x)‖2)1/2. Note that the definition is independent of the choice of basis
[14]. An operator U is called a Hilbert-Schmidt operator if ‖U‖HS < ∞. U is
called of finite trace if tr(U) < ∞, where tr(U) =

∑
x∈E < U(x), x > is the

trace of U . The definition of trace is also independent of the chosen orthonormal
basis [14, Lemma 2.4.12]. For a detailed exposition of these operators confer [14].

Theorem 3.1. Suppose V ⊆ L2(G) is a shift invariant space, J is its associated
range function and U : V → V is a SP operator with its corresponding range
operator R. If U is compact then R(ξ) is compact for a.e. ξ ∈ SL⊥ .

Proof. First reduce the case to self adjoint operators: If U is compact and SP,
then so is |U |. In fact, one can achieve U = |U |S with S a SP partial isometry
(A general fact about polar decomposition is that the positive part |U | is contained
in the C∗-algebra generated by U , and S is contained in the von Neumann algebra
generated by U , both are contained in the algebra of SP operators; (see [14])).
Accordingly, we have R(ξ) = |R(ξ)|W (ξ), with a partial isometry W (ξ), ξ ∈ SL⊥

. If we know that |R(ξ)| is compact, then the same follows for R(ξ), since the
space of all compact operators is an ideal.
For positive compact SP operator U one has U =

∑
n λnpn, with finite rank

operators pn and suitable λn (see also [19]). Each pn is again SP, thus by Theorem
2.1, corresponding to a field Rn(ξ) with rank less than or equal to rank(pn), for
a.e. ξ ∈ SL⊥ . Therefore the decomposition of U provides R(ξ) =

∑
n λnRn(ξ).

Moreover, as the decomposition of U converges in the operator norm, the same is
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true for the decomposition of R(ξ), for a.e. ξ ∈ SL⊥ . For these ξ, R(ξ) is the norm
limit of a sequence of finite rank operators, thus compact.

Remark 3.2. (A Useful Orthonormal Basis). Let V be a shift invariant subspace
of L2(G). Suppose V =

⊕∞
n=1 S(ϕn) with (ϕn)n∈N as in Proposition 2.3. Then

{Tkϕn; k ∈ L, n ∈ N} is a Parseval frame for V [12, Remark 3.11]. Also
obviously {T ϕn(ξ); n ∈ N} − {0} is an orthonormal basis for J(ξ) for a.e. ξ ∈
SL⊥ (see the argument at the beginning of the proof of Theorem 2.1) and for
ϕn 
= 0, n ∈ N, k ∈ L we have ‖Tkϕn‖2

2 = ‖ϕn‖2
2 = ‖T ϕn‖2

L(S
L⊥ ,l2(L⊥))

=∫
S

L⊥
‖T ϕn(ξ)‖2

l2(L⊥)
dξ = 1 (note that ‖T ϕn(ξ)‖l2(L⊥) = 1 and |SL⊥| = 1). So

[5, Theorem 4.5.1] implies that {Tkϕn; k ∈ L, n ∈ N} is an orthonormal basis for
V .

With this in mind we are ready to prove that for a.e. ξ ∈ SL⊥ , R(ξ) is a Hilbert
Schmidt operator or of finite trace whenever U has the same property:

Theorem 3.3. Suppose V ⊆ L2(G) is a shift invariant space, J is its associated
range function and U : V → V is a SP operator with its corresponding range
operator R.

(1) If U is a Hilbert Schmidt operator then so is R(ξ) for a.e. ξ ∈ S L⊥ .
(2) If U is positive and of finite trace then so is R(ξ) for a.e. ξ ∈ S L⊥ .

Proof. Suppose U is Hilbert Schmidt. Denote by ‖U‖HS the Hilbert Schmidt
norm of U . Then

∞ > ‖U‖2
HS =

∑
k∈L,n∈N

‖U(Tkϕn)‖2
2

=
∑

k∈L,n∈N

‖TkUϕn‖2
2

=
∑

k∈L,n∈N

‖Uϕn‖2
2.

Thus
∑

n∈N
‖Uϕn‖2

2 <∞. So we have∫
S

L⊥

∑
n∈N

‖R(ξ)(T ϕn(ξ))‖2dξ =
∫
S

L⊥

∑
n∈N

‖T ◦ Uϕn(ξ)‖2dξ

=
∑
n∈N

‖T ◦ Uϕn‖2

=
∑
n∈N

‖Uϕn‖2 <∞.
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that is ‖R(ξ)‖HS =
∑

n∈N
‖R(ξ)(T ϕn(ξ))‖2 < ∞, for a.e. ξ ∈ SL⊥ . This

completes the proof of (3.3).
For (3.3) Suppose U is of finite trace. Denote by tr(U), the trace of U . Then

∞ > tr(U) =
∑

k∈L,n∈N

< UTkϕn, Tkϕn >

=
∑

k∈L,n∈N

< T ◦UTkϕn, T Tkϕn >

=
∑

k∈L,n∈N

∫
S

L⊥
< R(ξ)(T ◦ Tkϕn(ξ)), T Tkϕn(ξ) > dξ

=
∑

k∈L,n∈N

∫
S

L⊥
< R(ξ)(MkT ϕn(ξ)),MkT ϕn(ξ) > dξ

=
∑

k∈L,n∈N

∫
S

L⊥
< R(ξ)(T ϕn(ξ)), T ϕn(ξ) > dξ.

So tr(R(ξ)) =
∑

n∈N
< R(ξ)(T ϕn(ξ)), T ϕn(ξ) >< ∞ a.e. That is R(ξ) is of

finite trace for a.e. ξ ∈ SL⊥ .

In the following proposition we show that a necessary and sufficient condition
for a SP operator to be an isometry is that its corresponding range operator is an
isometry.

Proposition 3.4. Suppose V ⊆ L2(G) is a shift invariant space, J is its as-
sociated range function and U : V → V is a SP operator with its corresponding
range operator R. Then U is an isometry if and only if R(ξ) is an isometry for
a.e. ξ ∈ SL⊥ .

Proof. By Theorem 2.1, it is enough to show that

(3.1) ‖Uf‖ ≥ ‖f‖ for all f ∈ V,

if and only if for a.e. ξ ∈ SL⊥ ,

(3.2) ‖R(ξ)a‖ ≥ ‖a‖, for all a ∈ J(ξ).

To prove this, first assume (3.2). Then ‖Uf‖2 = ‖T ◦ Uf‖2 =
∫
S

L⊥
‖T ◦

Uf(ξ)‖2dξ =
∫
S

L⊥
‖R(ξ)(T f(ξ))‖2dξ ≥

∫
S

L⊥
‖T f(ξ)‖2dξ = ‖f‖2.

Conversely, assume (3.1). Let {di}∞i=1 be a dense subset of l2(L⊥) (note that
since G is second countable, l2(L⊥) is separable). Then

(3.3) ‖R(ξ)P (ξ)di‖ ≥ ‖P (ξ)di‖ for a.e. ξ ∈ SL⊥ , i ∈ N,
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where P (ξ) is the projection onto J(ξ), a.e. ξ ∈ SL⊥ . By the contrary, if (3.3) fails
then there exists a measurable set D ⊆ SL⊥ with positive measure, ε > 0, j ∈ N

such that ‖R(ξ)P (ξ)dj‖ ≤ ‖P (ξ)dj‖(1 − ε), for ξ ∈ D. Let f ∈ V be given by
T f(ξ) = χD(ξ)P (ξ)dj. Then

‖Uf‖ = ‖T Uf‖ =
∫
S

L⊥
‖T ◦Uf(ξ)‖2dξ

=
∫
S

L⊥
‖R(ξ)(T f(ξ))‖2dξ

=
∫
D
‖R(ξ)(P (ξ)dj)‖2dξ

≤ (1− ε)2
∫
D
‖P (ξ)dj‖2dξ

= (1− ε)2
∫
S

L⊥
‖P (ξ)djχD(ξ)‖2dξ

= (1− ε)2
∫
S

L⊥
‖T f(ξ)‖2dξ

= (1− ε)2‖f‖2,

which is a contradiction. So (3.3) holds.

The adjoint of a shift preserving operator is again a shift preserving operator.
More precisely we have the following proposition.

Proposition 3.5. Suppose V ⊆ L2(G) is a shift invariant space and U : V → V

is a SP operator with its corresponding range operatorR. Then the adjoint operator
U∗ : V → V is shift preserving and its corresponding range operator R ∗ is given
by R∗(ξ) = R(ξ)∗, for a.e. ξ ∈ SL⊥ . In Particular, U is self adjoint if and only if
R(ξ) is self adjoint.

Proof. Obviously U∗ is SP. Indeed, < U∗Tkf, g >=< Tkf, Ug >=< f, Tk−1

Ug >=< f, UTk−1g >=< U∗f, Tk−1g >=< TkU
∗f, g >, for any f, g ∈ L2(G)

and k ∈ L. Note that the operator R∗ given by R∗(ξ) = R(ξ)∗, for a.e. ξ ∈ SL⊥

is measurable and ess supξ∈S
L⊥‖R∗(ξ)‖ <∞. By Theorem 2.1, there exists a SP

operator W so that (T ◦W )f(ξ) = R(ξ)∗(T f(ξ)), for a.e. ξ ∈ SL⊥ , for all f ∈ V .
We have U∗ = W . Indeed, for f, g ∈ L2(G)

< U∗f, g >=< f, Ug > = < T f, T ◦Ug >

=
∫
S

L⊥
< T f(ξ), T ◦ Ug(ξ) > dξ
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=
∫
S

L⊥
< T f(ξ), R(ξ)(T g(ξ)) > dξ

=
∫
S

L⊥
< R(ξ)∗(T f(ξ)), (T g(ξ)) > dξ

=
∫
S

L⊥
< T ◦Wf(ξ), T g(ξ) > dξ

= < TWf, T g >

= < Wf, g > .

As an application of Theorems 3.1, 3.3 and Propositions 3.4 and 3.5 for G = Rn,
we have the following corollary.

Corollary 3.6. Suppose V ⊆ L2(Rn) is a shift invariant space, J is its associ-
ated range function and U : V → V is a SP operator with its corresponding range
operator R.

(1) U is an isometry if and only if R(ξ) is an isometry for a.e. ξ ∈ T n.

(2) The adjoint operatorU ∗ : V → V is SP and its corresponding range operator
R∗ is given by R∗(ξ) = R(ξ)∗, for a.e. ξ ∈ Tn. In Particular, U is self
adjoint if and only if R(ξ), for a.e. ξ ∈ T

n is self adjoint.

(3) If U is compact then R(ξ) is compact for a.e. ξ ∈ Tn.

(4) If U is a Hilbert Schmidt operator then so is R(ξ) for a.e. ξ ∈ T
n.

(5) If U is positive and of finite trace then so is R(ξ) for a.e. ξ ∈ T n.

Let {Tkϕ; k ∈ L, ϕ ∈ φ} be a Bessel sequence. Consider the frame operator
S : S(φ) → S(φ), corresponding to {Tkϕ; ϕ ∈ φ, k ∈ L}, defined by

(3.4) Sf =
∑

ϕ∈φ,k∈L
< f, Tkϕ > Tkϕ.

It is easily seen that S is SP. We are interested in finding the range operator associated
with S. We show, as a consequence of Theorem 2.1, that its range operator is nothing
but the dual Gramian operator associated with J .

Corollary 3.7. Let {Tkϕ; k ∈ L, ϕ ∈ φ} be a Bessel sequence and S be
the frame operator corresponding to {T kϕ; ϕ ∈ φ, k ∈ L}, as in (3.4). The
range operator associated with S is given by R(ξ) := G̃φ(ξ), where G̃φ is the dual
Gramian operator associated with the system {T ϕ n(ξ); n ∈ N}, for a.e. ξ ∈ SL⊥ .
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Proof. Let R be the range operator associated with S. Using (2.1), we have

(3.5)

< Sf, f > = < T Sf, T f >

=
∫
S

L⊥
< T Sf(ξ), T f(ξ) > dξ

=
∫
S

L⊥
< R(ξ)T f(ξ), T f(ξ) > dξ

On the other hand by a simple calculation we have (one may see also [11,
Lemma 4.2]),

(3.6)

< Sf, f > =
∑
ϕ∈φ

∑
k∈L

| < Tkϕ, f > |2

=
∑
ϕ∈φ

∫
S

L⊥
| < T ϕ(ξ), T f(ξ) >l2(L⊥) |2dξ

=
∫
S

L⊥
< G̃φ(ξ)T f(ξ), T f(ξ) > dξ.

From (3.5) and (3.6) we obtain R = G̃φ a.e.

Example 3.8. Let G be the second countable LCA group R
n×Z

n×T
n×Zn,

for n ∈ N, where Zn is the finite abelian group {1, 2, ..., n} of residues modulo
n. Then L = Zn × Zn × {1} × Zn is a uniform lattice in G and L⊥ = Ĝ/L =
Z
n × {1} × Z

n × {1}. Let π be the left regular representation of G on L2(G) and
ψ ∈ L2(G) be admissible (see [7] ). Then the continuous wavelet transform, Vψ :
L2(G) → L2(G), defined by Vψϕ(x) =< ϕ, π(x)ψ > is obviously a SP operator,
so by Theorem 2.1 there is a range operator R such that for every f ∈ L2(G),
R(ξ)(T f(ξ)) = (T ◦ Vψ)f(ξ) = ((V̂ψf(ξη))η∈L⊥ = (f̂(ξη)ψ̂(ξη))η∈L⊥.

Example 3.9. Define U : L2(R) → L2(R) by Uf(x) = f(x) − f(x − 1).
Obviously U is a SP operator. By Theorem 2.1 there exists a range operator R so
that R(ξ)(T f(ξ)) = (T ◦U)f(ξ) = (Ûf(ξ+k))k∈Z = (1+exp(iξ))(f̂(ξ+k))k∈Z,
for every f ∈ L2(R).
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