TAIWANESE JOURNAL OF MATHEMATICS

Vol. 14, No. 3B, pp. 1145-1167, June 2010

This paper is available online at http://www.tjm.nsysu.edu.tw/

ON APPROXIMATION OF INVERSE PROBLEMS FOR ABSTRACT HYPERBOLIC EQUATIONS

Dmitry Orlovsky¹, Sergey Piskarev^{2,*} and Renato Spigler³

Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. This paper is devoted to the numerical analysis of inverse problems for abstract hyperbolic differential equations. The presentation exploits a general approximation scheme and is based on C_0 -cosine and C_0 -semigroup theory within a functional analysis approach. We consider both discretizations in space as well as in time. The discretization in time is considered under the Krein-Fattorini conditions.

1. Introduction

Let B(E) denote the Banach algebra of all linear bounded operators on a complex Banach space E. The set of all linear closed densely defined operators in E will be denoted by $\mathcal{C}(E)$.

Let us examine the inverse problem in E consisting of the search for a function $u(\cdot) \in C^2([0;T];E)$ and an element $d \in E$ from the equations

(1.1a)
$$u''(t) = Au(t) + \Phi(t)d, \quad 0 < t < T,$$

(1.1b)
$$u(0) = u^0, u'(0) = u^1,$$

$$(1.1c) u(T) = u^T,$$

Received March 24, 2010.

2000 Mathematics Subject Classification: 65J, 65N, 35J, 47D.

Key words and phrases: Abstract differential equations, Abstract hyperbolic problems, C_0 -Semigroups, C_0 -Cosine operator functions, Banach spaces, Semidiscretization, Inverse overdetermined problem, Well-posedness, Difference schemes, Discrete semigroups.

Research partially supported by grants of Analytic Departments Purpose Program "Development of scientist potential of the Higher Education School", project 2.1.1/6827.¹, 10-01-00297², 10-01-91219-CT ², by Italian grant of INdAM² and by grant SFB 701 "Spectral Structures and Topological Methods in Mathematics," Bielefeld University ².

^{*}Corresponding author.

where $A \in \mathcal{C}(E)$, $\Phi(\cdot) \in C^2([0;T];B(E))$ and the elements u^0 , u^1 , $u^T \in E$ are given. The cases of parabolic and elliptic equations were considered in [10, 14]. Here we assume that the abstract differential equation in (1.1a) is of the hyperbolic type. This means that the operator A generates a C_0 -cosine operator-function $C(\cdot, A)$. Recall that a C_0 -cosine operator-function is used to represent a solution of the abstract Cauchy problem

(1.2)
$$\begin{cases} u''(t) = Au(t) + f(t), & 0 \le t \le T, \\ u(0) = u^0, \ u'(0) = u^1. \end{cases}$$

Definition 1.1. A function $u(\cdot)$ is called a *classical solution* of problem (1.2) if $u(\cdot)$ is twice continuously differentiable, $u(t) \in D(A)$ for all $t \in [0,T]$, and $u(\cdot)$ satisfies the relations in (1.2).

We denote by $\sigma(B)$ the spectrum of the operator B, by $\rho(B)$ the resolvent set of B.

Proposition 1.1. [6, 18]. The operator A generates a C_0 -cosine operator-function if and only if there are constants M and ω such that for each λ with $Re \lambda > \omega$ the value λ^2 is contained in the resolvent set $\rho(A)$ of the operator A and for the same value λ the following estimate holds:

(1.3)
$$\left\| \frac{d^n}{d\lambda^n} \left(\lambda R(\lambda^2, A) \right) \right\| \leqslant \frac{Mn!}{(\lambda - \omega)^{n+1}}, \quad n = 0, 1, 2, \dots$$

For any strongly continuous C_0 -cosine operator-function $C(\cdot,A)$ the following inequality holds

$$(1.4) ||C(t,A)|| \leq M \exp(\omega|t|), \quad t \in \mathbb{R}.$$

In this case we will write $A \in C(M, \omega)$. Furthermore, we introduce the Kisynski space [7]

$$E^1 = \{x \in E : C(t, A)x \in C^1(IR; E)\}.$$

with the norm $\|x\|_{E^1}=\|x\|+\sup_{0< t\leq 1}\|C'(t,A)x\|$. This is a Banach space with the norm $\|\cdot\|_{E^1}$.

If the operator A generates a C_0 -cosine operator-function $C(\cdot, A)$ and $f(\cdot) \in C([0,T]; E)$, then for any classical solution of (1.2)

(1.5)
$$u(t) = C(t, A)u^0 + S(t, A)u^1 + \int_0^t S(t - s, A)f(s) ds, \quad t \in [0, T],$$

where $S(t,A) := \int_0^t C(s,A)ds$ is the corresponding C_0 -sine operator-function. The formula (1.5) is the analog of the variation-of-constants formula for C_0 -semigroups.

As in the case of C_0 -semigroups of operators, the function $u(\cdot)$ given by (1.5) is not a classical solution, in general, since it may be not twice continuously differentiable.

Remark 1.1. According to (1.5), in general, the problem (1.1) is ill-posed. This happens, for instance, if resolvent $(\lambda I - A)^{-1}$ is compact for some λ . Indeed, in this case the integral operator $\int_0^T S(T-s,A)\Phi(s)\,ds$ is compact and thus the equation

$$\int_0^T S(T-s,A)\Phi(s) \, ds \, d = u(T) - C(T,A)u^0 - S(T,A)u^1$$

in the space E leads to an ill-posed problem. However, if we consider the operator $\int_0^T S(T-s,A)\Phi(s)\,ds$ as the operator from E to $\mathfrak{D}(A)$, where $\mathfrak{D}(A)$ equiped with the norm $\|x\|_{\mathfrak{D}(A)} = \|x\| + \|Ax\|$, then the operator $\int_0^T S(T-s,A)\Phi(s)\,ds: E\to \mathfrak{D}(A)$ has a chance to be not compact. Therefore, in case of $u(T),C(T,A)u^0,S(T,A)u^1\in D(A)$ one can play with formula (4.3) to get a Fredhom equation of the second kind, which is a well-posed problem.

Definition 1.2. The function $u(\cdot) \in C([0,T);E)$ given by (1.5) is called a *mild solution* of problem (1.2).

Proposition 1.2. [6]. Let the operator A be a generator of a C_0 -cosine operator-function $C(\cdot, A)$, and let either

(i)
$$f(\cdot), Af(\cdot) \in C([0,T); E)$$
 and $f(t) \in D(A)$ for $t \in [0,T]$

(ii)
$$f(\cdot) \in C^1([0,T]; E)$$
.

Then the function $u(\cdot)$ given by (1.5) with $u^0 \in D(A)$ and $u^1 \in E^1$ is a classical solution of problem (1.2) on [0,T].

If we differentiate both sides of (1.5), we get

$$u'(t) = S(t, A)Au^{0} + C(t, A)u^{1} + \int_{0}^{t} C(t - s, A)f(s)ds.$$

Integrating by parts we obtain an alternative form for the first derivative

(1.6)
$$u'(t) = S(t, A)(Au^0 + f(0)) + C(t, A)u^1 + \int_0^t S(t - s, A)f'(s)ds.$$

We have to note here that one cannot expect maximal regularity for the problem (1.2), see [4], so in order to get a classical solution the differentiability of $f(\cdot)$ is almost necessary condition. Let us write v(t) = u'(t), $v^0 = u^1$, $v^1 = Au_0 + f(0)$, $f_1(t) = f'(t)$. Then last formula in (1.6) can be written as formula (1.5):

$$v(t) = C(t, A)v^{0} + S(t, A)v^{1} + \int_{0}^{t} S(t - s, A)f_{1}(s)ds.$$

Proposition 1.2 yields the conditions under which the function $v(\cdot)$ is a classical solution (in particular is twice continuously differentiable) of the problem

$$\begin{cases} v''(t) = Av(t) + f_1(t), & 0 \le t \le T, \\ v(0) = v^0, v'(0) = v^1. \end{cases}$$

These conditions are that $v^0 \in D(A)$, $v^1 \in E^1$, $f_1(\cdot) \in C^1([0,T];E)$, i. e. $u^0, u^1 \in C^1([0,T];E)$ $D(A), Au^0 + f(0) \in E^1, f(\cdot) \in C^2([0,T];E)$. It follows from these conditions that $v(\cdot) \in C^2([0,T]; E)$, i. e. $u(\cdot) \in C^3([0,T]; E)$.

Following the same procedure it is possible to find some sufficient conditions under which the solution of the Cauchy problem becomes as smooth as we like. Set w(t) = v'(t). Then, one can write

(1.7)
$$w(t) = C(t, A)w^{0} + S(t, A)w^{1} + \int_{0}^{t} S(t - s, A)f_{2}(s)ds,$$

where $w^0 = v^1$, $w^1 = Av_0 + f_1(0)$, $f_2(t) = f_1'(t)$. If $w^0 \in D(A)$, $w^1 \in E^1$ and $f_2(\cdot) \in C^1([0,T];E)$, then $w(\cdot) \in C^2([0,T];E)$, i. e. $u(\cdot) \in C^4([0,T]; E)$. This leads us to the next proposition:

Proposition 1.3. Assume that the operator $A \in C(M, \omega)$ and $u^0, u^1 \in D(A^2)$. Suppose also that the following conditions hold

(i)
$$f(\cdot) \in C^3([0,T]; E)$$
,

(ii)
$$Au^0 + f(0) \in D(A)$$
, $Au^1 + f'(0) \in E^1$.

Then the function $u(\cdot)$ from (1.5) belongs to $C^4([0,T];E)$. Conversely. Assume that the function $u(\cdot)$ defined by (1.5) belongs to $C^4([0,T];E)$, i.e. $u(\cdot) \in$ $C^4([0,T];E)$, and $f(\cdot) \in C^3([0,T];E)$ with f(0) = 0. Then $f'(0) \in E^1$ and so $AS(t, A)f'(0) \in C([0, T]; E).$

Proof. We prove just second part of Proposition. As it can be seen from (1.7) we have

$$u'''(t) = A^2 S(t, A) u^0 + C(t, A) (A u^1 + f'(0)) + \int_0^t C(t - s, A) f''(s) ds$$

= $S(t, A) A^2 u^0 + C(t, A) (A u^1 + f'(0)) + S(t, A) f''(0) + \int_0^t S(t - s, A) f'''(s) ds$.

Now,

(1.8)
$$u''''(t) = C(t, A)A^2u^0 + S(t, A)A^2u^1 + AS(t, A)f'(0) + C(t, A)f''(0) + \int_0^t C(t - s, A)f'''(s)ds,$$

hence the function $AS(t, A)f'(0) \in C([0, T]; E)$.

Let consider the homogenous uniformly well-posed Cauchy problem

(1.9)
$$u''(t) = Au(t), \quad t \in \mathbb{R}; \qquad u(0) = u^0, \quad u'(0) = u^1.$$

Define the matrix operator $\mathcal{A}:=\begin{pmatrix}0&I\\A&0\end{pmatrix}:E^1\times E\to E^1\times E$ acting on the element $(x,y)\in E^1\times E$ according to the formula $\mathcal{A}(x,y)=(y,Ax)$. This operator has the domain $D(\mathcal{A}):=D(A)\times E^1$.

Let the uniformly well-posed problem (1.9) have the form

(1.10)
$$u''(t) = \mathfrak{B}^2 u(t), \quad t \in \mathbb{R}; \quad u(0) = u^0, \quad u'(0) = u^1,$$

where $\mathfrak{B} \in \mathcal{C}(E)$. Then

Definition 1.3. We say that a solution $u(\cdot)$ of problem (1.10) satisfies Condition (K) if

$$u'(\cdot) \in C([0,T];\mathfrak{D}(\mathfrak{B})).$$

Proposition 1.4. [23]. Problem (1.10) has a unique solution satisfying Condition (K) iff the following Cauchy problem:

$$(1.11) \quad \begin{pmatrix} u \\ v \end{pmatrix}'(t) = \begin{pmatrix} 0 & \mathfrak{B} \\ \mathfrak{B} & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}(t), \quad t \in \mathbb{R}, \quad \begin{pmatrix} u \\ v \end{pmatrix}(0) = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$$

is uniformly well posed on the space $E \times E$.

The following Condition (F) is analog to Condition (K), which allows to simplify the study of problem (1.9) by using C_0 -semigroups.

Definition 1.4. We say that a C_0 -cosine operator-valued function $C(\cdot, A)$ satisfies *Condition* (F) if the following conditions hold:

- (i) there exists $\mathfrak{B} \in \mathcal{C}(E)$ such that $\mathfrak{B}^2 = A$, and \mathfrak{B} commutes with any operator from B(E) commuting with A;
- (ii) the operator S(t, A) maps E into $D(\mathfrak{B})$ for any $t \in \mathbb{R}$;
- (iii) the function $\mathfrak{B}S(t,A)x$ is continuous in $t \in \mathbb{R}$ for every fixed $x \in E$.

Proposition 1.5. [6]. Under Condition (F), for each $t \in \mathbb{R}$, we have $\mathfrak{B}S(t,A) \in$ B(E) and $\mathfrak{D}(\mathfrak{B}) \subseteq E^1$.

Proposition 1.6. [6]. Pairs of a Banach space E and a C_0 -cosine operatorfunction $C(\cdot, A)$ (also uniformly bounded) such that Condition (F) does not hold do exist.

We have to note that if $0 \in \rho(A)$, then conditions (K) and (F) are equivalent.

Proposition 1.7. [20]. Let E be a Hilbert space, and let the operator A be self-adjoint and negative-definite. Then $A \in \mathcal{C}(M;\omega)$, condition (F) is satisfied and the corresponding space E^1 coincides with $\mathfrak{D}((-A)^{1/2})$.

Theorem 1.1. [19]. Let A and \mathfrak{B} be operators satisfying condition (i) of Definition 1.4, and let $0 \in \rho(\mathfrak{B})$. The following conditions are equivalent:

- (i) the C_0 -cosine operator-function $C(\cdot, A)$ satisfies Condition (F);
- (ii) the operator \mathfrak{B} generates a C_0 -group $\exp(\mathfrak{B})$ on E;
- (iii) the operator $\begin{pmatrix} 0 & \mathfrak{B} \\ \mathfrak{B} & 0 \end{pmatrix}$ with the domain $D(A) \times D(\mathfrak{B})$ generates a C_0 -group on $E \times E$;
- (iv) the operator $\mathcal{A}:=\left(egin{array}{cc} 0 & I \ A & 0 \end{array}\right)$ with the domain $D(A) imes D(\mathfrak{B})$ generates a C_0 -group $\exp(A)$ on $\mathfrak{D}(\mathfrak{B}) \times E$, where $\mathfrak{D}(\mathfrak{B})$ is the Banach space of elements $D(\mathfrak{B})$ endowed with the graph norm;
- (v) the embedding $D(\mathfrak{B}) \subseteq E^1$ holds;
- $(vi) \mathfrak{D}(\mathfrak{B}) = E^1$.

Proposition 1.8. [19]. Under the conditions of Theorem 1.1, for $t \in \mathbb{R}$, we have

(i)
$$\exp(t\mathfrak{B}) = C(t,A) + \mathfrak{B}S(t,A), C(t,A) = \left(\exp(t\mathfrak{B}) + \exp(-t\mathfrak{B})\right)/2;$$

$$(ii) \; \exp(t\mathcal{A}) = \left(\begin{array}{cc} \mathfrak{B}^{-1} & 0 \\ 0 & I \end{array} \right) \exp\left(t \left(\begin{array}{cc} 0 & \mathfrak{B} \\ \mathfrak{B} & 0 \end{array} \right) \right) \left(\begin{array}{cc} \mathfrak{B} & 0 \\ 0 & I \end{array} \right).$$

The analog of Proposition 1.2 is given in

Theorem 1.2. [8]. Let the operator $\mathfrak{B} = \sqrt{A}$ in problem (1.2) have a bounded inverse $\mathfrak{B}^{-1} \in B(E)$ and be a generator of a C_0 -group. Assume also that the function $f(\cdot)$ have one of the following properties:

- (i) $f(\cdot) \in C^1([0,T);E)$;
- (ii) $\mathfrak{B} f(\cdot) \in C([0,T); E)$.

Then for any $u^0 \in D(A)$ and $u^1 \in D(\mathfrak{B})$, there exists a unique classical solution of problem (1.2) given by formula (1.5) in the form

(1.12)
$$u(t) = \frac{1}{2} \left(\exp(t\mathfrak{B}) + \exp(-t\mathfrak{B}) \right) u^0 + \frac{1}{2} \left(\exp(t\mathfrak{B}) - \exp(-t\mathfrak{B}) \right) \mathfrak{B}^{-1} u^1 + \frac{1}{2} \int_0^t \left(\exp((t-s)\mathfrak{B}) - \exp(-(t-s)\mathfrak{B}) \right) \mathfrak{B}^{-1} f(s) ds, \ t \in [0, T].$$

2. A GENERAL APPROXIMATION SCHEME

A general approximation scheme, due to [21], [22], can be described in the following way. Let E_n and E be Banach spaces and $\{p_n\}$ be a sequence of linear bounded operators $p_n: E \to E_n, p_n \in B(E, E_n), n \in I\!\!N = \{1, 2, \cdots\}$, with the property:

$$||p_n x||_{E_n} \to ||x||_E$$
 as $n \to \infty$ for any $x \in E$.

Definition 2.1. The sequence of elements $\{x_n\}, x_n \in E_n, n \in I\!\!N$, is said to be \mathcal{P} -convergent to $x \in E$ iff $\|x_n - p_n x\|_{E_n} \to 0$ as $n \to \infty$ and we write this $x_n \xrightarrow{\mathcal{P}} x$.

Definition 2.2. The sequence of elements $\{x_n\}$, $x_n \in E_n$, $n \in I\!N$, is said to be \mathcal{P} -compact if for any subset of interges $I\!N' \subseteq I\!N$ there exist a subset of interges $I\!N'' \subseteq I\!N'$ and $x \in E$ such that $x_n \xrightarrow{\mathcal{P}} x$, as $n \to \infty$ in $I\!N''$.

Definition 2.3. The sequence of linear bounded operators $B_n \in B(E_n), n \in I\!\!N$, is said to be \mathcal{PP} -convergent to the bounded linear operator $B \in B(E)$ if for every $x \in E$ and for every sequence $\{x_n\}, x_n \in E_n, n \in I\!\!N$, such that $x_n \xrightarrow{\mathcal{P}} x$ one has $B_n x_n \xrightarrow{\mathcal{P}} Bx$. We write this as $B_n \xrightarrow{\mathcal{PP}} B$.

For general examples of notions of \mathcal{P} -convergence see [21].

Remark 2.1. If we set $E_n = E$ and $p_n = I$ for every $n \in IN$, where I is the identity operator on E, then Definition 2.1 leads to the usual pointwise convergence of bounded linear operators which we denote by $B_n \to B$.

In case of operators which have a compact resolvent it is natural to consider approximating operators which "preserve" the property of compactness. Hence,

Definition 2.4. A sequence of operators $\{B_n\}$, $B_n: E_n \to E_n$, $n \in I\!\!N$, converges compactly to an operator $B: E \to E$ if $B_n \xrightarrow{\mathcal{PP}} B$ and the following compactness condition holds:

$$||x_n||_{E_n} = O(1) \Longrightarrow \{B_n x_n\}$$
 is \mathcal{P} -compact.

Definition 2.5. The region of stability $\Delta_s = \Delta_s(\{A_n\})$, $A_n \in \mathcal{C}(B_n)$, is defined as the set of all $\lambda \in \mathbb{C}$ such that $\lambda \in \rho(A_n)$ for almost all n and such that the sequence $\{\|(\lambda I_n - A_n)^{-1}\|\}_{n \in \mathbb{N}}$ is bounded for almost all n. The region of convergence $\Delta_c = \Delta_c(\{A_n\})$, $A_n \in \mathcal{C}(E_n)$, is defined as the set of all $\lambda \in \mathbb{C}$ such that $\lambda \in \Delta_s(\{A_n\})$ and such that the sequence of operators $\{(\lambda I_n - A_n)^{-1}\}_{n \in \mathbb{N}}$ is \mathcal{PP} -convergent to some operator $S(\lambda) \in B(E)$.

Definition 2.6. The region of compact convergence of resolvents, $\Delta_{cc} = \Delta_{cc}$ (A_n, A) , where $A_n \in \mathcal{C}(E_n)$ and $A \in \mathcal{C}(E)$ is defined as the set of all $\lambda \in \Delta_c \cap \rho(A)$ such that $(\lambda I_n - A_n)^{-1} \stackrel{\mathcal{PP}}{\longrightarrow} (\lambda I - A)^{-1}$ compactly.

In the case of unbounded operators (recall that in general infinitesimal generators are unbounded), we consider the notion of *compatibility*.

Definition 2.7. The sequence of closed linear operators $\{A_n\}$, $A_n \in \mathcal{C}(E_n)$, $n \in I\!\!N$, is said to be compatible with a linear closed operator $A \in \mathcal{C}(E)$ iff for each $x \in D(A)$ there is a sequence $\{x_n\}$, $x_n \in D(A_n) \subseteq E_n$, $n \in I\!\!N$, such that $x_n \xrightarrow{\mathcal{P}} x$ and $A_n x_n \xrightarrow{\mathcal{P}} Ax$. We write this as (A_n, A) are compatible.

Usually, in practice, the Banach spaces E_n are finite-dimensional, although, in general, e.g. in the case of a closed operator A, we have $\dim E_n \to \infty$ and $\|A_n\|_{B(E_n)} \to \infty$ as $n \to \infty$.

Definition 2.8. A sequence of operators $\{B_n\}$, $B_n \in B(E_n)$, $n \in I\!\!N$, is said to be stably convergent to an operator $B \in B(E)$ iff $B_n \xrightarrow{\mathcal{PP}} B$ and $\|B_n^{-1}\|_{B(E_n)} = O(1)$, $n \to \infty$. We will write this as: $B_n \xrightarrow{\mathcal{PP}} B$ stably.

Definition 2.9. A sequence of operators $\{B_n\}$, $B_n \in B(E_n)$, is called regularly convergent to the operator $B \in B(E)$ iff $B_n \xrightarrow{\mathcal{PP}} B$ and the following implication holds:

$$||x_n||_{E_n} = O(1) \& \{B_n x_n\} \text{ is } P\text{-compact} \Longrightarrow \{x_n\} \text{ is } P\text{-compact}.$$

We write this as: $B_n \xrightarrow{\mathcal{PP}} B$ regularly.

Theorem 2.1. [22]. Let $C_n, S_n \in B(E_n)$, $C, S \in B(E)$ and $\mathcal{R}(S) = E$. Assume also that $C_n \xrightarrow{\mathcal{PP}} C$ compactly and $S_n \xrightarrow{\mathcal{PP}} S$ stably. Then $S_n + C_n \xrightarrow{\mathcal{PP}} S + C$ converges regularly.

Theorem 2.2. [22]. For $Q_n \in B(E_n)$ and $Q \in B(E)$ the following conditions are equivalent:

(i) $Q_n \xrightarrow{\mathcal{PP}} Q$ regularly, Q_n are Fredholm operators of index 0 and $\mathcal{N}(Q) = \{0\}$;

- (ii) $Q_n \xrightarrow{\mathcal{PP}} Q$ stably and $\mathcal{R}(Q) = E$;
- (iii) $Q_n \xrightarrow{\mathcal{PP}} Q$ stably and regularly;
- (iv) if one of conditions (i)–(iii) holds, then there exist $Q_n^{-1} \in B(E_n)$, $Q^{-1} \in B(E)$, and $Q_n^{-1} \xrightarrow{\mathcal{PP}} Q^{-1}$ regularly and stably.

Theorem 2.3. [5]. Let the operators A and A_n generate C_0 -semigroups. The following conditions (A) and (B) are equivalent to condition (C).

(A) Consistency. There exists $\lambda \in \rho(A) \cap \cap_n \rho(A_n)$ such that the resolvents converge

$$(\lambda I_n - A_n)^{-1} \xrightarrow{\mathcal{PP}} (\lambda I - A)^{-1};$$

(B) Stability. There are some constants $M_1 \ge 1$ and $\omega_1 \in \mathbb{R}$ independent of n such that for any $t \ge 0$

$$\|\exp(tA_n)\| \le M_1 e^{\omega t} \text{ for all } n \in IN;$$

(C) Convergence. For any finite T > 0 we have

$$\max_{t \in [0,T]} \| \exp(tA_n) u_n^0 - p_n \exp(tA) u^0 \| \to 0$$

as
$$n \to \infty$$
 for any $u^0 \in E$, whenever $u_n^0 \xrightarrow{\mathcal{P}} u^0$.

Usually it is assumed that conditions (A) and (B) for the corresponding C_0 -semigroup case are satisfied without any loss of generality whatever process of discretization in time is considered. We denote by $T_n(\cdot)$ a family of discrete semigroups $T_n(t) = T_n(\tau_n)^{k_n}$, where $k_n = [\frac{t}{\tau_n}]$, as $\tau_n \to 0$, $n \to \infty$, see [13]. The generator of discrete semigroup is defined by $\check{A}_n = \frac{1}{\tau_n}(T_n(\tau_n) - I_n) \in B(E_n)$ and hence $T_n(t) = (I_n + \tau_n \check{A}_n)^{k_n}$, where $t = k_n \tau_n$.

Theorem 2.4. (Theorem ABC-discr, [13]). The following conditions (A) and (B') are equivalent to condition (C').

- (A) Consistency. There exists $\lambda \in \rho(A) \cap \cap_n \rho(\check{A}_n)$ such that the resolvents converge $(\lambda I_n \check{A}_n)^{-1} \stackrel{\mathcal{PP}}{\longrightarrow} (\lambda I A)^{-1}$;
- (B') Stability. There are some constants $M \geq 1$ and $\omega_1 \in \mathbb{R}$ such that

$$||T_n(t)|| \leq M \exp(\omega_1 t)$$
 for $t \in \overline{\mathbb{R}}_+ = [0, \infty), n \in \mathbb{N}$;

(C') Convergence. For any finite T > 0 one has

$$\max_{t \in [0,T]} ||T_n(t)u_n^0 - p_n \exp(tA)u^0|| \to 0$$

as
$$n \to \infty$$
, whenever $u_n^0 \xrightarrow{\mathcal{P}} u^0$ for any $u^0 \in E$, $u_n^0 \in E_n$.

Theorem 2.5. [13]. Assume that $A \in C(E)$, $A_n \in C(E_n)$ and let A, A_n generate C_0 -semigroups. Assume also that conditions (A) and (B) of Theorem 2.3 hold. Then, the implicit difference scheme

(2.1)
$$\frac{\overline{U}_n(t+\tau_n) - \overline{U}_n(t)}{\tau_n} = A_n \overline{U}_n(t+\tau), \, \overline{U}_n(0) = u_n^0$$

is stable, i.e. $\|(I_n-\tau_nA_n)^{-k_n}\| \leq M_1e^{\omega_1t}$, $t=k_n\tau_n\in \overline{\mathbb{R}}_+$, and gives an approximation to the $\exp{(tA)}u_n^0$, i.e. $\overline{U}_n(t)\equiv (I_n-\tau_nA_n)^{-k_n}u_n^0 \stackrel{\mathcal{P}}{\longrightarrow} \exp{(tA)}u_n^0$ uniformly with respect to $t=k_n\tau_n\in [0,T]$ as $u_n^0 \stackrel{\mathcal{P}}{\longrightarrow} u^0$, $n\to\infty$, $k_n\to\infty$, $\tau_n\to 0$.

For C_0 -cosine operator-functions the following ABC Theorem holds:

Theorem 2.6. [13]. Let the operators A and A_n be generators of C_0 -cosine operator-functions. Then, the following conditions (A) and (B'') are equivalent to condition (C''):

(A) Compatability. There exists $\lambda \in \rho(A) \cap \cap_n \rho(A_n)$ such that the resolvents converge

$$(\lambda I_n - A_n)^{-1} \xrightarrow{\mathcal{PP}} (\lambda I - A)^{-1};$$

(B") Stability. There are some constants $M_3 \ge 1$ and $\omega_3 \ge 0$ such that

$$||C(t, A_n)|| \le M_3 e^{\omega_3 t}, \quad t \ge 0, \quad n \in \mathbb{N};$$

(C") Convergence. For any finite T > 0 one has

$$\max_{t \in [0,T]} \|C(t,A_n)u_n^0 - p_n C(t,A)u^0\| \to 0$$

as $n \to \infty$ for any $u^0 \in E$, whenever $u_n^0 \xrightarrow{\mathcal{P}} u^0$.

3. DISCRETIZING IN SPACE AND TIME

The semidiscrete approximation of (1.2) leads to the following Cauchy problems in the Banach spaces E_n :

(3.1)
$$u_n''(t) = A_n u_n(t) + f_n(t), t \in [0, T],$$

$$u_n(0) = u_n^0, u_n'(0) = u_n^1,$$

with operators A_n , which generate C_0 -cosine operator-functions, the operators A_n and A are compatible, $u_n^0 \overset{\mathcal{P}}{\longrightarrow} u^0$, $u_n^1 \overset{\mathcal{P}}{\longrightarrow} u^1$ and $f_n(\cdot) \overset{\mathcal{P}}{\longrightarrow} f(\cdot)$ in an appropriate sense. It is natural to assume that conditions (A) and (B") of Theorem 2.6 for C_0 -cosine operator-functions are satisfied.

The discretization of (3.1) in the time variable has been considered in many papers [1, 11, 17]. One of the simplest difference scheme is

(3.2)
$$\frac{U_n^{k+1} - 2U_n^k + U_n^{k-1}}{\tau_n^2} = A_n U_n^{k+1} + \varphi_n^k, \ k \in \left\{1, ..., \left\lceil \frac{T}{\tau_n} \right\rceil \right\}, \ U_n^0 = u_n^0, \ U_n^1 = u_n^0 + \tau_n u_n^1,$$

where, for instance if $f_n(\cdot) \in C([0,T];E_n)$, one can set $\varphi_n^k = f_n(k\tau_n), k \in \{1,...,K\}, K = \left[\frac{T}{\tau_n}\right]$, and in case that $f_n(\cdot) \in L^1([0,T];E_n)$, one can set

$$\varphi_n^k = \frac{1}{\tau_n} \int_{t_{k-1}}^{t_k} f_n(s) ds, \, t_k = k\tau_n, \, k \in \{1, ..., K\}.$$

The solution to problem (3.2) is given by the formula [16]:

(3.3)
$$U_n^k = C_k^{(n)} U_n^0 + S_k^{(n)} U_n^1 + \tau_n^2 R_n \sum_{j=2}^k S_{k+1-j}^{(n)} \varphi_n^{j-1},$$

where $k \ge 2$. Indeed, in order to solve the homogeneous equations associated to (3.2), i.e.

(3.4)
$$U_n^{k+1} - 2(I_n - \tau_n^2 A_n)^{-1} U_n^k + (I_n - \tau_n^2 A_n)^{-1} U_n^{k-1} = 0,$$

we consider the discrete operator-functions defined by the recurrent relations

(3.5)
$$C_{k+1}^{(n)} = R_n (2C_k^{(n)} - C_{k-1}^{(n)}), \quad C_0^{(n)} = I_n, \quad C_1^{(n)} = 0,$$

$$S_{k+1}^{(n)} = R_n (2S_k^{(n)} - S_{k-1}^{(n)}), \quad S_0^{(n)} = 0, \quad S_1^{(n)} = I_n,$$

where $R_n = (I_n - \tau_n^2 A_n)^{-1}$. Then, the solution of (3.4) is given by

$$U_n^k = C_k^{(n)} U_n^0 + S_k^{(n)} U_n^1 = (C_k^{(n)} + S_k^{(n)}) U_n^0 + \tau_n S_k^{(n)} \frac{U_n^1 - U_n^0}{\tau_n}.$$

To operate with representations of discrete families of operators we give the following

Definition 3.1. [12]. The operators A_n of C_0 -cosine operator-valued function $C(\cdot, A_n)$ satisfy the discrete Krein-Fattorini Conditions if the following conditions hold:

(i) there exist $\mathfrak{B}_n \in \mathcal{C}(E_n)$ such that $\mathfrak{B}_n^2 = A_n$, and \mathfrak{B}_n commutes with any operator from $B(E_n)$ commuting with A_n ;

- (ii) the operators \mathfrak{B}_n generate C_0 -groups such that $\|\exp(\pm t\mathfrak{B}_n)\| \le M_0 e^{\omega_0|t|}, t \in \mathbb{R}$:
- (iii) the operators $-A_n$ are strongly positive, i.e.

$$\|(\lambda I_n - A_n)^{-1}\| \le \frac{M}{1+|\lambda|}, \quad Re\lambda \ge 0,$$

and $\|\mathfrak{B}_n^{-1}\| \leq C$ as $n \in \mathbb{N}$.

We can obtain explicit representations for the functions $C_k^{(n)}, S_k^{(n)}$ in the following way. Let us introduce the operators

$$R_{1,n} = (I_n - \tau_n \mathfrak{B}_n)^{-1}, \quad R_{2,n} = (I_n + \tau_n \mathfrak{B}_n)^{-1}.$$

where the operators \mathfrak{B}_n are those in the Krein-Fattorini conditions. These operators satisfy the relations

(3.6)
$$R_{1,n}R_{2,n} = R_n$$
, $R_{1,n} - R_{2,n} = 2\tau_n \mathfrak{B}_n R_n$, $R_{1,n} + R_{2,n} = 2R_n$,

which follow from the well-known Hilbert identity for resolvents. Since under the Krein-Fattorini conditions the operator \mathfrak{B}_n generates a C_0 -group one has that $||R_{j,n}^k|| \leq const(t), k\tau_n = t$ for j = 1, 2.

Simple calculations show that the general solution of (3.4) is given as in [16] by the formula

$$(3.7) U_n^k = R_{1,n}^k x + R_{2,n}^k y,$$

where x and y are arbitrary elements of E_n . Note that the representation (3.7) was established also in [2], [3] without Krein-Fattorini conditions, but in our case we need that $||R_{1,n}^{k_n}|| \leq Me^{\omega t}$, $||R_{2,n}^{k_n}|| \leq Me^{\omega t}$ with $k_n\tau_n = t$. Now if we solve the system

$$\begin{cases} x + y = U_n^0 \\ R_{1,n}x + R_{2,n}y = U_n^1 \end{cases}$$

and insert x and y in (3.7), we obtain by some calculations

$$C_k^{(n)} = -R_n \sum_{s=0}^{k-2} R_{1,n}^s R_{2,n}^{k-2-s}, \quad S_k^{(n)} = \sum_{s=0}^{k-1} R_{1,n}^s R_{2,n}^{k-1-s}.$$

From (3.6) we derive

(3.8)
$$R_n \mathfrak{B}_n S_k^{(n)} = \frac{1}{2\tau_n} \left(R_{1,n} - R_{2,n} \right) \sum_{s=0}^{k-1} R_{1,n}^s R_{2,n}^{k-1-s} = \frac{1}{2\tau_n} \left(R_{1,n}^k - R_{2,n}^k \right).$$

We note also that

(3.9)
$$R_{1,n}^{k} - R_{1,n}^{k-1} = \tau_n \mathfrak{B}_n R_{1,n}^{k},$$
$$R_{2,n}^{k} - R_{2,n}^{k-1} = -\tau_n \mathfrak{B}_n R_{2,n}^{k},$$

and

(3.10)
$$R_{1,n}^k + R_{2,n}^k = 2R_n(S_k^{(n)} - S_{k-1}^{(n)}).$$

The equality (3.10) can be proved by induction on k. For k = 1 and k = 2 it can be checked by direct calculations. For k > 2,

$$\begin{split} R_{1,n}^{k+1} + R_{2,n}^{k+1} &= \left(R_{1,n}^k + R_{2,n}^k \right) (R_{1,n} + R_{2,n}) - R_{1,n} R_{2,n} \left(R_{1,n}^{k-1} + R_{2,n}^{k-1} \right) \\ &= 2 R_n (S_k^{(n)} - S_{k-1}^{(n)}) \cdot 2 R_n - R_n \cdot \left(S_{k-1}^{(n)} - S_{k-2}^{(n)} \right) = 2 R_n^2 \left(2 S_k^{(n)} - 3 S_{k-1}^{(n)} + S_{k-2}^{(n)} \right) \\ &= 2 R_n \left(R_n \left(2 S_k^{(n)} - S_{k-1}^{(n)} \right) - R_n \left(2 S_{k-1}^{(n)} - 2 S_{k-2}^{(n)} \right) \right) = 2 R_n \left(S_{k+1}^{(n)} - S_k^{(n)} \right). \end{split}$$

From (3.6) and equality $I - R_{1,n} = -\tau_n \mathfrak{B}_n R_{1,n}$ we have

$$\begin{split} C_k^{(n)} + S_k^{(n)} &= -R_{1,n} R_{2,n} \sum_{s=0}^{k-2} R_{1,n}^s R_{2,n}^{k-2-s} + \sum_{s=0}^{k-1} R_{1,n}^s R_{2,n}^{k-1-s} \\ &= -\sum_{s=0}^{k-2} R_{1,n}^{s+1} R_{2,n}^{k-1-s} + \sum_{s=0}^{k-1} R_{1,n}^s R_{2,n}^{k-1-s} \\ &= \sum_{s=0}^{k-2} \left(R_{1,n}^s - R_{1,n}^{s+1} \right) R_{2,n}^{k-1-s} + R_{1,n}^{k-1} \\ &= -\tau_n \mathfrak{B}_n \sum_{s=0}^{k-2} R_{1,n}^{s+1} R_{2,n}^{k-1-s} + R_{1,n}^{k-1} \\ &= -\tau_n \mathfrak{B}_n R_{1,n} R_{2,n} \sum_{s=0}^{k-2} R_{1,n}^s R_{2,n}^{k-2-s} + R_{1,n}^{k-1} \\ &= -\tau_n \mathfrak{B}_n R_n S_{k-1}^{(n)} + R_{1,n}^{k-1}. \end{split}$$

Using (3.8) we get

(3.11)
$$\tau_n \mathfrak{B}_n R_n S_{k-1}^{(n)} = \frac{1}{2} \left(R_{1,n}^{k-1} - R_{2,n}^{k-1} \right),$$

and consequently

(3.12)
$$C_k^{(n)} + S_k^{(n)} = \frac{1}{2} \left(R_{1,n}^{k-1} + R_{2,n}^{k-1} \right).$$

Let consider the inhomogeneous equation (3.2), i.e.

$$(3.13) \ U_n^{k+1} - 2(I_n - \tau_n^2 A_n)^{-1} U_n^k + (I_n - \tau_n^2 A_n)^{-1} U_n^{k-1} = \tau_n^2 (I_n - \tau_n^2 A_n)^{-1} \varphi_n^k.$$

Using the recurrent relation (3.5) we derive formula (3.3), see [16].

4. Existence of Solutions to the Inverse Problem

Consider the inverse problem (1.1) in the following form: for given elements $u^T, u^0, u^1 \in D(A)$ find a solution $u(\cdot) \in C^2([0,T];E)$ and an element $d \in E$ such that

(4.1)
$$\begin{cases} u''(t) = Au(t) + \Phi(t)d, & 0 \le t \le T, \\ u(0) = u^0, u'(0) = u^1, \\ u(T) = u^T. \end{cases}$$

Here $A \in C(M; \omega)$. The problem (4.1) is an inverse problem with overdetermination. Details on such kind of description of problems can be found in [15].

Basing on Remark 1.1, we can treat the solution of (4.1) as follows

$$A \int_0^T S(T - s, A)\Phi(s) \, ds \, d = Au(T) - C(T, A)Au^0 - AS(T, A)u^1$$

and then use the identities

(4.2)
$$A \int_0^T S(T-s,A)\Phi(s) ds = \int_0^T C(T-s,A)\Phi'(s) ds - \Phi(T) + C(T,A)\Phi(0)$$

and

(4.3)
$$A \int_0^T S(T-s,A)\Phi(s) ds = \int_0^T S(T-s,A)\Phi''(s) ds - S(T,A)\Phi'(0) - \Phi(T) + C(T,A)\Phi(0).$$

Proposition 4.1. Let $\Phi(\cdot) \in C^1([0,T];B(E))$, the operator $\Phi(T)$ be invertible, i.e. $\Phi(T)^{-1} \in B(E)$. Then the inverse problem (4.1) is equivalent to that of solving

$$(4.4) Id - B_1 d = g_1,$$

where

$$B_1 := \Phi(T)^{-1} \left(\int_0^T \left(C(T-s, A) \Phi'(s) - \lambda S(T-s, A) \Phi(s) \right) ds + C(T, A) \Phi(0) \right)$$

and

$$g_1 := -\Phi(T)^{-1}(A - \lambda I)(u^T - C(T, A)u^0 - S(T, A)u^1)$$
 for $\lambda \in \rho(A)$.

Proposition 4.2. Let $\Phi(\cdot) \in C^2([0,T];B(E))$, and assume that the operator

(4.5)
$$D = \Phi(T) - C(T, A)\Phi(0)$$

is invertible, i.e. $D^{-1} \in B(E)$. Then the inverse problem (4.1) is equivalent to that of solving

$$(4.6) Id - B_2 d = g_2,$$

where

$$B_2 := D^{-1} \left(\int_0^T S(T-s, A) \left(\Phi''(s) - \lambda \Phi(s) \right) ds + S(T, A) \Phi'(0) \right)$$

and

$$g_2 := -D^{-1}(A - \lambda I)(u^T - C(T, A)u^0 - S(T, A)u^1)$$
 for $\lambda \in \rho(A)$.

Proposition 4.3. [15]. Let the conditions of Proposition 4.1 be satisfied and

$$\int_{0}^{T} (\|\Phi'(s)\| + |\lambda|(T-s)\|\Phi(s)\|)e^{\omega(T-s)}ds + \|\Phi(0)\|e^{\omega T} < \frac{1}{M\|\Phi(T)^{-1}\|}.$$

Then a solution $(u(\cdot), d)$ of the inverse problem (4.1) exists and is unique for any input data u^0 , $u^T \in D(A)$, $u^1 \in E^1$.

Proposition 4.4. [15]. Assume that the conditions of Proposition 4.2 and the inequality

$$\int_{0}^{T} (T-s) \|\Phi''(s) - \lambda \Phi(s)\| e^{\omega(T-s)} ds + T \|\Phi'(0)\| e^{\omega T} < \frac{1}{M \|D^{-1}\|}$$

are satisfied. Then a solution $(u(\cdot), d)$ of the inverse problem (4.1) exists and is unique for any input data u^0 , $u^T \in D(A)$, $u^1 \in E^1$.

Proposition 4.5. [15]. Assume that the operator A generates a strongly continuous C_0 -cosine operator-function $C(\cdot, A)$ on the Banach space E, $\Phi(t) \equiv I$ and $0 \in \rho(A)$. Then the inverse problem (4.1) is uniquely solvable for any input data u^0 , $u^T \in D(A)$, $u^1 \in E^1$ if and only if $1 \in \rho(C(T, A))$.

We now assume that E is the Hilbert space and the operator A is selfadjoint and negative. For any real-valued function $\Phi(\cdot)$, the value $\Phi(t)$ will be identified with the operator of multiplication by the number $\Phi(t)$ in the space E. The characteristic function $\varphi(\cdot)$ on the negative semi-axis is defined by

(4.7)
$$\varphi(\lambda) = \frac{1}{\sqrt{-\lambda}} \int_{0}^{T} \Phi(s) \sin(\sqrt{-\lambda}(T-s)) ds.$$

Note that we might extend the function $\varphi(\cdot)$ from the negative semi-axis to construct an entire function of the complex variable λ . If, in particular, $\Phi(t) \not\equiv 0$, then the zeroes of the function $\varphi(\cdot)$ are isolated.

In what follows, we denote by E_{λ} the spectral decomposition of unity of the operator A. With this notation, we can write

$$A = \int_{0}^{+\infty} \lambda dE(\lambda).$$

Theorem 4.1. [15]. If the operator A is self-adjoint and semibounded from above on the Hilbert space E, $\Phi(\cdot) \in C^1[0,T]$ and $\Phi(\cdot) \not\equiv 0$, then the following statements hold:

(i) the inverse problem (4.1) with the fixed input data u^0 , $u^T \in D(A)$, $u^1 \in E^1$ is solvable if and only if

$$\int\limits_0^{+\infty}|\varphi(\lambda)|^{-2}d(E_{\lambda}g,g)<\infty,$$
 being $g:=u^T-C(T,A)u^0-S(T,A)u^1;$

(ii) if the inverse problem (4.1) is solvable, then its solution is unique if and only if the point spectrum of the operator A contains no zeros of the entire function $\varphi(\cdot)$ defined by (4.7).

Of special interest is the particular case $\Phi(t) \equiv tI$. In this case we have

$$\varphi(\lambda) = \begin{cases} \frac{\sin(\sqrt{-\lambda}T) - \sqrt{-\lambda}T}{\lambda\sqrt{-\lambda}T} &, \lambda \neq 0, \\ T^3/6 &, \lambda = 0. \end{cases}$$

This function has no zeros on the negative semi-axis and $\varphi(\lambda) \sim -\frac{T}{\lambda}$ as $\lambda \to +\infty$. Hence the convergence of the integral

$$\int_{0}^{+\infty} |\varphi(\lambda)|^{-2} d(E_{\lambda}g, g)$$

is equivalent to that of

$$\int_{-\infty}^{+\infty} |\lambda|^2 d(E_{\lambda}g, g).$$

This integral converges for every element $g \in D(A)$. We thus proved the following

Proposition 4.6. Assume that the operator A is self-adjoint and negative on the Hilbert space E, $\Phi(t) \equiv tI$, $t \geq 0$. Then the solution $(u(\cdot), d)$ of the inverse problem (4.1) exists and is unique for any input data u^0 , $u^T \in D(A)$, $u^1 \in E^1$.

5. Approximating the Solution of the Inverse Problems

Let us consider the semidiscretization of the inverse problem for the second-order equation (4.1): for given elements $u_n^T, u_n^0, u_n^1 \in D(A_n)$ find a solution $u_n(\cdot) \in C^2([0,T];E_n)$ and an element $d_n \in E_n$ such that

(5.1)
$$\begin{cases} u_n''(t) = A_n u_n(t) + \Phi_n(t) d_n, & 0 \le t \le T, \\ u_n(0) = u_n^0, u_n'(0) = u_n^1, \\ u_n(T) = u_n^T, \end{cases}$$

where operators $A_n \in C(M; \omega)$, the operators A, A_n are consistent, $u_n^T \xrightarrow{\mathcal{P}} u^T$, $u_n^0 \xrightarrow{\mathcal{P}} u^0, u_n^1 \xrightarrow{\mathcal{P}} u^1$ and $\Phi_n(\cdot) \xrightarrow{\mathcal{PP}} \Phi(\cdot)$ in the sense.

The solution d_n of the problem (5.1) must satisfy the equation

$$(5.2) I_n d_n - B_{n,2} d_n = g_{n,2},$$

where

$$B_{n,2} := D_n^{-1} \left(\int_0^T S(T-s, A_n) \left(\Phi_n''(s) - \lambda \Phi_n(s) \right) ds + S(T, A_n) \Phi_n'(0) \right), \ \lambda \in \Delta_{cc},$$

$$g_{n,2} := -D_n^{-1} (A_n - \lambda I_n) \left(u_n^T - C(T, A_n) u_n^0 - S(T, A_n) u_n^1 \right),$$

$$D_n = \Phi_n(T) - C(T, A_n) \Phi_n(0).$$

Theorem 5.1. [24]. Let $A, A_n \in C(M; \omega)$. Then $S(t, A_n) \xrightarrow{\mathcal{PP}} S(t, A)$ compactly for any t > 0 iff $\Delta_{cc} \neq \emptyset$.

Theorem 5.2. Assume that $\Phi(\cdot) \in C^3([0,T];B(E)), \ \Phi_n(\cdot) \in C^3([0,T];B(E_n)), \ D_n^{-1} \stackrel{\mathcal{PP}}{\longrightarrow} D^{-1}$, the resolvents $(\lambda I_n - A_n)^{-1}$, $(\lambda I - A)^{-1}$ are compact, (A), (B'') and (1.4) are satisfied, $\Phi_n^{(j)}(t) \stackrel{\mathcal{PP}}{\longrightarrow} \Phi^{(j)}(t)$ uniformly in $t \in [0,T]$ for $j \in \overline{1,3}$, and $\Delta_{cc} \neq \emptyset$. Assume also that the problem (4.1) has a unique solution for any $u^T \in D(A)$. Then there are solutions to problems (5.1) for almost all n and they converge to solution of problem (4.1), i.e. $u_n(t) \stackrel{\mathcal{P}}{\longrightarrow} u(t)$ uniformly in $t \in [0,T]$ and $d_n \stackrel{\mathcal{P}}{\longrightarrow} d$ as $n \in \mathbb{N}$, whenever $A_n u_n^0 \stackrel{\mathcal{P}}{\longrightarrow} A u^0, A_n u_n^1 \stackrel{\mathcal{P}}{\longrightarrow} A u^1, A_n u_n^T \stackrel{\mathcal{P}}{\longrightarrow} A u^T$.

Proof. We, first, show that the solutions of equations (5.2) converge to the solution of equation (4.6). Since $D_n^{-1} \xrightarrow{\mathcal{PP}} D^{-1}$, it is clear that $g_{n,2} \xrightarrow{\mathcal{P}} g_2$. If $B_{n,2} \xrightarrow{\mathcal{PP}} B_2$ compactly, then by Theorems 2.1 and 2.2 it follows that $d_n \xrightarrow{\mathcal{P}} d$ and Theorem 5.2 is proved.

Using Theorem 5.1 one can show that the operators $B_{n,2} \xrightarrow{\mathcal{PP}} B_2$ compactly. To see this recall that operators $B_{n,2}, B_2$ can be split into two parts. The first term

$$D_n^{-1}S(T,A_n)\Phi'_n(0) \xrightarrow{\mathcal{PP}} D^{-1}S(T,A)\Phi'(0)$$

converges compactly and the second term

$$D_n^{-1}(\lambda I_n - A_n)^{-1}(\lambda I_n - A_n)$$

$$\int_0^T S(T - s, A_n) \Phi_n''(s) ds \xrightarrow{\mathcal{PP}} D^{-1}(\lambda I - A)^{-1}(\lambda I - A)$$

$$\int_0^T S(T - s, A) \Phi''(s) ds,$$

also converges compactly, since $\Delta_{cc} \neq \emptyset$ and

$$(\lambda I_n - A_n) \int_0^T S(T - s, A_n) \Phi_n''(s) ds \xrightarrow{\mathcal{PP}} (\lambda I - A) \int_0^T S(T - s, A) \Phi''(s) ds.$$

The last statement can be derived from the representation like (4.2). Therefore from Theorems 2.1 and 2.2 it follows that $d_n \xrightarrow{\mathcal{P}} d$. The convergence of solutions $u_n(t) \xrightarrow{\mathcal{P}} u(t)$ uniformly in $t \in [0,T]$ then follows from representation formulae like (1.5).

Consider the discretization of (5.1) in time

(5.3)
$$\frac{U_n^{k+1} - 2U_n^k + U_n^{k-1}}{\tau_n^2} = A_n U_n^{k+1} + \Phi_n(k\tau_n) \tilde{d}_n, \\ k \in \left\{1, ..., \left[\frac{T}{\tau_n}\right]\right\}, U_n^0 = u_n^0, U_n^1 = u_n^0 + \tau_n u_n^1.$$

According to (3.3) one can write its solution as

(5.4)
$$U_n^k = C_k^{(n)} U_n^0 + S_k^{(n)} U_n^1 + \tau_n^2 R_n \sum_{j=2}^k S_{k+1-j}^{(n)} \Phi_n^{j-1} \tilde{d}_n,$$

where we wrote $\Phi_n^j = \Phi_n(j\tau_n)$. Using (3.8) and (3.9) and summing by parts we have

$$(5.5) R_{n}A_{n}\tau_{n}^{2}\sum_{j=2}^{k}S_{k+1-j}^{(n)}\Phi_{n}^{j-1} = R_{n}\mathfrak{B}_{n}^{2}\tau_{n}^{2}\sum_{j=2}^{k}S_{k+1-j}^{(n)}\Phi_{n}^{j-1}$$

$$= \frac{\tau_{n}\mathfrak{B}_{n}}{2}\sum_{j=2}^{k}\left(R_{1,n}^{k+1-j}-R_{2,n}^{k+1-j}\right)\Phi_{n}^{j-1} = \frac{\tau_{n}\mathfrak{B}_{n}}{2}\sum_{j=2}^{k}R_{1,n}^{k+1-j}\Phi_{n}^{j-1}$$

$$-\frac{\tau_{n}\mathfrak{B}_{n}}{2}\sum_{j=2}^{k}R_{2,n}^{k+1-j}\Phi_{n}^{j-1}$$

$$= \frac{1}{2}\sum_{j=2}^{k}\left(R_{1,n}^{k+1-j}-R_{1,n}^{k-j}\right)\Phi_{n}^{j-1} + \frac{1}{2}\sum_{j=2}^{k}\left(R_{2,n}^{k+1-j}-R_{2,n}^{k-j}\right)\Phi_{n}^{j-1}$$

$$\begin{split} &=\frac{1}{2}\left(\sum_{j=2}^{k}R_{1,n}^{k+1-j}\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right)-\Phi_{n}^{k-1}+R_{1,n}^{k-1}\Phi_{n}^{0}\right)\\ &+\frac{1}{2}\left(\sum_{j=2}^{k}R_{2,n}^{k+1-j}\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right)-\Phi_{n}^{k-1}+R_{2,n}^{k-1}\Phi_{n}^{0}\right)\\ &=\frac{1}{2}\sum_{i=2}^{k}\left(R_{1,n}^{k+1-j}+R_{2,n}^{k+1-j}\right)\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right)-\Phi_{n}^{k-1}+\frac{1}{2}\left(R_{1,n}^{k-1}+R_{2,n}^{k-1}\right)\Phi_{n}^{0}. \end{split}$$

Using (3.10) and summing by parts we obtain again

$$\frac{1}{2} \sum_{j=2}^{k} \left(R_{1,n}^{k+1-j} + R_{2,n}^{k+1-j} \right) \left(\Phi_{n}^{j-1} - \Phi_{n}^{j-2} \right)
= R_{n} \sum_{j=2}^{k} \left(S_{k+1-j}^{(n)} - S_{k-j}^{(n)} \right) \left(\Phi_{n}^{j-1} - \Phi_{n}^{j-2} \right)
= R_{n} \left(\sum_{j=2}^{k} S_{k+1-j}^{(n)} \left(\Phi_{n}^{j-1} - 2\Phi_{n}^{j-2} + \Phi_{n}^{j-3} \right) + S_{k-1}^{(n)} \left(\Phi_{n}^{0} - \Phi_{n}^{-1} \right) \right).$$

From (5.5) and (5.6) we get the next identity valid for any solution of (5.3)

$$A_n U_n^k = A_n C_k^{(n)} U_n^0 + A_n S_k^{(n)} U_n^1$$

$$(5.7) +R_n \sum_{j=2}^k S_{k+1-j}^{(n)} \left(\Phi_n^{j-1} - 2\Phi_n^{j-2} + \Phi_n^{j-3} \right) \tilde{d}_n + \left(R_n \tau_n S_{k-1}^{(n)} \frac{\Phi_n^0 - \Phi_n^{-1}}{\tau_n} - \Phi_n^{k-1} + \frac{1}{2} \left(R_{1,n}^{k-1} + R_{2,n}^{k-1} \right) \Phi_n^0 \right) \tilde{d}_n, \ k \ge 2.$$

As in (4.5) define the operator

$$D_{n,k_n} = \Phi_n^{k_n - 1} - \left(C_{k_n}^{(n)} + S_{k_n}^{(n)} \right) \Phi_n^0.$$

Then we have the following

Theorem 5.3. Assume that $\Phi(\cdot) \in C^4([0,T];B(E))$, $\Phi_n(\cdot) \in C^4([0,T];B(E_n))$, $\mathfrak{B}_n^{-1} \overset{\mathcal{PP}}{\longrightarrow} \mathfrak{B}^{-1}$ compactly, $(D_{n,k_n})^{-1} \overset{\mathcal{PP}}{\longrightarrow} D^{-1}$, $k_n \tau_n = T$, the resolvents $(\lambda I_n - A_n)^{-1}$, $(\lambda I - A)^{-1}$ are compact, (B'') and (1.4) are satisfied and $\Phi_n^{(l)}(t) \overset{\mathcal{PP}}{\longrightarrow} \Phi^{(l)}(t)$ uniformly in $t \in [0,T]$ for $l = \overline{1,4}$. Assume also that the problem (4.1) has a unique solution for any $u^T \in D(A)$ and the Krein-Fattorini conditions are satisfied. Then there are solutions of the problem (5.3) for almost all n and they converge to the solution of problem (4.1), i.e.

$$U_n(t) \xrightarrow{\mathcal{P}} u(t)$$
 uniformly in $t \in [0, T]$,

$$\textit{and} \ \tilde{d}_n \overset{\mathcal{P}}{\longrightarrow} \textit{d} \ \textit{as} \ n \in \textit{IN}, \ \textit{whenever} \ A_n u_n^T \overset{\mathcal{P}}{\longrightarrow} Au^T, A_n u_n^0 \overset{\mathcal{P}}{\longrightarrow} Au^0, \mathfrak{B}_n u_n^1 \overset{\mathcal{P}}{\longrightarrow} \mathfrak{B}u^1.$$

Proof. First we apply the operator $(A_n - \lambda I_n)$ to (5.4) for $\lambda \in \Delta_{cc}$. Using (5.7) we get equation

$$\left(\Phi_{n}^{k-1} - \left(C_{k}^{(n)} + S_{k}^{(n)}\right)\Phi_{n}^{0}\right)\tilde{d}_{n} - \left[R_{n}\sum_{j=2}^{k} S_{k+1-j}^{(n)}\left(\Phi_{n}^{j-1} - 2\Phi_{n}^{j-2} + \Phi_{n}^{j-3}\right)\right] - \lambda R_{n}\tau_{n}^{2}\sum_{j=2}^{k} S_{k+1-j}^{(n)}\Phi_{n}^{j-1} + R_{n}S_{k-1}^{(n)}\left(\Phi_{n}^{0} - \Phi_{n}^{-1}\right)\right]\tilde{d}_{n}$$

$$= (A_{n} - \lambda I_{n})\left[C_{k}^{(n)}U_{n}^{0} + S_{k}^{(n)}U_{n}^{1} - U_{n}^{k}\right].$$

Since

$$(D_{n,k_n})^{-1} = \left(\Phi_n^{k_n-1} - \left(C_{k_n}^{(n)} + S_{k_n}^{(n)}\right)\Phi_n^0\right)^{-1} \xrightarrow{\mathcal{P}\mathcal{P}} D^{-1},$$

we can rewrite (5.8) in the form

$$(5.9) I_n \tilde{d}_n - B_{n,3} \tilde{d}_n = g_{n,3},$$

where

$$B_{n,3} := (D_{n,k_n})^{-1} \left[R_n \sum_{j=2}^{k_n} S_{k_n+1-j}^{(n)} \left(\Phi_n^{j-1} - 2\Phi_n^{j-2} + \Phi_n^{j-3} \right) - \lambda R_n \tau_n^2 \sum_{j=2}^{k_n} S_{k_n+1-j}^{(n)} \Phi_n^{j-1} + R_n S_{k_n-1}^{(n)} \left(\Phi_n^0 - \Phi_n^{-1} \right) \right]$$

and

$$g_{n,3} := (D_{n,k_n})^{-1} (A_n - \lambda I_n) \left(C_{k_n}^{(n)} U_n^0 + S_{k_n}^{(n)} U_n^1 - u_n^T \right), \quad k_n \tau_n = T.$$

To show that $B_{n,3} \xrightarrow{\mathcal{PP}} B_2$ compactly we split the operators $B_{n,3}, B_2$ into two parts. Compact convergence

$$\frac{1}{2}(R_{1,n}^{k-1}-R_{2,n}^{k-1})\mathfrak{B}_n^{-1} \xrightarrow{\mathcal{PP}} \frac{1}{2}(\exp(t\mathfrak{B})-\exp(-t\mathfrak{B}))\mathfrak{B}^{-1},$$

because of (3.11) and Theorem 2.5, implies that

$$(D_{n,k_n})^{-1}R_n\tau_n S_{k_n-1}^{(n)} \xrightarrow{\Phi_n^0 - \Phi_n^{-1}} \xrightarrow{\mathcal{PP}} D^{-1}S(T,A)\Phi'(0)$$

compactly. The other parts of the operators $B_{n,3}$ also converge compactly to the corresponding parts of B_2 . One can see by the same reasons as in (3.11) and (1.12) that

$$\mathfrak{B}_{n}\left(B_{n,3}-(D_{n,k_{n}})^{-1}R_{n}\tau_{n}S_{k_{n}-1}^{(n)}\frac{\Phi_{n}^{0}-\Phi_{n}^{-1}}{\tau_{n}}\right)\xrightarrow{\mathcal{PP}}\mathfrak{B}\left(B_{2}-D^{-1}S(T,A)\Phi'(0)\right)$$

and this implies that $B_{n,3} \xrightarrow{\mathcal{PP}} B_2$ compactly.

The convergence of the finite differences to derivatives follows, e.g., from [9], p. 409. Therefore, from Theorems 2.1 and 2.2 it follows that $\tilde{d}_n \stackrel{\mathcal{P}}{\longrightarrow} d$. The convergence of solutions $U_n(t) \stackrel{\mathcal{P}}{\longrightarrow} u(t)$ uniformly in $t \in [0,T]$ follows from the representation formulas (5.4) and (1.5).

Remark 5.1. In case of Hilbert space and negative self-adjoint operators A in Theorem 5.3, one can omit the condition that $\mathfrak{B}_{n,3} \xrightarrow{\mathcal{PP}} \mathfrak{B}_2$ compactly and just claim the condition $\Delta_{cc} \neq \emptyset$. Indeed, then one can get the compact convergence of square roots of operators as in [10] and then get the compact convergence $B_{n,3} \xrightarrow{\mathcal{PP}} B_2$ as before.

Remark 5.2. In case of a Banach space in Theorem 5.3 one can also omit the condition of compact convergence $\mathfrak{B}_n^{-1} \overset{\mathcal{PP}}{\longrightarrow} \mathfrak{B}^{-1}$ and just use the condition $\Delta_{cc} \neq \emptyset$. In this case one should assume that problem (4.1) possesses some extra smoothness condition. More precisely, assume that $u(\cdot) \in C^4([0,T];B(E)), \Phi(\cdot) \in C^3([0,T];B(E)), \Phi(0)=0$ and $u^0,u^1\in D(A^2)$. Then from Proposition 1.3 follows that $AS(\cdot,A)\Phi'(0)\in C([0,T];E)$. Moreover, if we assume that for the problems (5.1) and (4.1) $U_n^{(4)}(t) \overset{\mathcal{P}}{\longrightarrow} u^{(4)}(t)$ uniformly in $t\in [0,T]$ for any $\tilde{d}_n \overset{\mathcal{P}}{\longrightarrow} d$, then from the discrete analog of (1.8) follows that

(5.10)
$$A_n R_n \tau_n S_{k_n-1}^{(n)} \frac{\Phi_n^0 - \Phi_n^{-1}}{\tau_n} \tilde{d}_n \xrightarrow{\mathcal{P}} AS(T, A) \Phi'(0) d.$$

This means that without loss of generality one can assume that

$$A_n R_n \tau_n S_{k_n-1}^{(n)} \underbrace{\Phi_n^0 - \Phi_n^{-1}}_{\tau_n} \xrightarrow{\mathcal{PP}} AS(T, A) \Phi'(0),$$

and then the compact convergence $B_{n,3} \xrightarrow{\mathcal{PP}} B_2$ can be established directly from the convergence $A_n B_{n,3} \xrightarrow{\mathcal{PP}} AB_2$.

REFERENCES

1. A. Ashyralyev and P. E. Sobolevskii, A note on the difference schemes for hyperbolic equations, *Abstract and Applied Analysis*, **6(2)** (2001), 63-70.

- 2. W. Chojnacki, Group representations of bounded cosine functions, *J. Rein. Angew. Math.*, **478** (1996), 61-84.
- 3. Chojnacki Wojciech, On group decompositions of bounded cosine sequences (English), *Stud. Math.*, **181(1)** (2007), 61-85.
- 4. D.-K. Chyan, S.-Y. Shaw and S. Piskarev, On maximal regularity and semivariation of cosine operator functions, *J. London Math. Soc.*, **59(3)** (1999), 1023-1032.
- 5. Davide Guidetti, Bulent Karasozen and Sergey Piskarev, Approximation of abstract differential equations, *J. Math. Sci.* (*N. Y.*), **122(2)** (2004), 3013-3054.
- 6. H. O. Fattorini, Second order linear differential equations in Banach spaces, North Holland, Amsterdam, 1985, p. 314.
- 7. J. Kisynski, On cosine operator functions and one parameter groups of operators, *Studia Match.*, **44** (1972), 93-105.
- 8. S. G. Krein, *Linear differential equations in Banach space*, American Mathematical Society, R. I. Providence, Translated from the Russian by J. M. Danskin, Translations of Mathematical Monographs, Vol. 29, 1971.
- 9. L. A. Lusternik and V. I. Sobolev, *Elements of Functional Analysys*, Moscow, 1965, (in Russian).
- 10. D. Orlovsky and S. Piskarev, On approximation of inverse problems for abstract elliptic problems, *J. Inverse and Ill-posed Problems*, **17(8)** (2009), 765-782.
- 11. S. Piskarev, Discretisation of abstract hyperbolic equation, *Tartu Riikl. Ul. Toimetised*, **500** (1979), 3-23.
- 12. S. Piskarev, Solution of a second order evolution equation under the Krein-Fattorini conditions, *Differ. Equations*, **21** (1985), 1100-1106.
- 13. S. Piskarev, *Differential equations in Banach space and their approximation*, Moscow, Moscow State University Publish House (in Russian), 2005.
- 14. A. Prilepko, S. Piskarev and S.-Y. Shaw, On approximation of inverse problem for abstract parabolic differential equations in Banach spaces, *J. Inverse Ill-Posed Probl.*, **15(8)** (2007), 831-851.
- 15. A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, *Methods for Solving Inverse Problems in Mathematical Physics*, Marcel Dekker, New York, 2000.
- Samarskij A. Aleksandr and Nikolaev S. Evgenii, Numerical methods for grid equations. Volume I: Direct methods., Volume II: Iterative methods. Transl. from the Russian by Stephen G. Nash. Birkha"user Verlag. xxxv, 242 p./vol. I; xv, 502 p./vol. 2, 1989.
- 17. P. E. Sobolevskii and L. M. Chebotaryeva, Approximate solution of the Cauchy problem for an abstract hyperbolic equation by the method of lines, *Izv. Vyssh.Uchebn. Zav. Mat.*, in Russian, **180(5)** (1977), 103-116
- 18. M. Sova, Cosine operator functions Rozpr, Math., 49 (1966), 1-47.

- 19. C. C. Travis and G. F. Webb, *Second order differential equations in Banach space Nonlin*, equat. in abstract space, 1978, pp. 331-361.
- 20. C. C. Travis, and G. F. Webb, Cosine families and abstract non-linear second order differential equations, *Acta math. Acad. Sci. Hung*, **32**(3/4) (1978), 75-96.
- 21. G. Vainikko, *Funktionalanalysis der D iskretisierungsmethoden*, B. G. Leipzig, Teubner Verlag, Mit Englischen und Russischen Zusammenfassungen, Teubner-Texte zur Mathematik, 1976,
- 22. G. Vainikko, Approximative methods for nonlinear equations (two approaches to the convergence problem), *Nonlinear Anal.*, **2** (1978), 647-687.
- 23. V. V. Vasil'ev, S. G. Krein and S. Piskarev, Operator semigroups, cosine operator functions, and linear differential equations, in: *Mathematical analysis*, Vol. 28 (Russian), Itogi Nauki i Tekhniki, 204. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990, pp. 87-202, *Translated in J. Soviet Math.*, **54(4)** (1991), 1042-1129.
- 24. V. V. Vasil'ev and S. I. Piskarev, Differential equations in Banach spaces. II. Theory of cosine operator functions, *J. Math. Sci.* (*N. Y.*) **122(2)** (2004), 3055-3174.

Dmitry Orlovsky
Department of Mathematics,
"MEPhI" National Nuclear Research University,
Kashyrskoye shosse 31,
Moscow 115409,
Russia
E-mail: odg@bk.ru

Sergey Piskarev Scientific Research Computer Center, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia E-mail: piskarev@gmail.com

Renato Spigler Department of Mathematics, University Roma Tre, Roma, Italy

E-mail: spigler@mat.uniroma3.it