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CYCLIC ODD 3K-CYCLE SYSTEMS OF THE COMPLETE GRAPH

Shung-Liang Wu

Abstract. For any prime p and each admissible value n, a complete answer to
the existence problem for cyclic 3p-cycle systems of the complete graph Kn is
given.

1. INTRODUCTION

Let Kn be the complete graph of order n and let C = (c0, c1, · · · , cm−1) denote
an m-cycle or a closed m-trail. An m-cycle system of Kn is a pair (V , C) where V is
the vertex set of Kn and C is a collection of m-cycles whose edges partition the edges
of Kn. The necessary conditions for the existence of an m-cycle system of Kn are

(∗) n ≡ 1 (mod 2), 3 ≤ m ≤ n, and n(n − 1) ≡ 0 (mod 2m).

Given an integer m ≥ 3, an integer n satisfying the conditions in (*) is said to be
admissible.
The study of m-cycle systems of the complete graph has been one of the most

interesting problems in graph decompositions. A survey on cycle decompositions is
given in [4]. Alspach and Gavlas [1] in the case of m odd and Sajna [15] in the even
case proved the necessary conditions in (*) are also sufficient.
Let Zn be the group of integers modulo n and Z

∗
n = Zn \ {0}. An m-cycle

system (V,C) of the complete graph Kn is said to be cyclic if V = Zn and C + 1 =
(c0+1, c1+1, · · · , cm−1+1) (mod n) ∈ C whenever C ∈ C. The necessary conditions
in (*) however are not sufficient for the existence of a cyclic m-cycle system of Kn. A
cyclic n-cycle system of the complete graph Kn is called a cyclic Hamiltonian cycle
system.
In 1938, Peltesohn [10] proved that for each admissible n ( �= 9), there exists a

cyclic 3-cycle system of Kn. Since then, finding necessary and sufficient conditions
for cyclic m-cycle systems of Kn has attracted much attention. Some partial solutions
have been given by a number of authors [2, 3, 6-9, 11-13, 16, 17, 19].
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Theorem 1.1. ([3, 6, 7, 8, 16]).

(1) Suppose m ≥ 3 is a positive integer. Then there exists a cyclic m-cycle system
of K2pm+1 for p ≥ 1.

(2) Suppose m ≥ 3 is an odd integer. Then there exists a cyclic m-cycle system of
K2pm+m for p ≥ 0 except when (m, p) ∈ {(3, 1), (15, 0), (qα, 0)} where q is a
prime and α > 1.

Theorem 1.2. ([19]).

(1) If 3 ≤ m ≤ 32, then for each admissible value n, there exists a cyclic m-cycle
system of Kn provided (m, n) �= (3, 9), (6, 9), (9, 9), (14, 21), (15, 15), (15, 21),
(15, 25), (20, 25), (22, 33), (24, 33), (25, 25), (27, 27), and (28, 49).

(2) If m < n < 2m + 1 and gcd(m, n) is an odd prime power, then there does not
exist a cyclic m-cycle system of Kn.

Theorem 1.3. ([17]). For each even integer m ≥ 4 and each admissible value n
with n > 2m, there exists a cyclic m-cycle system of Kn.

To construct a cyclic m-cycle system of Kn, it is crucial to further characterize the
admissible values n. Assume m = de to be any positive integer, where d is odd, e ≥
1, and gcd(d, e) = 1, and n to be an admissible value. If gcd(m, n) = d = 1, then it is
easy to check from (*) that n = 2pm+1 for p ≥ 1. Now, suppose gcd(m, n) = d > 1.
Then it is obvious that n = 2pm + ds, where p is a nonnegative integer and s is odd
with 1 ≤ s < 2e. Also, since n(n − 1) ≡ 0 (mod 2m) and gcd(m, n) = d, it follows
that n−1 ≡ 0 (mod 2e), or equivalently, n = 2pm + 2be + 1, where p is a nonnegative
integer and 1 ≤ b < d. In fact, since n = 2pm + ds = 2pm + 2be + 1 ≥ m, we have
p ≥ 1, if b < d−1

2 or s < e, and p ≥ 0, if b ≥ d−1
2 or s ≥ e. Moreover, we obtain ds

= 2be + 1, where s is odd with 1 ≤ s < 2e and 1 ≤ b < d.
Lemma 1.4. ([17]). Let m = de be any given integer (≥ 3) where d is odd, e ≥ 1,

and gcd(d, e) = 1, and let n be admissible with gcd(m, n) = d.
(1) If d = 1, then n = 2pm + 1 for p ≥ 1.
(2) If d > 1 and b < d−1

2 or s < e, then n = 2pm+ 2be+ 1 = 2pm+ ds for p ≥ 1
where 1 ≤ b < d and s is odd with 1 ≤ s < 2e.

(3) If d > 1 and b ≥ d−1
2 or s ≥ e, then n = 2pm+ 2be+ 1 = 2pm+ ds for p ≥ 0

where 1 ≤ b < d and s is odd with 1 ≤ s < 2e. In particular, if m is odd and
e = 1, then n = 2pm + m for p ≥ 0.

In view of Lemma 1.4, if we take m = pk where p is an odd prime and k ≥ 1,
then d = 1 or pk. It implies that n = 2pm + 1 for p ≥ 1 or n = 2pm + m for p ≥ 0
and by utilizing Theorem 1.1, we obtain the following consequence.
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Theorem 1.5. Let m = pk where p is an odd prime and k ≥ 1. Then for each
admissible value n, there exists a cyclic m-cycle system of Kn except when m = 3
and n = 9 or n = m.

In this paper, we focus our attention on the constructions of cyclic m-cycle systems
of Kn where m = 3k is an odd integer with gcd(3, k) = 1. Note that by Theorem
1.2(1), it is enough to consider the m-cycles where m ≥ 33. The methods used here
involve difference constructions and circulant graphs, and it should be mentioned that
some basic techniques used in this paper also occurred in [18]. The main result is:

Theorem 1.6. For any prime p and each admissible value n, there exist cyclic
3p-cycle systems of the complete graph Kn.

We remark that given an odd integer m = 3k with gcd(3, k) = 1, it follows by
Lemma 1.4 that n ≡ 1, 3, k, or 3k (mod 2m), and using Theorem 1.1, it suffices
to consider only the cases when n ≡ 3 or k (mod 2m), that is, gcd(m, n) = 3 or
k. Moreover, in the light of Theorem 1.2(2), if k is a prime, then there is no cyclic
3k-cycle system of Kn where n < 6k.

2. DEFINITIONS AND PRELIMINARIES

Let S be a subset of Z
∗
n such that S = −S; that is, s ∈ S implies that −s ∈ S.

The circulant graph of order n, X(n, S), is defined as the graph whose vertices are
the elements of Zn, with an edge between vertices u and v if and only if v = u + s
for some s ∈ S. The set S is called the connection set of X(n, S). Since for each
edge {u, v} in X(n, S), there is an element s in S such that {u, v} = {u, u + s} =
{v + n − s, v} (mod n), we will write −s for n − s when n is understood, and the
elements ±s in S are said to be the differences of the edge {u, v} in X(n, S), and we
denote it by d(u, v) = ±s. In what follows, we will use ‖D(H)‖ to denote the number
of distinct differences of edges in H where H is the subgraph of X(n, S).
Given an m-cycle C = (c0, c1, · · · , cm−1) in X(n, S) where m = de is an odd

integer, the cycle C is of type d if its stabilizer under the natural action of Zn has order
d. In other words, d is the common divisor of n and m such that C = C + n/d (mod
n). Following [5], the list of partial differences of C of type d is the multiset

∂C = {±(ci+1 − ci) : 0 ≤ i ≤ m/d− 1}.

An m-cycle C of type d on X(n, S) is called full if d = 1, otherwise short. The cycle
orbit O of C is the set of m-cycles in the collection {C + i : 0 ≤ i < n/d}. The
length of a cycle orbit is its cardinality. A base cycle of a cycle orbit O is a cycle
C ∈ O that is chosen arbitrarily. Any cyclic m-cycle system of a graph of order n is
generated from base cycles, and each full m-cycle corresponds to a cycle orbit with
length n.
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Since n is odd, the connection set S can be partitioned into subsets A, −A such
that for every element s in A, s = i or −i for 1 ≤ i ≤ n−1

2 , so we may assume S
= ±A. It is evident that the complete graph Kn is isomorphic to the circulant graph
X(n, S) with S = Z

∗
n = ±{1, 2, · · · , n−1

2 }, so ‖D(Kn)‖ = n − 1.
By [a, b] we mean the set of consecutive integers a, a + 1, · · · , b where 1 ≤ a <

b ≤ n−1
2 . Given an odd integer m, the connection set S = {di, di + ji : ji= 1 or

2, 1 ≤ i ≤ k} is called proper if all elements in it are pairwise distinct, 1 ≤ d1 <
d2 < · · · < dk < n−1

2 , and di + ji < di+1 for 1 ≤ i ≤ k − 1. Note that |S| = 2k. If
j1 = · · · = jk = 1 (resp. j1 = jk = 2, j2 = · · · = jk−1 = 1), we say the proper set S
is of type 1 (resp. type 2); if j1 = 2 and j2 = · · · = jk = 1 (resp. j1 = · · · = jk−1 = 1
and jk = 2), the proper set S is said to be of type 3 (resp. type 4). By Si we mean
the proper set S of type i for 1 ≤ i ≤ 4.
A Skolem sequence of order p is a collection of ordered pairs {(si, ti) : ti − si =

i, 1 ≤ i ≤ p} with ⋃
i=1{si, ti} = {1, 2, · · · , 2p} or {1, 2, · · · , 2p− 1, 2p + 1}. In the

second case one usually speaks of a hooked Skolem sequence.

Theorem 2.1. ([14]).
(1) A Skolem sequence of order p exists if and only if p ≡ 0 or 1 (mod 4).
(2) A hooked Skolem sequence of order p exists if and only if p ≡ 2 or 3 (mod 4).

A set {r, sr + r, tr + r} where r is a positive integer with 1 ≤ r ≤ p is called a
r-Skolem set, denoted Tr, if (sr, tr) is an ordered pair in a Skolem sequence of order
p.

Corollary 2.2.
(1) If p ≡ 0 or 1 (mod 4), then [1, 3p] can be partitioned into the union of r-Skolem

subsets for 1 ≤ r ≤ p.

(2) If p ≡ 2 or 3 (mod 4), then [1, 3p+ 1] \ {3p} can be partitioned into the union
of r-Skolem subsets for 1 ≤ r ≤ p.

Given a r-Skolem set Tr and a proper set of type i Si where 1 ≤ r ≤ p and
1 ≤ i ≤ 4, the connection set S = Tr

⋃
Si is said to be i-proper if Tr

⋂
Si = ∅.

The following two consequences will be used as the main tools to construct the
full base cycles on circulant graphs. In what follows, we shall assume C = (c0 =
0, c1, · · · , cm−1) to be a closed m-trail and Tr = {r, sr + r, tr + r} to be a r-Skolem
set.

Proposition 2.3. Suppose the connection set S is 1-proper or 2-proper. Then for
m = 4k + 3 with k ≥ 1, there exists a cyclic m-cycle system of X(n,±S).

Proof. Suppose S = Tr
⋃

S1 is 1-proper where S1 = {ei, ei + 1 : 1 ≤ i ≤ 2k}
is a proper set of type 1. Let us define the vertices ci in C for 1 ≤ i ≤ m − 1 as
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ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ek+1−j + j, if i = 2j − 1 for 1 ≤ j ≤ k;
j, if i = 2j for 1 ≤ j ≤ k;
r + k, if i = 2k + 1;
sr + 2r + k, if i = 2k + 2;
−e2k + tr + r + k − 1, if i = 2k + 3;
−e2k + k − j, if i = 2k + 2 + 2j for 1 ≤ j ≤ k; and
−e2k + ek+j + k − j, if i = 2k + 3 + 2j for 1 ≤ j ≤ k − 1.

Let <C> = 〈c0 = 0, c2, c4, · · · , c2k, c2k+1, c2k+2, c2k−1, c2k−3, · · · , c1, c4k+2, c4k,

· · · , c2k+4, c2k+3, c2k+5, · · · , c4k+1〉 be a sequence obtained from the vertices ci in C
where c4k+1 = n − e2 + tr + r if k = 1 and c4k+1 = n − e2k + e2k−1 + 1 if k ≥ 2.
Since <C> is increasing, it means that C is an m-cycle, and since d(c2i, c2i+1)
= ±(ek−i + 1) and d(c2i+1, c2i+2) = ±ek−i for 0 ≤ i ≤ k − 1, d(c2k, c2k+1) = ±r,
d(c2k+1, c2k+2) = ±(sr+r), d(c2k+2, c2k+3) = ±(e2k+1), d(c2k+3, c2k+4) = ±(tr+r),
d(c2k+2+2i, c2k+3+2i) = ±ek+i for 1 ≤ i ≤ k−1, d(c2k+3+2i, c2k+4+2i) = ±(ek+i +1)
for 1 ≤ i ≤ k−1, and d(c0, c4k+2) = ±e2k , we have that C is indeed an m-cycle with
∂C = ±S.
The similar proof can be used for the case when S = Tr

⋃
S2 is 2-proper, i.e.,

replacing ci in C with ci + 1 for 2k − 1 ≤ i ≤ 2k + 2. We leave it to the reader.

Proposition 2.4. Suppose the connection set S is 3-proper or 4-proper. Then for
m = 4k + 5 with k ≥ 1, there exists a cyclic m-cycle system of X(n,±S).

Proof. The proof is divided into two cases according as whether S is 3-proper or
4-proper.
Suppose S = Tr

⋃
S3 is 3-proper where S3 = {e1, e1 + 2} ⋃ {ei, ei + 1 : 2 ≤

i ≤ 2k + 1}. The vertices ci in C for 1 ≤ i ≤ m − 1 are given by

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ek+1−j + j, if i = 2j − 1 for 1 ≤ j ≤ k − 1;
j, if i = 2j for 1 ≤ j ≤ k − 1;
e1 + k + 1, if i = 2k − 1;
k + 1, if i = 2k;
r + k + 1, if i = 2k + 1;
sr + 2r + k + 1, if i = 2k + 2;
−e2k+1 + tr + r + k, if i = 2k + 3;
−e2k+1 + k + 1− j, if i = 2k + 2 + 2j for 1 ≤ j ≤ k + 1; and
−e2k+1 + ek+j + k + 1 − j, if i = 2k + 3 + 2j for 1 ≤ j ≤ k.
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Suppose S = Tr
⋃

S4 is 4-proper where S4 = {ei, ei + 1 : 1 ≤ i ≤ 2k} ⋃
{e2k+1, e2k+1 + 2}. For 1 ≤ i ≤ m − 1, the vertices ci in C are defined as

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ek+2−j + j, if i = 2j − 1 for 1 ≤ j ≤ k + 1;
j, if i = 2j for 1 ≤ j ≤ k + 1;
r + k + 1, if i = 2k + 3;
sr + 2r + k + 1, if i = 2k + 4;
−e2k+1 + tr + r + k − 1, if i = 2k + 5;
−e2k+1 + k − j, if i = 2k + 4 + 2j for 1 ≤ j ≤ k; and
−e2k+1 + ek+1+j + k − j, if i = 2k + 5 + 2j for 1 ≤ j ≤ k − 1.

The rest of the proof is analogous to those in Proposition 2.3, and we omit the
details.

Establishing a cyclic m-cycle system of Kn, the vital key is to construct short base
m-cycles in it. Lemma 2.5 provides a useful method for constructing short m-cycles
on circulant graphs. For the convenience of notation, by [c0, c1, · · · , ce−1]k·n/d we
mean an m-cycle (or a closed m-trail) of the form (c0, c1, · · · , cm−1) (mod n) where
ci+j·e = ci + j · k · n/d for 0 ≤ i ≤ e − 1 and 0 ≤ j ≤ d − 1.

Lemma 2.5. Let m = de be an odd integer where d ≥ 3, e ≥ 1, and gcd(d, e) =
1, and let n be admissible with gcd(m, n) = d. If there exists an m-cycle C =
[c0, c1, · · · , ce−1]k·n/d with gcd(k, d) = 1 on a circulant graph X(n,±S) satisfying
(1) for 0 ≤ i �= j ≤ e − 1, ci �≡ cj (mod n/d) and
(2) the differences d(ci−1, ci) = ±di for 1 ≤ i ≤ e are all distinct,
then there exists a cyclicm-cycle system of X(n, ∂C) where ∂C = ±{d1, d2, · · · , de}.
Note that the set {C + i : 0 ≤ i < n/d} forms a cycle orbit of C with length

n/d, and the cycle C can be regarded as a short base cycle of this cycle orbit. For
convenience, the cycle C = [c0, c1, · · · , ce−1]k·n/d in Lemma 2.5 is said to be an
m-cycle of index k · n/d. The m-cycle C itself, of course, is of type d on X(n, ∂C).
The circulant graphs will also play a crucial role for constructing a cyclic m-cycle

system of Kn.

Theorem 2.6. There exists a cyclic m-cycle system of Kn if and only if there
are cyclic m-cycle systems of the circulant graphs X(n, ∂Ci)(1 ≤ i ≤ t) such that⋃t

i=1 ∂Ci = Z
∗
n and ∂Ci

⋂
∂Cj = ∅ for i �= j.

By virtue of Lemma 1.4, for each specified integer m = de, we have n = 2pm +
2be+1 = 2pm+ds = d(2pe+s) and so n/d = 2pe+s. To construct a cyclic m-cycle
system of Kn, it is natural that we will try to set up p full base m-cycles and b short
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base m-cycles C of index k · n/d for some positive integer k with gcd(k, d) = 1 and
‖D(C)‖ = 2e each since ‖D(Kn)‖ = n − 1 = 2(pm + be).

3. Gcd(m, n) = 3

In this section, we shall assume that d = 3, i.e., m = 3e with gcd(3, e) = 1, and let
n be admissible with gcd(m, n) = 3. Recall that it suffices to consider m = 3e ≥ 33,
that is, e ≥ 11. Since gcd(3, e) = 1, it follows that e = 12a + 11, 12a + 13, 12a + 17,
or 12a + 19 for a ≥ 0. By virtue of Lemma 1.4, we have:
if e = 12a + 11, then b = 2, s = 16a + 15, and n = 6pe + 48a + 45 for p ≥ 0;
if e = 12a + 13, then b = 1, s = 8a + 9, and n = 6pe + 24a + 27 for p ≥ 1;
if e = 12a+17, then b = 2, s = 16a+23, and n = 6pe+48a+69 for p ≥ 0; and
if e = 12a + 19, then b = 1, s = 8a + 13, and n = 6pe + 24a + 39 for p ≥ 1.
That is, if e = 12a + 13 or 12a + 19 (resp. 12a + 11 or 12a + 17), then we

will construct p full base m-cycles and a short base m-cycle (resp. two short base
m-cycles).
Next, consider an e-setW = {w1, w2, . . . , we} where wi ∈ Z

∗
n. The setW is called

strong if 1 ≤ w1 < w2 < . . . < we < n/3 and
∑ e−1

2
i=1 (w2i − w2i−1) + we = n/3. The

strong e-set will be used to establish the short base m-cycles of index n/3.

Lemma 3.1. If W = {w1, w2, . . . , we} is a strong e-set, then there exists a cyclic
m-cycle system of X(n,±W ).

Proof. Let C = [c0 = 0, c1, . . . , ce−1]n/3 be a closed m-trail defined as

c2i−1 = we−2i+1 +
i−1∑
j=1

(we−2j+1 − we−2j) and

c2i =
i∑

j=1

(we−2j+1 − we−2j) for 1 ≤ i ≤ e − 1
2

.

Consider the sequence <C> = 〈c0 = 0, c2, c4, · · · , ce−1, ce−2, ce−4, · · · , c1 =
we−1〉 from the vertices ci (0 ≤ i ≤ e−1) in C. Since the sequence<C> is increasing
and ci �≡ cj (mod n/3) for 0 ≤ i < j ≤ e − 1, we have that C is an m-cycle of index
n/3, and since d(ci, ci+1) = ±we−1−i for 0 ≤ i ≤ e − 2 and d(ce−1, ce) = ±we, it
follows that C is an m-cycle with ∂C = ±W .
The thesis follows by Lemma 2.5.

By [a, b] =
⊎t

i=1 Ai we mean that the set [a, b] can be partitioned into the union of
disjoint subsets Ai for 1 ≤ i ≤ t. A set U is even if |U | ≡ 0 (mod 2). Throughout
we will use Tr

⊎
Si, Tr

⊎
Si,r as i-proper connection sets where 1 ≤ r ≤ p and

1 ≤ i ≤ 4.
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Proposition 3.2. Supposem = 3e where e = 12a+ 13 or 12a+ 19 for a ≥ 0 and
let n be admissible with gcd(m, n) = 3. Then there exists a cyclic m-cycle system of
Kn.

Proof. It is clear that m ≡ 3 (mod 4) if e = 12a + 13 and m ≡ 1 (mod 4) if
e = 12a+19. Recall that [1, 3p] =

⊎p
i=1 Ti if p ≡ 0 or 1 (mod 4) and [1, 3p+1] \ {3p}

=
⊎p

i=1 Ti if p ≡ 2 or 3 (mod 4) by Corollary 2.2. The proof is split into the following
4 cases.

Case 1. e = 12a + 13 and p ≡ 1 (mod 4) or e = 12a + 19 and p ≡ 0 (mod 4).
[1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W where U = {3p + 1, 3p + 3} ⊎
[3p + e + 2, n

3 −
e+3
2 ]

⊎
[n
3 − e−1

2 , n−1
2 ] and W = {3p + 2, 3p + 4, 3p + 5, · · · , 3p + e + 1, n

3 − e+1
2 }.

If e = 12a + 13, then partition the set [1, 3p]
⋃

U into a 2-proper subset Tp
⊎

S2

and p − 1 1-proper subsets Ti
⊎

S1,i for 1 ≤ i ≤ p − 1, i.e., [1, 3p]
⋃

U = (
⊎p−1

i=1 Ti⊎
S1,i)

⊎
(Tp

⊎
S2).

If e = 12a + 19, then [1, 3p]
⋃

U = (
⊎p−1

i=1 Ti
⊎

S3,i)
⊎

(Tp
⊎

S4).
Note that the elements n−3

2 , n+1
2 are included in S2, S4, respectively.

Case 2. e = 12a + 13 and p ≡ 0 (mod 4) or e = 12a + 19 and p ≡ 1 (mod 4).
[1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W where U = [3p + e, n
3 − e+1

2 ]
⊎

[n
3 − e−3

2 , n−1
2 ] and

W = {3p + 1, 3p + 2, · · · , 3p + e − 1, n
3 − e−1

2 }.
If e = 12a + 13, then [1, 3p]

⋃
U =

⊎p
i=1 Ti

⊎
S1,i.

If e = 12a + 19, then [1, 3p]
⋃

U = (
⊎p−1

i=1 Ti
⊎

S3,i)
⊎

(Tp
⊎

S4).

Case 3. e = 12a + 13 and p ≡ 2 (mod 4) or e = 12a + 19 and p ≡ 3 (mod 4).
[1, n−1

2 ] = ([1, 3p + 1] \ {3p}) ⊎
U

⊎
W where U = {3p, 3p + 2} ⊎

[3p + e +
2, n

3 − e+1
2 ]

⊎
[n
3 − e−3

2 , n−1
2 ] and W = {3p + 3, 3p + 4, · · · , 3p + e + 1, n

3 − e−1
2 }.

If e = 12a + 13, then ([1, 3p + 1] \ {3p}) ⋃
U = (

⊎p−1
i=1 Ti

⊎
S1,i)

⊎
(Tp

⊎
S2).

If e = 12a + 19, then ([1, 3p+ 1] \ {3p}) ⋃
U = (

⊎p
i=1 Ti

⊎
S3,i).

Case 4. e = 12a + 13 and p ≡ 3 (mod 4) or e = 12a + 19 and p ≡ 2 (mod 4).
[1, n−1

2 ] = ([1, 3p + 1] \ {3p}) ⊎
U

⊎
W where U = [3p + e, n

3 − e+3
2 ]

⊎
[n
3 −

e−1
2 , n−1

2 ] and W = {3p, 3p + 2, 3p + 3, · · · , 3p + e − 1, n
3 − e+1

2 }.
If e = 12a + 13, then ([1, 3p+ 1] \ {3p}) ⋃

U = (
⊎p

i=1 Ti
⊎

S1,i).
If e = 12a + 19, then ([1, 3p+ 1] \ {3p}) ⋃

U = (
⊎p

i=1 Ti
⊎

S3,i).

Note that in each case, U is an even p(m−3)-set andW is a strong e-set. By virtue
of Lemma 3.1, there is a cyclic m-cycle system of X(n,±W ). Moreover, if e = 12a+
13 (resp. e = 12a + 19), by Proposition 2.3 (resp. Proposition 2.4), there exist cyclic
m-cycle systems of X(n,±([1, 3p]

⋃
U)) and X(n,±(([1, 3p+ 1] \ {3p}) ⋃

U)).
Since for each case, Z∗

n =±([1, 3p]
⊎

U
⊎

W ) or±(([1, 3p+1]\{3p})⊎
U

⊎
W ),

by Theorem 2.6, there is a cyclic m-cycle system of Kn.
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Proposition 3.3. Suppose m = 3e where e = 12a + 11 or 12a + 17 for a ≥ 0
and let n be admissible with gcd(m, n) = 3 and n > 2m. Then there exists a cyclic
m-cycle system of Kn.

Proof. Obviously, m ≡ 1 (mod 4) if e = 12a + 11 and m ≡ 3 (mod 4) if
e = 12a + 17. We divide the proof into 4 cases as follows.

Case 1. e = 12a + 11 and p ≡ 1 (mod 4) or e = 12a + 17 and p ≡ 0 (mod 4).
[1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W1
⊎

W2 where U = {3p + 4, 3p + 6} ⊎
[3p + 2e +

1, n
3 − e+5

2 ]
⊎

[n
3 − e−1

2 , n−1
2 ], W1 = {3p+2, 3p+5, 3p+7, · · · , 3p+ e+3, n

3 − e+3
2 },

and W2 = {3p + 1, 3p + 3, 3p + e + 4, · · · , 3p + 2e, n
3 − e+1

2 }.
If e = 12a + 11, then [1, 3p]

⋃
U =

⊎p
i=1 Ti

⊎
S3,i.

If e = 12a + 17, then [1, 3p]
⋃

U = (
⊎p−1

i=1 Ti
⊎

S1,i)
⊎

(Tp
⊎

S2).

Case 2. e = 12a + 11 and p ≡ 0 (mod 4) or e = 12a + 17 and p ≡ 1 (mod 4).
[1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W1
⊎

W2 where U = {3p + 1, 3p + 3} ⊎
[3p + 2e +

1, n
3 − e+3

2 ]
⊎

[n
3 − e−3

2 , n−1
2 ], W1 = {3p+2, 3p+4, 3p+5, · · · , 3p+ e+1, n

3 − e+1
2 },

and W2 = {3p + e + 2, 3p + e + 3, · · · , 3p + 2e, n
3 − e−1

2 }.
If e = 12a + 11, then [1, 3p]

⋃
U = (

⊎p−1
i=1 Ti

⊎
S3,i)

⊎
(Tp

⊎
S4).

If e = 12a + 17, then [1, 3p]
⋃

U = (
⊎p−1

i=1 Ti
⊎

S1,i)
⊎

(Tp
⊎

S2).

Case 3. e = 12a + 11 and p ≡ 2 (mod 4) or e = 12a + 17 and p ≡ 3 (mod 4).
[1, n−1

2 ] = ([1, 3p + 1] \ {3p}) ⊎
U

⊎
W1

⊎
W2 where U = [3p + 2e − 1, n

3 −
e+3
2 ]

⊎
[n
3 − e−3

2 , n−1
2 ], W1 = {3p, 3p+ 2, 3p + 3, · · · , 3p + e− 1, n

3 − e+1
2 }, and W2

= {3p + e, 3p + e + 1, · · · , 3p + 2e − 2, n
3 − e−1

2 }.
If e = 12a + 11, then ([1, 3p+ 1] \ {3p}) ⋃

U =
⊎p

i=1 Ti
⊎

S3,i.
If e = 12a + 17, then ([1, 3p+ 1] \ {3p}) ⋃

U = (
⊎p

i=1 Ti
⊎

S1,i).

Case 4. e = 12a + 11 and p ≡ 3 (mod 4) or e = 12a + 17 and p ≡ 2 (mod 4).
[1, n−1

2 ] = ([1, 3p + 1] \ {3p}) ⊎
U

⊎
W1

⊎
W2 where U = [3p + 2e − 1, n

3 −
e+5
2 ]

⊎
[n
3 − e−1

2 , n−1
2 ], W1 = {3p + 2, 3p + 4, 3p+ 5, · · · , 3p + e + 1, n

3 − e+1
2 }, and

W2 = {3p, 3p + 3, 3p + e + 2, 3p + e + 3, · · · , 3p + 2e − 2, n
3 − e+3

2 }.
If e = 12a + 11, then ([1, 3p + 1] \ {3p}) ⋃

U = (
⊎p−1

i=1 Ti
⊎

S3,i)
⊎

(Tp
⊎

S4).
If e = 12a + 17, then ([1, 3p+ 1] \ {3p}) ⋃

U =
⊎p

i=1 Ti
⊎

S1,i.
It can be checked in each case that U is an even p(m − 3)-set and both W1 and

W2 are strong e-subsets.
Similarly to Proposition 3.2, the proof follows by virtue of Lemma 3.1, Propositions

2.3, 2.4, and Theorem 2.6.

Together with Propositions 3.2 and 3.3, we obtain the first main consequence.

Theorem 3.4. Suppose m = 3e is an odd integer with gcd(3, e) = 1, and let n
be admissible with gcd(m, n) = 3 and n > 2m. Then there exists a cyclic m-cycle
system of Kn.
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Example 1. A cyclic 69-cycle system of K507 is presented. Given d = 3, e = 23,
and p = 3, we have m = 69, b = 2, s = 31, and n = 507 where gcd(m, n) = 3 and
so n−1

2 = 253 and n/d = 169.
Taking U = [54, 155]

⊎
[158, 253],W1 = {11, 13, . . . , 33, 157}, andW2 = {9, 12,

34, . . . , 53, 156}, it follows that [1, n−1
2 ] = ([1, 10] \ {9}) ⊎

U
⊎

W1
⊎

W2. Note
that both W1 and W2 are strong 23-sets.
Let T1

⊎
S3,1, T2

⊎
S3,2, T3

⊎
S4 be respectively connection sets defined as

T1
⊎

S3,1 = {1, 4, 5} ⊎ {54, 56} ⊎
[58, 121],

T2
⊎

S3,2 = {2, 6, 8} ⊎ {55, 57} ⊎
[122, 155]

⊎
[158, 187], and

T3
⊎

S4 = {3, 7, 10} ⊎
[188, 251]

⊎ {252, 254}.
It is clear that both T1

⊎
S3,1 and T2

⊎
S3,2 are 3-proper and T3

⊎
S4 is 4-proper.

By Proposition 2.4, there are cyclic 69-cycle systems of X(507,±(Ti

⊎
S3,i))

(1 ≤ i ≤ 2) and X(507,±(T3
⊎

S4)), and by Lemma 3.1, there exist cyclic 69-cycle
systems of X(507,±Wi) (1 ≤ i ≤ 2).
Now, by virtue of Theorem 2.6, we obtain a cyclic 69-cycle system of K507.

4. Gcd(m, n) = d

Finally, assume gcd(m, n) = d, that is, e = 3 and m = 3d where gcd(3, d) = 1.
Note that we just consider d ≥ 11 because m ≥ 33. Since d is odd with gcd(d, 3) =
1, we have d = 6a + 5 or 6a + 7 for a ≥ 1. If d = 6a + 5, by Lemma 1.4.(3), s = 5,
b = 5a + 4, and n = 2pm + 30a + 25 for p ≥ 0; in this case, m ≡ 3 (resp. 1) (mod
4) if a ≡ 0 (resp. 1) (mod 2). Analogously, by Lemma 1.4(2), if d = 6a + 7, then s =
1, b = a + 1, and n = 2pm + 6a + 7 for p ≥ 1, and it follows that m ≡ 1 (resp. 3)
(mod 4) if a ≡ 0 (resp. 1) (mod 2).

Lemma 4.1. Let m = 3d where d = 6a + 5 or 6a + 7 for a ≥ 1 and n admissible
with gcd(m, n) = d.

(1) If d = 6a + 5, then s = 5, b = 5a + 4, n = 2pm + 30a + 25 for p ≥ 0, and
m ≡ 3 (resp. 1) (mod 4) if a ≡ 0 (resp. 1) (mod 2).

(2) If d = 6a + 7, then s = 1, b = a + 1, n = 2pm + 6a + 7 for p ≥ 1, and m ≡ 1
(resp. 3) (mod 4) if a ≡ 0 (resp. 1) (mod 2).

Hence, besides p full base cycles, 5a + 4 (resp. a + 1) short base cycles C with
‖D(C)‖ = 2e will be constructed if d = 6a + 5 (resp. d = 6a + 7). Recall that n
= 2pm + 2be + 1 = 2pm + ds = d(2pe + s). Assume b = 4q + r where q ≥ 0 and
0 ≤ r ≤ 3 to be the Euclidean division of b by 4. Let Q, A, B, D, and F be subsets
of [1, n−1

2 ] defined by
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Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[1, 3p]
⋃

[3p + 1, n/d− 2], if p ≡ 1 (mod 4),
([1, 3p + 1] \ {3p}) ⋃ {3p, 3p + 2} ⋃

[3p + 3, n/d− 3], if p ≡ 2 (mod 4),
([1, 3p + 1] \ {3p}) ⋃ {3p, 3p + 2} ⋃

[3p + 3, n/d− 2], if p ≡ 3 (mod 4),
[1, 3p]

⋃
[3p + 1, n/d− 3], if p ≡ 0 (mod 4),

A =
⋃q−1

i=0 Ai,where

Ai =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{(2i + 1) · n/d− 1, (2i + 1) · n/d

+2, (2i + 2) · n/d− 2, (2i + 2) · n/d + 1}, if p ≡ 1 or 3 (mod 4),
{(2i + 1) · n/d− 2, (2i + 1) · n/d

+1, (2i + 2) · n/d− 1, (2i + 2) · n/d + 2}, if p ≡ 0 or 2 (mod 4),

B =
⋃q−1

i=0 Bi,where

Bi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{(2i + 1) · n/d, (2i + 1) · n/d

+1, (2i + 2) · n/d − 1, (2i + 2) · n/d}, if p ≡ 1 or 3 (mod 4),
{(2i + 1) · n/d − 1, (2i + 1) · n/d,

(2i + 2) · n/d, (2i + 2) · n/d + 1}, if p ≡ 0 or 2 (mod 4),

D =
⋃q−1

i=0 Di,where

Di =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(2i + 1) · n/d + 3, (2i + 2) · n/d − 3]
⋃

[(2i + 2) · n/d

+2, (2i + 3) · n/d − 2], if p ≡ 1 or 3 (mod 4),
[(2i + 1) · n/d + 2, (2i + 2) · n/d − 2]

⋃
[(2i + 2) · n/d

+3, (2i + 3) · n/d − 3], if p ≡ 0 or 2 (mod 4),

F =

{
[(2q + 1) · n/d− 1, n−1

2
], if p ≡ 1 or 3 (mod 4), and

[(2q + 1) · n/d− 2, n−1
2

], if p ≡ 0 or 2 (mod 4).

It is easy to see that if p ≡ 1 or 3 (mod 4), then A
⋃

B
⋃

D = [n/d − 1, (2q +
1)n/d−2], and if p ≡ 0 or 2 (mod 4), then A

⋃
B

⋃
D = [n/d−2, (2q+1)n/d−3].

Moreover, F is not empty. An easy verification shows that the union of subsets Q, A,
B, D, and F forms a partition of [1, n−1

2 ].

Lemma 4.2. The interval [1, n−1
2 ] can be partitioned into the union of subsets

Q, A, B, D, and F.

In view of the subsets Di (0 ≤ i ≤ q − 1) in D, we can partition it into the union
of subsets Di,1, Di,2, and Di,3 and set D∗

i =
⋃q−1

i=0 Di,3 as follows.
If p ≡ 1 or 3 (mod 4), then⎧⎪⎪⎨

⎪⎪⎩
Di,1=[(2i+1) · n/d+3, (2i+1) · n/d+6];

Di,2=[(2i+2) · n/d+2, (2i+2) · n/d+5]; and

Di,3=[(2i+1) · n/d+7, (2i+2) · n/d−3]
⋃

[(2i+2) · n/d+6, (2i+3) · n/d−2].
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If p ≡ 0 or 2 (mod 4), then
⎧⎪⎪⎨
⎪⎪⎩

Di,1=[(2i+1) · n/d+2, (2i+1) · n/d+5];

Di,2=[(2i+2) · n/d+3, (2i+2) · n/d+6]; and

Di,3=[(2i+1) · n/d+6, (2i+2) · n/d−2]
⋃

[(2i+2) · n/d+7, (2i+3) · n/d−3].

To prove the second main result, we need some auxiliary lemmas. Throughout we
will assume d to be an odd prime (≥ 11).

Lemma 4.3. For each i with 1 ≤ i ≤ 3, there exists a cyclic m-cycle system of
X(n,±Wi) where W1 = {(2q + 1) · n/d− 1, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3},
W2 = {3p+1, 3p+3, (2q +1) ·n/d−2}, and W3 = {3p, 3p+2, (2q +1) ·n/d−2}.

Proof. Let Ci (1 ≤ i ≤ 3) be closed m-trails defined as
C1 = [0, (2q + 1) · n/d − 1, (4q + 2) · n/d + 2](2q+1)·n/d,
C2 = [0, (2q + 1) · n/d − 2, (2q + 1) · n/d + 3p + 1](2q+1)·n/d, and
C3 = [0, (2q + 1) · n/d − 2, (2q + 1) · n/d + 3p](2q+1)·n/d.

It can be checked that each Ci (1 ≤ i ≤ 3) is an m-cycle of index (2q + 1) · n/d

with ∂Ci = ±Wi. The thesis then follows from Lemma 2.5.

Lemma 4.4. For each i with 1 ≤ i ≤ 4, there exists a cyclic m-cycle system
of X(n,±Wi) where W1 = {3p + 1, 3p + 3, (2q + 1) · n/d − 1, (2q + 1) · n/d +
2, (2q + 1) · n/d + 3, (2q + 1) · n/d + 4}, W2 = {3p + 1, 3p + 3, (2q + 1) · n/d −
2, (2q + 1) · n/d + 1, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3}, W3 = {3p, 3p +
2, (2q + 1) · n/d− 1, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3, (2q + 1) · n/d + 4}, and
W4 = {3p, 3p+2, (2q+1)·n/d−2, (2q+1)·n/d+1, (2q+1)·n/d+2, (2q+1)·n/d+3}.

Proof. For 1 ≤ i ≤ 4, let Ci be the union of closed m-trails Ci,1, Ci,2 given by
C1,1 = C3,1 = [0, (2q + 1) · n/d − 1, (4q + 2) · n/d + 3](2q+1)·n/d,
C1,2 = [0, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3p + 3](2q+1)·n/d,
C2,1 = C4,1 = [0, (2q + 1) · n/d + 1, (4q + 2) · n/d + 3](2q+1)·n/d,
C2,2 = [0, (2q + 1) · n/d − 2, (2q + 1) · n/d + 3p + 1](2q+1)·n/d,
C3,2 = [0, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3p + 2](2q+1)·n/d, and
C4,2 = [0, (2q + 1) · n/d − 2, (2q + 1) · n/d + 3p](2q+1)·n/d.

Similarly, we have the thesis by Lemma 2.5 since Ci,1, Ci,2 (1 ≤ i ≤ 4) are
m-cycles of index (2q + 1) · n/d and ∂Ci = ∂(Ci,1

⋃
Ci,2) = ±Wi for 1 ≤ i ≤ 4.

Lemma 4.5. For each i with 1 ≤ i ≤ 3, there exists a cyclic m-cycle system of
X(n,±Wi) whereW1 = {3p+1, 3p+3, (2q+1) ·n/d−1, (2q+1)·n/d+2, · · · , (2q+
1)·n/d+7},W2 = {3p, 3p+2, (2q+1)·n/d−1, (2q+1)·n/d+2, · · · , (2q+1)·n/d+7},
and W3 = {(2q + 1) · n/d − 2, (2q + 1) · n/d + 1, · · · , (2q + 1) · n/d + 8}.
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Proof. The thesis follows from Lemma 2.5 by taking Ci =
⋃3

j=1 Ci,j where each
Ci,j (1 ≤ i, j ≤ 3) defined as follows is an m-cycle of index (2q + 1) · n/d and
∂Ci = ±Wi for 1 ≤ i ≤ 3.

C1,1 = C2,1 = [0, (2q + 1) · n/d − 1, (4q + 2) · n/d + 5](2q+1)·n/d,
C1,2 = [0, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3p + 3](2q+1)·n/d,
C2,2 = [0, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3p + 2](2q+1)·n/d,
C1,3 = C2,3 = [0, (2q + 1) · n/d + 3, (4q + 2) · n/d + 7](2q+1)·n/d,
C3,1 = [0, (2q + 1) · n/d + 1, (4q + 2) · n/d + 4](2q+1)·n/d,
C3,2 = [0, (2q + 1) · n/d + 2, (4q + 2) · n/d + 7](2q+1)·n/d, and
C3,3 = [0, (2q + 1) · n/d− 2, (4q + 2) · n/d + 6](2q+1)·n/d.

Throughout assume W =
⋃q−1

i=0 (Ai
⋃

Di,1
⋃

Di,2) and ε = 0 or 1 according to
whether p ≡ 1, 3 or 0, 2 (mod 4).

Lemma 4.6. There exists a cyclic m-cycle system of X(n,±W ).

Proof. For 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ 4, let Ci,j be an m-cycle of index
(2i + 1) · n/d or (2i + 2) · n/d defined as follows:
If p ≡ 1 or 3 (mod 4), then set

Ci,1 = [0, (2i + 1) · n/d− 1, (4i + 2) · n/d + 3](2i+1)·n/d,
Ci,2 = [0, (2i + 1) · n/d + 2, (4i + 3) · n/d + 4](2i+1)·n/d,
Ci,3 = [0, (2i + 2) · n/d− 2, (4i + 4) · n/d + 3](2i+2)·n/d, and
Ci,4 = [0, (2i + 2) · n/d + 1, (4i + 3) · n/d + 6](2i+2)·n/d.

If p ≡ 0 or 2 (mod 4), then set
Ci,1 = [0, (2i + 1) · n/d− 2, (4i + 3) · n/d + 3](2i+1)·n/d,
Ci,2 = [0, (2i + 1) · n/d + 1, (4i + 2) · n/d + 3](2i+1)·n/d,
Ci,3 = [0, (2i + 2) · n/d− 1, (4i + 3) · n/d + 4](2i+2)·n/d, and
Ci,4 = [0, (2i + 2) · n/d + 2, (4i + 4) · n/d + 6](2i+2)·n/d.

Let C =
⋃q−1

i=0

⋃4
j=1 Ci,j be the union of m-cycles Ci,j (0 ≤ i ≤ q − 1 and

1 ≤ j ≤ 4), we then obtain the thesis since in each case ∂C = ±W .

Proposition 4.7. Suppose m = 3d where d = 6a + 5 for a ≥ 1 and let n be
admissible with gcd(m, n) = d. Then there exists a cyclic m-cycle system of Kn.
Proof. Recall that m ≡ 3 (resp. 1) (mod 4) if a ≡ 0 (resp. 1) (mod 2). The proof is
split into 4 cases according to whether a ≡ 0, 1, 2, or 3 (mod 4).

Case 1. a ≡ 0 (mod 4).
If p ≡ 0 or 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W where U = [3p+1, n/d−
2− ε]

⊎
B

⊎
D∗

i

⊎
F , and [1, 3p]

⋃
U =

⊎p
i=1(Ti

⊎
S1,i).

If p ≡ 2 or 3 (mod 4), then [1, n−1
2 ] = ([1, 3p + 1] \ {3p}) ⊎

U
⊎

W where
U = {3p, 3p+2} ⊎

[3p+3, n/d−2−ε]
⊎

B
⊎

D∗
i

⊎
F , and ([1, 3p+1] \ {3p}) ⋃

U

=
⊎p−1

i=1 (Ti
⊎

S1,i)
⊎

(Tp
⊎

S2).
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By Proposition 2.3, Lemma 4.6, and Theorem 2.6, for each subcase there is a cyclic
m-cycle system of Kn.

Case 2. a ≡ 1 (mod 4).
If p ≡ 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W
⊎

W ∗ where W ∗ = {(2q +
1) ·n/d−1, (2q+1) ·n/d+2, (2q+1) ·n/d+3} and U = [3p+1, n/d−2]

⊎
B

⊎
D∗

i⊎
(F \W ∗); [1, 3p]

⋃
U =

⊎p−1
i=1 (Ti

⊎
S3,i)

⊎
(Tp

⊎
S4).

If p ≡ 2 (mod 4), then [1, n−1
2 ] = ([1, 3p+1] \ {3p}) ⊎

U
⊎

W
⊎

W ∗ whereW ∗

= {3p, 3p+2, (2q+1) ·n/d−2} and U = [3p+3, n/d−3]
⊎

B
⊎

D∗
i

⊎
(F \W ∗);

([1, 3p + 1] \ {3p}) ⋃
U =

⊎p
i=1(Ti

⊎
S3,i).

If p ≡ 3 (mod 4), then [1, n−1
2 ] = ([1, 3p+1] \ {3p}) ⊎

U
⊎

W
⊎

W ∗ whereW ∗

= {(2q+1)·n/d−1, (2q+1)·n/d+2, (2q+1)·n/d+3} and U = {3p, 3p+2} ⊎
[3p+

3, n/d− 2]
⊎

B
⊎

D∗
i

⊎
(F \W ∗); ([1, 3p + 1] \ {3p}) ⋃

U =
⊎p

i=1(Ti
⊎

S3,i).
If p ≡ 0 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W
⊎

W ∗ where W ∗ = {3p +
1, 3p+3, (2q+1) ·n/d−2} and U = {3p+2, 3p+4} ⊎

[3p+5, n/d−3]
⊎

B
⊎

D∗
i⊎

(F \W ∗); [1, 3p]
⋃

U =
⊎p−1

i=1 (Ti
⊎

S3,i)
⊎

(Tp
⊎

S4).
By utilizing Proposition 2.4, Lemmas 4.3, 4.6, and Theorem 2.6, a cyclic m-cycle

system of Kn exists.

Case 3. a ≡ 2 (mod 4).
If p ≡ 0 or 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W
⊎

W ∗ where W ∗ =
{3p+1, 3p+3, (2q+1)·n/d−1−ε, (2q+1)·n/d+2−ε, (2q+1)·n/d+3−ε, (2q+1)·
n/d+4−ε} and U = {3p+2, 3p+4} ⊎

[3p+5, n/d−2−ε]
⊎

B
⊎

D∗
i

⊎
(F \W ∗);

[1, 3p]
⋃

U =
⊎p−1

i=1 (Ti
⊎

S1,i)
⊎

(Tp
⊎

S2).
If p ≡ 2 or 3 (mod 4), then [1, n−1

2 ] = ([1, 3p+1] \ {3p}) ⊎
U

⊎
W

⊎
W ∗ where

W ∗ = {3p, 3p+ 2, (2q + 1) · n/d− 1− ε, (2q + 1) · n/d + 2− ε, (2q + 1) · n/d + 3−
ε, (2q + 1) · n/d + 4 − ε} and U = [3p + 3, n/d − 2 − ε]

⊎
B

⊎
D∗

i

⊎
(F \W ∗);

([1, 3p + 1] \ {3p}) ⋃
U =

⊎p
i=1(Ti

⊎
S1,i).

By virtue of Proposition 2.3, Lemmas 4.4, 4.6, and Theorem 2.6, there is a cyclic
m-cycle system of Kn.

Case 4. a ≡ 3 (mod 4).
If p ≡ 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W
⊎

W ∗ where W ∗ = {3p +
1, 3p + 3} ⊎ {(2q + 1) · n/d − 1, (2q + 1) · n/d + 2, · · · , (2q + 1) · n/d + 7} and
U = {3p + 2, 3p + 4} ⊎

[3p + 5, n/d− 2]
⊎

B
⊎

D∗
i

⊎
(F \W ∗).

If p ≡ 0 (mod 4), then [1, n−1
2 ] = [1, 3p]

⊎
U

⊎
W

⊎
W ∗ whereW ∗ = {(2q+1) ·

n/d−2, (2q+1)·n/d+1, · · · , (2q+1)·n/d+8} and U = [3p+1, n/d−3]
⊎

B
⊎

D∗
i⊎

(F \W ∗).
Then for each subcase, [1, 3p]

⋃
U =

⊎p
i=1(Ti

⊎
S3,i).

If p ≡ 2 (mod 4), then [1, n−1
2 ] = ([1, 3p + 1] \ {3p}) ⊎

U
⊎

W
⊎

W ∗ where
W ∗ = {(2q + 1) · n/d − 2, (2q + 1) · n/d + 1, · · · , (2q + 1) · n/d + 8} and U =
{3p, 3p + 2} ⊎

[3p + 3, n/d− 3]
⊎

B
⊎

D∗
i

⊎
(F \W ∗).

If p ≡ 3 (mod 4), then [1, n−1
2 ] = ([1, 3p + 1] \ {3p}) ⊎

U
⊎

W
⊎

W ∗ where
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W ∗ = {3p, 3p+ 2} ⊎ {(2q + 1) · n/d− 1, (2q + 1) · n/d + 2, · · · , (2q + 1) · n/d + 7}
and U = [3p + 3, n/d− 2]

⊎
B

⊎
D∗

i

⊎
(F \W ∗).

Also, for each subcase, ([1, 3p+1] \ {3p}) ⋃
U =

⊎p−1
i=1 (Ti

⊎
S3,i)

⊎
(Tp

⊎
S4).

According to Proposition 2.4, Lemmas 4.5, 4.6, and Theorem 2.6, it follows that
for each subcase, there is a cyclic m-cycle system of Kn.

Lemma 4.8. Suppose m = 3d where d = 6a + 7 and n = 42a + 49, a ≥ 1. Then
there exists a cyclic m-cycle system of Kn.

Proof. Note that if a ≡ 1 (resp. 0) (mod 2), then m ≡ 3 (resp. 1) (mod 4) and
b = a + 1. Let C1,i, C2,i, C3 be closed m-trails defined as

C1,i = [0, 17 + 14i, 39 + 28i]14+14i,
C2,i = [0, 19 + 14i, 37 + 28i]21+14i, and
C3 = [0, n−5

2 , n+3
2 ]n−7

2
.

It can be checked that both C1,i and C2,i (0 ≤ i ≤ � b
2
 − 1) are m-cycles of index

14 + 14i or 21 + 14i, respectively, and C3 is an m-cycle of index n−7
2 . Moreover,

∂C1,i = ±W1,i where W1,i = {17 + 14i, 22 + 14i, 25 + 14i}, ∂C2,i = ±W2,i where
W2,i = {16 + 14i, 18 + 14i, 19 + 14i} and ∂C3 = ±W3 where W3 = {4, 5, n−5

2 }.
Now, set U = [4, n−1

2 ] \ Y where Y =
⋃� b

2
�−1

i=0 (W1,i
⊎

W2,i) if a ≡ 1 (mod 2)

and Y =
⋃� b

2
�−1

i=0 (W1,i
⊎

W2,i)
⊎

W3 if a ≡ 0 (mod 2). A routine verification shows
that [1, 3]

⋃
U = T1

⊎
S1 if a ≡ 1 (mod 2), and [1, 3]

⋃
U = T1

⊎
S4 if a ≡ 0 (mod

2).
The thesis follows by Propositions 2.3, 2.4, Lemma 2.5, and Theorem 2.6.

Proposition 4.9. Suppose m = 3d where d = 6a + 7 for a ≥ 1 and let n be
admissible with gcd(m, n) = d and n > 2m. Then there exists a cyclic m-cycle
system of Kn.
Proof. Recall that n = 2pm + ds, so, by the hypothesis on d, we have n = (6a +
7)(6p + 1). If p = 1, i.e., n = 42a + 49, the proof is done by Lemma 4.8, so it is
enough to consider the cases where p > 1. The proof is divided into 2 cases according
to whether a ≡ 0 or 1 (mod 2). The proof here is similar to those in Proposition 4.7,
and to simplify, we just provide the construction methods and leave the details to the
reader.

Case 1. a ≡ 0 (mod 2).
Then b = 4q + 1 or 4q + 3.

Subcase 1.1 b = 4q + 1.
If p ≡ 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W
⊎

W ∗ where W ∗ = {(2q +
1) ·n/d−1, (2q+1) ·n/d+2, (2q+1) ·n/d+3} and U = [3p+1, n/d−2]

⊎
B

⊎
D∗

i⊎
(F \W ∗).
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If p ≡ 0 (mod 4), then [1, n−1
2 ] = [1, 3p]

⊎
U

⊎
W

⊎
W ∗ where W ∗ = {3p +

1, 3p+3, (2q+1) ·n/d−2} and U = {3p+2, 3p+4} ⊎
[3p+5, n/d−3]

⊎
B

⊎
D∗

i⊎
(F \W ∗).
If p ≡ 3 (mod 4), then [1, n−1

2 ] = ([1, 3p + 1] \ {3p}) ⊎
U

⊎
W

⊎
W ∗ where

W ∗ = {(2q + 1) · n/d− 1, (2q + 1) · n/d + 2, (2q + 1) · n/d + 3} and U = {3p, 3p +
2} ⊎

[3p + 3, n/d− 2]
⊎

B
⊎

D∗
i

⊎
(F \W ∗).

If p ≡ 2 (mod 4), then [1, n−1
2 ] = ([1, 3p+1] \ {3p}) ⊎

U
⊎

W
⊎

W ∗ whereW ∗

= {3p, 3p+2, (2q+1) ·n/d−2} and U = [3p+3, n/d−3]
⊎

B
⊎

D∗
i

⊎
(F \W ∗).

Subcase 1.2 b = 4q + 3.
If p ≡ 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W
⊎

W ∗ where W ∗ = {3p +
1, 3p + 3, (2q + 1) · n/d − 1, (2q + 1) · n/d + 2, · · · , (2q + 1) · n/d + 7} and U =
{3p + 2, 3p + 4} ⊎

[3p + 5, n/d− 2]
⊎

B
⊎

D∗
i

⊎
(F \W ∗).

If p ≡ 0 (mod 4), then [1, n−1
2 ] = [1, 3p]

⊎
U

⊎
W

⊎
W ∗ whereW ∗ = {(2q+1) ·

n/d−2, (2q+1)·n/d+1, · · · , (2q+1)·n/d+8} and U = [3p+1, n/d−3]
⊎

B
⊎

D∗
i⊎

(F \W ∗).
If p ≡ 3 (mod 4), then [1, n−1

2 ] = ([1, 3p + 1] \ {3p}) ⊎
U

⊎
W

⊎
W ∗ where

W ∗ = {3p, 3p+ 2, (2q + 1) · n/d− 1, (2q + 1) · n/d + 2, · · · , (2q + 1) · n/d + 7} and
U = [3p + 3, n/d− 2]

⊎
B

⊎
D∗

i

⊎
(F \W ∗).

If p ≡ 2 (mod 4), then [1, n−1
2 ] = ([1, 3p + 1] \ {3p}) ⊎

U
⊎

W
⊎

W ∗ where
W ∗ = {(2q + 1) · n/d − 2, (2q + 1) · n/d + 1, · · · , (2q + 1) · n/d + 8} and U =
{3p, 3p + 2} ⊎

[3p + 3, n/d− 3]
⊎

B
⊎

D∗
i

⊎
(F \W ∗).

Case 2. a ≡ 1 (mod 2).
Then b = 4q or 4q + 2.

Subcase 2.1 b = 4q.
If p ≡ 0 or 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W where U = [3p+1, n/d−
2− ε]

⊎
B

⊎
D∗

i

⊎
F .

If p ≡ 2 or 3 (mod 4), then [1, n−1
2 ] = ([1, 3p + 1] \ {3p}) ⊎

U
⊎

W where
U = {3p, 3p + 2} ⊎

[3p + 3, n/d− 2 − ε]
⊎

B
⊎

D∗
i

⊎
F .

Subcase 2.2 b = 4q + 2.
If p ≡ 0 or 1 (mod 4), then [1, n−1

2 ] = [1, 3p]
⊎

U
⊎

W
⊎

W ∗ where W ∗ =
{3p+1, 3p+3, (2q+1) ·n/d−1−ε, (2q+1) ·n/d+2−ε, (2q+1) ·n/d+3−ε, (2q+
1)·n/d+4−ε} and U = {3p+2, 3p+4} ⊎

[3p+5, n/d−2−ε]
⊎

B
⊎

D∗
i

⊎
(F \W ∗).

If p ≡ 2 or 3 (mod 4), then [1, n−1
2 ] = ([1, 3p+1] \ {3p}) ⊎

U
⊎

W
⊎

W ∗ where
W ∗ = {3p, 3p+ 2, (2q + 1) · n/d− 1− ε, (2q + 1) · n/d + 2− ε, (2q + 1) · n/d + 3−
ε, (2q + 1) · n/d + 4− ε} and U = [3p + 3, n/d− 2− ε]

⊎
B

⊎
D∗

i

⊎
(F \W ∗).

Combining Propositions 4.7 and 4.9, we obtain the second main result.

Theorem 4.10. Suppose m = 3d with d a prime and let n be admissible with
gcd(m, n) = d and n > 2m. Then there exists a cyclic m-cycle system of Kn.
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Example 2. There is a cyclic 111-cycle system of K925. Taking m = 111 with d

= 37 and e = 3, by Lemma 4.1, we have that s = 1, b = 6, and n = 222p + 37, and
letting p = 4, it follows that n = 925, n/d = 25, and n−1

2 = 462. Note that in this
situation, q = ε = 1.
Then [1, 462] = [1, 12]

⊎
U

⊎
W

⊎
W ∗ where W = A0

⊎
D0,1

⊎
D0,2 =

{23, 26, 49, 52} ⊎
[27, 30]

⊎
[53, 56],W ∗ = {13, 15, 73, 76, 77, 78}, and U = {14, 16}⊎

[17, 22]
⊎

B
⊎

D∗
0

⊎
(F \W ∗) where B = {24, 25, 50, 51}, D∗

0 = [31, 48]⊎
[57, 72], and F \W ∗ = [74, 75]

⊎
[79, 462].

Since [1, 12]
⋃

U =
⋃3

i=1(Ti
⊎

S1,i)
⊎

(T4
⊎

S2), by Proposition 2.3, a cyclic
111-cycle system of X(925,±([1, 12]

⊎
U)) exists, and by virtue of Lemmas 4.4 and

4.6, we obtain cyclic 111-cycle systems of X(925,±W ∗) and X(925,±W ).
According to Theorem 2.6, a cyclic 111-cycle system of K925 does exist.

Now, by utilizing Theorems 3.4 and 4.10, the thesis of Theorem 1.6 follows.
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