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DIMENSION FREE LP ESTIMATES FOR RIESZ TRANSFORMS
ASSOCIATED WITH LAGUERRE FUNCTION EXPANSIONS

OF HERMITE TYPE

Krzysztof Stempak and Bl/ażej Wróbel

Abstract. We prove dimension free Lp estimates for Riesz transforms associated
with multi-dimensional Laguerre function expansions of Hermite type. The range
of the admissible Laguerre type multi-index α in these estimates depends on
p ∈ (1,∞); for 1 < p ≤ 2 this range is almost optimal. The proof is based on
suitably defined square functions with Poisson and modified Poisson semigroups
involved.

1. INTRODUCTION

Dimension free Lp estimates for the classical Riesz transforms Rj , j = 1, . . . , d,
on R

d, were shown by E. M. Stein [18]. Later on it was found, see [6], that in
fact the operator norms of Rj’s on Lp spaces do not depend neither on d nor on j:
‖Rj‖p→p = tan(π/2p) if 1 < p ≤ 2 and ‖Rj‖p→p = cot(π/2p) if 2 ≤ p < ∞. Since
then a similar phenomenon of dimension free Lp bounds was observed and analogous
results were proved for Riesz transforms defined in different settings; see, for instance,
[2, 7], where this was done in the context of Heisenberg groups and products of discrete
abelian groups.
Similar efforts in proving dimension free bounds were undertaken in several set-

tings of classical orthogonal expansions. Here Riesz transforms are suitably defined
and correspond to an involved second order differential operator, a ’Laplacian’, and
associated first order operators, the ’derivatives’; see [12] for a unified approach to the
theory of Riesz transforms and conjugacy in the setting of multi-dimensional orthogonal
expansions.
We now briefly overview known results concerning dimension free Lp estimates for

orthogonal expansions. The Hermite polynomial case, where the Ornstein-Uhlenbeck

Received April 28, 2012, accepted May 28, 2012.
Communicated by Chin-Cheng Lin.
2010 Mathematics Subject Classification: Primary 42C10; Secondary 42B20, 42B25.
Key words and phrases: Laguerre expansions, Riesz transforms, Dimension free Lp estimates, g-
Functions.
Research of the first author was supported by MNiSW Grant N N201 417839. Research of the second
author was supported by NCN Research Project 2011/01/N/ST1/01785.

63



64 Krzysztof Stempak and Bl/ażej Wróbel

operator−Δ+2x·∇ on R
d plays the role of a ’Laplacian’, was considered by Pisier [15]

and Gutierrez [3], and the dimension free Lp bounds for considered Riesz transforms
were proved. The Hermite function case (with the harmonic oscillator −Δ + |x|2 on
R

d) was recently treated by Harboure, de Rosa, Segovia and Torrea [5] (see also [8]
for an independent proof). The Jacobi polynomial case was studied by Nowak and
Sjögren [11]; they proved that the estimates depend neither on the dimension d nor on
the Jacobi type multi-indices α, β ∈ [−1/2,∞)d. The Laguerre polynomial case was
initiated by Guttierrez, Incognito and Torrea [4], where the half-integer multi-indices
were considered, and completed by Nowak [10] who considered the continuous range
of type parameter α, i.e. α ∈ [−1/2,∞)d.
In this paper we prove the dimension free Lp estimates for Riesz transformsRα

j , j =
1, . . . , d, naturally associated with multi-dimensional Laguerre expansions of Hermite
type for the Laguerre type multi-index α. The main result of the paper is contained in
Theorem 5.1. It says that for 1 < p ≤ 2 the dimension free Lp bounds hold for any
α ∈ ({−1/2} ∪ (1/2,∞))d, while for 2 < p < ∞, due to the technique we use, the
same happens for α ∈ (3/2,∞)d. The fact that Rα

j are bounded on all Lp(Rd
+, dx),

1 < p < ∞, was proved by Nowak and Stempak [13]; in fact it was shown there that
Rα

j , j = 1, . . . , d, are Calderón-Zygmund operators when α ∈ Ad := ({−1/2} ∪ [1/

2,∞))d. Clearly methods developed in [13] did not guarantee the d-independence of
the bounds ‖Rα

j ‖Lp(Rd
+)→Lp(Rd

+). It should be noted that including the type parameter
−1/2 = (−1/2, . . . ,−1/2) into our result (such inclusion is expected due to a natural
connection of the Laguerre case of α = −1/2 with the Hermite expansion setting, see
Section 2) required additional efforts.
In the present paper we use a quite different technique, namely the method of g-

functions. This technique, known as the Littlewood-Paley-Stein theory and presented in
the seminal monograph [17], occured to be successful in treating the problem of dimen-
sion free Lp estimates in several settings. In short, the main ingredient of this method
consists in constructing appropriate g-functions defined in terms of some semigroups,
that properly relate a function and its Riesz transform, and proving dimension free Lp

bounds for these g-functions. In our case the relevant g-functions are defined in terms
of Poisson and modified Poisson semigroups, see Section 3, and the corresponding Lp

bounds are stated in Theorem 3.1.
It is worth mentioning that the restrictions imposed on α, like αj /∈ (−1/2, 1/2),

j = 1, . . . , d, that appear in this paper were also present in [13] and [19] (and in
other places), and the question of ’necessity’ of these restrictions has been recently
enlighten in [14]. It was proved there that that the heat semigroup that corresponds to
the considered expansions of type α ∈ [−1/2,∞)d is a symmetric diffusion semigroup
if and only if α ∈ Ad.
Throughout the paper Lp = Lp(Rd

+, dx) will mean the usual Lebesgue space of
pth summable functions on Rd

+ = (0,∞)d equipped with Lebesgue measure dx; ‖ · ‖p
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will denote the norm in Lp and 〈·, ·〉 will stand for the usual inner product in L2. For
all facts concerning the setting of Laguerre expansions of Hermite type that are not
properly explained below the reader may consult [13]. This research was inspired by
[5] and, needless to say, our line of argument follows that proposed in [5]; this is
further explicitely indicated in several places of the paper.

2. PRELIMINARIES

Let α = (α1, . . . , αd) ∈ (−1,∞)d, and ϕα
k (x) = ϕα1

k1
(x1) · · ·ϕαd

kd
(xd) be the

system of d-dimensional Laguerre functions,

ϕαi
ki

(xi) =
(

2Γ(ki + 1)
Γ(ki + αi + 1)

)1/2

Lαi
ki

(x2
i )x

αi+1/2
i e−x2

i /2, xi > 0, i = 1, . . . , d,

where k = (k1, . . . , kd) ∈ Nd, N = {0, 1, . . .}, and Lαi
ki
denotes the Laguerre polyno-

mial of degree ki and order αi. It is known that each ϕα
k is an eigenfunction of the

differential operator

Lα = −Δ + Vα(x), where Vα(x) = |x|2 +
d∑

i=1

1
x2

i

(
α2

i −
1
4

)
,

corresponding to the eigenvalue λα
|k| = 4|k| + 2|α| + 2d; here |α| = α1 + . . . + αd

(note that |α| may be negative) and |k| = k1 + . . . + kd is the length of k. Moreover,
{ϕα

k : k ∈ Nd} is an orthonormal basis in L2. The operator

Lαf =
∑
k∈Nd

λα
|k| 〈f, ϕα

k 〉ϕα
k

on the domain

Dom (Lα) =
{

f ∈ L2 :
∑
k∈Nd

∣∣∣λα
|k| 〈f, ϕα

k 〉
∣∣∣2 < ∞

}

is a natural self-adjoint extension of Lα, C∞
c

(
R

d
+

)
⊆ Dom(Lα) , and the spectrum of

Lα is the discrete set {λα
n : n ∈ N}.

The jth partial derivative associated with Lα (Laguerre-type partial derivative) is
given by

δj =
∂

∂ xj
+ vj(xj), where vj(xj) = xj −

1
xj

(
αj + 1/2

)
.

The formal adjoint of δj in L2(Rd
+, dx) is
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δ∗j = − ∂

∂ xj
+ vj(xj).

Direct computation then shows that

Lα = 2(|α|+ d) +
d∑

j=1

δ∗j δj,

and this identity suggests Rα
j = δjL−1/2

α as a ’formal’ definition of jth Riesz-Laguerre
transform. Using d

dxLα
k = −Lα+1

k−1 , α > −1, k ∈ N, it can be easily seen that

(2.1) δjϕ
α
k = −2

√
kjϕ

α+ej

k−ej
, δ∗j ϕ

α
k = −2

√
kjϕ

α−ej

k+ej
,

where ej is the j-th coordinate vector in R
d
+ and, by convention, ϕ

α+ej

k−ej
= 0 if kj = 0.

Therefore, the strict definition of Rα
j on L2 is

(2.2) Rα
j f = −2

∞∑
k=0

(
kj

4|k| + 2|α|+ 2d

)1/2

〈f, ϕα
k 〉ϕ

α+ej

k−ej
, f ∈ L2.

Parseval’s identity shows that Rα
j is a contraction on L2.

The heat semigroup {Tα
t } = {exp(−tLα)} associated with Lα, according to the

spectral theorem on L2, is given by

Tα
t f =

∞∑
n=0

e−tλα
n

∑
|k|=n

〈f, ϕα
k 〉ϕα

k , f ∈ L2,

and it has the integral representation

(2.3) Tα
t f(x) =

∫
R

d
+

Gα
t (x, y)f(y) dy, x ∈ R

d
+, t > 0,

where

Gα
t (x, y) =

∞∑
n=0

e−tλα
n

∑
|k|=n

ϕα
k (x)ϕα

k (y)

= (sinh2t)−d exp
(
−1

2
coth 2t

(
|x|2 + |y|2

)) d∏
i=1

√
xiyiIαi

( xiyi

sinh 2t

)
.

Here Iν, ν > −1, is the modified Bessel function of the first kind and order ν. For
α ∈ [−1/2,∞)d the right-hand side of (2.3) makes sense for any f ∈ Lp, 1 ≤ p ≤ ∞
and in fact defines a family of operators {Tα

t }t>0 which are bounded on all Lp spaces,
1 ≤ p ≤ ∞.
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The Laguerre-Poisson semigroup {Pα
t } = {exp(−t(Lα)1/2)} is defined spectrally

on L2 by

(2.4) Pα
t f =

∞∑
n=0

e−t(λα
n)1/2

∑
|k|=n

〈f, ϕα
k 〉ϕα

k , f ∈ L2,

and it has the integral representation

(2.5) Pα
t f(x) =

∫
R

d
+

Pα
t (x, y)f(y) dy, x ∈ R

d
+, t > 0,

where
Pα

t (x, y) =
∞∑

n=0

e−t(λα
n)1/2 ∑

|k|=n

ϕα
k (x)ϕα

k (y).

By the principle of subordination,

Pα
t f(x) =

t√
4π

∫ ∞

0

s−3/2e−t2/4s Tsf(x) ds,

and on the level of integral kernels,

(2.6) Pα
t (x, y) =

t√
4π

∫ ∞

0

s−3/2e−t2/4s Gα
s (x, y) ds.

Again for α ∈ [−1/2,∞)d the right-hand side of (2.5) makes sense for any f ∈ Lp,
1 ≤ p ≤ ∞ and also defines a family of operators {Pα

t }t>0 which are bounded on all
Lp spaces, 1 ≤ p ≤ ∞.
Apart of the Laguerre-Poisson semigroup {Pα

t } we shall use the modified Laguerre-
Poisson semigroups

{P̃α,j
t } = {exp(−t(Lα+ej + 2)1/2)}, j = 1, . . . , d,

which are given spectrally on L2 by

(2.7) P̃α,j
t f =

∞∑
n=0

e−t(λ
α+ej
n +2)1/2 ∑

|k|=n

〈f, ϕ
α+ej

k 〉ϕα+ej

k , f ∈ L2.

See [13, Section 4] and [12, Section 5] for the definition of modified semigroups in a
general framework. At this moment we should point out the indispensable role played
by these semigroups in harmonic analysis of orthogonal expansions. Note that {P̃α,j

t }
is subordinated (in the sense explained above) to {T̃ α,j

t }, the semigroup given on L2

by {T̃α,j
t } = {exp(−t(Lα+ej + 2))}. Since the former semigroup has an integral

representation with the kernels Gα+ej ,2
t (x, y) := e−2tGα+ej

t (x, y), it may be checked
that also {P̃α,j

t } has an integral representation with kernels P̃α,j
t (x, y) subordinated (in

the sense of (2.6)) to T̃α,j
t (x, y). It follows that for α ∈ [−1/2,∞)d the formula

P̃α,j
t f(x) =

∫
R

d
+

P̃α,j
t (x, y)f(y) dy, x ∈ R

d
+, t > 0,
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initially valid for f ∈ L2, extends to functions from all Lp, 1 ≤ p ≤ ∞, and defines a
bounded operator there.
The heat kernel Gα

t (x, y) is for α ∈ [1/2,∞)d dominated pointwise on R
d
+ × R

d
+

by the heat kernel

Gt(x, y)=(2π)−d/2(sinh 2t)−d/2 exp
(
− 1

4 tanh t
|x−y|2− tanh t

4
|x+y|2

)
, x, y∈R

d

corresponding to the harmonic oscillator on Rd, as the following lemma shows.

Lemma 2.1. We have for α ∈ [1/2,∞)d

Gα
t (x, y) ≤ Gt(x, y), x, y ∈ R

d
+, t > 0.

Proof. Since for any fixed z > 0 the function Iν(z) is decreasing for ν ≥ 0 (see
the proof of [13, Lemma 2.1] and references given there), we have

Gα
t (x, y) ≤ G1/2t (x, y)

for all α ∈ [1/2,∞)d, with the notation 1/2 = (1/2, . . . , 1/2). But I1/2(z) = (2/

πz)1/2 sinh z and therefore
√

xiyiI1/2

( xiyi

sinh2t

)
= (2/π)1/2(sinh 2t)1/2 sinh

( xiyi

sinh 2t

)
≤ (1/2π)1/2(sinh 2t)1/2 exp

( xiyi

sinh 2t

)
.

Consequently,

G1/2t (x, y)≤(2π)−d/2(sinh2t)−d/2 exp
(
− 1

2
coth2t

(
|x|2+|y|2

)
+

d∑
i=1

xiyi

sinh2t

)
= Gt(x, y).

It is worth mentioning that the bound in Lemma 2.1 is valid, up to a multiplicative
constant Cα, for any α ∈ [−1/2,∞)d, see [20, Lemma 2.4] and also [13, Proposition
2.1]. It may happen, however, that for α ∈ [−1/2,∞)d \ [1/2,∞)d, Cα depends on d

as well.
Given b ∈ R, consider the semigroup {Tα,b

t } defined on L2 by Tα,b
t = exp(−t(Lα+

bI)) = e−tbTα
t with Gα,b

t (x, y) = e−tbGα
t (x, y) as the associated kernels. If b ≥

−2(|α|+ d), then the spectrum of Lα + bI is non-negative and one may consider the
corresponding ’Poisson’ semigroup {Pα,b

t } defined on L2 by P
α,b
t = exp(−t(Lα +

bI)1/2). Spectrally, Pα,b
t is given on L2 by



Dimension Free Lp Estimates for Riesz Transforms 69

Pα,b
t f =

∞∑
n=0

e−t(λα
n+b)1/2

∑
|k|=n

〈f, ϕα
k 〉ϕα

k , f ∈ L2,

and again it may be checked that

(2.8)
Pα,b

t (x, y) =
∞∑

n=0

e−t(λα
n+b)1/2

∑
|k|=n

ϕα
k (x)ϕα

k(y)

=
t√
4π

∫ ∞

0
s−3/2e−t2/4s Gα,b

s (x, y) ds

is the kernel corresponding to Pα,b
t . Due to the subordination it follows that for

α ∈ [−1/2,∞)d and b ≥ −2(|α| + d), the formula

Pα,b
t f(x) =

∫
Rd

+

Pα,b
t (x, y)f(y) dy, x ∈ R

d
+, t > 0,

initially valid for f ∈ L2, extends to all f ∈ Lp, 1 ≤ p ≤ ∞, and defines a bounded
operator on each Lp. In what follows we shall use the notation

uα,b(x, t) = Pα,b
t f(x).

As a matter of fact we will be interested only in b ∈ {−2, 0, 2}. Note that

P
α,2
t = P̃

α−ej ,j
t , P

α,0
t = Pα

t ,

and consequently,

uα,2(x, t) = P̃
α−ej ,j
t f(x), uα,0(x, t) = Pα

t f(x).

Let Wt(x) = (4πt)−d/2 exp(−|x|2/(4t)), x ∈ R
d, t > 0, denote the usual Gauss-

Weierstrass kernel in Rd and {Wt} be the corresponding heat semigroup,Wth = Wt∗h,
defined for functions h ∈ Lp(Rd), 1 ≤ p ≤ ∞; by W∗ we shall denote the associated
maximal operator,

W∗h(x) = sup
t>0

Wt ∗ |h|(x), x ∈ R
d.

It is well known that ‖W∗h‖Lp(Rd) ≤ Ap‖h‖Lp(Rd), with a universal constant Ap

depending only on 1 < p < ∞ (and not on the dimension d). Given a function f on
Rd

+ let fe denote its even extension on Rd, i.e. fe(εx) = f(x), x ∈ Rd
+, ε ∈ E , where

E = {(ε1, . . . , εd) : εj = ±1} and εx = (ε1x1, . . . , εdxd). We shall use the symbol
W+∗ to denote the maximal operator defined on functions from Lp(Rd

+), 1 ≤ p ≤ ∞,
byW+∗ f(x) = W∗(fe)(x), x ∈ R

d
+. SinceW∗(fe) is E-symmetric on R

d
+ (in the sense

that W∗(fe)(εx) = W∗(fe)(x), x ∈ Rd, ε ∈ E), it follows that

2d/p‖W+
∗ f‖p = ‖W∗(fe)‖Lp(Rd) ≤ Ap‖fe‖Lp(Rd) = Ap2d/p‖f‖p,
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hence

(2.9) ‖W+
∗ f‖p ≤ Ap‖f‖p.

The formula sinh2t = 2 sinh t cosh t leads to the estimate

(2.10) Gt(x, y) ≤ (cosh t)−dWtanh t(x − y), x, y ∈ R
d.

This estimate combined with that of Lemma 2.1, for α ∈ [1/2,∞)d produces

(2.11) Gα
t (x, y) ≤ (cosh t)−dWtanh t(x− y), x, y ∈ R

d
+.

If b ≥ 1− d, then (cosh t)−d ≤ Cb exp(−(1 − b)t). For α ∈ [1/2,∞)d this leads to

(2.12) |uα,b(x, t)| ≤ Cbe
−tW+

∗ f(x), x ∈ R
d
+, t > 0,

cf. [5, (2.8)]. If we consider more general α ∈ Ad, then (2.12) still holds. To see
this observe first that T−1/2

t (f) = Tt(fe), where {Tt} is the Hermite semigroup (see
[13, (A.4), p.442]). Clearly, up to a permutation argument, it is enough to assume
that α1 = . . . = αn = −1/2, αn+1, . . . , αd ≥ 1/2, for some n ∈ {1, . . . , d}. Then
Tα

t f = (Tα′
t ⊗ T ′

t)(f ′
e), where α′ = (αn+1, . . . , αd), T ′

t is the n-dimensional Hermite
semigroup (acting on the first n variables), and f ′

e is the E-symmetrization of f in
the first n variables. Now using the n-dimensional variant of (2.10), the (d − n)-
dimensional variant of (2.11) and appropriate variant of T−1/2

t (f) = Tt(fe), we write

|Tα
t f(x)| ≤ (cosh t)−d

∫
Rn×R

d−n
+

Wtanh t(x − y)|f ′
e(y)| dy ≤ (cosh t)−dW+

∗ f(x).

From the latter inequality we proceed as in the case α ∈ [1/2,∞)d.
Consequently, given α ∈ Ad and b ≥ 1 − d, (2.12) applied to f ≡ 1 produces

(2.13)
∫

R
d
+

Pα,b
t (x, y) dy ≤ Cbe

−t.

3. SQUARE FUNCTIONS

A thorough study of square functions in the setting of Laguerre function expansions
of Hermite type, associated to the heat and Poisson semigroups has been performed
in [19]. In the proof of our main result, Theorem 5.1, we shall use the following
g-functions associated to the Poisson and modified Poisson semigroups:

gj(f)(x) =
(∫ ∞

0
t
∣∣δjP

α
t f(x)

∣∣2 dt

)1/2

, j = 1, . . . , d,

and
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g̃j(f)(x) =
(∫ ∞

0

t
∣∣∂tP̃

α,j
t f(x)

∣∣2 dt

)1/2

, j = 1, . . . , d.

It follows from [14, Proposition 4.2] that {Pα
t } and {P̃

α,j
t }, being subordinated to {Tα

t }
and {T̃α,j

t }, are symmetric diffusion semigroups whenever α ∈ Ad. Note however that
the Lp-contractivity of {Tα

t } breaks down for α ∈ [−1/2,∞)d \Ad. Since for α ∈ Ad

the semigroup {P̃α,j
t } is a symmetric diffusion semigroup, therefore, from a refinement

of the general Littlewood-Paley-Stein theory included in [17], due to Coifman, Rochberg
and Weiss [1], see also Meda [9, Theorem 2], we obtain for α ∈ Ad and j = 1, . . . , d,

(3.1) c̃−1
p ‖f‖p ≤ ‖g̃j(f)‖p ≤ c̃p‖f‖p,

with a universal constant c̃p depending only on 1 < p < ∞. Note that the following
fact is used here: if P̃α,j

t f = f, then f = 0.

Given a function u on R
d
+ × (0,∞), let

δu = (δ∗du, . . . , δ∗1u, ∂tu, δ1u, . . . , δdu)

mean the gradient vector and |δu| mean its Euclidean norm in R
2d+1. Each gj , j =

1, . . . , d, is dominated pointwise by the full Laguerre gradient g-function,

gα(f)(x) =
(∫ ∞

0

t
∣∣δPα

t f(x)
∣∣2 dt

)1/2

,

i.e. gj(f)(x) ≤ gα(f)(x), and thus analysis of gj will be replaced by analysis of gα.
Given α ∈ ({−1/2} ∪ (1/2,∞))d set

Mα = max
j

αj + 1/2
αj − 1/2

if α �= −1/2 and M−1/2 = 1. In what follows 1 = (1, . . . , 1). Our main tool is the
following.

Theorem 3.1. Given 1 < p < ∞ there exists a constant cp independent of d and
α such that:

(1) for 1 < p ≤ 2, d ≥ 1 and α ∈ ({−1/2} ∪ (1/2,∞))d,

(3.2) ‖gα(f)‖p ≤ M1/2
α cp‖f‖p;

(2) for 2 < p < ∞, d ≥ 3 and α ∈ (3/2,∞)d,

(3.3) ‖gα(f)‖p ≤ M
1/2
α−1cp‖f‖p.

Consequently, for p, d and α as above, one has

(3.4) ‖gj(f)‖p ≤ cp,α‖f‖p, j = 1, . . . , d,

with cp,α equal either M
1/2
α cp or M

1/2
α−1cp, for 1 < p ≤ 2 or 2 < p < ∞, respectively.
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To prove Theorem 3.1 we use methods from [5]. In fact we shall prove the bounds
(3.2) and (3.3) only for f being a real-valued linear combination of the functions ϕα

k .
Checking that this is enough (i.e. implies the same bounds for any f ∈ Lp through a
density-type argument) is fairly technical, and we decided to not include it here.
Below we consider u to be a real-valued function and assume that f =

∑
akϕα

k

(finite sum, ak ∈ R). Then uα,b(x, t) = Pα,b
t f(x) =

∑
ake

−t(λα
|k|+b)1/2

ϕα
k . By Δx,t

and ∇x,t we denote the Laplacian and the gradient in Rd
+ × (0,∞) respectively, and

|∇x,tu| means the Euclidean norm of ∇x,tu in R
d+1. The following is an analogue of

[5, (2.19)].

Lemma 3.2. Let u = u(x, t) ∈ C2(Rd
+ × (0,∞)). Then, for α ∈ ({−1/2} ∪ (1/

2,∞))d,

(3.5) |∇x,tu|2 ≤ |δu|2 ≤ 2Mα(|∇x,tu|2 + Vα(x)u2).

Consequently, for b ≥ −2(|α| + d),

(3.6) |δuα,b|2 ≤ Mα

(
Δx,t(u2

α,b) − 2bu2
α,b

)
.

Proof. Observe that

2|∂tu|2 +
d∑

j=1

(
|δ∗j u|2 + |δju|2

)
= 2|∇x,tu|2 + 2u2

d∑
j=1

vj(xj)2.

Since

vj(xj)2 = x2
j +

(αj + 1/2)2

x2
j

− (2αj + 1) ≤ αj + 1/2
αj − 1/2

(
x2

j +
α2

j − 1/4
x2

j

)
,

we obtain (3.5). To prove (3.6) note that Δx,tuα,b = buα,b +Vα(x)uα,b, hence we have

Δx,t(u2
α,b)− 2bu2

α,b = 2|∇x,tuα,b|2 + 2uα,b (Δx,tuα,b − buα,b)

= 2
(
|∇x,tuα,b|2 + Vα(x)u2

α,b

)
.

Using this and (3.5) we deduce (3.6).

From now on we assume ε > 0. The following is an analogue of [5, Lemma 1].

Lemma 3.3. Let α ∈ ({−1/2} ∪ (1/2,∞))d and b ≥ −2(|α| + d). Then, for
1 < p ≤ 2, denoting ρp = 2/(p(p− 1)) we have

|δuα,b|2 ≤ Mαρp(u2
α,b + ε)

2−p
2

(
Δx,t[(u2

α,b + ε)p/2] + p|b|(u2
α,b + ε)p/2

)
.
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Proof. Straightforward calculations and the identity |∇x,tu
2|2 = 4u2|∇x,tu|2

show that for u ∈ C2(Rd
+ × (0,∞)) one has

Δx,t[(u2 + ε)
p
2 ] =

p(p − 2)
4

(u2 + ε)
p−4
2 |∇x,t(u2)|2 +

p

2
(u2 + ε)

p−2
2 Δx,t(u2)

= p(p − 2)(u2 + ε)
p−4
2 u2

(
|∇x,tu|2 + Vα(x)u2

)
+ p(2 − p)(u2 + ε)

p−4
2 Vα(x)u4

+
p

2
(u2 + ε)

p−2
2
(
Δx,t(u2)− 2bu2

)
+ pb(u2 + ε)

p−2
2 u2.

Since 1 < p ≤ 2 and Vα ≥ 0, it follows that

Δx,t[(u2
α,b + ε)

p
2 ] + p|b|(u2

α,b + ε)
p
2

≥ p(p − 2)(u2
α,b + ε)

p−4
2 u2

α,b

(
|∇x,tuα,b|2 + Vα(x)u2

α,b

)
+

p

2
(u2

α,b + ε)
p−2
2
(
Δx,t(u2

α,b) − 2bu2
α,b

)
.

Now, using (3.5) and (3.6) we get the required estimate.

4. PROOF OF THEOREM 3.1

In the proof we follow the classical argument from [17] augmented by that from
[5]. We prove (3.2) for 1 < p ≤ 2 and then (3.3) for p > 4; the case 2 < p ≤ 4
of (3.3) then follows by Marcinkiewicz’ interpolation theorem. As already declared,
throughout this section we assume that f is a real-valued linear combination of the
functions ϕα

k , f =
∑

akϕ
α
k (finite sum, ak ∈ R).

Proof of (3.2). In fact we shall consider

gα,b(f)(x) =
(∫ ∞

0
t
∣∣δPα,b

t f(x)
∣∣2 dt

)1/2

,

(so that gα = gα,0) and prove a slightly more general estimate,

(4.1) ‖gα,b(f)‖p ≤ M1/2
α cp,b‖f‖p, 1 < p ≤ 2,

which is needed in the proof of (3.3) for p > 4 with b = −2, 0, 2. The bound (4.1) will
be proved under the assumption b ≥ 1−d; note that b ≥ 1−d implies b ≥ −2(|α|+d)
for α ∈ ({−1/2} ∪ (1/2,∞))d, which is required in Lemmas 3.2 and 3.3. Note also
that for b = −2 the assumption b ≥ 1 − d forces d ≥ 3.
We shall use Lemma 3.3 and proceed by analogy with the proof of [5, Lemma 2].

Fix R > 0. Then, by Lemma 3.3, for fixed x ∈ Rd
+ we have
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∫ R

0
t|δuα,b(x, t)|2 dt

≤ Mαρp

∫ R

0

t(u2
α,b + ε)

2−p
2

(
Δx,t[(u2

α,b + ε)p/2] + p|b|(u2
α,b + ε)p/2

)
dt

≤ Mαρp

(
sup

0<t≤R
u2

α,b+ε
) 2−p

2

(∫ R

0
tΔx,t[(u2

α,b+ε)p/2] dt+p|b|
∫ R

0
t(u2

α,b+ε)p/2 dt

)
.

Therefore, denoting AR = {x ∈ Rd
+ : |x| ≤ R}, we obtain

∫
AR

(∫ R

0
t|δuα,b|2 dt

)p/2

dx ≤ Mp/2
α ρp/2

p

∫
AR

(
sup

0<t≤R
u2

α,b + ε
) p(2−p)

4

×
(∫ R

0
tΔx,t[(u2

α,b + ε)
p
2 ] dt + p|b|

∫ R

0
t(u2

α,b + ε)
p
2 dt

) p
2

dx.

Using Hölder’s inequality with the pair of conjugate exponents 2/(2−p) and 2/p gives

(4.2)

∫
AR

(∫ R

0
t|δuα,b|2 dt

)p/2

dx≤Mp/2
α ρp/2

p

(∫
AR

(
sup
t>0

u2
α,b+ε

)p/2

dx

)(2−p)/2

×
(∫

AR

(∫ R

0
tΔx,t[(u2

α,b + ε)p/2]dt+p|b|
∫ R

0
t(u2

α,b+ε)p/2dt

)
dx

)p/2

.

Applying consecutively the dominated convergence theorem, (2.12) and (2.9) produces

lim
ε→0+

(∫
AR

(
sup
t>0

u2
α,b + ε

)p/2

dx

)(2−p)/2

=
(∫

AR

(
sup
t>0

|uα,b|
)p

dx

)(2−p)/2

≤ C
p(2−p)

2
b

(∫
AR

|W+
∗ f(x)|p dx

)(2−p)/2

≤ (ApCb)
p(2−p)

2 ‖f‖
p(2−p)

2
p .(4.3)

We focus on getting a suitable bound for the second integral factor in (4.2). To
simplify the notation, with no loss of generality we may assume that for some n ∈
{0, 1, . . . , d}, α1 = . . . = αn = −1/2, αn+1, . . . , αd > 1/2. To be precise, n = 0
corresponds to α ∈ (1/2,∞)d, while n = d to α = −1/2. We know that for xi > 0,

ϕ
−1/2
ki

(xi) coincides with h2ki(xi), i.e. the Hermite function of even degree 2ki. It
follows that f and hence also uα,b has a natural extension to R

n × R
d−n
+ , which
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is a C∞ function in the first n variables. Moreover, since one-dimensional Hermite
functions of even degree are even functions, both extensions are symmetric in the first n
variables. Denoting the aforementioned extensions of f and uα,b by the same symbols
and setting An

R = R
n × R

d−n
+ ∩ {x ∈ R

d : |x| ≤ R}, we thus write∫
AR

∫ R

0
tΔx,t[(u2

α,b + ε)p/2] dt dx = 2−n

∫
An

R

∫ R

0
tΔx,t[(u2

α,b + ε)p/2] dt dx.

Consequently, by using Green’s formula, we check that

lim sup
ε→0+

∫
AR

(∫ R

0

tΔx,t[(u2
α,b + ε)p/2] dt + p|b|

∫ R

0

t(u2
α,b + ε)p/2 dt

)
dx

= lim sup
ε→0+

(
2−n

∫
An

R

∫ R

0

tΔx,t[(u2
α,b+ε)p/2 ] dt dx+p|b|

∫
AR

∫ R

0

t(u2
α,b+ε)p/2 dt dx

)

≤ 2−n

∫
∂Qn

R

(
tp|uα,b|p−1

∣∣∂νuα,b

∣∣−|uα,b|p∂νt
)

dσ(x, t) + p|b|
∫

AR

∫ R

0

t|uα,b|p dt dx.(4.4)

Indeed, let ∂Qn
R be the boundary of Qn

R = An
R × [0, R] in R

d+1, σ be the surface
measure on ∂Qn

R, and ν be the unit normal vector field on ∂Qn
R pointing out of Qn

R.
Then ∫

An
R

∫ R

0
tΔx,t[(u2

α,b + ε)p/2] dt dx

=
∫

∂Qn
R

(
t∂ν [(u2

α,b + ε)p/2] − (u2
α,b + ε)p/2∂νt

)
dσ(x, t)

=
∫

∂Qn
R

(
tp(u2

α,b + ε)p/2−1uα,b∂νuα,b − (u2
α,b + ε)p/2∂νt

)
dσ(x, t)

≤
∫

∂Qn
R

(
tp(u2

α,b + ε)(p−1)/2
∣∣∂νuα,b

∣∣− (u2
α,b + ε)p/2∂νt

)
dσ(x, t),

and (4.4) follows.
Replacing the relevant expressions on the right-hand side of (4.2) by (4.3) and

(4.4) we shall then let R → ∞. This will require an analysis of the behavior of both
summands in (4.4) when R → ∞. To deal with the first summand decompose ∂Qn

R

as ∂Qn
R = SR ∪ An

R × {R} ∪ An
R × {0}, with

SR ={(x, t) : x∈An
R, |x|=R, 0<t≤R} ∪

d⋃
j=n+1

{(x, t) : x∈An
R, xj =0, 0<t≤R},

where An
R denotes the closure of An

R in R
d (with appropriate adjustment when d = 1).

By assumption, uα,b is a linear combination of functions of type e−t(4|k|+2|α|+2d+b)1/2
ϕα

k .
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Since αj > 1/2, j = n + 1, . . . , d, we have ϕ
αj

kj
(0) = 0. Moreover, from the very

definition of ϕα
k it is easy to verify that for α ∈ Ad, |ϕα

k (x)| ≤ Cα
k e−|x|2/4 and

|∇ϕα
k (x)| ≤ Dα

k e−|x|2/4. Hence, we check that

lim
R→∞

∫
SR

(
tp|uα,b|p−1

∣∣∂νuα,b

∣∣− |uα,b|p∂νt
)

dσ(x, t) = 0,

lim
R→∞

∫
AR×{R}

(
tp|uα,b|p−1

∣∣∂νuα,b

∣∣− |uα,b|p∂νt
)

dσ(x, t) = 0.

Since uα,b(x, 0) = f(x), x ∈ R
n × R

d−n
+ , we finally obtain

lim
R→∞

2−n

∫
∂Qn

R

(
tp|uα,b|p−1

∣∣∂νuα,b

∣∣− |uα,b|p∂νt
)

dσ(x, t)

= 2−n

∫
Rn×R

d−n
+

|f(x)|p dx = ‖f‖p
p.

To treat the second summand in (4.4) note that (2.12) (b ≥ 1 − d is guaranteed) and
(2.9) produce

p|b|
∫

AR

∫ R

0
t|uα,b(x, t)|p dt dx ≤ p|b|Cp

b

∫ R

0
te−pt dt ·

∫
Rd

+

|W+
∗ f(x)|p dx

≤ p|b|Cp
b IpA

p
p‖f‖p

p,

with Ip =
∫∞
0 te−pt dt.

Summarizing, (4.4) is bounded by a constant depending only on p and b, times
‖f‖p

p. This bound together with (4.3) shows the required estimate (4.1) and thus (3.2).

Proof of (3.3). The case p ≥ 4.. Recall that the constant Cb appears in (2.12) and
(2.13). The technical lemma we shall use is the following (cf. [5, Lemma 3]).

Lemma 4.1. Let α ∈ [ 32 ,∞)d and D = max{C−2, C0, C2}. Then, for x ∈ R
d
+

and t > 0,

(4.5)

∣∣δuα(x, t)
∣∣2

≤ D

∫
R

d
+

[
Pα−1,−2

t/2
(x, y) + Pα−1,2

t/2
(x, y) + Pα−1

t/2
(x, y)

] ∣∣δuα(y, t/2)
∣∣2 dy.

Proof. The monotonicity argument for Bessel functions, already invoked in the
proof of Lemma 2.1, and (2.8) show that Pμ,b

t/2
(x, y) ≤ Pα−1,b

t/2
(x, y), for x, y ∈ Rd

+,

μ = α − ej , α + ej, α, and b = −2, 2, 0, respectively. By using this fact (4.5) is an
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immediate consequence of the bounds

|δ∗j uα(x, t)|2 ≤ C−2

∫
Rd

+

P
α−ej ,−2

t/2 (x, y)|δ∗juα(y, t/2)|2 dy,

|δjuα(x, t)|2 ≤ C2

∫
R

d
+

P
α+ej ,2

t/2
(x, y)|δjuα(y, t/2)|2 dy,

|∂tuα(x, t)|2 ≤ C0

∫
Rd

+

Pα
t/2(x, y)

∣∣∂tuα(y, t/2)
∣∣2 dy,

j = 1, . . . , d, (actually they hold under the weaker assumption: α ∈ ({1/2} ∪ [3/

2,∞))d and |α| + d ≥ 2). To prove the first bound (the second and third follow
analogously), note that from (2.1) it follows that

δ∗j uα(x, t) = P
α−ej ,−2

t/2 (δ∗j uα(·, t/2))(x).

Using this and Schwarz’ inequality we obtain

|δ∗j uα(x, t)|2 ≤
( ∫

R
d
+

P
α−ej ,−2

t/2
(x, y) dy

)( ∫
R

d
+

P
α−ej ,−2

t/2
(x, y)|δ∗juα(y, t/2)|2 dy

)
,

which, by (2.13), implies the required bound (note that the factor e−t/2 was ne-
glected).

Let 2/p + 1/q = 1 and φ ∈ Lq be a nonnegative function. Since Pα−1,b
t (x, y)

(b = −2, 2, 0) is symmetric in x and y, by (4.5) and the inequality from Lemma 3.3
taken with b = 0 and p = 2, we have∫

Rd
+

gα(f)(x)2 φ(x) dx

≤ 4D

∫
Rd

+

∫ ∞

0
t|δuα(x, t)|2

(
Pα−1,−2

t φ(x) + Pα−1,2
t φ(x) + Pα−1

t φ(x)
)

dt dx

≤ 4DMαρ2

∫
R

d
+

∫ ∞

0
tΔx,t

(
u2

α

)(
P

α−1,−2
t φ(x) + P

α−1,2
t φ(x) + Pα−1

t φ(x)
)

dt dx.

Let I(φ) denote the latter double integral taken over Rd
+ × (0,∞). Since

Δx,t

(
Pα−1,b

t φ
)

= (Vα−1 + bI)Pα−1,b
t φ, b = −2, 2, 0,

and Vα−1(x) ≥ 0 (this is since α ∈ (3/2,∞)d), we see that

Δx,t(u2
αPα−1,b

t φ) =
(
Δx,tu

2
α

)
Pα−1,b

t φ+4uα(∇x,tuα ·∇x,tP
α−1,b
t φ)+u2

αΔx,tP
α−1,b
t φ

≥
(
Δx,tu

2
α

)
Pα−1,b

t φ+4uα(∇x,tuα ·∇x,tP
α−1,b
t φ)+bu2

αPα−1,b
t φ,
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where the dot denotes the inner product in R
d+1. Restating the above gives

(Δx,tu
2
α)Pα−1,b

t φ ≤ Δx,t(u2
αPα−1,b

t φ) − 4uα(∇x,tuα · ∇x,tP
α−1,b
t φ) − bu2

αPα−1,b
t φ.

Consequently, I(φ) ≤ I1 + I2 + I3, where

I1 ≡
∫

R
d
+

∫ ∞

0

t
(
Δx,t(u2

αPα−1,−2
t φ) + 4|uα||∇x,tuα||∇x,tP

α−1,−2
t φ|

+2u2
αPα−1,−2

t φ
)

dt dx,

and similarly for I2 and I3 with replacement of −2 by 2 and 0, respectively.
We now estimate I1. Since uα(x, 0) = f(x) and Pα−1,−2

0 φ(x) = φ(x), by Green’s
formula and Hölder’s inequality with 2/p + 1/q = 1 it follows that

I1,1 ≡
∫

Rd
+

∫ ∞

0
tΔx,t(u2

αPα−1,−2
t φ) dt dx =

∫
Rd

+

f(x)2φ(x) dx ≤ ‖f‖2
p‖φ‖q.

Moreover, by (2.12), the left-hand side inequality in (3.5) applied to u = uα and
u = uα−1,−2, (2.13) and Schwarz’ inequality,

I1,2 ≡
∫

Rd
+

∫ ∞

0
t
(
4|uα||∇x,tuα||∇x,tP

α−1,−2
t φ| + 2u2

αPα−1,−2
t φ

)
dt dx

≤ 4C0

∫
R

d
+

W+
∗ f(x)gα(f)(x)gα−1,−2(φ)(x) dx + 2C2

0C−2I3∫
Rd

+

W+
∗ f(x)2W+

∗ φ(x) dx.

Consequently, applying Hölder’s inequality for three functions with 1/p+1/p+1/q = 1
(note that q ≤ 2), (2.12) and (2.9) together with (4.1) applied to gα−1,−2 gives

I1,2 ≤ M
1/2
α−1c

′
p(‖f‖p‖gα(f)‖p‖φ‖q + ‖f‖2

p‖φ‖q).

(Note that the condition α ∈ (3/2,∞)d assures α − 1 ∈ (1/2,∞)d.)
Summarizing, from estimates of I1,2 and I1,2 we conclude that

(4.6) I1 ≤ M
1/2
α−1c

′′
p(‖f‖p‖gα(f)‖p‖φ‖q + ‖f‖2

p‖φ‖q).

The same reasoning leads to analogous bounds for I2 and I3. Thus, we arrive at

‖gα(f)‖2
p ≤ 4DMαρ2 sup

‖φ‖q=1

I(φ) ≤ MαM
1/2
α−1c

′′′
p

(
‖gα(f)‖p‖f‖p + ‖f‖2

p

)
.

It follows that ‖gα(f)‖p ≤ M
1/2
α−1cp‖f‖p, as desired. The proof of (3.3) for p > 4 is

completed and thus the proof of Theorem 3.1 is finished.
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5. RIESZ TRANSFORMS

Recall that the Riesz-Laguerre transform Rα
j is defined on L2 by

Rα
j f = −2

∞∑
k=0

(
kj

4|k|+ 2|α| + 2d

)1/2

〈f, ϕα
k 〉ϕ

α+ej

k−ej
.

It was shown in [13, Theorem 3.3] that (among other things), for α ∈ Ad, Rα
j extend

uniquely to bounded linear operators on Lp, 1 < p < ∞; we use the same symbols to
denote these extensions. Our main theorem reads as follows.

Theorem 5.1. Let 1 < p < ∞ and ε > 0. Assume that d ≥ 1 and α ∈ ({−1/
2} ∪ (1/2 + ε,∞))d when 1 < p ≤ 2, or d ≥ 3 and α ∈ (3/2 + ε,∞)d when
2 < p < ∞. Then there exists a constant Cp,ε not depending on the dimension d, such
that for all j = 1, . . . , d,

‖Rα
j f‖p ≤ Cp,ε‖f‖p, f ∈ Lp.

Proof. Due to the aforementioned result from [13] it is convenient (and enough)
to consider functions of the form f =

∑
akϕ

α
k (finite sum). Using the definitions of

Rα
j , P

α
t , P̃

α,j
t and (2.1) shows that ∂tP̃

α,j
t (Rα

j f)(x) = −δjP
α
t f(x), and hence

g̃j(Rα
j f)(x) = gj(f)(x).

Applying (3.1) and then (3.4) leads to

‖Rα
j f‖p ≤ c̃p‖g̃j(Rα

j f)‖p = c̃p‖gj(f)‖p ≤ c̃pcp,α‖f‖p.

Clearly, with the given assumption on α one has c̃pcp,α ≤ Cp,ε, where Cp,ε is appro-
prietely chosen, see the structure of the constant cp,α appearing in (3.4).
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