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THE INDEPENDENCE NUMBER OF CONNECTED
(claw, K4)-FREE 4-REGULAR GRAPHS

Liying Kang, Dingguo Wang and Erfang Shan

Abstract. An independent set of a graph G is a subset of the vertices of G such
that no two vertices in the subset are joined by an edge in G. The independence
number of G is the cardinality of a maximum independent set of G, and is denoted
by α(G). In this paper we show that every 2-connected (claw, K4)-free 4-regular
graph G on n vertices has independence number exactly �n/3�.

1. INTRODUCTION

All graphs considered here are finite, simple and nonempty. For standard termi-
nology not given here we refer the reader to [2]. Let G = (V, E) be a graph with
vertex set V and edge set E . For a vertex v ∈ V , the open neighborhood N (v) of
v is defined as the set of vertices adjacent to v, i.e., N (v) = {u | uv ∈ E}. The
closed neighborhood of v is N [v] = N (v)∪ {v}. The degree of v is equal to |N (v)|,
denoted by dG(v) or simply d(v). The maximum and minimum degrees of G will be
denoted by Δ(G) and δ(G), respectively. If dG(v) = k for all v ∈ V , then we call G

k-regular. In particular, a 3-regular graph is also called a cubic graph. For a subset
S ⊆ V , the subgraph induced by S is denoted by G[S]. A cut vertex of G is a vertex
v such that c(G − v) > c(G). where c(G) is the number of components of G. A cut
edge can similarly defined. The line graph L(G) of G is the graph on E in which
x, y ∈ E are adjacent as vertices if and only if they are adjacent as edges in G. As
usual, Kn denotes the complete graph on n vertices, and Pn denotes the path on n

vertices,. The graph K1,3 is also called a claw and K3 a triangle. For a given graph
F , we say that a graph G is F -free if it does not contain F as an induced subgraph. In
particular, K1,3-free is called claw-free. For a family of graphs (F1, . . . , Fk), we say
that G is (F1, . . . , Fk)-free if it is Fi-free for all i = 1, . . . , k. Two distinct edges in a
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graph G are independent if they are not adjacent in G. A set of pairwise independent
edges in G is called a matching of G. The matching number of G, denoted by α′(G),
is the largest cardinality among all matchings of G.
An independent set I of G is a subset of the vertices of G such that no two vertices

of I are joined by an edge in G. The independence number of G, denoted by α(G),
is the cardinality of a maximum independent set of G. The independence ratio of G,
denoted by i(G), is α(G)/n, where G has n vertices. Independent sets in graphs is
now well studied in graph theory.
For a connected graph G on n vertices with m edges, Harant and Schiermeyer

[11] proved α(G) ≥ [(2m + n + 1) −
√

(2m + n + 1)2 − 4n2]/2 and discussed its
algorithmic realization. Li and Virlouvet [16] showed that for every claw-free graph
G on n vertices, α(G) ≤ 2n/(Δ(G) + 2). In [5] this result on claw-free graphs
was extended to K1,r+1-free graphs. Ryjácek and Schiermeyer [20] used the degree
sequence, order, size and vertex connectivity of a K1,r+1-free graph or of an almost
claw-free graph to obtain several upper bounds on its independence number.
Brooks [3] proved that every connected graph G which is neither a complete graph

nor odd cycle must beΔ(G)-colorable. Thus, such a graph must have i(G) ≥ 1/Δ(G).
Albertson, Bollobás and Tucker [1] proved that i(G) ≥ 1/k for a Kk-free graph G with
Δ(G) = k = 3 or Δ(G) = k ≥ 6. Fajtlowics [4] proved that i(G) ≥ 2/(Δ(G) + k)
for a Kk-free graph G. In 1979, Staton [21] proved that every triangle-free graph G

with maximum degree k has i(G) ≥ 5/(5k − 1). In particular, Fraughnaugh [6] and
Heckman and Thomas [13] provided shorter proofs of this result for the case when G is
a triangle-free graph with maximum degree three. Heckman [12] discussed the tightness
of the 5/14 independence ratio of the triangle-free graphs with maximum degree at most
three. Harant et al. [10] proved that every K4-free graph G on n vertices, size m and
maximum degree at most three has α(G) ≥ (4n − m − λ − tr)/7, where λ counts
the number of components of G whose blocks are each either isomorphic to one of
four specific graphs or edges between two of these four specific graphs and tr is the
maximum number of vertex-disjoint triangles in G. This result generalizes the bound
due to Heckman and Thomas [13]. Fraughnaugh and Locke [8] proved that every
connected triangle-free 3-regular graph G on n vertices has α(G) ≥ 11n/30 − 2/15;
and Heckman and Thomas [14] proved that every triangle-free planar graph on n
vertices with maximum degree three has α(G) ≥ 3n/8. Fraughnaugh [7] proved that
for every triangle-free 4-regular graph G on n vertices, α(G) ≥ 4n/13. Kreher and
Radziszowski [15] further extended this result to triangle-free graphs with average
degree 4. Fraughnaugh and Locke [9] found a shorter proof of the result.
In 1997, Locke and Lou [17] gave a lower bound on the independence number of

a connected K4-free 4-regular graph.

Theorem 1. ([17]). If G is a connected K4-free 4-regular graph on n vertices,
then α(G) ≥ (7n − 4)/26.
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In this paper we continue to investigate the independence number in K4-free 4-
regular graphs. We shall show that every 2-connected (claw, K4)-free 4-regular graph
has independence number exactly �n/3�, where G has n vertices.

2. MAIN RESULTS

Let us introduce some more notation and terminology. If the graphs G and G′ are
disjoint, we denote by G∗G′ the graph obtained from G∪G′ by joining all the vertices
of G to all the vertices of G′. The graph Cn ∗ K1 is called an n-wheel and the graph
Cn ∗ K2 (n ≥ 4) a double wheel, where K2 is the complement of K2.
The well-known Petersen Theorem will be useful.

Lemma 1. ([19]). Every cubic graph without cut edges has a perfect matching.

Let G denote the class of 2-connected (claw, K4)-free 4-regular graphs. To obtain
our main result, we first give a lower bound on the independence number for graphs
in G.
Theorem 2. For G ∈ G and |V (G)| = n, α(G) ≥ (n − 2)/3.

Proof. We may assume that G is 2-connected. Since G is a K4-free 4-regular
graph, we have n ≥ 6. We prove by induction on n. For n = 6, it is easy to see that G
is the double wheel C4 ∗K2. Clearly α(G) = 2 ≥ (n− 2)/3, and the assertion holds.
Now let G be given with n > 6, and assume the assertion holds for graphs with fewer
vertices.
For each v ∈ V (G), by the claw-freeness and K4-freeness of G, we see that the

induced subgraph G[N (v)] is triangle-free and has α(G[N (v)]) = 2. Hence G[N (v)]
is isomorphic to one of the three graphs K2 ∪ K2, P4 and C4. We distinguish the
following three cases.

Fig. 1. Case 1.1.

Case 1. There exists a vertex v ∈ V (G) such that G[N (v)] is isomorphic to C4.
In this case, clearly G[N [v]] is a 4-wheel. Let C4 = v1v2v3v4v1 be the cycle

induced by N (v) in G. We consider the fourth neighbor, say v5, of v1. Note that
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G 
= C4 ∗ K2 as n > 6. This implies that v5 is adjacent to exactly one of v2 and
v4 by the claw-freeness of G. Without loss of generality, assume v5v2 ∈ E(G).
Then v5v4 
∈ E(G). Now let v6 be the fourth neighbor of v4. Similarly, we have
v6v3 ∈ E(G). Further, let v′5, v

′′
5 ∈ N (v5) \ {v1, v2} and v′6, v

′′
6 ∈ N (v6) \ {v3, v4}.

Then v′5v′′5 ∈ E(G) and v′6v′′6 ∈ E(G) by the claw-freeness of G.

Fig. 2. Case 1.2.

Case 1.1. N (v5) ∩ N (v6) = ∅ (see Fig. 1 (a)).
Let G∗ be the graph obtained from G by deleting the vertices v, v1, v2, v3, v4, v5, v6

and adding one new vertex u and new edges uv′5, uv′′5 , uv′6, uv′′6 (see Fig. 1 (b)). Since
G is 2-connected, both v5 and v6 are not cut-vertices of G, so u is not a cut-vertex of
G∗. Hence G∗ ∈ G. Let |V (G∗)| = n∗. Then n∗ = n − 6. By applying the induction
hypothesis to G∗, we have α(G∗) ≥ (n∗ − 2)/3. Let I∗ be a maximum independent
set of G∗. If u 
∈ I∗, then let I = I∗ ∪ {v1, v3} or I∗ ∪ {v2, v4}. Otherwise, let
I = (I∗ − {u}) ∪ {v, v5, v6}. It is easy to see that I is an independent set of G. So

α(G) ≥ α(G∗) + 2 ≥ n∗ − 2
3

+ 2 =
n − 2

3
,

and the desired result follows.
Case 1.2. N (v5) ∩ N (v6) 
= ∅ (see Fig. 2 (a)).
Let v′5 = v′6 ∈ N (v5)∩N (v6). We claim that v′′5 
= v′′6 . Otherwise, it would produce

a claw centered at v′5 or v′′5 . Furthermore, suppose v′′5v′′6 ∈ E(G). Then the fourth
neighbor, say v7, of v′′5 must be adjacent to v′′6 . This implies that v7 is a cut-vertex of
G, which contradicts that G is 2-connected. So v′′5v′′6 
∈ E(G). Let x1, x2 and y2, y2

be the other two neighbors of v′′5 and v′′6 , respectively. By the claw-freeness of G, we
have x1x2, y1y2 ∈ E(G) and |N (v′′5) ∩ N (v′′6)| ≤ 2. Hence |{x1, x2} ∩ {y1, y2}| ≤ 1.
Now let G∗ be the graph obtained from G by deleting the vertices v′5(v

′
6), v

′′
5 , v′′6

and adding the edges v5x1, v5x2, v6y1 and v6y2 (see Fig. 2 (b)). Clearly, G∗ ∈ G. Let
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|V (G∗)| = n∗. Then n∗ = n − 3. By the induction hypothesis, we have α(G∗) ≥
(n∗ − 2)/3.
Let I∗ be a maximum independent set of G∗ and let B = {v, v1, v2, v3, v4, v5, v6}.

We construct an independent set of G as follows.
(1) If v5, v6 ∈ I∗, then v ∈ I∗ and |I∗ ∩ B| = 3. Let I = {v′′5 , v′′6 , v1, v3} ∪

(I∗ − (I∗ ∩ B)).
(2) If v5 ∈ I∗, v6 
∈ I∗, then |I∗∩B| = 2. Let I = {v′′5 , v1, v3}∪ (I∗− (I∗∩B)).
(3) If v5 
∈ I∗, v6 ∈ I∗, then |I∗∩B| = 2. Let I = {v′′6 , v1, v3}∪ (I∗− (I∗∩B)).
(4) If v5, v6 
∈ I∗, then |I∗ ∩ B| = 2. Let I = {v, v5, v6} ∪ (I∗ − (I∗ ∩ B)).
In all cases, it is easy to check that I is an independent set of G. So

α(G) ≥ α(G∗) + 1 ≥ n∗ − 2
3

+ 1 =
n − 2

3
,

and the assertion holds.

Fig. 3. n = 7, 8, 9, 10.
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In what follows we may assume that
(∗1) there is no vertex v ∈ V (G) such that G[N (v)] is isomorphic to C4, i.e.,

G[N [v]] is not a 4-wheel.

Case 2. There exists a vertex v ∈ V (G) such that G[N (v)] is isomorphic to P4.
Let N (v) = {v1, v2, v3, v4} and let P4 = v1v2v3v4 be the path induced by

N (v). We consider the fourth neighbor, say v5, of v2. Then, by the claw-freeness of
G and (∗1), v5 is adjacent to exactly one of v1 and v3. We consider the following two
subcases depending on v1v5 ∈ E(G) or v3v5 ∈ E(G).

Fig. 4. Case 2.1.

Case 2.1. v1v5 ∈ E(G).
Then v3v5 
∈ E(G). By the claw-freeness, the fourth neighbor, say v6, of v3 must

be adjacent to v4, and the fourth neighbor, say v7, of v1 must be adjacent to v5. Suppose
v7 = v6. Then v4v5 ∈ E(G) for otherwise a claw would occur centered at v4. This
means that G is the graph of order 7 shown in Fig. 3 (a) that satisfies the conditions of
theorem. It is easy to check that α(G) = 2 ≥ (n− 2)/3. So we may assume v7 
= v6.
Similarly, the fourth neighbor, say v8, of v4 must be adjacent to v6. Suppose v8 = v7.
Then v5v6 ∈ E(G) for otherwise a claw would occur centered at v5. This means that
G is the graph of order 8 shown in Fig. 3. (b) that satisfies the conditions of theorem.
It is not difficult to check that α(G) = 2 ≥ (n − 2)/3. So we may assume v8 
= v7.
Note that the fourth neighbor, say v9, of v5 is adjacent to v7, for otherwise it would
create a claw centered at v5. Suppose v9 = v8. To avoid a claw centered at v6 or v7,
it must be the case that v7v6 ∈ E(G). So G is the graph of order 9 shown in Fig. 3
(c). It is easy to check α(G) = 3 ≥ (n− 2)/3. So we may assume v9 
= v8. Note that
the fourth neighbor, say v10, of v6 must be adjacent to v8. Suppose v10 = v9. Then
v7v8 ∈ E(G). So G is the graph of order 10 shown in Fig. 3. (d). It is easy to check
that α(G) = 3 ≥ (n − 2)/3. So we may assume v10 
= v9 (see Fig. 4 (a)).
Now let G∗ be the graph obtained from G by deleting v, v2, v3 and adding edges

v1v4, v1v6, v4v5 (see Fig. 4 (b)). Clearly, G∗ ∈ G and |V (G∗)| = n∗ = n−3. By the
induction hypothesis, we have α(G∗) ≥ (n∗−2)/3. Let I∗ be a maximum independent
set of G∗. Note that |I∗ ∩ {v1, v4, v5}| ≤ 1; we construct an independent set of G as
follows.
(1) If v1 ∈ I∗, then v4, v6 
∈ I∗ and let I = I∗ ∪ {v3}.
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(2) If v4 ∈ I∗, then then v1, v5 
∈ I∗ and let I = I∗ ∪ {v2}.
(3) If v1, v4 
∈ I∗, then let I = I∗ ∪ {v}.
In all cases, clearly I is an independent set of G. So

α(G) ≥ α(G∗) + 1 ≥ n∗ − 2
3

+ 1 =
n − 2

3
,

and the assertion follows.

Case 2.2. v3v5 ∈ E(G).
Then v1v5 
∈ E(G). By (∗1), we have G[N (v3)] is not isomorphic to C4, so

v4v5 
∈ E(G).

Fig. 5. Case 2.2.1.

Case 2.2.1. Suppose that v1, v4, v5 have no common neighbors other than v, v2,
v3 (see Fig. 5(a)).
Let v′i, v′′i be the other two neighbors of vi. Clearly, v′i and v′′i must be adjacent

by claw-freeness, for i = 1, 4, 5. To complete our inductive proof, let G∗ be the graph
obtained from G by deleting the vertices v, v2, v3 and adding edges v1v4, v1v5, v4v5

(see Fig. 5(b)). Clearly, G∗ ∈ G and |V (G∗)| = n∗ = n − 3. Applying the induction
hypothesis to G∗, we have α(G∗) ≥ (n∗ − 2)/3. Let I∗ be a maximum independent
set of G∗. Note that |I∗ ∩ {v1, v4, v5}| ≤ 1. We construct an independent set of G
as follows.
(1) If v1 ∈ I∗, then v4, v5 
∈ I∗ and let I = I∗ ∪ {v3}.
(2) If v4 ∈ I∗, then v1, v5 
∈ I∗ and let I = I∗ ∪ {v2}.
(3) If v5 ∈ I∗, then v1, v4 
∈ I∗ and let I = I∗ ∪ {v}.
(4) If v1, v4, v5 
∈ I∗, then let I = I∗ ∪ {v}.
Clearly I is an independent set of G. So

α(G) ≥ α(G∗) + 1 ≥ n∗ − 2
3

+ 1 =
n − 2

3
,
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and the assertion follows.
Case 2.2.2. By symmetry, we may assume that N (v4) ∩ N (v5) \ {v3} 
= ∅.

Fig. 6. Case 2.2.2.

Let x ∈ N (v4)∩N (v5)\{v3}. By the claw-freeness of G, v1x 
∈ E(G). We claim
that N (v4) ∩ N (v5) = {v3, x}. Indeed, if there exists y ∈ N (v4) ∩ N (v5) \ {v3, x},
then xy ∈ E(G) by the claw-freeness. Let z ∈ N (x) be the fourth neighbor of x

except for v4, v5 and y. Recall that v4v5 
∈ E(G). Hence G[{v4, v5, x, z}] is a claw
centered at x, a contradiction. The fourth neighbor of v4, v5 is denoted by v′4, v′5,
respectively. Then v′4x, v′5x ∈ E(G) by the claw-freeness.
Suppose v′4v′5 
∈ E(G). Then v1 is adjacent to at most one of v′4, v′5 by the claw-

freeness. In fact, regardless of whether v1 is adjacent to v′4 or v′5, let G∗ be the graph
obtained from G by deleting the vertices v, v2, v3 and adding edges v1v4, v1v5, v4v5

(see, Fig. 6 (b)). Clearly, G∗ ∈ G and |V (G∗)| = n∗ = n− 3. The remaining proof is
the same as that of Case 2.2.1.
On the other hand, suppose v′4v

′
5 ∈ E(G). If v1v

′
4 ∈ E(G), then, since G is

claw-free, we have v1v
′
5 ∈ E(G). Similarly, if v1v

′
5 ∈ E(G), we have v1v

′
4 ∈ E(G).

Thus G is the graph of order 9 shown in Fig. 6 (c). It is easy to check that α(G) =
3 ≥ (n − 2)/3. Hence, we may suppose v1v

′
4, v1v

′
5 
∈ E(G). Now we construct the

graph G∗ described as in Case 2.2.1, the remaining proof is the same as that of Case
2.2.1.
In the following, we therefore may assume that
(∗2) there is no vertex v ∈ V (G) such that G[N (v)] is isomorphic to P4. By (∗1)

and (∗ 2), we consider the following final case.
Case 3. For any v ∈ V (G), G[N (v)] is isomorphic to K2 ∪ K2.
Then, for every vertex v ∈ V (G), G[N [v]] consists of two edge-disjoint triangles
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with only v in common. This implies that every edge of G exactly lies in one triangle.
Let H be the graph whose vertices are the triangles of G, such that two vertices of
H are adjacent if and only if the corresponding triangles of G intersect (at a vertex).
Clearly, H is a 3-regular graph. For the graph H , we have

Claim 1. H is 2-connected.
Suppose not, then there exists a vertex x which is a cut-vertex of H . For x, the

corresponding triangle of G is denoted by Ax. Thus G is disconnected by deleting Ax

in G. This implies that there exists a vertex v in Ax such that v is a cut-vertex of G,
which contradicts that G is 2-connected.

By Claim 1 and Lemma 1, H has a perfect matching. LetM be a perfect matching
of H . Then |M | = |V (H)|/2. Note that |V (H)| = 2n/3. Hence |M | = n/3. Let
I = {x ∈ V (G) | x is the only common vertex of two triangles in G corresponding
to u and v of H , for all uv ∈ M}. Clearly, I is a independent set of vertices of G. So
α(G) ≥ |I | = |M | = n/3 ≥ (n − 2)/3.
This completes the proof of Theorem 2.

Li and Virlouvet [16] proved the following result involving the independence num-
ber of a claw-free graph.

Lemma 2. ([16]). For any claw-free graph G on n vertices, Δ(G) ≤ 2(n −
α(G))/α(G).

By Lemma 2, we know that α(G) ≤ n/3 for a claw-free 4-regular graph G on n
vertices. By Theorem 2, we immediately obtain our main result.

Theorem 3. If G ∈ G and |V (G)| = n, then α(G) = �n/3�.

3. CONCLUDING REMARKS

In this paper we determine the exact value of the independence number α(G) for
(claw, K4)-free 4-regular graphs without cut vertices. For (claw, K4)-free 4-regular
graphs with cut vertices, we propose the following conjecture.

Conjecture 1. If G is a connected (claw, K4)-free 4-regular graph on n vertices,
then α(G) ≥ (8n − 3)/27.

By using the following known result, it is easy to show that the conjecture is true
for the line graph of a cubic graph.

Lemma 3. ([18]) If G is a connected cubic graph on n vertices, then α′(G) ≥
(4n− 1)/9, and this is sharp infinitely often.

Theorem 4. If G is a connected cubic graph on n vertices, then α(L(G)) ≥
(8|E(G)| − 3)/27, and this is sharp infinitely often.
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By Theorem 4, if the Conjecture 1 is true, then the lower bound is sharp. This
also means that the condition “without cut vertices” in Theorem 2 and Theorem 3 is
necessary.
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