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ON APPROXIMATION OF INVERSE PROBLEMS FOR ABSTRACT
HYPERBOLIC EQUATIONS

Dmitry Orlovsky1, Sergey Piskarev2,∗ and Renato Spigler3

Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. This paper is devoted to the numerical analysis of inverse prob-
lems for abstract hyperbolic differential equations. The presentation exploits
a general approximation scheme and is based on C0-cosine and C0-semigroup
theory within a functional analysis approach. We consider both discretizations
in space as well as in time. The discretization in time is considered under the
Krein-Fattorini conditions.

1. INTRODUCTION

Let B(E) denote the Banach algebra of all linear bounded operators on a com-
plex Banach space E . The set of all linear closed densely defined operators in E

will be denoted by C(E).
Let us examine the inverse problem in E consisting of the search for a function

u(·) ∈ C2([0; T ]; E) and an element d ∈ E from the equations

u′′(t) = Au(t) + Φ(t)d, 0 ≤ t ≤ T,(1.1a)

u(0) = u0, u′(0) = u1,(1.1b)

u(T ) = uT ,(1.1c)

Received March 24, 2010.
2000 Mathematics Subject Classification: 65J, 65N, 35J, 47D.
Key words and phrases: Abstract differential equations, Abstract hyperbolic problems, C0-
Semigroups, C0-Cosine operator functions, Banach spaces, Semidiscretization, Inverse overdetermined
problem, Well-posedness, Difference schemes, Discrete semigroups.
Research partially supported by grants of Analytic Departments Purpose Program ”Development of
scientist potential of the Higher Education School”, project 2.1.1/6827.1, 10-01-002972, 10-01-91219-
CT 2, by Italian grant of INdAM2 and by grant SFB 701 ”Spectral Structures and Topological Methods
in Mathematics,” Bielefeld University 2.
*Corresponding author.

1145



1146 Dmitry Orlovsky, Sergey Piskarev and Renato Spigler

where A ∈ C(E), Φ(·) ∈ C2([0; T ]; B(E)) and the elements u0, u1, uT ∈ E

are given. The cases of parabolic and elliptic equations were considered in [10,
14]. Here we assume that the abstract differential equation in (1.1a) is of the
hyperbolic type. This means that the operator A generates a C0-cosine operator-
function C(·, A). Recall that a C0-cosine operator-function is used to represent a
solution of the abstract Cauchy problem

(1.2)

{
u′′(t) = Au(t) + f(t), 0 ≤ t ≤ T,

u(0) = u0, u′(0) = u1.

Definition 1.1. A function u(·) is called a classical solution of problem (1.2)
if u(·) is twice continuously differentiable, u(t) ∈ D(A) for all t ∈ [0, T ], and u(·)
satisfies the relations in (1.2).

We denote by σ(B) the spectrum of the operator B, by ρ(B) the resolvent set
of B.

Proposition 1.1. [6, 18]. The operator A generates a C0-cosine operator-
function if and only if there are constants M and ω such that for each λ with
Re λ > ω the value λ2 is contained in the resolvent set ρ(A) of the operator A

and for the same value λ the following estimate holds :

(1.3)
∥∥∥∥ dn

dλn

(
λR(λ2, A)

)∥∥∥∥ � Mn!
(λ − ω)n+1

, n = 0, 1, 2, . . . .

For any strongly continuous C0-cosine operator-function C(·, A) the following
inequality holds

(1.4) ‖C(t, A)‖ � M exp(ω|t|), t ∈ IR.

In this case we will write A ∈ C(M, ω). Furthermore, we introduce the Kisynski
space [7]

E1 = {x ∈ E : C(t, A)x ∈ C1(IR; E)}.
with the norm ‖x‖E1 = ‖x‖+ sup

0<t≤1
‖C′(t, A)x‖. This is a Banach space with the

norm ‖ · ‖E1 .
If the operator A generates a C0-cosine operator-function C(·, A) and f(·) ∈

C([0, T ]; E), then for any classical solution of (1.2)

(1.5) u(t) = C(t, A)u0 + S(t, A)u1 +
∫ t

0
S(t − s, A)f(s) ds, t ∈ [0, T ],

where S(t, A) :=
t∫
0

C(s, A)ds is the corresponding C0-sine operator-function. The

formula (1.5) is the analog of the variation-of-constants formula for C0-semigroups.
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As in the case of C0-semigroups of operators, the function u(·) given by (1.5) is not
a classical solution, in general, since it may be not twice continuously differentiable.

Remark 1.1. According to (1.5), in general, the problem (1.1) is ill-posed.
This happens, for instance, if resolvent (λI −A)−1 is compact for some λ. Indeed,
in this case the integral operator

∫ T
0 S(T − s, A)Φ(s) ds is compact and thus the

equation ∫ T

0

S(T − s, A)Φ(s) ds d = u(T )− C(T, A)u0 − S(T, A)u1

in the space E leads to an ill-posed problem. However, if we consider the op-
erator

∫ T
0 S(T − s, A)Φ(s) ds as the operator from E to D(A), where D(A)

equiped with the norm ‖x‖D(A)
= ‖x‖ + ‖Ax‖, then the operator

∫ T
0 S(T −

s, A)Φ(s) ds : E → D(A) has a chance to be not compact. Therefore, in case
of u(T ), C(T, A)u0, S(T, A)u1 ∈ D(A) one can play with formula (4.3) to get a
Fredhom equation of the second kind, which is a well-posed problem.

Definition 1.2. The function u(·) ∈ C([0, T ); E) given by (1.5) is called a mild
solution of problem (1.2).

Proposition 1.2. [6]. Let the operator A be a generator of a C0-cosine operator-
function C(·, A), and let either

(i) f(·), Af(·) ∈ C([0, T ); E) and f(t) ∈ D(A) for t ∈ [0, T ]
or

(ii) f(·) ∈ C1([0, T ]; E).

Then the function u(·) given by (1.5) with u0 ∈ D(A) and u1 ∈ E1 is a
classical solution of problem (1.2) on [0, T ].

If we differentiate both sides of (1.5), we get

u′(t) = S(t, A)Au0 + C(t, A)u1 +

t∫
0

C(t − s, A)f(s)ds.

Integrating by parts we obtain an alternative form for the first derivative

(1.6) u′(t) = S(t, A)(Au0 + f(0)) + C(t, A)u1 +

t∫
0

S(t− s, A)f ′(s)ds.

We have to note here that one cannot expect maximal regularity for the problem
(1.2), see [4], so in order to get a classical solution the differentiability of f(·) is
almost necessary condition. Let us write v(t) = u′(t), v0 = u1, v1 = Au0 + f(0),
f1(t) = f ′(t). Then last formula in (1.6) can be written as formula (1.5):
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v(t) = C(t, A)v0 + S(t, A)v1 +

t∫
0

S(t− s, A)f1(s)ds.

Proposition 1.2 yields the conditions under which the function v(·) is a classical
solution (in particular is twice continuously differentiable) of the problem{

v′′(t) = Av(t) + f1(t), 0 ≤ t ≤ T,

v(0) = v0, v′(0) = v1.

These conditions are that v0 ∈ D(A), v1 ∈ E1, f1(·) ∈ C1([0, T ]; E), i. e. u0, u1 ∈
D(A), Au0 + f(0) ∈ E1, f(·) ∈ C2([0, T ]; E). It follows from these conditions
that v(·) ∈ C2([0, T ]; E), i. e. u(·) ∈ C3([0, T ]; E).

Following the same procedure it is possible to find some sufficient conditions
under which the solution of the Cauchy problem becomes as smooth as we like. Set
w(t) = v′(t). Then, one can write

(1.7) w(t) = C(t, A)w0 + S(t, A)w1 +

t∫
0

S(t− s, A)f2(s)ds,

where w0 = v1, w1 = Av0 + f1(0), f2(t) = f ′
1(t).

If w0 ∈ D(A), w1 ∈ E1 and f2(·) ∈ C1([0, T ]; E), then w(·) ∈ C2([0, T ]; E),
i. e. u(·) ∈ C4([0, T ]; E). This leads us to the next proposition:

Proposition 1.3. Assume that the operator A ∈ C(M, ω) and u 0, u1 ∈ D(A2).
Suppose also that the following conditions hold

(i) f(·) ∈ C3([0, T ]; E),

(ii) Au0 + f(0) ∈ D(A), Au1 + f ′(0) ∈ E1.
Then the function u(·) from (1.5) belongs to C 4([0, T ]; E). Conversely. As-

sume that the function u(·) defined by (1.5) belongs to C 4([0, T ]; E), i.e. u(·) ∈
C4([0, T ]; E), and f(·) ∈ C3([0, T ]; E) with f(0) = 0. Then f ′(0) ∈ E1 and so
AS(t, A)f ′(0) ∈ C([0, T ]; E).

Proof. We prove just second part of Proposition. As it can be seen from (1.7)
we have

u′′′(t) = A2S(t, A)u0 + C(t, A)(Au1 + f ′(0)) +
∫ t

0
C(t − s, A)f ′′(s)ds

= S(t, A)A2u0 + C(t, A)(Au1 + f ′(0))+ S(t, A)f ′′(0)+
∫ t

0

S(t− s, A)f ′′′(s)ds.

Now,
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(1.8)
u′′′′(t) = C(t, A)A2u0 + S(t, A)A2u1 + AS(t, A)f ′(0) + C(t, A)f ′′(0)

+
∫ t

0

C(t − s, A)f ′′′(s)ds,

hence the function AS(t, A)f ′(0) ∈ C([0, T ]; E).

Let consider the homogenous uniformly well-posed Cauchy problem

(1.9) u′′(t) = Au(t), t ∈ IR; u(0) = u0, u′(0) = u1.

Define the matrix operator A :=
(

0 I
A 0

)
: E1 × E → E1 × E acting on the

element (x, y) ∈ E1×E according to the formula A(x, y) = (y, Ax). This operator
has the domain D(A) := D(A)× E1 .

Let the uniformly well-posed problem (1.9) have the form

(1.10) u′′(t) = B2u(t), t ∈ IR; u(0) = u0, u′(0) = u1,

where B ∈ C(E). Then

Definition 1.3. We say that a solution u(·) of problem (1.10) satisfies Condition
(K) if

u′(·) ∈ C
(
[0, T ]; D(B)

)
.

Proposition 1.4. [23]. Problem (1.10) has a unique solution satisfying Condi-
tion (K) iff the following Cauchy problem:

(1.11)
(

u
v

)′
(t) =

(
0 B
B 0

)(
u
v

)
(t), t ∈ IR,

(
u
v

)
(0) =

(
u0

v0

)

is uniformly well posed on the space E × E.

The following Condition (F) is analog to Condition (K), which allows to simplify
the study of problem (1.9) by using C0-semigroups.

Definition 1.4. We say that a C0-cosine operator-valued function C(·, A) sat-
isfies Condition (F ) if the following conditions hold:

(i) there exists B ∈ C(E) such that B2 = A, and B commutes with any
operator from B(E) commuting with A;

(ii) the operator S(t, A) maps E into D(B) for any t ∈ IR;
(iii) the function BS(t, A)x is continuous in t ∈ IR for every fixed x ∈ E.
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Proposition 1.5. [6]. Under Condition (F ), for each t ∈ IR, we have BS(t, A) ∈
B(E) and D(B) ⊆ E1.

Proposition 1.6. [6]. Pairs of a Banach space E and a C 0-cosine operator-
function C(·, A) ( also uniformly bounded ) such that Condition (F ) does not
hold do exist.

We have to note that if 0 ∈ ρ(A), then conditions (K) and (F) are equivalent.

Proposition 1.7. [20]. Let E be a Hilbert space, and let the operator A be
self-adjoint and negative-definite. Then A ∈ C(M ; ω), condition (F ) is satisfied
and the corresponding space E 1 coincides with D((−A)1/2).

Theorem 1.1. [19]. Let A and B be operators satisfying condition (i) of
Definition 1.4, and let 0 ∈ ρ(B). The following conditions are equivalent:

(i) the C0-cosine operator-function C(·, A) satisfies Condition (F );

(ii) the operator B generates a C0-group exp(·B) on E;

(iii) the operator
(

0 B
B 0

)
with the domain D(A) × D(B) generates a C0-

group on E × E;

(iv) the operator A :=
(

0 I
A 0

)
with the domain D(A) × D(B) generates

a C0-group exp(·A) on D(B) × E , where D(B) is the Banach space of
elements D(B) endowed with the graph norm;

(v) the embedding D(B) ⊆ E 1 holds;
(vi) D(B) = E1 .

Proposition 1.8. [19]. Under the conditions of Theorem 1.1, for t ∈ IR, we
have

(i) exp(tB) = C(t, A) + BS(t, A), C(t, A) =
(

exp(tB) + exp(−tB)
)
/2;

(ii) exp(tA) =
(

B−1 0
0 I

)
exp

(
t

(
0 B
B 0

))(
B 0
0 I

)
.

The analog of Proposition 1.2 is given in

Theorem 1.2. [8]. Let the operator B =
√

A in problem (1.2) have a bounded
inverse B−1 ∈ B(E) and be a generator of a C0-group. Assume also that the
function f(·) have one of the following properties:

(i) f(·) ∈ C1([0, T ); E);

(ii) Bf(·) ∈ C([0, T ); E).
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Then for any u0 ∈ D(A) and u1 ∈ D(B), there exists a unique classical
solution of problem (1.2) given by formula (1.5) in the form

(1.12)
u(t) =

1
2

(
exp(tB)+exp(−tB)

)
u0+

1
2

(
exp(tB)−exp(−tB)

)
B−1u1

+
1
2

∫ t

0

(
exp((t−s)B)−exp(−(t−s)B)

)
B−1f(s)ds, t∈ [0, T ].

2. A GENERAL APPROXIMATION SCHEME

A general approximation scheme, due to [21], [22], can be described in the
following way. Let En and E be Banach spaces and {pn} be a sequence of linear
bounded operators pn : E → En, pn ∈ B(E, En), n ∈ IN = {1, 2, · · · }, with the
property:

‖pnx‖En → ‖x‖E as n → ∞ for any x ∈ E.

Definition 2.1. The sequence of elements {xn}, xn ∈ En, n ∈ IN, is said to
be P-convergent to x ∈ E iff ‖xn − pnx‖En → 0 as n → ∞ and we write this
xn

P−→x.

Definition 2.2. The sequence of elements {xn}, xn ∈ En, n ∈ IN , is said to be
P-compact if for any subset of interges IN ′ ⊆ IN there exist a subset of interges
IN ′′ ⊆ IN ′ and x ∈ E such that xn

P−→x, as n → ∞ in IN ′′.

Definition 2.3. The sequence of linear bounded operators Bn ∈ B(En), n ∈ IN,
is said to be PP-convergent to the bounded linear operator B ∈ B(E) if for every
x ∈ E and for every sequence {xn}, xn ∈ En, n ∈ IN, such that xn

P−→x one has
Bnxn

P−→Bx. We write this as Bn
PP−→B.

For general examples of notions of P−convergence see [21].

Remark 2.1. If we set En = E and pn = I for every n ∈ IN , where I is the
identity operator on E , then Definition 2.1 leads to the usual pointwise convergence
of bounded linear operators which we denote by Bn → B.

In case of operators which have a compact resolvent it is natural to consider
approximating operators which “preserve” the property of compactness. Hence,

Definition 2.4. A sequence of operators {Bn}, Bn : En → En, n ∈ IN,

converges compactly to an operator B : E → E if Bn
PP−→B and the following

compactness condition holds:

‖xn‖En = O(1) =⇒ {Bnxn} is P-compact.
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Definition 2.5. The region of stability ∆s = ∆s({An}), An ∈ C(Bn), is
defined as the set of all λ ∈ C such that λ ∈ ρ(An) for almost all n and such that
the sequence {‖(λIn − An)−1‖}n∈IN is bounded for almost all n. The region of
convergence ∆c = ∆c({An}), An ∈ C(En), is defined as the set of all λ ∈ C such
that λ ∈ ∆s({An}) and such that the sequence of operators {(λI n − An)−1}n∈IN

is PP-convergent to some operator S(λ) ∈ B(E).

Definition 2.6. The region of compact convergence of resolvents, ∆cc = ∆cc

(An, A), where An ∈ C(En) and A ∈ C(E) is defined as the set of all λ ∈ ∆c∩ρ(A)
such that (λIn − An)−1 PP−→(λI − A)−1 compactly.

In the case of unbounded operators (recall that in general infinitesimal generators
are unbounded), we consider the notion of compatibility.

Definition 2.7. The sequence of closed linear operators {An}, An ∈ C(En), n ∈
IN, is said to be compatible with a linear closed operator A ∈ C(E) iff for each
x ∈ D(A) there is a sequence {xn}, xn ∈ D(An) ⊆ En, n ∈ IN, such that xn

P−→x

and Anxn
P−→Ax. We write this as (An, A) are compatible.

Usually, in practice, the Banach spaces En are finite-dimensional, although,
in general, e.g. in the case of a closed operator A, we have dimEn → ∞ and
‖An‖B(En) → ∞ as n → ∞.

Definition 2.8. A sequence of operators {Bn}, Bn ∈ B(En), n ∈ IN , is said
to be stably convergent to an operator B ∈ B(E) iff Bn

PP−→B and ‖B−1
n ‖B(En) =

O(1), n → ∞. We will write this as: Bn
PP−→B stably.

Definition 2.9. A sequence of operators {Bn}, Bn ∈ B(En), is called regularly
convergent to the operator B ∈ B(E) iff Bn

PP−→B and the following implication
holds:

‖xn‖En = O(1) & {Bnxn} isP -compact =⇒ {xn} isP -compact.

We write this as: Bn
PP−→B regularly.

Theorem 2.1. [22]. Let Cn, Sn ∈ B(En), C, S ∈ B(E) and R(S) = E .
Assume also that Cn

PP−→C compactly and Sn
PP−→S stably. Then Sn +Cn

PP−→S +C
converges regularly.

Theorem 2.2. [22]. For Qn ∈ B(En) and Q ∈ B(E) the following conditions
are equivalent:

(i) Qn
PP−→Q regularly, Qn are Fredholm operators of index 0 and N (Q) = {0};
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(ii) Qn
PP−→Q stably and R(Q) = E;

(iii) Qn
PP−→Q stably and regularly;

(iv) if one of conditions (i)–(iii) holds, then there exist Q −1
n ∈ B(En), Q−1 ∈

B(E), and Q−1
n

PP−→Q−1 regularly and stably.

Theorem 2.3. [5]. Let the operators A and An generate C0-semigroups. The
following conditions (A) and (B) are equivalent to condition (C).
(A) Consistency. There exists λ ∈ ρ(A) ∩ ∩n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(B) Stability. There are some constants M 1 ≥ 1 and ω1 ∈ IR independent of n
such that for any t ≥ 0

‖ exp(tAn)‖ ≤ M1e
ωt for all n ∈ IN ;

(C) Convergence. For any finite T > 0 we have
max

t∈[0,T ])
‖ exp(tAn)u0

n − pn exp(tA)u0‖ → 0

as n → ∞ for any u0 ∈ E, whenever u0
n

P−→u0.

Usually it is assumed that conditions (A) and (B) for the corresponding C0-
semigroup case are satisfied without any loss of generality whatever process of
discretization in time is considered. We denote by Tn(·) a family of discrete semi-
groups Tn(t) = Tn(τn)kn , where kn = [ t

τn
], as τn → 0, n → ∞, see [13]. The

generator of discrete semigroup is defined by Ăn = 1
τn

(Tn(τn)− In) ∈ B(En) and
hence Tn(t) = (In + τnĂn)kn , where t = knτn.

Theorem 2.4. (Theorem ABC-discr, [13]). The following conditions (A) and
(B′) are equivalent to condition (C ′).

(A) Consistency. There exists λ ∈ ρ(A) ∩ ∩n ρ(Ăn) such that the resolvents
converge
(λIn − Ăn)−1 PP−→(λI − A)−1;

(B’) Stability. There are some constants M ≥ 1 and ω 1 ∈ IR such that

‖Tn(t)‖ ≤ M exp(ω1t) for t ∈ IR+ = [0,∞), n ∈ IN ;

(C’) Convergence. For any finite T > 0 one has
max

t∈[0,T ]
‖Tn(t)u0

n − pn exp(tA)u0‖ → 0

as n → ∞, whenever u0
n

P−→u0 for any u0 ∈ E , u0
n ∈ En.
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Theorem 2.5. [13]. Assume that A ∈ C(E), An ∈ C(En) and let A, An

generate C0-semigroups. Assume also that conditions (A) and (B) of Theorem 2.3
hold. Then, the implicit difference scheme

(2.1)
Un(t + τn) − Un(t)

τn
= AnUn(t + τ), Un(0) = u0

n

is stable, i.e. ‖(In − τnAn)−kn‖ ≤ M1e
ω1t, t = knτn ∈ IR+, and gives an

approximation to the exp (tA)u0
n, i.e. Un(t) ≡ (In − τnAn)−knu0

n
P−→ exp (tA)u0

n

uniformly with respect to t = knτn ∈ [0, T ] as u0
n

P−→u0, n → ∞, kn → ∞,
τn → 0.

For C0-cosine operator-functions the following ABC Theorem holds:

Theorem 2.6. [13]. Let the operators A and An be generators of C0-cosine
operator-functions. Then, the following conditions (A) and (B ′′) are equivalent to
condition (C ′′) :

(A) Compatability. There exists λ ∈ ρ(A) ∩ ∩n ρ(An) such that the resolvents
converge
(λIn − An)−1 PP−→(λI − A)−1;

(B”) Stability. There are some constants M3 ≥ 1 and ω3 ≥ 0 such that

‖C(t, An)‖ ≤ M3e
ω3t, t ≥ 0, n ∈ IN ;

(C”) Convergence. For any finite T > 0 one has

max
t∈[0,T ]

‖C(t, An)u0
n − pnC(t, A)u0‖ → 0

as n → ∞ for any u0 ∈ E, whenever u0
n

P−→u0.

3. DISCRETIZING IN SPACE AND TIME

The semidiscrete approximation of (1.2) leads to the following Cauchy problems
in the Banach spaces En:

(3.1)
u′′

n(t) = Anun(t) + fn(t), t ∈ [0, T ],

un(0) = u0
n, u′

n(0) = u1
n,

with operators An, which generate C0-cosine operator-functions, the operators An

and A are compatible, u0
n

P−→u0, u1
n

P−→u1 and fn(·) P−→f(·) in an appropriate sense.
It is natural to assume that conditions (A) and (B ′′) of Theorem 2.6 for C0-cosine
operator-functions are satisfied.
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The discretization of (3.1) in the time variable has been considered in many
papers [1, 11, 17]. One of the simplest difference scheme is

(3.2)

Uk+1
n − 2Uk

n + Uk−1
n

τ2
n

= AnUk+1
n + ϕk

n, k ∈
{
1, ...,

[
T

τn

]}
, U0

n = u0
n, U1

n = u0
n + τnu1

n,

where, for instance if fn(·) ∈ C([0, T ]; En), one can set ϕk
n = fn(kτn), k ∈

{1, ..., K},K =
[

T
τn

]
, and in case that fn(·) ∈ L1([0, T ]; En), one can set

ϕk
n =

1
τn

tk∫
tk−1

fn(s)ds, tk = kτn, k ∈ {1, ..., K}.

The solution to problem (3.2) is given by the formula [16]:

(3.3) Uk
n = C

(n)
k U0

n + S
(n)
k U1

n + τ2
nRn

k∑
j=2

S
(n)
k+1−jϕ

j−1
n ,

where k � 2. Indeed, in order to solve the homogeneous equations associated to
(3.2), i.e.

(3.4) Uk+1
n − 2(In − τ2

nAn)−1Uk
n + (In − τ2

nAn)−1Uk−1
n = 0,

we consider the discrete operator-functions defined by the recurrent relations

(3.5)
C

(n)
k+1 = Rn(2C

(n)
k − C

(n)
k−1), C

(n)
0 = In, C

(n)
1 = 0,

S
(n)
k+1 = Rn(2S

(n)
k − S

(n)
k−1), S

(n)
0 = 0, S

(n)
1 = In,

where Rn = (In − τ2
nAn)−1. Then, the solution of (3.4) is given by

Uk
n = C

(n)
k U0

n + S
(n)
k U1

n = (C(n)
k + S

(n)
k )U0

n + τnS
(n)
k

U1
n − U0

n

τn
.

To operate with representations of discrete families of operators we give the follow-
ing

Definition 3.1. [12]. The operators An of C0-cosine operator-valued function
C(·, An) satisfy the discrete Krein-Fattorini Conditions if the following conditions
hold:

(i) there exist Bn ∈ C(En) such that B2
n = An, and Bn commutes with any

operator from B(En) commuting with An;
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(ii) the operators Bn generate C0-groups such that ‖ exp(±tBn)‖≤M0e
ω0|t|, t∈

R ;

(iii) the operators −An are strongly positive, i.e.

‖(λIn − An)−1‖ ≤ M

1 + |λ|, Reλ ≥ 0,

and ‖B−1
n ‖ ≤ C as n ∈ IN.

We can obtain explicit representations for the functions C
(n)
k , S

(n)
k in the fol-

lowing way. Let us introduce the operators

R1,n = (In − τnBn)−1, R2,n = (In + τnBn)−1,

where the operators Bn are those in the Krein-Fattorini conditions. These operators
satisfy the relations

(3.6) R1,nR2,n = Rn, R1,n − R2,n = 2τnBnRn, R1,n + R2,n = 2Rn,

which follow from the well-known Hilbert identity for resolvents. Since under
the Krein-Fattorini conditions the operator Bn generates a C0-group one has that
‖Rk

j,n‖ ≤ const(t), kτn = t for j = 1, 2.

Simple calculations show that the general solution of (3.4) is given as in [16]
by the formula

(3.7) Uk
n = Rk

1,nx + Rk
2,ny,

where x and y are arbitrary elements of En. Note that the representation (3.7) was
established also in [2], [3] without Krein-Fattorini conditions, but in our case we
need that ‖Rkn

1,n‖ ≤ Meωt, ‖Rkn
2,n‖ ≤ Meωt with knτn = t. Now if we solve the

system {
x + y = U0

n

R1,nx + R2,ny = U1
n

and insert x and y in (3.7), we obtain by some calculations

C
(n)
k = −Rn

k−2∑
s=0

Rs
1,nRk−2−s

2,n , S
(n)
k =

k−1∑
s=0

Rs
1,nRk−1−s

2,n .

From (3.6) we derive

(3.8) RnBnS
(n)
k =

1
2τn

(R1,n − R2,n)
k−1∑
s=0

Rs
1,nRk−1−s

2,n =
1

2τn

(
Rk

1,n − Rk
2,n

)
.



On Approximation of Inverse Problems for Abstract Hyperbolic Equations 1157

We note also that

(3.9)
Rk

1,n − Rk−1
1,n = τnBnRk

1,n,

Rk
2,n − Rk−1

2,n = −τnBnRk
2,n,

and

(3.10) Rk
1,n + Rk

2,n = 2Rn(S(n)
k − S

(n)
k−1).

The equality (3.10) can be proved by induction on k. For k = 1 and k = 2 it can
be checked by direct calculations. For k > 2,

Rk+1
1,n + Rk+1

2,n =
(
Rk

1,n + Rk
2,n

)
(R1,n + R2,n) − R1,nR2,n

(
Rk−1

1,n + Rk−1
2,n

)
= 2Rn(S(n)

k −S
(n)
k−1) · 2Rn−Rn ·

(
S

(n)
k−1−S

(n)
k−2

)
=2R2

n

(
2S

(n)
k −3S

(n)
k−1+S

(n)
k−2

)
= 2Rn

(
Rn

(
2S

(n)
k − S

(n)
k−1

)
− Rn

(
2S

(n)
k−1 − 2S

(n)
k−2

))
= 2Rn

(
S

(n)
k+1 − S

(n)
k

)
.

From (3.6) and equality I − R1,n = −τnBnR1,n we have

C
(n)
k + S

(n)
k = −R1,nR2,n

k−2∑
s=0

Rs
1,nRk−2−s

2,n +
k−1∑
s=0

Rs
1,nRk−1−s

2,n

= −
k−2∑
s=0

Rs+1
1,n Rk−1−s

2,n +
k−1∑
s=0

Rs
1,nRk−1−s

2,n

=
k−2∑
s=0

(
Rs

1,n − Rs+1
1,n

)
Rk−1−s

2,n + Rk−1
1,n

= −τnBn

k−2∑
s=0

Rs+1
1,n Rk−1−s

2,n + Rk−1
1,n

= −τnBnR1,nR2,n

k−2∑
s=0

Rs
1,nRk−2−s

2,n + Rk−1
1,n

= −τnBnRnS
(n)
k−1 + Rk−1

1,n .

Using (3.8) we get

(3.11) τnBnRnS
(n)
k−1 =

1
2

(
Rk−1

1,n − Rk−1
2,n

)
,

and consequently

(3.12) C
(n)
k + S

(n)
k =

1
2

(
Rk−1

1,n + Rk−1
2,n

)
.
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Let consider the inhomogeneous equation (3.2), i.e.

(3.13) Uk+1
n −2(In −τ2

nAn)−1Uk
n +(In −τ2

nAn)−1Uk−1
n = τ2

n(In−τ2
nAn)−1ϕk

n.

Using the recurrent relation (3.5) we derive formula (3.3), see [16].

4. EXISTENCE OF SOLUTIONS TO THE INVERSE PROBLEM

Consider the inverse problem (1.1) in the following form: for given elements
uT , u0, u1∈D(A) find a solution u(·)∈ C2([0, T ]; E) and an element d∈E such
that

(4.1)




u′′(t) = Au(t) + Φ(t)d, 0 ≤ t ≤ T,

u(0) = u0, u′(0) = u1,

u(T ) = uT .

Here A ∈ C(M ; ω). The problem (4.1) is an inverse problem with overdetermina-
tion. Details on such kind of description of problems can be found in [15].

Basing on Remark 1.1, we can treat the solution of (4.1) as follows

A

∫ T

0
S(T − s, A)Φ(s) ds d = Au(T ) − C(T, A)Au0 − AS(T, A)u1

and then use the identities

(4.2) A

∫ T

0
S(T−s, A)Φ(s) ds =

∫ T

0
C(T−s, A)Φ′(s) ds−Φ(T )+C(T, A)Φ(0)

and

(4.3)
A

∫ T

0
S(T − s, A)Φ(s) ds

=
∫ T

0
S(T − s, A)Φ′′(s) ds− S(T, A)Φ′(0)− Φ(T ) + C(T, A)Φ(0).

Proposition 4.1. Let Φ(·) ∈ C1([0, T ]; B(E)), the operator Φ(T ) be invertible,
i.e. Φ(T )−1 ∈ B(E). Then the inverse problem (4.1) is equivalent to that of solving

(4.4) Id − B1d = g1,

where

B1 :=Φ(T )−1


 T∫

0

(
C(T−s, A)Φ′(s)−λS(T−s, A)Φ(s)

)
ds + C(T, A)Φ(0)




and

g1 := −Φ(T )−1(A − λI)(uT − C(T, A)u0 − S(T, A)u1) for λ ∈ ρ(A).
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Proposition 4.2. Let Φ(·) ∈ C2([0, T ]; B(E)), and assume that the operator

(4.5) D = Φ(T )− C(T, A)Φ(0)

is invertible, i.e. D−1 ∈ B(E). Then the inverse problem (4.1) is equivalent to
that of solving

(4.6) Id − B2d = g2,

where

B2 := D−1


 T∫

0

S(T − s, A)
(

Φ′′(s) − λΦ(s)
)

ds + S(T, A)Φ′(0)




and
g2 := −D−1(A − λI)(uT − C(T, A)u0 − S(T, A)u1) for λ ∈ ρ(A).

Proposition 4.3. [15]. Let the conditions of Proposition 4.1 be satisfied and
T∫

0

(‖Φ′(s)‖ + |λ|(T − s)‖Φ(s)‖)eω(T−s)ds + ‖Φ(0)‖eωT <
1

M‖Φ(T )−1‖ .

Then a solution (u(·), d) of the inverse problem (4.1) exists and is unique for any
input data u0, uT ∈ D(A), u1 ∈ E1.

Proposition 4.4. [15]. Assume that the conditions of Proposition 4.2 and the
inequality

T∫
0

(T − s)‖Φ′′(s)− λΦ(s)‖eω(T−s)ds + T‖Φ′(0)‖eωT <
1

M‖D−1‖
are satisfied. Then a solution (u(·), d) of the inverse problem (4.1) exists and is
unique for any input data u 0, uT ∈ D(A), u1 ∈ E1.

Proposition 4.5. [15]. Assume that the operator A generates a strongly con-
tinuous C0-cosine operator-function C(·, A) on the Banach space E , Φ(t) ≡ I and
0 ∈ ρ(A). Then the inverse problem (4.1) is uniquely solvable for any input data
u0, uT ∈ D(A), u1 ∈ E1 if and only if 1 ∈ ρ(C(T, A)).

We now assume that E is the Hilbert space and the operator A is selfadjoint and
negative. For any real-valued function Φ(·), the value Φ(t) will be identified with
the operator of multiplication by the number Φ(t) in the space E . The characteristic
function ϕ(·) on the negative semi-axis is defined by

(4.7) ϕ(λ) =
1√−λ

T∫
0

Φ(s) sin(
√−λ(T − s))ds.
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Note that we might extend the function ϕ(·) from the negative semi-axis to construct
an entire function of the complex variable λ. If, in particular, Φ(t) �≡ 0, then the
zeroes of the function ϕ(·) are isolated.

In what follows, we denote by Eλ the spectral decomposition of unity of the
operator A. With this notation, we can write

A =

+∞∫
0

λdE(λ).

Theorem 4.1. [15]. If the operator A is self-adjoint and semibounded from
above on the Hilbert space E , Φ(·) ∈ C 1[0, T ] and Φ(·) �≡ 0, then the following
statements hold:

(i) the inverse problem (4.1) with the fixed input data u 0, uT ∈ D(A), u1 ∈ E1

is solvable if and only if

(4.8)
+∞∫
0

|ϕ(λ)|−2d(Eλg, g) < ∞,

being g := uT − C(T, A)u0 − S(T, A)u1;

(ii) if the inverse problem (4.1) is solvable, then its solution is unique if and
only if the point spectrum of the operator A contains no zeros of the entire
function ϕ(·) defined by (4.7).

Of special interest is the particular case Φ(t) ≡ tI . In this case we have

ϕ(λ) =




sin(
√−λT ) −√−λ T

λ
√−λT

, λ �= 0,

T 3/6 , λ = 0.

This function has no zeros on the negative semi-axis and ϕ(λ) ∼ −T
λ as λ → +∞.

Hence the convergence of the integral
+∞∫
0

|ϕ(λ)|−2d(Eλg, g)

is equivalent to that of
+∞∫

−∞
|λ|2d(Eλg, g).

This integral converges for every element g ∈ D(A). We thus proved the following

Proposition 4.6. Assume that the operator A is self-adjoint and negative on
the Hilbert space E , Φ(t) ≡ tI, t ≥ 0. Then the solution (u(·), d) of the inverse
problem (4.1) exists and is unique for any input data u 0, uT ∈ D(A), u1 ∈ E1.
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5. APPROXIMATING THE SOLUTION OF THE INVERSE PROBLEMS

Let us consider the semidiscretization of the inverse problem for the second-
order equation (4.1): for given elements uT

n , u0
n, u1

n ∈ D(An) find a solution un(·) ∈
C2([0, T ]; En) and an element dn ∈ En such that

(5.1)




u′′
n(t) = Anun(t) + Φn(t)dn, 0 ≤ t ≤ T,

un(0) = u0
n, u′

n(0) = u1
n,

un(T ) = uT
n ,

where operators An ∈ C(M ; ω), the operators A, An are consistent, uT
n

P−→uT ,

u0
n

P−→u0, u1
n

P−→u1 and Φn(·) PP−→Φ(·) in the sense.
The solution dn of the problem (5.1) must satisfy the equation

(5.2) Indn − Bn,2dn = gn,2,

where

Bn,2 : = D−1
n


 T∫

0

S(T−s, An)
(
Φ′′

n(s)−λΦn(s)
)

ds+S(T, An)Φ′
n(0)


 , λ∈∆cc,

gn,2 : = −D−1
n (An − λIn)

(
uT

n − C(T, An)u0
n − S(T, An)u1

n

)
,

Dn = Φn(T )− C(T, An)Φn(0).

Theorem 5.1. [24]. Let A, An ∈ C(M ; ω). Then S(t, An) PP−→S(t, A) com-
pactly for any t > 0 iff ∆cc �= ∅.

Theorem 5.2. Assume that Φ(·) ∈ C3([0, T ]; B(E)), Φn(·) ∈ C3([0, T ];
B(En)), D−1

n
PP−→D−1, the resolvents (λIn − An)−1, (λI − A)−1 are compact,

(A), (B′′) and (1.4) are satisfied, Φ(j)
n (t) PP−→Φ(j)(t) uniformly in t ∈ [0, T ] for

j ∈ 1, 3, and ∆cc �= ∅. Assume also that the problem (4.1) has a unique solution
for any uT ∈ D(A). Then there are solutions to problems (5.1) for almost all n and
they converge to solution of problem (4.1), i.e. un(t) P−→u(t) uniformly in t ∈ [0, T ]
and dn

P−→d as n ∈ IN , whenever Anu0
n

P−→Au0, Anu1
n

P−→Au1, AnuT
n

P−→AuT .

Proof. We, first, show that the solutions of equations (5.2) converge to the solu-
tion of equation (4.6). Since D−1

n
PP−→D−1, it is clear that gn,2

P−→g2. If Bn,2
PP−→B2

compactly, then by Theorems 2.1 and 2.2 it follows that dn
P−→d and Theorem 5.2

is proved.
Using Theorem 5.1 one can show that the operators Bn,2

PP−→B2 compactly. To
see this recall that operators Bn,2, B2 can be split into two parts. The first term



1162 Dmitry Orlovsky, Sergey Piskarev and Renato Spigler

D−1
n S(T, An)Φ′

n(0) PP−→D−1S(T, A)Φ′(0)

converges compactly and the second term

D−1
n (λIn − An)−1(λIn − An)∫ T

0
S(T − s, An)Φ′′

n(s) ds
PP−→D−1(λI − A)−1(λI − A)∫ T

0
S(T − s, A)Φ′′(s) ds,

also converges compactly, since ∆cc �= ∅ and

(λIn − An)
∫ T

0
S(T − s, An)Φ′′

n(s) ds
PP−→(λI − A)

∫ T

0
S(T − s, A)Φ′′(s) ds.

The last statement can be derived from the representation like (4.2). Therefore
from Theorems 2.1 and 2.2 it follows that dn

P−→d. The convergence of solutions
un(t) P−→u(t) uniformly in t ∈ [0, T ] then follows from representation formulae like
(1.5).

Consider the discretization of (5.1) in time

(5.3)
Uk+1

n − 2Uk
n + Uk−1

n

τ2
n

= AnUk+1
n + Φn(kτn)d̃n,

k ∈
{
1, ...,

[
T
τn

]}
, U0

n = u0
n, U1

n = u0
n + τnu1

n.

According to (3.3) one can write its solution as

(5.4) Uk
n = C

(n)
k U0

n + S
(n)
k U1

n + τ2
nRn

k∑
j=2

S
(n)
k+1−jΦ

j−1
n d̃n,

where we wrote Φj
n = Φn(jτn). Using (3.8) and (3.9) and summing by parts we

have

(5.5)

RnAnτ2
n

k∑
j=2

S
(n)
k+1−jΦ

j−1
n = RnB

2
nτ2

n

k∑
j=2

S
(n)
k+1−jΦ

j−1
n

=
τnBn

2

k∑
j=2

(
Rk+1−j

1,n − Rk+1−j
2,n

)
Φj−1

n =
τnBn

2

k∑
j=2

Rk+1−j
1,n Φj−1

n

−τnBn

2

k∑
j=2

Rk+1−j
2,n Φj−1

n

=
1
2

k∑
j=2

(
Rk+1−j

1,n − Rk−j
1,n

)
Φj−1

n +
1
2

k∑
j=2

(
Rk+1−j

2,n − Rk−j
2,n

)
Φj−1

n
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=
1
2


 k∑

j=2

Rk+1−j
1,n

(
Φj−1

n − Φj−2
n

)− Φk−1
n + Rk−1

1,n Φ0
n




+
1
2


 k∑

j=2

Rk+1−j
2,n

(
Φj−1

n − Φj−2
n

)− Φk−1
n + Rk−1

2,n Φ0
n




=
1
2

k∑
j=2

(
Rk+1−j

1,n +Rk+1−j
2,n

)(
Φj−1

n −Φj−2
n

)−Φk−1
n +

1
2

(
Rk−1

1,n +Rk−1
2,n

)
Φ0

n.

Using (3.10) and summing by parts we obtain again

(5.6)

1
2

k∑
j=2

(
Rk+1−j

1,n + Rk+1−j
2,n

)(
Φj−1

n − Φj−2
n

)

= Rn

k∑
j=2

(
S

(n)
k+1−j − S

(n)
k−j

) (
Φj−1

n − Φj−2
n

)

= Rn


 k∑

j=2

S
(n)
k+1−j

(
Φj−1

n − 2Φj−2
n + Φj−3

n

)
+ S

(n)
k−1

(
Φ0

n − Φ−1
n

) .

From (5.5) and (5.6) we get the next identity valid for any solution of (5.3)

(5.7)

AnUk
n = AnC

(n)
k U0

n + AnS
(n)
k U1

n

+Rn

k∑
j=2

S
(n)
k+1−j

(
Φj−1

n − 2Φj−2
n + Φj−3

n

)
d̃n

+
(

RnτnS
(n)
k−1

Φ0
n − Φ−1

n

τn
− Φk−1

n +
1
2

(
Rk−1

1,n + Rk−1
2,n

)
Φ0

n

)
d̃n, k ≥ 2.

As in (4.5) define the operator

Dn,kn = Φkn−1
n −

(
C

(n)
kn

+ S
(n)
kn

)
Φ0

n.

Then we have the following

Theorem 5.3. Assume that Φ(·) ∈ C4([0, T ];B(E)), Φn(·) ∈ C4([0, T ]; B(En)),
B−1

n
PP−→B−1 compactly, (Dn,kn)−1 PP−→D−1, knτn = T, the resolvents (λIn −

An)−1, (λI−A)−1 are compact, (B′′) and (1.4) are satisfied and Φ (l)
n (t) PP−→Φ(l)(t)

uniformly in t ∈ [0, T ] for l = 1, 4. Assume also that the problem (4.1) has a unique
solution for any uT ∈ D(A) and the Krein-Fattorini conditions are satisfied. Then
there are solutions of the problem (5.3) for almost all n and they converge to the
solution of problem (4.1), i.e.
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Un(t) P−→u(t) uniformly in t ∈ [0, T ],

and d̃n
P−→d as n ∈ IN , whenever AnuT

n
P−→AuT , Anu0

n
P−→Au0, Bnu1

n
P−→Bu1.

Proof. First we apply the operator (An −λIn) to (5.4) for λ ∈ ∆cc. Using (5.7)
we get equation

(5.8)

(
Φk−1

n −
(
C

(n)
k +S

(n)
k

)
Φ0

n

)
d̃n−

Rn

k∑
j=2

S
(n)
k+1−j

(
Φj−1

n −2Φj−2
n +Φj−3

n

)

−λRnτ2
n

k∑
j=2

S
(n)
k+1−jΦ

j−1
n + RnS

(n)
k−1

(
Φ0

n − Φ−1
n

) d̃n

= (An − λIn)
[
C

(n)
k U0

n + S
(n)
k U1

n − Uk
n

]
.

Since
(Dn,kn)−1 =

(
Φkn−1

n −
(
C

(n)
kn

+ S
(n)
kn

)
Φ0

n

)−1 PP−→D−1,

we can rewrite (5.8) in the form

(5.9) Ind̃n − Bn,3d̃n = gn,3,

where

Bn,3 : = (Dn,kn)−1


Rn

kn∑
j=2

S
(n)
kn+1−j

(
Φj−1

n − 2Φj−2
n + Φj−3

n

)

−λRnτ2
n

kn∑
j=2

S
(n)
kn+1−jΦ

j−1
n + RnS

(n)
kn−1

(
Φ0

n − Φ−1
n

)
and

gn,3 := (Dn,kn)−1(An − λIn)
(
C

(n)
kn

U0
n + S

(n)
kn

U1
n − uT

n

)
, knτn = T.

To show that Bn,3
PP−→B2 compactly we split the operators Bn,3, B2 into two

parts. Compact convergence

1
2
(Rk−1

1,n − Rk−1
2,n )B−1

n
PP−→1

2
(exp(tB) − exp(−tB))B−1,

because of (3.11) and Theorem 2.5, implies that

(Dn,kn)−1RnτnS
(n)
kn−1

Φ0
n − Φ−1

n

τn

PP−→D−1S(T, A)Φ′(0)
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compactly. The other parts of the operators Bn,3 also converge compactly to the
corresponding parts of B2. One can see by the same reasons as in (3.11) and (1.12)
that

Bn

(
Bn,3 − (Dn,kn)−1RnτnS

(n)
kn−1

Φ0
n − Φ−1

n

τn

)
PP−→B

(
B2 − D−1S(T, A)Φ′(0)

)

and this implies that Bn,3
PP−→B2 compactly.

The convergence of the finite differences to derivatives follows, e.g., from [9], p.
409. Therefore, from Theorems 2.1 and 2.2 it follows that d̃n

P−→d. The convergence
of solutions Un(t) P−→u(t) uniformly in t ∈ [0, T ] follows from the representation
formulas (5.4) and (1.5).

Remark 5.1. In case of Hilbert space and negative self-adjoint operators A in
Theorem 5.3, one can omit the condition that Bn,3

PP−→B2 compactly and just claim
the condition ∆cc �= ∅. Indeed, then one can get the compact convergence of square
roots of operators as in [10] and then get the compact convergence Bn,3

PP−→B2 as
before.

Remark 5.2. In case of a Banach space in Theorem 5.3 one can also omit
the condition of compact convergence B−1

n
PP−→B−1 and just use the condition

∆cc �= ∅. In this case one should assume that problem (4.1) possesses some extra
smoothness condition. More precisely, assume that u(·) ∈ C4([0, T ]; B(E)),Φ(·) ∈
C3([0, T ]; B(E)), Φ(0) = 0 and u0, u1 ∈ D(A2). Then from Proposition 1.3
follows that AS(·, A)Φ′(0) ∈ C([0, T ]; E). Moreover, if we assume that for the
problems (5.1) and (4.1) U

(4)
n (t) P−→u(4)(t) uniformly in t ∈ [0, T ] for any d̃n

P−→d,

then from the discrete analog of (1.8) follows that

(5.10) AnRnτnS
(n)
kn−1

Φ0
n − Φ−1

n

τn
d̃n

P−→AS(T, A)Φ′(0)d.

This means that without loss of generality one can assume that

AnRnτnS
(n)
kn−1

Φ0
n − Φ−1

n

τn

PP−→AS(T, A)Φ′(0),

and then the compact convergence Bn,3
PP−→B2 can be established directly from the

convergence AnBn,3
PP−→AB2.
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