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LAGRANGIAN DUALITY FOR VECTOR OPTIMIZATION PROBLEMS
WITH SET-VALUED MAPPINGS

Xian-Jun Long and Jian-Wen Peng*

Abstract. In this paper, by using a alternative theorem, we establish Lagrangian
conditions and duality results for set-valued vector optimization problems when
the objective and constant are nearly cone-subconvexlike multifunctions in the
sense of E-weak minimizer.

1. INTRODUCTION

Optimality conditions and duality theorems for optimization problems of single-
valued functions satisfying convexity or weaker conditions have been studied by many
authors, see [1-8]. In particular, in works of [3-6], Lagrangian conditions and duality
theorems for convexlike functions and a class of quasiconvex functions were discussed.
In recent years, many authors have generalized the single-valued functions to set-

valued mappings, for its extensive applications in many fields such as mathematical
programming [9], economics [10] and differential inclusions [11]. In particular, La-
grangian conditions and duality theorems were discussed when the objective and con-
straint are convex, preinvex, subconvexlike and nearly convexlike set-valued mappings
in [12-16] and [17], respectively.
Recently, Yang, Li and Wang [18] introduced a new class of generalized convexity

for set-valued functions, called nearly cone-subconvexlike, which is a generalization
of the set-valued functions mentioned above. They obtained a alternative theorem,
a Lagrangian multiplier theorem and two scalarization theorems. Sach [19] showed
some characterizations of nearly cone-subconvexlikeness and established some saddle
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theorems under nearly cone-subconvexlikeness conditions for set-valued vector opti-
mization. Some related works, we refer to [20].
In this paper, under nearly cone-subconvexlikeness, Lagrangian conditions and du-

ality results for set-valued vector optimization problems are obtained in the sense of
E-weak minimizer by using the alternative theorem of Yang, Li and Wang [18].

2. PRELIMINARIES

Throughout this paper, let X be a nonempty subset of a real linear topological
vector space; Y and Z be real linear topological vector spaces with topological dual
spaces Y ∗ and Z∗, respectively. Let C ⊂ Y and D ⊂ Z be pointed closed convex
cones with intC �= ∅ and intD �= ∅. The nonnegative dual cone C+ of C is defined
by

C+ = {φ ∈ Y ∗ : φ(y) ≥ 0, ∀y ∈ C},
where 〈·, ·〉 is the canonical bilinear form with respect to the dual between Y ∗ and Y .
Let F : X → 2Y and G : X → 2Z be two set-valued mappings with nonempty

value. We consider the following vector optimization problem with set-valued map-
pings:

(P) min F (x)
s.t. G(x) ∩ (−D) �= ∅.

Let K denote the set of all feasible points for the problem (P), i.e.,

K = {x ∈ X | G(x) ∩ (−D) �= ∅}.

Let E ⊂ Y be a nonempty subset, and let ε ∈ C.

Definition 2.1
(i) A point x0 ∈ K is said to be a weak efficient solution of problem (P ), if there
exists y0 ∈ F (x0) such that (F (K) − y0) ∩ (−intC) = ∅. The pair (x0, y0) is
said to be a weak minimizer of problem (P ).

(ii) A point x0 ∈ K is said to be an ε-weak efficient solution of problem (P ), if
there exists y0 ∈ F (x0) such that (F (K) − y0 + ε) ∩ (−intC) = ∅. The pair
(x0, y0) is said to be ε-weak minimizer of problem (P ).

(iii) A point x0 ∈ K is said to be an E-weak efficient solution of problem (P ), if
there exists y0 ∈ F (x0) such that (F (K) − y0 + E) ∩ (−intC) = ∅. The pair
(x0, y0) is said to be E-weak minimizer of problem (P ).

It is clear that the set of weak efficient solutions is contained in the set of ε-weak
efficient solutions. Some relationships between ε-weak efficient solutions and E-weak
efficient solutions were investigated in [21] as follows:
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(i) if E = {ε}, then an E-weak efficient solution of problem (P ) becomes a ε-weak
efficient solution of problem (P );

(ii) if x0 is an E-weak efficient solution of problem (P ) and there exists ε′ ∈ E

such that ε − ε′ ∈ C, then x0 is an ε-weak efficient solution of problem (P );
(iiii) if x0 is an ε-weak efficient solution of problem (P ) and E − ε ⊂ C, then x0 is

an E-weak efficient solution of problem (P ).

The following two examples show that the ε-weak efficient solution and theE-weak
efficient solution are totally different.

Example 2.1. Let K = (0, 2)× [0, 2], Y = R2,

C = R2
+ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0},

F (x1, x2) = {(x1, x2) ∪ (
3
2
,

√
3

2
+ 1) : x2 =

√
1 − (x1 − 1)2 + 1}.

Let ε = ( 1
2 , 0) and E = −2 × [ 14 , 1]. It is easy to compute that the ε-weak efficient

solutions set Sε and the E-weak efficient solutions set SE, respectively, as follows:

Sε = {(x1, x2) : x2 =
√

1 − (x1 − 1)2 + 1, x1 ∈ (0,
1
2
]},

and
SE = {(x1, x2) : x2 =

√
1 − (x1 − 1)2 + 1, x1 ∈ (0,

1
4
] ∪ [

7
4
, 2)}.

Then Sε �⊂ SE and SE �⊂ Sε.

Example 2.2. Let K = (−1, 1)× [0, 1], Y = R2,

C = {(x, y) ∈ R2 : x ≥ 0, y ≥ x},

F (x, y) = {(x, y)∪ (
√

2
2

,

√
2

2
) : y =

√
1 − x2}.

Let ε = ( 1
2 , 1

2 ) and E = [1−
√

39
8 , 1

2 ]× 5
8 . It is easy to compute that the ε-weak efficient

solutions set Sε and the E-weak efficient solutions set SE, respectively, as follows:

Sε = {(x, y) : y =
√

1 − x2, x ∈ (−1,−1
2
] ∪ [0, 1)},

and

SE = {(x, y) : y =
√

1 − x2, x ∈ (−1,−
√

39
8

] ∪ [
√

47− 9
16

, 1)}.
Thus, SE �⊂ Sε and Sε �⊂ SE .
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Definition 2.3. Let X be a convex set. A set-valued function F : X → 2Y is said
to be C-convex on X if, for any x1, x2 ∈ X and λ ∈ [0, 1], one has

λF (x1) + (1 − λ)F (x2) ⊂ F (λx1 + (1 − λ)x2) + C.

Definition 2.4. [15].
(i) A set-valued function F : X → 2Y is said to be C-convexlike on X if, for all

x1, x2 ∈ X and λ ∈ (0, 1),

λF (x1) + (1 − λ)F (x2) ⊂ F (X) + C.

(ii) A set-valued function F : X → 2Y is said to be C-subconvexlike on X if, there
exists θ ∈ intC such that for all x1, x2 ∈ X, λ ∈ (0, 1), and ε > 0,

εθ + λF (x1) + (1− λ)F (x2) ⊂ F (X) + C.

Remark 2.1. In Definition 2.3, X may be a nonconvex set.

Remark 2.2. From [15], we know that
(i) F is C-convexlike on X if and only if F (X) + C is a convex set;
(ii) F is C-subconvexlike on X if and only if F (X) + intC is a convex set.

Lemma 2.1. If F : X → 2Y is C-convexlike on X , then F is C-subconvexlike on
X .

Definition 2.4. [17] A set-valued function F : X → 2Y is said to be nearly
C-convexlike on X if cl(F (X) + C) is a convex set.

Remark 2.3. If F (X)+ intC is a convex set, then cl(F (X)+C) is a convex set,
because cl(F (X) + C) = cl(F (X) + intC).

In order to prove Theorem 2.1, we need the following lemma.

Lemma 2.2. [22]. Let C be a convex cone in Y with intC �= ∅, and let S be a
subset of Y . Then

int[cl(S + C)] = S + intC.

Theorem 2.1. If F : X → 2Y is nearly C-convexlike on X , then F (X)+ intC is
a convex set.

Proof. Since F is nearly C-convexlike on X , then cl(F (X)+ C) is a convex set.
Noting that the interior of a convex set is convex, it follows that int[cl(F (X) + C)]
is covex. By Lemma 2.2, we have that F (X) + intC is a convex set. This completes
the proof.
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Corollary 2.1. If F : X → 2Y is nearly C-convexlike on X if and only if
F (X) + intC is convex.

Definition 2.5 [18]. A set-valued function F : X → 2Y is said to be nearly
C-subconvexlike on X if and only if clcone(F (X) + C) is a convex set.

Lemma 2.3. [18]. If F is nearly C-convexlike on X , then F is nearly C-
subconvexlike on X .

From above definitions, lemmas and corollary, we have the following relationships:

C-convexity⇒ C-convexlikeness⇒ C-subconvexlikeness
⇔ nearly C-convexlike⇒ nearly C-subconvexlikeness.

Example 2.3. This example illustrates that a nearly C-subconvexlike function is
neither a nearly C-convexlike function nor a C-subconvexlike function. Let X =
[0,∞)× [0,∞), Y = R2,

C = R2
+ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0},

F (x1, x2) =

{
{x1} × [1,∞), if x1 ∈ [0, 1),
{x1} × [0,∞), if x1 ∈ [1,∞).

It is easy to prove that clcone(F (X)+C) is convex, i.e., F is nearly C-subconvexlike
onX . But F is neither a nearlyC-convexlike function nor a C-subconvexlike function,
because cl(F (X) + C) and F (X) + intC are not convex.

Example 2.4. This example illustrates that a C-subconvexlike function is not a
C-convexlike function. Let X = {(0, 1), (1, 0)}, Y = R2,

C = R2
+ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0},

F (x1, x2) = {(x1, x2)} ∪ (C\{(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 1}).
It is easy to check that F (X)+ intC is convex, i.e., F is C-subconvexlike on X . But
F is not a C-convexlike function, because F (X) + C is not convex.

Lemma 2.4 If u∗ ∈ D+ \ {0} and u ∈ intD, then 〈u, u∗〉 > 0.

Lemma 2.5 [18]. Let the set-valued function F : X −→ 2Y be nearly C-
subconvexlike on X . Then, one and only one of the following statements is true:

(i) There exists x ∈ X such that F (x) ∩ (−intC) �= ∅;
(ii) There exists ϕ ∈ C+\{0} such that ϕ(y) ≥ 0 for all y ∈ F (X).
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3. MAIN RESULTS

In this section, let L(Z, Y ) denote the set of all linear continuous operators Λ :
Z → Y with Λ(D) ⊂ C and E ⊂ intC be a subset.

Theorem 3.1. Let intC �= ∅ and G(K) ∩ (−intD) �= ∅. Assume that set-valued
function (F −y0 +E, G) is nearly (C×D)-subconvexlike on K . If (x0, y0) is E-weak
minimizer of problem (P ), then there exists Λ ∈ L(Z, Y ) such that (x0, y0) is E-weak
minimizer of the following problem:

(P ) min
x∈K

(F (x) + Λ(G(x))

and
−Λ(G(x0) ∩ (−D)) ⊂ (intC ∪ {0}) \ (E + intC).

Proof. Let (x0, y0) be E-weak minimizer of problem (P ). Then Definition 2.1
implies that x0 ∈ K, y0 ∈ F (x0) and

(F (K)− y0 + E) ∩ (−intC) = ∅.

Now we show that

(F (K) − y0 + E, G(K))∩ (−intC,−intD) = ∅.
Indeed, suppose by contradiction that there exists

(y1, z1) ∈ (F (x1) − y0 + E, G(x1)) ∩ (−intC,−intD)

for some x1 ∈ K. Then there exists y ∈ F (x1) such that y1 ∈ y − y0 + E and so

y − y0 ∈ y1 − E ⊂ −intC − E ⊂ −intC − intC ⊂ −intC.

It follows that

G(x1) ∩ (−intD) �= ∅

and

(F (x1) − y0 + E) ∩ (−intC) �= ∅,
which contradicts to (F (K)− y0 + E) ∩ (−intC) = ∅. Therefore,

(F (K)− y0 + E, G(K))∩ (−intC,−intD) = ∅.
From the nearly (C × D)-subconvexlikeness of (F − y0 + E, G) on K and Lemma
2.5, we have that there exists (ϕ, φ) ∈ (C+, D+) \ {(0, 0)} such that
(3.1) 〈ϕ, y − y0 + s〉 + 〈φ, z〉 ≥ 0, ∀ x ∈ K, ∀ y ∈ F (x), ∀ s ∈ E, ∀ z ∈ G(x).



Lagrangian Duality for Vector Optimization Problems with Set-valued Mappings 293

We claim that ϕ �= 0. In fact, if ϕ = 0, then φ �= 0 and

〈φ, z〉 ≥ 0, ∀x ∈ K, ∀ z ∈ G(x).(3.2)

Since G(K) ∩ (−intD) �= ∅, there exists x ∈ K and z ∈ G(x) ∩ (−intD). Hence,
〈φ, z〉 < 0, which contradicts (3.2). Therefore, ϕ �= 0. Fix c ∈ intC with 〈ϕ, c〉 = 1
and define a map Λ : Z → Y as

Λ(z) = 〈φ, z〉c, ∀ z ∈ Z.

It is easy to check that Λ ∈ L(Z, Y ). Setting x = x0, y = y0 and z = z0 ∈
G(x0) ∩ (−D) in (3.1), then

〈ϕ, s〉+ 〈φ, z0〉 ≥ 0, ∀ s ∈ E.(3.3)

It follows from φ ∈ D+ and z0 ∈ −D that

0 ≥ 〈φ, z0〉 ≥ −〈ϕ, s〉, ∀ s ∈ E.(3.4)

From the left inequality of (3.4), we have

−Λ(z0) = −〈φ, z0〉c ∈ intC ∪ {0}.
From the right inequality of (3.4), we obtain

−Λ(z0) �∈ s + intC, ∀ s ∈ E.

In fact, if −Λ(z0) ∈ s + intC for some s ∈ E , then

ϕ(〈φ, z0〉c + s) = ϕ(Λ(z0) + s) < 0,

because ϕ ∈ C+ \ {0}. It follows from 〈ϕ, c〉 = 1 that

〈φ, z0〉 + 〈ϕ, s〉 < 0,

which contradicts (3.3). Therefore,

−Λ(z0) �∈ s + intC, ∀ s ∈ E,

or equivalently,

−Λ(z0) �∈ E + intC.

Notice that z0 is arbitrary in the set G(x0) ∩ (−D), we have

−Λ(G(x0) ∩ (−D)) ⊂ (intC ∪ {0}) \ (E + intC).

Suppose that (x0, y0) is not a E-weak minimizer of problem (P ). Then there exist
x ∈ K, y ∈ F (x), s ∈ E and z ∈ G(x) such that
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y0 − (y + Λ(z)) − s ∈ intC.

Since ϕ ∈ C+ \ {0}, by Lemma 2.4, we have
〈ϕ, y0 − (y + Λ(z))− s〉 > 0.

It follows from Λ(z) = 〈φ, z〉c and 〈ϕ, c〉 = 1 that

〈ϕ, y − y0 + s〉 + 〈φ, z〉 < 0.

This contradicts (3.1). Hence (x0, y0) is E-weak minimizer of problem (P ). This
completes the proof.

Now, we consider the dual problem. Define a set-valued mapping Φ : L(Z, Y ) →
2Y by

Φ(Λ) = {y | ∃x ∈ K such that (x, y) is E-weak minimizer of problem P}.

Consider the following maximum problem:

(DP) max Φ(Λ)
s.t. Λ ∈ L(Z, Y ).

A point Λ ∈ L(Z, Y ) is said to be a feasible point of problem (DP ) if Φ(Λ) �= ∅. We
say that (Λ0, y0) is E-weak maximizer of problem (DP ) if Λ0 is a feasible point of
problem (DP ), y0 ∈ Φ(Λ0), and there exists no feasible point Λ ∈ L(Z, Y ) such that

(y0 − Φ(Λ) + E) ∩ (−intC) �= ∅.

Theorem 3.2. (E-weak duality). If Λ0 is a feasible point of problem (DP ) and
x0 is a feasible point of problem (P ), then

(F (x0) − Φ(Λ0) + E) ∩ (−intC) = ∅.

Proof. Since Λ0 is a feasible point of problem (DP ), for any y ∈ Φ(Λ0), there
exists x ∈ K such that (x, y) is E-weak minimizer of problem (P ) corresponding to
Λ0. It follows that

[(F + Λ0(G))(K)− y + E] ∩ (−intC) = ∅.(3.5)

Now we claim that

(F (x0) − y + E) ∩ (−intC) = ∅.
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Indeed, if there is y0 ∈ F (x0) and s ∈ E such that y0 − y + s ∈ −intC . Since x0 is
a feasible point of problem (P ), there exists z0 ∈ G(x0) ∩ (−D). From the fact that
Λ0 ∈ L(Z, Y ), it follows that Λ0z0 ∈ −C . Thus,

y0 + Λ0z0 − y + s ∈ Λ0z0 − intC ⊂ −intC,

or equivalently,

[(F + Λ0(G))(K)− y + E] ∩ (−intC) �= ∅,

which contradicts (3.5). Notice that y ∈ Φ(Λ0) is arbitrary. Therefore, we have

(F (x0) − Φ(Λ0) + E) ∩ (−intC) = ∅.

This completes the proof.

Theorem 3.3. (E-strong duality). Let (F − y0 + E, G) be nearly (C × D)-
subconvexlike on K. If (x0, y0) is E-weak minimizer of problem (P ) and G(K) ∩
(−intD) �= ∅, then there exists Λ0 ∈ L(Z, Y ) such that (Λ0, y0) is E-weak maximizer
of problem (DP ).

Proof. Suppose (x0, y0) is E-weak minimizer of problem (P ) and G(K) ∩
(−intD) �= ∅, then by Theorem 3.1, there exists Λ0 ∈ L(Z, Y ) such that (x0, y0)
is E-weak minimizer of problem (P ) corresponding to Λ0. It follows that Λ0 is a
feasible point of problem (DP ), and y0 ∈ Φ(Λ0). By Theorem 3.2, we obtain

(y0 − Φ(Λ0) + E) ∩ (−intC) = ∅.

Thus, (Λ0, y0) is E-weak maximizer of problem (DP ). This completes the proof.

Remark 3.1.
(i) If E = {ε}, F and G are subconvexlike, then Theorems 3.2 and 3.3 reduce to
Theorems 5.1 and 5.2 of [16];

(ii) If E = {0}, F and G are nearly convexlike, then Theorems 3.2 and 3.3 reduce
to Theorems 4.5 of [17].
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