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Abstract. In 2003, Araujo and Jarosz showed that every bijective linear
map θ : A → B between unital standard operator algebras preserving zero
products in two ways is a scalar multiple of an inner automorphism. Later
in 2007, Zhao and Hou showed that similar results hold if both A, B are
unital standard algebras on Hilbert spaces and θ preserves range or domain
orthogonality. In particular, such maps are automatically bounded. In this
paper, we will study linear orthogonality preservers in a unified way. We
will show that every surjective linear map between standard operator algebras
preserving range/domain orthogonality carries a standard form, and is thus
automatically bounded.

1. INTRODUCTION

An algebra A of bounded linear operators on a Banach space M is called
standard if A contains the algebra F (M) of all bounded finite rank operators on
M . Assume that θ : A → B is a bijective linear map between two unital standard
operator algebras on Banach spaces M, N , preserving zero products in two ways,
i.e., ab = 0 in A if and only if θ(a)θ(b) = 0 in B. Araujo and Jarosz [1] showed
that in this case there exist a nonzero scalar λ and a bounded invertible linear map
S : M → N such that

θ(a) = λSaS−1, ∀a ∈ A.

It was pointed out in [3] that the same result holds also when A, B are non-unital.
On the other hand, let A, B be unital standard operator algebras on (real or

complex) infinite dimensional Hilbert spaces H, K , respectively. Assume that θ :
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A → B is a surjective additive map preserving range orthogonality in two ways,
i.e., a∗b = 0 in A if and only if θ(a)∗θ(b) = 0 in B. Zhao and Hou [6] showed
that in this case there exist a unitary (or conjugate unitary) operator U : H → K

and a bounded linear (or conjugate linear) invertible operator V : K → H such that

θ(a) = UaV, ∀a ∈ A.

Zhao and Hou [6] also obtained a similar version for surjective additive maps
preserving domain orthogonality in two ways, i.e., the ones with θ(a)θ(b) ∗ = 0
exactly when ab∗ = 0 .

In this paper, we will give a unified approach, with new proofs, to different
linear orthogonality preservers. We will show that every surjective linear map θ :
A → B between two standard operator algebras on (real or complex) Hilbert spaces
preserving range/domain orthogonality in two ways carries a standard form, and is
thus automatically bounded as well. The following table summarizes our results.

The structures θ preserves The form of θ carries
ab = 0 ⇔ θ(a)θ(b) = 0 λSaS−1

a∗b = 0 ⇔ θ(a)∗θ(b) = 0 UaT
ab∗ = 0 ⇔ θ(a)θ(b)∗ = 0 SaV

a∗b = 0 ⇔ θ(a)θ(b)∗ = 0 SatV
ab∗ = 0 ⇔ θ(a)∗θ(b) = 0 UatT

a∗b = ab∗ = 0 ⇔ θ(a)∗θ(b) = θ(a)θ(b)∗ = 0 λUaV or λUatV

θ : a surjective linear map between standard operator algebras
λ : a nonzero scalar
S, T : bounded invertible linear operators
U , V : unitary operators

We note that we need to assume A is unital or A contains all trace class operators
in the second to the fifth cases. Without this assumption, θ can be unbounded. For
example, let H be an infinite dimensional Hilbert space and let T be any unbounded
bijective linear operator on H . Then x ⊗ y �→ x ⊗ Ty (resp. x ⊗ y �→ Tx ⊗ y)
defines an unbounded bijective range (resp. domain) orthogonality preserving linear
map from F (H) onto F (H). However, in the first case of zero product preservers
and in the last case of doubly orthogonality preservers, this assumption can be
dropped.

2. PRELIMINARIES

In the following, A and B are standard operator algebras on (real or complex)
Hilbert spaces H , K, respectively, and θ is a surjective linear map from A onto B.
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As pointed out in [6], if θ preserves any kind of orthogonality in two ways, then θ

is injective. For example, if θ(x) = 0 and θ preserves zero products in two ways,
then θ(x)θ(y) = 0 implies xy = 0 for all y in A. Thus x = 0 as well.

Recall that by the Fundamental Theorem of Affine Geometry any bijective linear
map θ : F (H) → F (K) sending exactly rank one operators onto rank one operators
must be in one of the following forms.

(1) θ(x ⊗ y) = Sx ⊗ Ry, where S, R : H → K are invertible linear maps.
(2) θ(x ⊗ y) = Ry ⊗ Sx, where S, R : H → K are invertible conjugate linear

maps.

Here, x ⊗ y(z) = 〈z, y〉x is the rank at most one operator, and 〈·, ·〉 is the inner
product of the Hilbert space H or K. Note that for any scalar α we have α(x⊗y) =
(αx) ⊗ y = x ⊗ (ᾱy). See, e.g., [4, 6].

Fix an orthonormal basis {ej} of a Hilbert space H . For all x =
∑〈x, ej〉ej in

H , we set x =
∑〈ej, x〉ej . Let T be a bounded linear operator on H . The transpose

operator T t of T with respect to {ej} is the bounded linear operator satisfying the
condition

〈Tei, ej〉 = 〈ei, T
∗ej〉 = 〈T tej, ei〉, ∀i, j.

The transpose operator is well-defined and ‖T‖ = ‖T ∗‖ = ‖T t‖. Here T ∗ is the
adjoint operator of T . Note that the definition of x and T t depend on the choice of
the orthonormal basis. However, they are unique up to unitarily equivalence.

Some properties of the transpose operators are given below. For all x, y ∈ H
we have

(1) 〈x, y〉 = 〈y, x〉.
(2) (x ⊗ y)t = y ⊗ x.
(3) (T t)∗ = (T ∗)t.
(4) T tx = T ∗x.

3. RESULTS

We first give, with a new proof, a modified version of the result of Zhao and
Hou in [6] about linear range orthogonality preservers mentioned in the introduction.
Note that we can allow the algebras not being unital, provided instead that they
contain trace class operators.

Theorem 1. Let A, B be standard operator algebras on Hilbert spaces H, K ,
respectively. Suppose A is unital, or A contains all trace class operators on H .
Assume that θ : A → B is a surjective linear map such that a ∗b = 0 if and only
if θ(a)∗θ(b) = 0. Then θ is bounded, and there exist a bounded invertible linear
operator T : K → H and a unitary operator U : H → K such that

θ(a) = UaT, ∀a ∈ A.
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Proof. Note that θ is indeed bijective. Put

a� = {c ∈ A : c∗a = 0}, for all nonzero a in A.

For any a and b in A, it is clear that a� ⊆ b� if and only if the closure of the
range space of a contains that of b. We define a partial order on A by a ≤ b if
and only if a� ⊆ b�. In this partial order, a is a maximum if and only if a is
a rank one operator. By the two way range orthogonality preserving assumption,
we see that both θ and θ−1 preserve this partial order, and thus send the maxima
onto the maxima. In other words, θ and θ−1 send rank one operators onto rank one
operators. It then follows from the Fundamental Theorem of Affine Geometry that
there exist invertible linear or conjugate linear maps S : H → K and R : K → H

such that either
θ(x ⊗ y) = Sx ⊗ Ry, ∀x, y ∈ H,

or
θ(x ⊗ y) = Sy ⊗ Rx, ∀x, y ∈ H.

However, the second case does not give us a range orthogonality preserver, and thus
be ruled out.

Observe that

〈x1, x2〉 = 0

implies (x2 ⊗ y2)∗(x1 ⊗ y1) = 0, ∀y1, y2 ∈ H

implies θ(x2 ⊗ y2)∗θ(x1 ⊗ y1) = 0, ∀y1, y2 ∈ H

implies (Sx2 ⊗ Ry2)∗(Sx1 ⊗ Ry1) = 0, ∀y1, y2 ∈ H

implies 〈Sx1, Sx2〉 = 0.

For any two orthogonal norm one elements x, y in H , we have 〈x, y〉 = 〈x +
y, x − y〉 = 0. This gives 〈Sx, Sy〉 = 〈Sx + Sy, Sx − Sy〉 = 0, and therefore
‖Sx‖ = ‖Sy‖. It follows that S = λU for a nonzero scalar λ and a unitary operator
U from H onto K. Renaming λR by R, we will have

θ(x ⊗ y) = Ux ⊗ Ry, ∀x, y ∈ H.

To get the boundedness of R we need to utilize the extra assumptions on A now.
Suppose first that A is unital. For any norm one element e in H , as (e ⊗ e)(1 −
e ⊗ e) = 0, we have θ(e ⊗ e)∗(θ(1) − θ(e ⊗ e)) = 0. It follows Re ⊗ θ(1)∗Ue =
〈Ue, Ue〉Re⊗Re = Re⊗Re, and consequently, Re = θ(1)∗e. So R = θ(1)∗U is
bounded.

Suppose then that A contains all trace class operators on H and H is of infinite
dimension. Suppose on contrary that there were an orthonormal sequence {xn} in
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H such that ‖Rxn‖ ≥ n3 for n = 1, 2, 3, . . .. Define a trace class operator W

on H by W =
∑

n xn ⊗ xn/n2. Since (xn ⊗ xn)(n2W − xn ⊗ xn) = 0, we
have θ(xn ⊗ xn)∗(n2θ(W )− θ(xn ⊗ xn)) = 0. It follows n2Rxn ⊗ θ(W )∗Uxn =
〈Uxn, Uxn〉Rxn ⊗ Rxn = Rxn ⊗ Rxn. As a result, ‖θ(W )∗‖ ≥ ‖θ(W )∗Uxn‖ =
‖Rxn‖/n2 ≥ n for all n = 1, 2, 3, . . .. This contradiction ensures again that R is
bounded.

Let a ∈ A. For any x = 0 in H , let y ∈ H such that 〈x, y〉 = 1. Set
b = a − (y ⊗ a∗x). Observe b∗(x ⊗ y) = 0. Thus,

0 = θ(b)∗θ(x ⊗ y) = (θ(b)∗Ux) ⊗ Ry

= ([θ(a)∗ − θ(y ⊗ a∗x)∗]Ux) ⊗ Ry

= (θ(a)∗Ux − (Ra∗x ⊗ Uy)Ux)⊗ Ry.

This implies

θ(a)∗Ux = (Ra∗x ⊗ Uy)Ux = Ra∗x, ∀x ∈ H.

Hence,
θ(a) = UaR∗, ∀a ∈ A.

Setting T = R∗, we are done, as the boundedness of θ is now clear.

Next, we consider the other cases θ transforming the domain/range orthogonality
to the domain/range orthogonality.

Theorem 2. Let A, B be standard operator algebras on Hilbert spaces H, K ,
respectively. Suppose A is unital, or A contains all trace class operators on H .
Let θ : A → B be a surjective linear map.

(a) Assume that ab∗ = 0 if and only if θ(a)θ(b)∗ = 0. Then θ is bounded, and
there exists a bounded invertible linear operator S : H → K and a unitary
operator V : K → H such that

θ(a) = SaV, ∀a ∈ A.

(b) Assume that a∗b = 0 if and only if θ(a)θ(b)∗ = 0. Then θ is bounded, and
there exist a bounded invertible linear operator S : H → K and a unitary
operator V : K → H such that

θ(a) = SatV, ∀a ∈ A.

(c) Assume that ab∗ = 0 if and only if θ(a)∗θ(b) = 0. Then there exist a unitary
operator U : H → K and a bounded invertible linear operator operator
T : K → H such that

θ(a) = UatT, ∀a ∈ A.
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Proof. For a fixed orthonormal basis, we can define three range orthogonality
preserving surjective linear maps respectively by setting

a �→ θ(at)t, a �→ θ(a)t, and a �→ θ(at).

Then Theorem 1 applies.

Finally, we will investigate the doubly orthogonality preservers. A map θ is
called a doubly orthogonality preserver if θ(a) ∗θ(b) = θ(a)θ(b)∗ = 0 whenever
a∗b = ab∗ = 0. Bounded doubly orthogonality preservers between C*-algebras and
JB*-algebras are studied in [5, 2]. Note also that like the case of the zero product
preservers, we do not need to assume A is unital or A contains any trace class
operator on H in this case.

Theorem 3. Let θ : A → B be a surjective linear map between standard
operator algebras on Hilbert space H, K , respectively, such that a ∗b = ab∗ = 0
if and only if θ(a)∗θ(b) = θ(a)θ(b)∗ = 0. Then θ is bounded, and there exist a
nonzero scalar λ and unitary operators U : H → K and V : K → H such that
either

θ(a) = λUaV, ∀a ∈ A,

or
θ(a) = λUatV, ∀a ∈ A.

Proof. Put for all nonzero a in A that

a� = {c ∈ A : c∗a = 0} and a� = {c ∈ A : ac∗ = 0}.
Set a+ = a� ∩ a�. For any a and b in A, it is not difficult to see that that a+ ⊆ b+

if and only if the closure of the range space of a contains that of b, and the initial
space of a contains that of b. Define a partial order on A by saying a ≤ b if and
only if a+ ⊆ b+. In this partial order, a is a maximum if and only if a is of rank
one. By the doubly orthogonality preserving property of θ and θ−1, we see that both
of them preserves this partial order, and thus sends the maxima onto the maxima.
In other words, both θ and θ−1 send rank one operators onto rank one operators.
It then follows from the Fundamental Theorem of Affine Geometry that there exist
invertible linear or conjugate linear maps S : H → K and R : K → H such that
either

θ(x ⊗ y) = Sx ⊗ Ry, ∀x, y ∈ H,

or
θ(x ⊗ y) = Ry ⊗ Sx, ∀x, y ∈ H.

By replacing θ with the map a �→ θ(a)t if necessary, we can assume that the first
case happens.
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Arguing as in the proof of Theorem 1, we will see that there exist nonzero scalars
λ1, λ2 such that U = λ−1

1 S is a unitary operator from H onto K, and W = λ−1
2 R

is a unitary operator from K onto H . Put λ = λ1λ2 and V = W ∗, we will have

θ(a) = λUaV, ∀a ∈ F(H).

In general, let a ∈ A. For any x in H with a∗x = 0, let y ∈ H such that
〈x, ay〉 = 1. Set b = a − (ay ⊗ a∗x). Observe b∗(x ⊗ y) = b(x⊗ y)∗ = 0. Thus,

0 = θ(b)∗θ(x ⊗ y) = λ(θ(b)∗Ux) ⊗ V ∗y

= λ([θ(a)∗ − θ(ay ⊗ a∗x)∗]Ux)⊗ V ∗y

= λ(θ(a)∗Ux − λ̄(V ∗a∗x ⊗ Uay)Ux)⊗ V ∗y.

This implies

θ(a)∗Ux = λ̄(V ∗a∗x ⊗ Uay)Ux = λV ∗a∗x, ∀x ∈ H.

Hence,
θ(a) = λUaV, ∀a ∈ A.

The map θ is clearly bounded.
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