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GEOMETRIC FLOWS ON WARPED PRODUCT MANIFOLD

Wei-Jun Lu

Abstract. We derive one unified formula for Ricci curvature tensor on arbitrary
warped product manifold (WPM) by introducing a new notation for the lift vector
and the Levi-Civita connection. Using well-established formula, we consider two
questions on WPM related to Ricci flow (RF) and hyperbolic geometric flow
(HGF). Firstly, we discuss the preserved flow-type problem which says that when
the first factor (M, g) and the second factor (N, h) are solutions to the RF (or
HGF), the singly WPM M ×λ N is still solution to the RF (or HGF). We obtain
some characteristic PDEs satisfied by warping function and also construct some
simple examples. Next, we discuss the evolution equations for warping function λ
and Ricci curvature tensor etc. under RF/HGF. We gain some interesting results,
especially adding an assumption with Einstein metric to the second factor.

1. INTRODUCTION

From Riemann’s work it appears that he worked with changing metrics mostly by
multiplying them by a function (conformal change). Soon after Riemmann’s discoveries
it was realized that in polar coordinates one can change the metric in a different way,
now referred to as a warped product metric. The concept of warped product metrics
was first introduced by Bishop and O’Neill [5] to construct examples of Riemannian
manifolds with negative curvature. In Riemannian geometry, warped product manifolds
and their generic forms have been used to construct new examples with interesting
curvature properties like Einstein spaces [7, 16] or (locally) symmetric spaces [3]. In
string theory, Yau in [24, P244-245] argued that “...the easiest way to partition the
ten-dimensional space is to cut it cleanly, splitting it into four-dimensional spacetime
and six-dimensional hidden subspace... and in the non-kähler case, the ten-dimensional
spacetime is not a Cartesian product but rather a warped product.”
In this paper, we shall consider the warped product metrics combining with two

types of geometric flows, i.e. Ricci flow (RF) and hyperbolic geometric flow (HGF).
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As we have known, Ricci flow was introduced and studied by Hamilton [15].
This was the first means to study the geometric quantities associated to a metric
g(x, t), (x, t) ∈ M × R as the metric evolves via a PDE, where M is a differen-
tiable manifold. The Ricci flow is a powerful tool to understand the geometry and
topology of some Riemann manifolds. Any solution of Ricci flow equation will help
us to understand its behavior for general cases and the singularity formation, further the
basic topological and geometrical properties as well as analytic properties of the under-
lying manifolds. On the other hand, a hyperbolic Ricci evolution is the Ricci wave, i.e.
hyperbolic geometric flow (HGF) introduced by Kong and Liu [17]. In fact, both RF
and HGF can be viewed as prolongations of the Einstein equation, whose left-hand side
consists of what’s called the modified Ricci tensor. Since the right-hand side of the RF
and HGF equation also includes a key term in the famous Einstein equation–the Ricci
curvature tensor which shows how matter and energy affect the geometry of spacetime,
HGF, RF and Einstein equation can be unified into a single PDEs system as

(1.1) α(x, t)
∂2

∂t2
g(t) + β(x, t)

∂

∂t
g(t) + γ(x, t)g(t)+ 2Ricg(t) = 0,

where α(x, t), β(x, t), γ(x, t) are certain smooth functions ([17], [14]). It is easy
to see from (1.1) that the above three cases correspond to “α(x, t) = 1, β(x, t) =
γ(x, t) = 0”, “α(x, t) = 0, β(x, t) = 1, γ(x, t) = 0” and “α(x, t) = 0, β(x, t) =
0, γ(x, t) = const”, respectively.
Recently, there has been some progress on the topic of combining geometric flow

with warped product manifolds. For instance, Ma and Xu in [19] showed that the
negative curvature is preserved in the deformation of hyperbolic warped product met-
rics under RF by such example: M = R+ × Nn with the product metric g(t) =
ϕ(x, t)2dx2 + ψ(x, t)2ĝ, where (Nn, ĝ) is an Einstein manifold of dimension n ≥ 2,
ϕ(x) and ψ(x) are two smooth positive functions of the variable x > 0. Xu and Ma’s
work is mainly inspired from the work of Simon [23]. Das, Prabhu and Kar in their
work [12] mainly considered the evolution under RF of the warped product R

1 ×M

with line element of the form

ds2 = e2f (σ, λ)(−dt2 + dx2 + dy2 + dz2) + r2c(σ, λ)dσ2

and the behavior of f by solving the flow equations, whereM is Minkowski spacetime
and R

1 is the real line, λ is flow parameter. Especially, Simon [23] characterized the
local existence of Ricci flow on the complete non-compact manifold X = (R, h) ×
(Nn, γ) with warped product metric g(x, q) = h(x) ⊕ r2(x)γ(q) and showed that if
g0(x, q) = h0(x)⊕ r20(x)γ(q) is arbitrary warped product metric which satisfies some
certain conditions⎧⎨

⎩
sup
x∈R

(h0)xx <∞, inf
x∈R

(h0)xx > 0, inf
x∈R

r0(x) > 0,

sup
x∈R

(|( ∂
∂x)jh0(x)|+ |( ∂

∂x)j log r0(x)|
)
<∞, ∀j ∈ {1, 2, . . .},
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then there exists a unique warped product solution g(x, q, t) = h(x, t)⊕ r2(x, t)γ(q),
t ∈ [0, T ) to the Ricci flow

∂

∂t
g(t) = −Ricg(t), g(0) = g0, t ∈ [0, T ).

For more detail we refer to see Theorem 3.1 in [23].
Motivated by [19, 23] and [12], we are interested in the behavior of geometric

flows associated to the general WPMM = (M1, g1)×λ (M2, g2). Combining a known
fact that “if (M1, g1(t)) and (M2, g2(t) are solutions of the Ricci flow on a common
time, then their direct product (M1 ×M2, g1(t) + g2(t)) is a solution to the Ricci
flow” (see Exercise 2.5 in [10], p. 99), we naturally want to generalize this result to
warped product manifold and even to hyperbolic geometric flow as well. Note that
the Ricci curvature tensor on WPM is of crucial role in studying the Ricci flow and
hyperbolic geometric flow, we first integrate the separated Ricci curvature formula in
previous academic literature, since these old formulas about Riemann curvature and
Ricci curvature are split into several parts according to the horizontal lift or vertical
lift of the tangent vectors attached to M1 or M2 (see Propositions 2.3 and 2.4). To
better study the RF and HGF associated to WPM, regardless of the tangent vectors
are attached to horizontal lift or vertical lift, we have to derive out one formula as a
whole. By introducing a new notation for lift vector (see Proposition 2.5, Remark 2.6)
and Levi-Civita connection ∇̄ over M , we derive a unified formula (2.6) for Ricci
curvature and scalar curvature (see Theorem 2.9). Using this unified Ricci curvature
formula, we consider the behavior of warping function under the RF and under HGF
on warped product manifold M (unnecessarily compact) and give two main results
about preserved flow-type condition (Theorem 3.2, Theorem 4.2), which assert that the
warping function λ should satisfy a characteristic equation when the warped product
metric ḡ(x, y, t) = g1(x, t)⊕ λ2(x, t)g2(y, t) is also a solution to the RF (resp. HGF),
where g1(x, t) and g2(y, t) are respectively solutions to the RF (resp. HGF) .
Considering one may worry about that these equations have no any solution λ,

we make some appropriate illustration. We employ the following two strategies for
overcoming this obstruction: one is by appealing to the known short-time existence
theorem of geometric flows (in compact case, refer to [15, 13, 11]; in complete no-
compact case, refer to [22]); another is to get some sense by constructing some specific
examples (see Example 3.6 and Example 4.6), whose ideas mainly come from [21, 23,
1, 19].
In addition, in order to understand how the curvature on warped product manifold

is evolving and behaving , using the unified Ricci curvature formula (2.6) we also
consider the evolution equations along the RF and HGF. On general WPM, we derive
two results: (1) the evolution equations for metric and warping function, see Proposition
5.1 and Proposition 5.3; and (2) the Ricci curvature evolution equations (5.7), (5.8) in
Theorem 5.4. On a specific warped product manifold whose warped product metric is
of the form ḡ(x, y, t) = g1(x, t)⊕λ2(x, t)g2(y, t)

)
with a fixed Einstein metric g2, we
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gain the more interesting evolution equations for Ricci curvature and special function
f(x, t), see (5.22) and (5.27) in Theorem 5.6 and Theorem 5.7.
The organization of this paper is below. In Section 2, we recall some preliminary

results and derive out three unified formulas for Riemannian curvature, Ricci curvature
and scalar curvature on WPM. Section 3 is devoted to characterize the behavior of
warping function under the Ricci flow. We give a preserved Ricci flow-type condition
for the warping function λ, including the elaboration on the short-time existence of
warped product metric solution to the RF. Furthermore, we also construct some ex-
amples. Section 4 is parallel to Section 3. A distinction between them is in that the
considered flow is HGF but not RF. In the last section, we discuss evolution equations
of warping function and Ricci curvature on general and specific WPM under the RF/
HGF.

2. UNIFIED RICCI TENSOR FORMULA ON WPM

Before studying the RF and HGF of warped product metrics, we need to deduce
the crucial formula for Ricci tensor from the split form to united form on WPM. We
do this by the construct of the connection. As we will see, this unified Ricci tensor
formula simplifies the study of curvature tensors associated to warped product metrics,
and also allows us to find explicit formulas for RF and HGF with respect to a given
underlying warped product manifolds.
We first introduce background knowledge on warped product manifolds, see [5, 20]

for detail.

2.1. Basics of warped products

Let M1 and M2 be Riemannian manifolds equipped with Riemannian metrics g1
and g2, respectively, and let λ be a strictly positive real function on M1. Consider
the product manifold M1 ×M2 with its natural projections π1 : M1 ×M2 →M1 and
π2 : M1 ×M2 →M2.
The warped product manifoldM = M1 ×λM2 is the manifoldM1×M2 equipped

with the Riemannian metric ḡ = g1 ⊕ λ2g2 defined by

ḡ(X, Y ) = g1(dπ1(X), dπ1(Y )) + λ2g2(dπ2(X), dπ2(Y ))

for any tangent vectors X, Y ∈ T(p,q)(M1×M2). The function λ is called the warping
function of the warped product. When λ = 1, M1 ×λ M2 is a direct product.
For a warped product manifold M1 ×λ M2, M1 is called the base and M2 the

fiber. The fibers p ×M2 = π−1
1 (p) and the leaves M1 × q = π−1

2 (q) are Riemannian
submanifolds of M . Vectors tangent to leaves are called horizontal and those tangent
to fibers are called vertical. We denote byH the orthogonal projection of T(p,q)M onto
its horizontal subspace T(p,q)M1×q, and by V the projection onto the vertical subspace
T(p,q)p×M2.
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If v ∈ TpM1, p ∈ M1 and q ∈ M2, then the lift ṽ of v to (p, q) is the unique
vector in T(p,q)M1 = T(p,q)M1×q ⊂ T(p,q)M such that dπ1(ṽ) = v. For a vector field
X ∈ X(M1), the lift of X toM is the vector field X̃ whose value at each (p, q) is the
lift of Xp to (p, q). The set of all such horizontal lifts is denoted by L(M1). Similarly,
we denote by L(M2) the set of all vertical lifts.
We state some known results below.

Proposition 2.1. (1) If X̃, Ỹ ∈ L(M1) then

[X̃, Ỹ ] = [X, Y ]∼ ∈ L(M1);

(2) If Ũ , Ṽ ∈ L(M2) then

[Ũ , Ṽ ] = [U, V ]∼ ∈ L(M2);

(3) If X̃ ∈ L(M1) and Ṽ ∈ L(M2) then [X̃, Ṽ ] = 0.

Proposition 2.2. ([20], Prop.35, P206). On M , if X, Y ∈ L(M1) and V,W ∈
L(M2), then

(1) ∇̄XY ∈ L(M1) is the lift of M1∇XY on M1;
(2) ∇̄XV = ∇̄VX = Xλ

λ V .
(3) nor∇̄VW = II(V,W ) = −<V,W>

λ gradλ, where
nor : H → T(p,q)(M1 × q) =

(
T(p,q)p×M2

)⊥
.

(4) tan∇̄VW ∈ L(M2) is the lift of M2∇VW on M2, where

tan : V → T(p,q)(p×M2).

Let M1R and M2R be the lifts on M of the Riemannian curvature tensors of M1

and M2, respectively. Since the projection π1 is an isometry on each leaf, M1R gives
the Riemannian curvature of each leaf. The corresponding assertion holds for M2R,
since the projection π2 is a homothety. Because leaves are totally geodesic, M1R agrees
with the curvature tensor R̄ of M on horizontal vectors. This time the corresponding
assertion fails for M2R and R̄, since fibers are in general only umbilic. In addition,
for convenience the alternative notation R̄(X, Y )Z is R̄XY Z.

Proposition 2.3. ([20], Prop.42, P210). Let M be a warped product manifold, if
X, Y, Z ∈ L(M1) and U, V,W ∈ L(M2), then

(1) R̄XY Z ∈ L(M1) is the lift of M1RXY Z on M1;
(2) R̄V XY =

(
Hess(λ)(X, Y )/λ

)
V .

(3) R̄XY V = R̄V WX = 0.

(4) R̄XVW = ḡ(V,W )
λ ∇̄Xgradλ.

(5) R̄V WU = M2RV WU − 1
λ2 ḡ(gradλ, gradλ)

(
ḡ(V, U)W − ḡ(W,U)V

)
.
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Writing M1Ric for the lift (pullback by π1 : M → M1) of the Ricci curvature of
M1, and similarly for M2Ric.

Proposition 2.4. ([20],Corollary 43, P211). On a warped product M with m2 =
dimM2 > 1, let X, Y be horizontal and V,W vertical. Then

(1) Ric(X, Y ) = M1Ric(X, Y )− m2
λ Hess(λ)(X, Y ).

(2) Ric(X, V ) = 0.
(3) Ric(V,W ) = M2Ric(V,W )− ḡ(V,W )λ#, where

λ# =
Δλ
λ

+ (m2 − 1)
ḡ(gradλ, gradλ)

λ2

and Δλ = Tr(Hess(λ)) is the Laplacian on M1.

2.2. The unified formulas for Ricci curvature

From the precious subsection we have seen that the formulas about Riemann cur-
vature and Ricci curvature are split into several parts according to the horizontal lift or
vertical lift of the tangent vectors attached to M1 or M2. To better study the RF and
HGF associated to WPM, we found it is necessary to derive out one unified formula
for Ricci tensor, no matter how the lift vectors are either horizontal or vertical. For this
we first introduc the unified connection and unified Riemannian curvature on a general
warped product manifoldM ( cf. [3], [4]) by introducing a new notation of lift vector.

Proposition 2.5. Let X = (X1, X2), Y = (Y1, Y2) ∈ X(M), where X1, Y1 ∈
X(M1) and X2, Y2 ∈ X(M2). Denote ∇ by the Levi-Civita connection on the Rie-
mannian product M1 ×M2 with respect to the direct product metric g = g1 ⊕ g2 and
by R its curvature tensor field. Then the Levi-Civita connection ∇̄ of M is given by

(2.1)

∇̄XY = ∇XY +
1

2λ2
X1(λ2)(0, Y2)

+
1

2λ2
Y1(λ2)(0, X2) − 1

2
g2(X2, Y2)(grad λ2, 0)

=
(

M1∇X1Y1 − 1
2
g2(X2, Y2)grad λ2, 0

)
+

(
0, M2∇X2Y2 +

1
2λ2

X1(λ2)Y2 +
1

2λ2
Y1(λ2)X2

)
,

and the relation between the curvature tensor fields of M and M1 ×M2 is

R̄XY − RXY

=
1

2λ2

{(
M1∇Y1gradg1λ

2 − 1
2λ2

Y1(λ2)gradg1λ
2, 0

)
∧ḡ (0, X2)

−
(

M1∇X1gradg1λ
2 − 1

2λ2
X1(λ2)gradg1λ

2, 0
)
∧ḡ (0, Y2)

− 1
2λ2

|gradg1λ
2|2(0, X2) ∧ḡ (0, Y2)

}
(2.2)
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where the wedge product (X ∧ḡ Y )Z = ḡ(Y, Z)X − ḡ(X,Z)Y , for all X, Y, Z ∈
X(M).

Remark 2.6. We can easily show that the four cases in Proposition 2.2 can be
integrated to one form as (2.1), where we denote the lifts of X1 ∈ X(M1), X2 ∈ X(M2)
by (X1, 0), (0,X2) ∈ X(M). For example,

∇̄(X1,0)(Y1, 0) = ( M2∇X1Y1, 0) = lift of M1∇X1Y1,

∇̄(X1,0)(0, V2) = ∇̄(0,V2)(X1, 0) =
X1(λ)
λ

(0, V2),

∇̄(0,V2)(0, W2) = (−1
2
g2(V2, W2)grad λ2, 0) + (0, M2∇V2W2),

nor∇̄(0,V2)(0, W2) = −1
2
g2(V2, W2)(gradλ2, 0)

= − ḡ((0, V2), (0, W2))
λ

(gradλ, 0),

tan∇̄(0,V2)(0, W2) = (0, M2∇V2W2) = lift of M2∇V2W2.

From (2.2), we easily obtain

Proposition 2.7.

R̄(X1,X2)(Y1,Y2)(Z1, Z2)

= ( M1RX1Y1Z1,
M2RX2Y2Z2)

+
1
2
g2(X2, Z2)

(
M1∇Y1grad λ2 − 1

2λ2
Y1(λ2)grad λ2, 0

)

− 1
2
g2(Y2, Z2)

(
M1∇X1grad λ2 − 1

2λ2
X1(λ2)grad λ2, 0

)

+
(
0,

1
2λ2

g1( M1∇X1grad λ2 − 1
2λ2

X1(λ2)grad λ2, Z1)Y2

)

−
(
0,

1
2λ2

g1( M1∇Y1grad λ2 − 1
2λ2

Y1(λ2)grad λ2, Z1)X2

)

+
(
0,

1
4λ2

| grad λ2 |2 g2(X2, Z2)Y2

)

− (
0,

1
4λ2

| grad λ2 |2 g2(Y2, Z2)X2

)
.

(2.3)

Corollary 2.8.

R̄(X1,X2)(Y1,Y2)(Z1, Z2)

= ( M1RX1Y1Z1,
M2RX2Y2Z2)

+ λg2(X2, Z2)
(

M1∇Y1grad λ, 0
)− λg2(Y2, Z2)

(
M1∇X1grad λ, 0

)
+

1
λ

Hess(λ)(X1, Z1)(0, Y2) − 1
λ

Hess(λ)(Y1, Z1)(0, X2)

+ | grad λ |2 g2(X2, Z2)(0, Y2)− | grad λ |2 g2(Y2, Z2)(0, X2).

(2.4)
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Proof. Note that

M1∇X1grad λ2 − 1
2λ2

X1(λ2)grad λ2

= M1∇X1(2λgrad λ)− 1
2λ2

2λX1(λ)2λgrad λ

= 2λM1∇X1grad λ

and

1
2λ2

g1

(
M1∇X1grad λ2 − 1

2λ2
X1(λ2)grad λ2, Z1

)

=
1
λ
g1

(
M1∇X1grad λ, Z1

)

=
1
λ

Hess(λ)(X1, Z1).

Exchanging X1 with Y1, we obtain

M1∇Y1grad λ2 − 1
2λ2

Y1(λ2)grad λ2 = 2λM1∇Y1grad λ,

1
2λ2

g1

(
M1∇Y1grad λ2 − 1

2λ2
Y1(λ2)grad λ2, Z1

)
=

1
λ

Hess(λ)(Y1, Z1).

Putting these facts together, (2.3) can reduce to

R̄(X1,X2)(Y1,Y2)(Z1, Z2)

= ( M1RX1Y1Z1,
M2RX2Y2Z2)

+ λg2(X2, Z2)
(

M1∇Y1grad λ, 0
)− λg2(Y2, Z2)

(
M1∇X1grad λ, 0

)
+

1
λ

Hess(λ)(X1, Z1)(0, Y2) − 1
λ

Hess(λ)(Y1, Z1)(0, X2)

+ | grad λ |2 g2(X2, Z2)(0, Y2)− | grad λ |2 g2(Y2, Z2)(0, X2),

as claimed (2.4).

Thus we have the unified formulas for (0,4)-type Riemannian curvature tensor Rm,
Ricci curvature Ric and saclar curvature Scal.

Theorem 2.9. On a warped product M with m2 = dimM2 ≥ 2. Let (X1, X2),
(Y1, Y2), (Z1, Z2), (W1, W2) ∈ X(M). Then
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(i) (0,4)-type Riemannian curvature tensor Rm satisfies

Rm
(
(W1, W2), (Z1, Z2), (X1, X2), (Y1, Y2)

)
= M1Rm(W1, Z1, X1, Y1) + λ2 M2Rm(W2, Z2, X2, Y2)

+ λHess(λ)(Y1, W1)g2(X2, Z2) − λHess(λ)(X1, W1)g2(Y2, Z2)
+ λHess(λ)(X1, Z1)g2(W2, Y2) − λHess(λ)(Y1, Z1)g2(W2, X2)

+ λ2 | grad λ |2 g2(X2, Z2)g2(W2, Y2)

− λ2 | grad λ |2 g2(Y2, Z2)g2(W2, X2).

(2.5)

(ii) The Ricci curvature tensor Ric satisfies

Ric
(
(X1, X2), (Y1, Y2)

)
= M1Ric(X1, Y1) + M2Ric(X2, Y2)

− λg2(X2, Y2)ΔM1λ− m2

λ
Hess(λ)(X1, Y1)

− (m2 − 1) | grad λ |2 g2(X2, Y2).

(2.6)

(iii) The scalar curvature Scal is

Scal = M1Scal +
1
λ2

M2Scal

− 2m2

λ
ΔM1λ− m2(m2 − 1)

λ2
| grad λ |2 .

(2.7)

Proof. (i) Note that

Rm
(
(W1, W2), (Z1, Z2), (X1, X2), (Y1, Y2)

)
= ḡ

(
(W1, W2), R̄(X1,X2)(Y1,Y2)(Z1, Z2)

)
and ḡ = g1⊕λ2g2. By (2.4) and the property of Hess(λ), we immediately obtain (2.5).
As to the assertions (ii) and (iii), let {ej}m1

j=1 be a local orthonormal frame on
(M1, g1) and {ēα}m2

α=1 on (M2, g2). Then {(ej, 0), (0, 1
λ ēα)}j=1,...,m1,α=1,...,m2 forms

a local orthonormal frame on M . By the definition of Ricci curvature, we have

Ric
(
(X1, X2), (Y1, Y2)

)
=

m1∑
i=1

Rm
(
(ei, 0), (X1, X2), (ei, 0), (Y1, Y2)

)

+
m2∑
α=1

Rm
(
(0,

1
λ
ēα), (X1, X2), (0,

1
λ
ēα).(Y1, Y2)

)(2.8)

By substituting (2.5) into (2.8) and keeping in mind the relation
∑

α g2(ēα, X2)g2(ēα, Y2) =
g2(

∑
α g2(ēα, X2)ēα, Y2) = g2(X2, Y2), (2.6) follows.

Furthermore, since the scalar curvature Scal satisfies

Scal =
m1∑
i=1

Ric
(
(ei, 0), (ei, 0)

)
+

m2∑
α=1

Ric
(
(0,

1
λ
ēα), (0,

1
λ
ēα)

)
,(2.9)

substituting (2.6) into (2.9) gives (2.7).
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Remark 2.10. It is not hard to verify that the three cases in Theorem (2.9) agree
with the results in Propositions 2.3 and 2.4. For instance, by (2.6), we have

Ric
(
(0, V ), (0, W )

)
= M2Ric(V,W )− λg2(V,W )ΔM1λ− (m2 − 1) | grad λ |2g1

g2(V,W )

= M2Ric(V,W )−
(

1
λ

ΔM1λ+
m2 − 1
λ2

| grad λ |2ḡ
)
ḡ(V,W ),

which is consistent with the third case (3) in Proposition 2.4.

Remark 2.11. Since (2.6) and (2.7) contain a term with factor (m2 − 1), to avoid
trivial case, the dimension of M2 is restricted to m2 ≥ 2.

3. THE BEHAVIOR OF WARPING FUNCTION UNDER RICCI FLOW

In this section, we shall use the unified version of Ricci curvature formula in the
previous section to characterize the behavior of warping function under Ricci flow.
More specifically, we wish to determine a certain condition which a smooth warping
function satisfies such that the warped product metric is the solution to the correspond-
ing Ricci flow.
Before we launch the issue, let us state the definition of the Ricci flow [15, 8].

Definition 3.1. Let M be a manifold, and let g(t), t ∈ [0, T ), be a one-parameter
family of Riemannian metrics on M . We say that g(t) is a solution to the Rici flow if

(3.1)
∂

∂t
g(t) = −2Ric.

For the warped product metrics, the Ricci flow is the evolution equation

(3.2)
∂ḡ(x, y, t)

∂t
= −2Ric

for a one-parameter family of Riemannian metrics ḡ(t), t ∈ [0, T̄) on M .
For behavior of the warping function on warped product manifold under RF, we

have the following main result.

Theorem 3.2. Suppose that Riemannian manifold (M1, g1) is compact (or complete
non-compact) and (M2, g2) is compact. Let (M1, g1(t)) and (M2, g2(t) be solutions
to the Ricci flow on a common time interval [0, T̄). Then the warped product metric
ḡ(t) = g1(x, t)⊕ λ2(x, t)g2(y, t) is a solution to the Ricci flow (3.2) if and only if the
warping function λ = λ(x, t), t ∈ [0, T̄ ) satisfies

∂λ2(x, t)
∂t

g2(X2, Y2) = 2(λ2 − 1) M2Ric(X2, Y2) + 2λg2(X2, Y2)ΔM1λ

+ 2
m2

λ
Hess(λ)(X1, Y1) + 2(m2 − 1) | grad λ |2 g2(X2, Y2),

(3.3)
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for all X1, Y1 ∈ X(M1), X2, Y2 ∈ X(M2). In particular, at least a necessary condition
is

∂λ(x, t)
∂t

−
(

1 +
m2

m1λ2

)
ΔM1λ− m2 − 1

λ
| grad λ |2= λ2 − 1

m2λ
M2Scal,(3.4)

where mi = dimMi.

Proof. Since gi(t), i = 1, 2 satisfy

∂g1(t)
∂t

= −2 M1Ric, t ∈ [0, T1),

∂g2(t)
∂t

= −2 M2Ric, t ∈ [0, T2),

we have the derivative of ḡ(t) with respect to the flow parameter t

∂

∂t
(ḡ(t))

(
(X1, X2), (Y1, Y2)

)

=
(∂g1(t)

∂t
⊕ (

λ2∂g2(t)
∂t

+
∂λ2

∂t
g2(t)

))(
(X1, X2), (Y1, Y2)

)

= −2 M1Ric(X1, Y1)− 2λ2 M2Ric(X2, Y2) +
∂λ2

∂t
g2(t)(X2, Y2).

(3.5)

Putting this with (2.6) together, we can easily show that ḡ(x, y, t) is a solution to (3.2),
t ∈ [0, T̄ = min(T1, T2) ) if and only if λ(x, t) satisfies

∂λ2(x, t)
∂t

g2(X2, Y2) = 2(λ2 − 1) M2Ric(X2, Y2) + 2λg2(X2, Y2)ΔM1λ

+ 2
m2

λ
Hess(λ)(X1, Y1) + 2(m2 − 1) | grad λ |2 g2(X2, Y2).

(3.6)

On one hand, by the symmetry of M2Ric, we can choose an orthonormal basis {ēα}
on M2 such that M2Ric(ēα, ēβ) = 0 , α �= β. Thus (3.6) reduces to

(3.7)
m2

λ
Hess(λ)(X1, Y1) = 0.

As only necessary condition, on the other hand, by taking trace in both sides of
(3.6) with respect to g1 and g2, and noting that ΔM1λ = Trg1Hess(λ), M2Scal =
Trg2

M2Ric, we conclude that (3.6) is equivalent to

2m1m2λ
∂λ

∂t
= 2m1(λ2 − 1) M2Scal + 2λm1m2ΔM1λ

+ 2
m2

2

λ
ΔM1λ+ 2m1m2(m2 − 1) | grad λ |2,

(3.8)

Clearly, (3.7) is included in (3.8). Thus, we complete the proof.
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Remark 3.3. (1) If M1 is compact, then from (3.3) or (3.4), then we immediately
see that λ is a constant function in term to M1.
(2) In Theorem 3.2, we don’t stress that M is compact or complete non-compact.
Assume that M1 is non-compact complete manifold and M2 is compact, then M is
complete non-compact. At this point we need to add a initial metric ḡ0 = (g1)0(x) ⊕
λ2(x, 0)(g2)0(y) such that R̄g0 has a boundary.

Now we concern about two questions: 1. Does the PDE (3.3) have any solution?
2. How many degrees of freedom for the warping function λ are there?
In deed, it is easily seen that (3.4) doesn’t follow from standard PDE theory. (3.4)

tells us that the terms on its left-hand side only consist of the points in the first factor
manifold M1 and flow parameter t whereas those on its right-hand side consist of
the points in the second factor manifold M2 besides t, thus one worries that such
complicated nonlinear PDE (3.4) may have no any solution λ.
As for degrees of freedom for the warping function λ, we first consider the simplest

cases:

(i) If λ is constant, then from (3.3) or (3.4), then we easily observe that λ = ±1.
Since λ is positive, thus λ = 1, which implies thatM is exactly a direct product
manifold. This is true.

(ii) AssumeM2 has constant scalar curvature, then (3.4) no longer involves the point
of M2. This should be a kernel heat equation, of course it must have solution.

The next two theorems naturally give a guarantee for existence of solution to (3.3)
or (3.4) as long as there exists a warped product solution ḡ(t) to the RF. From the short-
time existence and uniqueness result for Ricci flow on a compact manifold [15, 13],
we give the corresponding version for WPM.

Theorem 3.4. Let
(
M1 ×M2, (ḡ0)ijαβ(x, y) := (g1)0ij(x, t) + λ2(x)(g2)0αβ(y, t)

)
be a compact Riemannian manifold. Then there exists a constant T̄ > 0 such that the
initial value problem

⎧⎨
⎩

∂

∂t
(ḡijαβ(x, y, t)) = −2Ricijαβ(x, y, t)

ḡijαβ(x, y, 0) = (ḡ0)ijαβ(x, y)

has a unique smooth solution ḡijαβ(x, y, t) = (g1)ij(x, t) ⊕ λ2(x, t)(g2)αβ(y, t) on
M × [0, T̄ ), where Ricijαβ(x, y, t) := M1Ricij(x, t) + λ2(x, t) M2Ricαβ(y, t).

On a non-compact complete manifoldM , we only require the short-time existence
established by Shi [22]. The following result is modified to the warped product case
according to the version of Shi.
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Theorem 3.5. Let
(
M1×M2, ḡ0(x, y) = (g1)0(x)⊕λ2

0(x)(g2)
0(y)

)
be a complete

noncompact Riemannian manifold of dimension m1 + m2 with bounded curvature.
Then there exists a constant T̄ > 0 such that the initial value problem⎧⎨

⎩
∂

∂t
(ḡijαβ(x, y, t)) = −2Ricijαβ(x, y, t),

ḡijαβ(x, y, 0) = (g1)0ij(x) ⊕ λ2
0(x)(g2)

0
αβ(y)

has a smooth solution ḡijαβ(x, y, t) = (g1)ij(x, t)⊕λ2(x, t)(g2)αβ(y, t) onM× [0, T̄ ]
with uniformly bounded curvature.

Now we construct a relatively simple example.

Example 3.6. Let M1 = R with flat metric g1 = h(x) = μ2(x)dx2 ( μ(x) is
a smooth positive function ) and M2 = Sn (n ≥ 2) with the standard metric which
implies M2 admits an Einstein metric g2 = λ2(x)gSn. By the main result in [23],
under some constraints for initial values, there exists warping functions λ(x, t) and a
maximal constant T such that warped product solution

ḡ(x, y) = h(x, t)⊕ λ2(x, t)gSn(y), t ∈ [0, T )

to the RF (3.2). Of course, we don’t write λ(x, t) as explicit form. On M = R × Sn,
the warped product metric ḡ = μ2(x)dx2 ⊕ λ2(x)gSn can be read as

ḡ(s, y) = ds2 ⊕ λ2(s)gSn(y),

where s =
∫ x
0 μ(x)dx is the arc-length parameter. Then the sectional curvatures of

planes containing or perpendicular to the radical vector ∂
∂s = 1

μ(x)
∂
∂x are respectively (

cf. Chap.3 in [21], or [1, 19] )

Krad = −λss

λ
, Ksph =

1 − λ2
s

λ2
,

and the Ricci tensor is

Ric = −nμλxx−λxμx

λμ
dx2 ⊕

(
−λμλxx+(n−1)μλ2

x−λλxμx

μ3
+n−1

)
gSn

= −nλss

λ
ds2 ⊕

(
(n− 1)

(
1− λ2

s

) − λλss

)
gSn

= nKradds
2 ⊕ (Krad + (n− 1)Ksph)λ2(s)gSn .

(3.9)

Since dx2 and gSn are independent of t, a direct computation gives
∂

∂t

(
μ2(x, t)dx2 ⊕ λ2(x, t)gSn(y)

)
= 2μμtdx

2 ⊕ 2λλtgSn

= 2
μt

μ
ds2 ⊕ 2λλtgSn .

(3.10)
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Hence if the warped product metrics ḡ(x, y, t) = μ2(x, t)dx2 ⊕ λ2(x, t)gSn(y) is a
solution to the Ricci flow (3.2), then substituting (3.9) and (3.10) into (3.2) immediately
yields

(3.11)

⎧⎪⎨
⎪⎩

λt

λ
= −(

Krad + (n− 1)Ksph

)
,

μt

μ
= −nKrad,

which happens to be

(3.12)

⎧⎪⎨
⎪⎩

∂ logλ
∂t

= −(
Krad + (n− 1)Ksph

)
,

∂ logμ
∂t

= −nKrad.

Since the sectional curvature functions Krad and Ksph are uniform bound ( see the
proof of Theorem 1.2 in [19] ), we integrate (3.12) over the time interval [0, t], t < T
and get the functions⎧⎨

⎩
λ(x, t) = λ(x, 0)e−

∫ t
0

(
Krad+(n−1)Ksph

)
dt,

μ(x, t) = μ(x, 0)e−n
∫ t
0 Kraddt.

4. THE BEHAVIOR OF WARPING FUNCTION UNDER HGF

We now investigate the behavior of warping function under the hyperbolic geometric
flow.
Recall that Kong and Liu [17] introduced a geometric flow called hyperbolic geo-

metric flow (HGF) whose definition is as follows.

Definition 4.1. Let M be a Riemannian manifold. The hyperbolic geometric flow
is the evolution equation

(4.1)
∂2

∂t2
g(t) = −2Ric

for a one-parameter family of Riemannian metrics g(t), t ∈ [0, T ) on M . We say that
g(t) is a solution to the hyperbolic geometric flow if it satisfies (4.1).

When M is exchanged for our warped product manifold M , the corresponding
HGF is

(4.2)
∂2

∂t2
ḡ(t) = −2Ric.

In this case, similar to Theorem 3.2 we have a result with preserved flow-type condition
as follows.
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Theorem 4.2. Suppose that Riemannian manifold (M1, g) is compact (or complete
non-compact) and M2 is compact. If (M1, g1(t)) and (M2, g2(t) are the solution to
the HGF on a common time interval I , respectively, then the warped product metric
ḡ(x, y, t) = g1(x, t)⊕ λ2(x, t)g2(y, t) is a solution to the HGF (4.2) if and only if the
warped product function λ = λ(x, t), t ∈ I satisfies

m2

2
∂2λ2

∂t2
− (λ2 +m2)m2

λ
ΔM1λ−m2(m2 − 1) | grad λ |2

= (λ2 − 1) M2Scal − Trg2

(∂g2
∂t

)∂λ2

∂t

(4.3)

and

(4.4) m1
∂λ2

∂t

∂g2(t)
∂t

(ēα, ēβ) +
m2

λ
ΔM1λ = 0, α �= β,

where {ēα} is an orthonormal basis on M2 such that M2Ric(ēα, ēβ) = 0.

Proof. Since gi(t), i = 1, 2 satisfy

∂2g1(t)
∂t2

= −2 M1Ric,

∂2g2(t)
∂t2

= −2 M2Ric, t ∈ I,

we have

∂2ḡ(t)
∂t2

(
(X1, X2), (Y1, Y2)

)

=
∂2g1(t)
∂t2

(X1, Y1) + λ2∂
2g2(t)
∂t2

(X2, Y2)

+ 2
∂λ2

∂t

∂g2(t)
∂t

(X2, Y2) +
∂2λ2

∂t2
g2(t)(X2, Y2)

= −2 M1Ric(X1, Y1) − 2λ2 M2Ric(X2, Y2)

+ 2
∂λ2

∂t

∂g2(t)
∂t

(X2, Y2) +
∂2λ2

∂t2
g2(t)(X2, Y2).

Combining this and (2.6), we easily see that ḡ(x, y, t) is the solution to (4.2) if and
only if λ = λ(x, y, t) satisfies

∂2λ2

∂t2
g2(t)(X2, Y2) + 2

∂λ2

∂t

∂g2(t)
∂t

(X2, Y2)

= (2λ2 − 2) M2Ric(X2, Y2) + 2λΔM1λg2(X2, Y2)

+
2m2

λ
Hess(λ)(X1, Y1) + 2(m2 − 1) | gradλ |2 g2(X2, Y2).

(4.5)
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After we choose an orthonormal basis {ēα} on M2 such that M2Ric(ēα, ēβ) = 0 ,
α �= β, (4.5) reduces to

(4.6)
∂λ2

∂t

∂g2(t)
∂t

(ēα, ēβ) =
m2

λ
Hess(λ)(X1, Y1).

Further trace it with respect to g1, we get

m1
∂λ2

∂t

∂g2(t)
∂t

(ēα, ēβ) =
m2

λ
ΔM1λ, α �= β,

which is just (4.4).
On the other hand, by taking trace in both sides of (4.5) with respect to g1 and g2,

we can reduce (4.5) to

m1m2
∂2λ2

∂t2
+ 2m1

∂λ2

∂t
Trg2

(∂g2(t)
∂t

)
= 2m1(λ2 − 1) M2Scal + 2λm1m2ΔM1λ

+
2m1m

2
2

λ
ΔM1λ+ 2m1m2(m2 − 1) | grad λ |2,

which implies (4.3).

Obviously, the equation (4.3) is analogous to the previous equation (3.3) or (3.4) but
much more complicated. This is manifested chiefly by the second-order derivative term
∂2λ2

∂t2
and the extra term Trg2

(∂g2(t)
∂t

)
without carrying given information. Therefore

one may worry about the equation (4.3) has no any solution and makes no any sense.
Indeed, it need’t worry, because the short-time existence result for HGF on a compact
manifold (see Theorem 1.1 in [11]) can provide us an evidence. We give its version
related to WPM as follows.

Theorem 4.3. Let
(
M1 ×M2, ḡ

0(x, y) = (g1)0(x)⊕λ2
0(x)(g2)

0(y)
)
be a compact

Riemannian manifold. Then there exists a constant T̄ > 0 such that the initial value
problem ⎧⎪⎨

⎪⎩
∂2

∂t2
(ḡijαβ(x, y, t)) = −2Ricijαβ(x, y, t)

ḡijαβ(x, y, 0) = ḡ0
ijαβ(x, y),

∂

∂t
ḡijαβ(x, y, 0) = h0

ijαβ(x, y)

has a unique smooth solution ḡijαβ(x, y, t) = (g1)ij(x, t) ⊕ λ2(g2)αβ(y, t) on M ×
[0, T̄ ], where h0

ijαβ(x, y) is a symmetric tensor on M1 ×M2.

In non-compact complete manifoldM , framing Theorem 3.5 and Theorem 4.3 and
combining Theorem 3.1 in [23] (see Introduction section), we present an analogous
result ro Theorem 3.5 without proof.
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Proposition 4.4. Let
(
M1×M2, ḡ0(x, y) = (g1)0(x)⊕λ2

0(x)(g2)
0(y)

)
and

(
M1×

M2, h̄0(x, y)
)
be complete noncompact Riemannian manifolds of dimension m1 +m2

with bounded curvature and λ0 be imposed certain constrains. Then there exists a
constant T̄ > 0 such that the initial value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂t
(ḡijαβ(x, y, t)) = −2Ricijαβ(x, y, t),

ḡijαβ(x, y, 0) = ḡ0
ijαβ(x, y) = (g1)0ij(x) ⊕ λ2

0(x)(g2)
0
αβ(y),

∂

∂t
ḡijαβ(x, y, 0) = h0

ijαβ(x, y)

has a smooth solution ḡijαβ(x, y, t) = (g1)ij(x, t)⊕λ2(g2)αβ(y, t) on M × [0, T̄ ] with
uniformly bounded curvature.

In order to gain a sense of (4.3), we present several special examples.

Example 4.5. (Trivial example). If λ is constant, then we easily observe from
(4.3) and (4.4) that λ = ±1. Since λ is positive, thus λ = 1, which implies that M is
exactly a direct product manifold. This is a fact.

Example 4.6. For simplicity sake, we manage to let the unknown term ∂
∂t ḡ2(x, y, t) =

0 in (4.3). TakeM2 = Sn (n ≥ 2)with the standard metric which impliesM2 admits an
Einstein metric g2 = gSn . Like the previous Example 3.6, letM1 = R with flat metric
g1 = μ(x)dx2. OnM = R×Sn, the warped product metric ḡ = μ2(x)dx2⊕λ2(x)gSn

can be read as
ḡ(s, y) = ds2 ⊕ λ2(s)gSn(y),

where s =
∫ x
0 μ(x)dx is the arc-length parameter.

Remembering dx2 and gSn are independent of t, we get

∂2

∂t2
(
μ2(x, t)dx2 ⊕ λ2(x, t)gSn(y)

)
= 2(μμtt + μ2

t )dx
2 ⊕ 2(λλtt + λ2

t )gSn

= 2
μμtt + μ2

t

μ2
ds2 ⊕ 2(λλtt + λ2

t )gSn .

(4.7)

Therefore, if the warped product metrics ḡ(x, y, t) = μ2(x, t)dx2 ⊕ λ2(x, t)gSn(y) is
a solution to the HGF (4.2), then substituting (2.6) and (4.7) into (4.2), we obtain

(4.8)

⎧⎪⎨
⎪⎩

λλtt + λ2
t

λ2
= −(

Krad + (n − 1)Ksph

)
,

μμtt + μ2
t

μ2
= −nKrad,
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which happens to be

(4.9)

⎧⎪⎨
⎪⎩

∂2λ̄

∂t2
= −(

Krad + (n− 1)Ksph

)
,

∂2μ̄

∂t2
= −nKrad,

where we assume that there are exactly the relations

(4.10) λ̄tt =
λλtt + λ2

t

λ2

and

(4.11) μ̄tt =
μμtt + μ2

t

μ2
.

Since the sectional curvature functions Krad and Ksph are of uniform bound, we can
integrate (4.9) over the time interval [0, t], t < T for twice and get

⎧⎪⎪⎨
⎪⎪⎩

λ̄(x, t) = λ̄(x, 0) + tλ̄t(x, 0)−
∫ t

0

∫ u

0

(
Krad + (n− 1)Ksph

)
dudt,

μ̄(x, t) = μ̄(x, 0) + tμ̄t(x, 0)− n

∫ t

0

∫ u

0
Kraddudt.

Further we locally re-solve the original functions λ(x, t) and μ(x, t).

Remark 4.7. Although (4.8) may look simple and has a local solution, we have to
remind it is a set of nonlinear weakly hyperbolic PDEs

(4.12)

⎧⎪⎨
⎪⎩

λtt − λss =
1
λ
λ2

t +
1
λ
λ2

s − (n− 1)λ,
1
μ
μtt +

1
μ2
μ2

t =
n

λ
λss,

which is almost never easy to solve. (4.10) and (4.11) may be only our own wishful
thinking or be taken for granted.

5. EVOLUTION EQUATIONS OF WARPING FUNCTION AND RICCI CURVATURE

In this section, we present evolution equations for an arbitrary family of warped
product metrics ḡ(x, y, t) = g1(x, t)⊕ λ2(x, t)g2(y, t), t ∈ [0, T ] with Einstein metric
g2 that is evolving by RF and by HGF as well. We also present evolution equations for
the Ricci curvatures of such an evolving metric. Our idea mainly comes from Simon’s
strategy [23].
From now on, we make informal convention for some notations onM = M1×λM2:
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∂i :=
∂

∂xi
, i = 1, . . . , m1; ∂α :=

∂

∂yα
, α = 1, . . . , m2;

ḡij = ḡ(i0)(j0) := ḡ
(
(∂i, 0), (∂j, 0)

)
; ḡαβ = ḡ(0α)(0β) := ḡ

(
(0, ∂α), (0, ∂β)

)
;

ḡijαβ = ḡ(iα)(jβ) := ḡ
(
(∂i, ∂α), (∂j, ∂β)

)
; (ḡijαβ) := (ḡijαβ)−1;

Rm(iα)(jβ)(kσ)(lτ ) := Rm ((∂i, ∂α), (∂j, ∂β), (∂k, ∂σ), (∂l, ∂τ )) ;

Ricij = Ric(i0)(j0) := Ric
(
(∂i, 0), (∂j, 0)

)
;

Ricijαβ = Ric(iα)(jβ) := Ric
(
(∂i, ∂α), (∂j, ∂β)

)
.

(5.1)

5.1. Metric and warping function evolution equations

Since the cross terms of ḡ are zero, we need only to consider the evolution equations
of ḡij and ḡαβ. Meanwhile we make an assumption that g2 has a fixed Einstein metric
of the form M2Ric = cg2 (c is some constant) and derive on evolution equation of
warping function.

Proposition 5.1. Let the smooth warped product metric

ḡ(x, y, t) = g1(x, t)⊕ λ2(x, t)g2(y, t), t ∈ [0, T̄ )

be a solution to the Ricci flow (3.2) on the manifold M1 ×M2. Then the metrics g1
and g2 satisfy the evolution equations

(5.2)
∂

∂t
(g1)ij = −2 M1Ricij +

2m2

λ
Hess(λ)(∂i, ∂j),

(5.3)
∂

∂t

(
λ2(g2)αβ

)
= −2 M2Ricαβ +

(
ΔM1λ

2 + (2m2 − 4)|gradλ|2) (g2)αβ

Proof. Since we see that (g1)ij = ḡij and λ2(g2)αβ = ḡαβ, by using the Ricci
flow (3.2) and Ricci curvature formula (2.6), we immediately get the desired identities
(5.2) and (5.3).

Corollary 5.2. Soppose that g2 is a fixed Einstein metric with constant c. Then
under the Ricci flow (3.2), the warping function λ satisfies the following evolution
equation

(5.4)
∂

∂t
λ2 = −2c+ ΔM1λ

2 + (2m2 − 4)|gradλ|2

Proof. By already assumption, g2 is independent of t. Combining this and
M2Ricαβ = c(g2)αβ, (5.4) follows from (5.3).

Similar to the above results, we have some parallel conclusions under the HGF.
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Proposition 5.3. Let

ḡ(x, y, t) = g1(x, t)⊕ λ2(x, t)g2(y, t), t ∈ [0, T̄ )

be a solution to the hyperbolic geometric flow (4.2) on the manifoldM1 ×M2, where
g2 is a fixed Einstein metric with constant c. Then the metrics g1 and the warping
function λ satisfy the evolution equation

(5.5)
∂2

∂t2
(g1)ij = −2 M1Ricij +

2m2

λ
Hess(λ)(∂i, ∂j),

(5.6)
∂2

∂t2
λ2 = −2c+ ΔM1λ

2 + (2m2 − 4)|gradλ|2

5.2. Ricci curvature evolution equations

From (2.6) or Proposition 2.4, we see that the cross terms of Ric are zero. Hence
we only consider the evolution equations for Ricij and Ricαβ.

Theorem 5.4. Under the Ricci flow (3.2) on the manifoldM , the Ricci curvature
Ricij and Ricαβ satisfy the following evolution equations

(5.7)
∂

∂t
Ricij =Δ̄Ricij +

2
m2

ḡαβRicαβ

(
Ricij−M1Ricij

)−2ḡklRicikRicjl,

∂

∂t
Ricαβ =Δ̄Ricαβ+

2
m2

ḡklḡpqRiclq

(
Rickp− M1Rickp

)
ḡαβ−2ḡγδRicγαRicδβ

+2λ2ḡγδḡστRicδτ

(
M2Rmαγβσ+|gradλ|2((g2)ασ(g2)βγ−(g2)αβ(g2)γσ

))
.

(5.8)

Proof. According to our notational convention (5.1) onM , the evolution equation
of the Ricci curvature in [15] is transformed into such form as

(5.9)
∂

∂t
Ric̄ı̄jᾱβ̄

=Δ̄Ric̄ı̄jᾱβ̄+2ḡk̄l̄γ̄δ̄ ḡp̄q̄σ̄τ̄Rm(k̄γ̄)(̄ıᾱ)(p̄σ̄)(̄jβ̄)Ricl̄q̄δ̄τ̄−2ḡk̄l̄γ̄δ̄Rick̄ı̄γ̄ᾱRicl̄̄jδ̄β̄ .

where ı̄, j̄ = 0, 1, . . . , m1, ᾱ, β̄ = 0, 1, . . . , m2, etc. Hence we have

(5.10)
∂

∂t
Ricij =Δ̄Ricij+2ḡk̄l̄γ̄δ̄ ḡp̄q̄σ̄τ̄Rm(k̄γ̄)(i0)(p̄σ̄)(j0)Ricl̄q̄δ̄τ̄−2ḡk̄l̄γ̄δ̄Rick̄iγ̄0Ricl̄jδ̄0.

(2.4) and (2.5) tell us that the only non-zero Rm(k̄γ̄)(i0)(p̄σ̄)(j0) are of the form
Rm(0γ)(i0)(0σ)(j0). On the other hand, we also see that ḡi00α = ḡiα = 0 and Ric0iα0 =
Ricαi = 0. Putting these facts together, (5.10) can be reduced to

(5.11)
∂

∂t
Ricij = Δ̄Ricij + 2ḡγδḡστRm(0γ)(i0)(0σ)(j0)Ricδτ − 2ḡklRickiRiclj.
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Since (2.5) gives

(5.12) Rm(0γ)(i0)(0σ)(j0) = −λHess(λ)(∂i, ∂j)(g2)γσ = −1
λ

Hess(λ)(∂i, ∂j)ḡγσ,

again (2.6) gives

(5.13) Ricij = M1Ricij − m2

λ
Hess(λ)(∂i, ∂j),

combining (5.12) and (5.13) gives

(5.14) Rm(0γ)(i0)(0σ)(j0) =
1
m2

(
Ricij − M1Ricij

)
ḡγσ.

Substituting (5.14) into (5.11) yields

∂

∂t
Ricij = Δ̄Ricij +

2
m2

ḡδτRicδτ

(
Ricij − M1Ricij

) − 2ḡklRickiRiclj,

which is (5.7).
Now we calculate the evolution of Ricαβ. From (5.9) we get

(5.15)
∂

∂t
Ricαβ

= Δ̄Ricαβ+2ḡk̄l̄γ̄δ̄ ḡp̄q̄σ̄τ̄Rm(k̄γ̄)(0α)(p̄σ̄)(0β)Ricl̄q̄δ̄τ̄−2ḡk̄l̄γ̄δ̄Rick̄0γ̄αRicl̄0δ̄β .

Once again using that ḡiα = 0 and Ricαi = 0, and remembering the only non-zero
terms Rm(k0)(0α)(p0)(0β) and Rm(0γ)(0α)(0σ)(0β), (5.15) becomes

∂

∂t
Ricαβ = Δ̄Ricαβ + 2ḡklḡpqRm(k0)(0α)(p0)(0β)Riclq

+ 2ḡγδḡστRm(0γ)(0α)(0σ)(0β)Ricδτ − 2ḡγδRicγαRicδβ .
(5.16)

Since (5.14) gives

(5.17) Rm(k0)(0α)(p0)(0β) =
1
m2

(
Rickp − M1Rickp

)
ḡαβ

and (2.6) gives

(5.18)
Rm(0γ)(0α)(0σ)(0β)

= λ2 M2Rmαγβσ + λ2|gradλ|2 ((g2)ασ(g2)βγ − (g2)αβ(g2)γσ) ,

substituting (5.17) and (5.18) into (5.16) gives

∂

∂t
Ricαβ =Δ̄Ricαβ+

2
m2

ḡklḡpqRiclq

(
Rickp− M1Rickp

)
ḡαβ

− 2ḡγδRicγαRicδβ +2λ2ḡγδḡστRicδτ(
M2Rmαγβσ+|gradλ|2(((g2)ασ(g2)βγ−(g2)αβ(g2)γσ

))
,

(5.19)
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which is (5.8).
To further simplify the evolution (5.8) and consider perhaps significant implication

for physics, like previous subsection we assume that g2 is a fixed Einstein metric with
constant c. We first give a lemma.

Lemma 5.5. Let

ḡ(x, y, t) = g1(x, t)⊕ λ2(x, t)g2(y, t)

be a smooth warped product metric on the manifoldM1×M2, where g2 is an Einstein
metric with M2Ric = cg2. Then

(5.20) Ricαβ = f(x, t)ḡαβ,

where

f =
1
m2

ḡαβRicαβ

=
1

2λ2

(
(4 − 2m2)|gradλ|2 − ΔM1λ

2 + 2c
)
.

(5.21)

Proof. By (2.6) and M2Ric = cg2 , we get

Ricαβ = c(g2)αβ − (
λΔM1λ+ (m2 − 1)|gradλ|2) (g2)αβ

=
1
λ2

(
c− λΔM1λ− (m2 − 1)|gradλ|2) ḡαβ.

Note that
λΔM1λ =

1
2
ΔM1λ

2 − |gradλ|2.
Putting these with (5.20), we obtain

f =
1

2λ2

(−ΔM1λ
2 − 2(m2 − 2)|gradλ|2 + 2c

)
,

which is the second “=” in (5.21).

As to the first “=” in (5.21), note that
m2∑

α,β=1

ḡαβḡ
αβ = m2, it quickly follows from

(5.20).

Applying this Lemma, we can simplify (5.8) to a better expression.

Theorem 5.6. Assume that g2 is a fixed Einstein metric with M2Ric = cg2. Then
under the Ricci flow (3.2), the Ricci curvature evolution equation (5.8) has another
form :

∂

∂t
Ricαβ = Δ̄Ricαβ − 2

m2
ḡkp

(
Rickp − M1Rickp

)
Ricαβ

+
2
m2

ḡklḡpq
(
Rickp − M1Rickp

)
Riclq ḡαβ.

(5.22)
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Proof. By (5.20) and (5.18), the last two terms on the left-hand side of (5.8) can
be transformed to

(I) := −2ḡγδRicγαRicδβ + 2λ2ḡγδḡστRicδτ(
M2Rmαγβσ + |gradλ|2(((g2)ασ(g2)βγ − (g2)αβ(g2)γσ

))
= −2ḡγδfḡγαRicδβ + 2ḡγδḡστfḡδτRm(0γ)(0α)(0σ)(0β)

= 2f
(−Ricαβ + ḡγσRm(0γ)(0α)(0σ)(0β)

)
.

(5.23)

By the definition of the Ricci curvature and the only non-zero terms Rm(k0)(0α)(p0)(0β)

and Rm(0γ)(0α)(0σ)(0β), we have

(5.24)
Ricαβ : = ḡk̄p̄γ̄σ̄Rm(k̄γ̄)(0α)(p̄σ̄)(0β)

= ḡkpRm(k0)(0α)(p0)(0β) + ḡγσRm(0γ)(0α)(0σ)(0β).

Combining (5.24) and (5.17), we get

(5.25) ḡγσRm(0γ)(0α)(0σ)(0β) = Ricαβ − 1
m2

ḡkpḡαβ

(
Rickp − M1Rickp

)
.

Substituting (5.25) into (5.23) and using the relation (5.20), we obtain

(I) = − 2
m2

(fḡαβ)ḡkp
(
Rickp − M1Rickp

)

= − 2
m2

ḡkpRicαβ

(
Rickp − M1Rickp

)
.

(5.26)

Finally, substituting (5.26) into (5.8) gives

∂

∂t
Ricαβ = Δ̄Ricαβ +

2
m2

ḡklḡpqRiclq

(
Rickp − M1Rickp

)
ḡαβ

− 2
m2

ḡkpRicαβ

(
Rickp − M1Rickp

)
,

which is (5.22).

Now we return to find out the interesting evolution equation of f(x, t).

Theorem 5.7. Assume that g2 is a fixed Einstein metric with M2Ric = cg2. Then
under the Ricci flow (3.2), f(x, t) satisfies the evolution equation

∂

∂t
f = Δ̄ f + 2f2 − 2

m2
ḡkp

(
Rickp − M1Rickp

)
f

+
2
m2

ḡklḡpq
(
Rickp − M1Rickp

)
Riclq.

(5.27)
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Proof. Since ḡiα = 0 and Ricαi = 0, by (5.21) we have

∂f

∂t
=

∂

∂t

( 1
m2

ḡαβRicαβ

)

=
1
m2

(
∂

∂t
ḡαβ

)
Ricαβ +

1
m2

ḡαβ

(
∂

∂t
Ricαβ

)
.

(5.28)

Note that

0 =
∂

∂t
(δαγ) =

∂

∂t

(
ḡαβḡβγ

)

=
∂

∂t

(
ḡαβ

)
ḡβγ + ḡαβ ∂

∂t
(ḡβγ) .

Combining this and (3.2), yields

∂

∂t
ḡαβ = 2ḡατ ḡβσRicτσ.

Thus substituting this and (5.22) into (5.28) gives

∂

∂t
f =

2
m2

ḡατ ḡβσRicτσRicαβ

+
1
m2

ḡαβ

(
Δ̄Ricαβ − 2

m2
ḡkp

(
Rickp − M1Rickp

)
Ricαβ

+
2
m2

ḡklḡpq
(
Rickp − M1Rickp

)
Riclq ḡαβ

)

=
2
m2

ḡατ ḡβσ(fḡτσ)(fḡαβ)

+
1
m2

Δ̄
(
ḡαβ(fḡαβ)

)
− 2
m2

2

ḡkp
(
Rickp − M1Rickp

)
ḡαβ(fḡαβ)

+
2
m2

2

ḡklḡpq
(
Rickp − M1Rickp

)
Riclq(ḡαβḡαβ).

=
2
m2

f2m2 +
1
m2

Δ̄(m2f)− 2
m2

2

ḡkp
(
Rickp − M1Rickp

)
(fm2)

+
2
m2

2

ḡklḡpq
(
Rickp − M1Rickp

)
Riclq ·m2,

(5.29)

that is
∂

∂t
f = 2f2 + Δ̄ f − 2

m2
ḡkp

(
Rickp − M1Rickp

)
f

+
2
m2

ḡklḡpq
(
Rickp − M1Rickp

)
Riclq.

This is the desired equality (5.27).
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Remark 5.8. In above theorems, if we take M1 = R, then M1Ric = 0. This time,
since m1 = 1, by changing the indices i, j, k, l, p, q into a same notation “x”, then
(5.7), (5.22) and (5.27) are respectively rewritten as

∂

∂t
Ricxx = Δ̄Ricxx +

2
m2

ḡαβRicαβRicxx − 2ḡxx(Ricxx)2,

∂

∂t
Ricαβ = Δ̄Ricαβ − 2

m2
ḡxxRicxxRicαβ +

2
m2

ḡxxḡxx(Ricxx)2ḡαβ,

∂

∂t
f = 2f2 + Δ̄ f − 2

m2
ḡxxRicxxf +

2
m2

ḡxxḡxx(Ricxx)2,

which are exactly (4.3)-(4.4) in Proposition 4.1 in [23].

Remark 5.9. Under HGF, the evolution equations for Ricci curvature on a single
manifold are much more complicated when compared with the case under RF, because
they involve some complex terms such as B

(
X,B(X, Y )

)
:= ∂

∂t

(∇X( ∂
∂t∇Y Z)

)
and

the unknown term ∂g(t)
∂t ( see Theorem 1.4 or Theorem 1.1 in [18], or Theorem 5.2 in

[11] ), let alone on the warped product manifold. Therefore, it is very hard to gain some
novel evolution equations for Ricci curvature on warped product manifold M̄ when we
still want to follow the introduced approach under the RF. Taking into account the just
mentioned reason and our present technique, in this paper we put this issue aside for a
moment.
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