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LOW-DIMENSIONAL COHOMOLOGY OF LIE SUPERALGEBRA A(1, 0)
WITH COEFFICIENTS IN WITT OR SPECIAL SUPERALGEBRAS

Liping Sun1 and Wende Liu2,*

Abstract. Over a field of characteristic p > 2, using a direct sum decomposi-
tion of submodules and the weight space decomposition for the Witt superalgebra
viewed as A(1, 0)-module, we compute the low-dimensional cohomology groups
of the special linear Lie superalgebra A(1, 0) with coefficients in the Witt su-
peralgebra. We also compute the low-dimensional cohomology groups of A(1, 0)
with coefficients in the Special superalgebra.

0. INTRODUCTION

In 1997, Zhang [17] constructed four series of modular graded Lie superalgebras
of Cartan type, which are analogous to the finite-dimensional modular Lie algebras
of Cartan type [10] or the four series of infinite-dimensional Lie superalgebras of
Cartan type defined by even differential forms over a field of characteristic zero [4].
Later, the finite-dimensional modular Lie superalgebras of Cartan type defined by odd
differential forms were also constructed and studied (see [3, 7, 8], for example). Now
one can find many results on the structure, representation and classification of modular
Lie superalgebras, for example, see [1, 6, 9, 12, 13, 14, 15, 16] and the references
therein. We should mention that the complete classification problem is still open for
finite-dimensional simple modular Lie superalgebras.
In the present article, over a field of prime characteristic, we mainly compute the

low-dimensional cohomology groups of the special linear Lie superalgebraA(1, 0)with
coefficients in the restricted Witt superalgebra W or Special superalgebra S viewed
as A(1, 0)-modules in the natural fashion. We also give an example to illustrate that
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certain classical results for the Lie superalgebra A(1, 0) in characteristic zero do not
hold in characteristic p. Generally speaking, for a graded simple Lie (super)algebra,
the classical Lie (super)algebra contained in the null plays an important role in char-
acterizing the structure of the Lie (super)algebra under consideration. We expect that
this work is useful for further study of the graded modular Lie superalgebras such
as characterizing the maximal graded subalgebras of the simple graded modular Lie
superalgebras of Cartan type, as in the Lie algebra case [5].
Let us formulate the outline of the present paper. For our purpose we describe firstly

the structure of A(1, 0)-module W and compute the weight space decomposition of
W relative to the standard CSA h of A(1, 0). Then the work under consideration is
reduced to computing the cohomology groups with coefficients in certain submodules
and computing the so-called weight derivations from g to these submodules, that is,
the derivations preserving the h∗-gradings. Finally, since the Special superalgebra S
contains A(1, 0) as subalgebra and W contains S as A(1, 0)-submodule, we use the
results obtained for W to compute the low-dimensional cohomology groups of A(1, 0)
with coefficients in the Special superalgebra S.
Let us indicate certain differences for the cohomology of A(1, 0) in characteristics

0 and p. Over a field of characteristic zero, the first cohomology group of A(1, 0) with
coefficients in a finite-dimensional simple module is trivial or of dimension 1 [11]. In
the characteristic p case, however, this does not hold (see Remark 5.8).
Throughout we work over a field F of characteristic p > 2. All the vectors are

assumed to be finite-dimensional. Write Z for the set of integers and Z2 := {0̄, 1̄} the
two-element field. The symbol |x| implies that x is a Z2-homogeneous element in a
Z2-graded vector space and meanwhile it denotes the parity of x. Write 〈v1, . . . , vk〉
for the subspace spanned by v1, . . . , vk in a vector space.

1. PRELIMINARIES AND MAIN RESULTS

We recall certain basics relative to Witt superalgebras and Special superalgebras.
Fix two positive integers m, n > 1. Let O(m) be the divided power algebra with a
standard basis

{x(α) := xα1
1 xα2

2 · · ·xαm
m | α = (α1, . . . , αm) ∈ Z

m, 0 ≤ αi ≤ p − 1}

and multiplication x(α)x(β) =
(
α+β

α

)
x(α+β), where

(
α+β

α

)
:=

∏m
i=1

(
αi+βi

αi

)
. Let

Λ(n) be the exterior algebra of n variables xm+1, . . . , xm+n, which has a standard
basis

{xu := xi1xi2 · · ·xik | m + 1 ≤ i1 < · · · < ik ≤ m + n},

where u = 〈i1, i2, . . . , ik〉 is a strictly increasing sequence of k integers betweenm+1
andm+n. The tensor product O(m, n) := O(m)⊗Λ(n) is an associative superalgebra
in the usual fashion. We abbreviate g ⊗ f to gf for g ∈ O(m) and f ∈ Λ(n). Let



Low-dimensional Cohomology of Lie Superalgebra A(1, 0) 85

∂1, . . . , ∂m+n be the special superderivations of the superalgebra O(m, n) such that
∂i(xj) = δij . We write i ∈ u if ∂i(xu) �= 0. The finite-dimensional Witt superalgebra,
denoted by W (m, n), is a Lie superalgebra spanned by all f∂i, where f ∈ O(m, n)
and i = 1, . . . , m + n. Let div : W (m, n) −→ O(m, n) be the divergence such that

div(f∂i) = (−1)|f ||∂i|∂i(f) for f ∈ O(m, n).

Put S̄(m, n) := 〈w ∈ W (m, n) | div(w) = 0〉. Then S̄(m, n) is a subalgebra of
W (m, n). Its derived algebra S(m, n) := [S̄(m, n), S̄(m, n)] is a simple Lie superal-
gebra, called the Special superalgebra. In the sequel, write W , S and O for W (m, n),
S(m, n) and O(m, n), respectively.
By definition, a Z2-homogeneous linear mapping ϕ from a Lie superalgebra L to

an L-module M is called a derivation provided that

ϕ([x, y]) = (−1)|ϕ||x|x · ϕ(y) − (−1)|y|(|ϕ|+|x|)y · ϕ(x) for all x, y ∈ L.

A derivation ϕ from L toM is said to be inner if there exists a fixed m ∈ M such that
ϕ(x) = (−1)|x||m|x ·m for all x ∈ L. If such an elementm does not exist, ϕ is called
an outer derivation. Denote by Der(L, M) and Ider(L, M) the derivation space and
the inner derivation space, respectively. In general, Der(L, M) and Ider(L, M) are
L-submodules of HomF(L, M). The zero-dimensional cohomology group of L with
coefficients in M is the maximal trivial L-submodule of M :

H0(L, M) := {m ∈ M | L · m = 0}.
The first cohomology group (space) of L with coefficients inM is the quotient module:

H1(L, M) := Der(L, M)/Ider(L, M).

For short we write g for A(1, 0). Fix a standard basis of g:

B := {h1 := e11 + e33, h2 := e22 + e33, e12, e21, e13, e31, e23, e32}.
We identify g with the subalgebra of W with a fixed ordered basis

{x1∂1+xm+1∂m+1, x2∂2+xm+1∂m+1, x1∂2, x2∂1, x1∂m+1, xm+1∂1, x2∂m+1, xm+1∂2}
under the canonical isomorphism given by (1 ≤ i �= j ≤ 2):

hi 	−→ xi∂i + xm+1∂m+1, eij 	−→ xi∂j, ei3 	−→ xi∂m+1, e3i 	−→ xm+1∂i.

View W and S as g-modules by means of the adjoint representation. This paper
aims to compute H i(g, X) for i = 0, 1 and X = W, S. In particular, we obtain the
following dimension formulas:

dimH i(g, W ) =
{

(2m + 2n − 5)2n−1pm−2 if i = 0
(3m + 3n − 8)2npm−2 if i = 1;

dimH i(g, S) =
{

(2m + 2n − 7)2n−1pm−2 − 2m + 5 if i = 0
3(2m + 2n − 7)2n−1pm−2 − 6m + 17 if i = 1.
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2. REDUCTION

We shall adopt two kinds of reductions for computing the low-dimensional coho-
mology groups. The first one is based on a basic fact: If L is a Lie superalgebra and
M an L-module with a direct sum decomposition of L-submodules, M = ⊕n

i=1Mi,
then

(2.1) Hk(L, M) = ⊕n
i=1H

k(L, Mi).

Thus, let us first decompose W into a direct sum of certain g-submodules. View O as
g-module by the canonical embedding g ↪→ W . Put J := {1, 2, m + 1}. Then O has
a direct sum decomposition of submodules:

(2.2) O = Ô ⊕ Õ,

where

(2.3)
Ô = 〈x(α)xu | ∂j(x(α)xu) = 0 for all j ∈ J〉,

Õ = 〈x(α)xu | ∂j(x(α)xu) �= 0 for some j ∈ J〉.

It is evident that Ô is a trivial g-submodule of O. Note thatW is a free O-module with
basis {∂1, . . . , ∂m+n}. Then W has a direct sum decomposition of g-submodules:

W =
∑
i/∈J

Ô∂i ⊕
∑
i/∈J

Õ∂i ⊕
∑
j∈J

Õ∂j ⊕
∑
j∈J

Ô∂j .

Clearly,

T :=
∑
i/∈J

Ô∂i = 〈x(α)xu∂i | ∂j(x(α)xu) = 0 for all j ∈ J, i /∈ J〉(2.4)

is a trivial g-submodule of W. As g-modules, one may easily check that

(2.5) W � T ⊕ (Õ ⊗ 〈∂i | i /∈ J〉)⊕ (Õ ⊗ 〈∂1, ∂2, ∂m+1〉)⊕ (Ô ⊗ 〈∂1, ∂2, ∂m+1〉).

Obviously, as g-module, 〈∂i | i /∈ J〉 is trivial and of dimension

t := m + n − 3.

As g-submodule of W , 〈x1, x2, xm+1〉 is isomorphic to the 3-dimensional standard
A(1, 0)-module sl(2|1) with the standard basis

v1 := (1, 0, 0)t, v2 := (0, 1, 0)t, v3 := (0, 0, 1)t,
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under the linear mapping given by

x1 	−→ v1, x2 	−→ v2, xm+1 	−→ v3.

We have a standard g-module isomorphism:

〈∂1, ∂2, ∂m+1〉 � sl(2|1)∗.

As usual, for an L-module M write SkM for the kth super-symmetric power of M.
Now consider g-module sl(2|1). Let I be the ideal generated by vp

1 and vp
2 in the

super-symmetry algebra Ssl(2|1) = ⊕k≥0Sksl(2|1). For k ≥ 1, define the following
g-modules in the usual way:

Vk := Sksl(2|1) + I/I,

V := ⊕2p−1
k=1 Vk

space� ⊕2p−1
k=1 Sksl(2|1).

Then, as g-modules,
V ∼−→ O∗(2, 1) ↪→ O(m, n),

where O∗(2, 1) is the unique maximal ideal of O(2, 1) without 1. Thus, identifying V
with ⊕2p−1

k=1 Sksl(2|1) as vector spaces, we take the convention that, in V ,

(2.6) vk
i = 0 whenever k ≥ p for i = 1, 2.

Then one easily finds a canonical g-module isomorphism:

(2.7) Õ � Ô ⊗ V .

For an L-module M we also write

kM := M ⊕ · · · ⊕ M (k copies).

If V and U are g-modules and V is trivial, then

(2.8) V ⊗ U � kU , where k = dimV.

From (2.7) and (2.8), one may easily find the following g-module isomorphisms:

Õ � Ô ⊗ V � sV ,

where
s := dimÔ = 2n−1pm−2.

Similarly, from (2.5) we have

W � T ⊕ s(tV ⊕ (V ⊗ sl(2|1)∗) ⊕ sl(2|1)∗).(2.9)
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Note that the trivial g-module T is of dimension:

(2.10) dimT = ts = (m + n − 3)2n−1pm−2.

The module action of g on V is given in the table below [Notice (2.6)]:

Table 2.1: Module action of A(1, 0) on V
v = vk1

1 vk2
2 v = vk1

1 vk2
2 v3

h1 k1v (k1 + 1)v
h2 k2v (k2 + 1)v
e12 k2v

k1+1
1 vk2−1

2 k2v
k1+1
1 vk2−1

2 v3

e21 k1v
k1−1
1 vk2+1

2 k1v
k1−1
1 vk2+1

2 v3

e13 0 vk1+1
1 vk2

2

e31 k1v
k1−1
1 vk2

2 v3 0
e23 0 vk1

1 vk2+1
2

e32 k2v
k1
1 vk2−1

2 v3 0

Note that for a simple Lie superalgebra L and a trivial L-module M ,

Der(L, M) = 0.(2.11)

Remark 2.1. In view of (2.1), (2.9) and (2.11), It is enough to compute the low-
dimensional cohomology groups of g with coefficients in the submodulesV , V⊗sl(2|1)∗

and sl(2|1)∗ respectively, since T is trivial.

In order to explain the second kind of reductions for computing the low-dimensional
cohomology groups, we introduce the following definition.

Definition 2.2. Let L be a Lie superalgebra and M an L-module. Relative to
a CSA H of L, L and M have weight space decompositions L = ⊕α∈H∗Lα and
M = ⊕α∈H∗Mα, respectively. A derivation ϕ from L to M is called a weight
derivation (or H∗-derivation) relative to H if ϕ(Lα) ⊆ Mα for all α ∈ H∗.

Let us state a standard fact on weight derivations, which is a super-version of the
Lie algebra case [2, Theorem 1.1].

Lemma 2.3. Each derivation is equal to a weight derivation modulo an inner
derivation.

In view of Lemma 2.3, to compute the 1-dimensional cohomology groups of g to
W , it is sufficient to compute the weight derivations relative to a CSA of g. Fix a
standard CSA of g:



Low-dimensional Cohomology of Lie Superalgebra A(1, 0) 89

h = 〈hi = eii + e33 | i = 1, 2.〉
Relative to h, the root space decomposition of g is

(2.12) g = h ⊕ gε1−ε2 ⊕ g−ε1+ε2 ⊕ g−ε2 ⊕ gε2 ⊕ g−ε1 ⊕ gε1 .

All the root subspaces are 1-dimensional and the root-vectors are listed below:

Table 2.2: Roots and root-vectors for g

roots ε1 − ε2 −ε1 + ε2 −ε2 ε2 −ε1 ε1

root-vectors e12 e21 e13 e31 e23 e32

In view of the remarks below Lemma 2.3, for a weight derivation ϕ from g to
g-module M , we have

ϕ(gα) ⊆ Mα for all α ∈ h∗ = 〈θ,±ε1,±ε2,±(ε1 − ε2)〉.

Thus, for a g-moduleM , we are only concerned with the weight subspaces of M corre-
sponding to the weights of g. So, for later use, we list the weight-vectors corresponding
to the weights in h∗ for g-module V and V ⊗ sl(2|1)∗, respectively. For convenience,
we write v ⊗ v∗ as vv∗ for v ∈ V and v∗ ∈ sl(2|1)∗. Here one should keep in mind
that p ≡ 0 in the ground field F.

3. ZERO-DIMENSIONAL COHOMOLOGY H0(g, W )

Theorem 3.1. The zero-dimensional cohomology group of g with coefficients in
W is as follows:

H0(g, W ) = T ⊕ ts〈vp−1
1 vp−1

2 v3〉 ⊕ s〈v1v
∗
1 + v2v

∗
2 + v3v

∗
3〉,
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where
t = m + n − 3 and s = 2n−1pm−2.

In particular,
dimH0(g, W ) = (2m + 2n − 5)2n−1pm−2.

Proof. In view of Remark 2.1, we compute the zero-dimensional cohomology
groups of g with coefficients in sl(2|1)∗, V and V ⊗ sl(2|1)∗, respectively. Firstly, let
us compute H0(g, sl(2|1)∗). Relative to the standard CSA h, we have

(3.1)
sl(2|1)∗ = sl(2|1)∗−ε1

⊕ sl(2|1)∗−ε2
⊕ sl(2|1)∗−ε1−ε2

,

sl(2|1)∗−ε1
= 〈v∗1〉, sl(2|1)∗−ε2

= 〈v∗2〉, sl(2|1)∗−ε1−ε2
= 〈v∗3〉.

In particular, sl(2|1)∗θ = 0. It follows that

H0(g, sl(2|1)∗) ⊆ H0(h, sl(2|1)∗) ⊆ sl(2|1)∗θ = 0.(3.2)

Secondly, we compute H0(g, V). Table (2.3) shows that Vθ = 〈vp−1
1 vp−1

2 v3〉. Corre-
spondingly,

H0(g, V) ⊆ H0(h, V) ⊆ Vθ = 〈vp−1
1 vp−1

2 v3〉.(3.3)

On the other hand, keeping in mind the convention (2.6), one sees from Table 2.1 that
vp−1
1 vp−1

2 v3 ∈ H0(g, V) and therefore,

H0(g, V) = 〈vp−1
1 vp−1

2 v3 〉.(3.4)

Thirdly, let us show that

H0(g, V ⊗ sl(2|1)∗) = 〈v1v
∗
1 + v2v

∗
2 + v3v

∗
3〉.(3.5)

Table 2.4 shows that

(V ⊗ sl(2|1)∗)θ = 〈v1v
∗
1, v2v

∗
2, v3v

∗
3, v1v2v

∗
3 , vp−1

1 v3v
∗
2, vp−1

2 v3v
∗
1〉.

Then for any v ∈ H0(g, V ⊗ sl(2|1)∗) ⊆ (V ⊗ sl(2|1)∗)θ, one may assume that

v =
3∑

i=1

aiviv
∗
i + a4v1v2v

∗
3 + a5v

p−1
1 v3v

∗
2 + a6v

p−1
2 v3v

∗
1, where ai ∈ F.

In the below, we use Table 2.1 without notice. Since e12 · v = 0, e21 · v = 0 and
e32 · v = 0, one gets

a1 = a2 = a3, a4 = a5 = a6 = 0.
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Then v = a
∑3

i=1 viv
∗
i . On the other hand, one sees that v ∈ H0(g, V ⊗ sl(2|1)∗),

proving (3.5). From (3.2)–(3.5), (2.1) and (2.9), we have immediately:

H0(g, W ) = T ⊕ ts〈vp−1
1 vp−1

2 v3〉 ⊕ s〈v1v
∗
1 + v2v

∗
2 + v3v

∗
3〉.

where t = m + n − 3, s = dimÔ = 2n−1pm−2. From (2.10), dimT = ts. Then

dimH0(g, W ) = (2t + 1)s = (2m + 2n − 5)2n−1pm−2.

The proof is complete.

4. FIRST COHOMOLOGY H1(g, W )

Before computing the first cohomology groups of g with coefficients in W , we
first introduce eight outer derivations. By (2.9), we identifyW with T ⊕ s(tV ⊕ (V ⊗
sl(2|1)∗)⊕ sl(2|1)∗). Consider the linear mappings from g to W given by

ϕ1 : e13 	−→ v∗2, e23 	−→ −v∗1 ;
ϕ2 : e31 	−→ v2, e32 	−→ −v1;
ϕ3 : e12 	−→ vp−2

2 v3, e13 	−→ vp−1
2 ;

ϕ4 : e21 	−→ vp−2
1 v3, e23 	−→ vp−1

1 ;

ϕ5 : e12 	−→ v1v
p−1
2 , e32 	−→ v

p−1
2 v3;(4.1)

ϕ6 : e21 	−→ vp−1
1 v2, e31 	−→ vp−1

1 v3;

ϕ7 : e13 	−→ vp−1
1 vp−2

2 v3, e23 	−→ −vp−2
1 vp−1

2 v3;

ϕ8 : e13 	−→ vp−1
1 vp−1

2 v3v
∗
2, e23 	−→ −vp−1

1 vp−1
2 v3v

∗
1 .

Here we take the convention that, for each k = 1, 2, . . . , 8, ϕk vanishes on the standard
basis elements of g which do not appear. For example, ϕ1(B \ {e13, e23}) = 0.

Lemma 4.1. Each ϕk is both an outer derivation and a weight derivation for
k = 1, 2, . . . .

Proof. First, we check that ϕk is a derivation for k = 1, 2, . . . , 8. Observe that each
ϕk vanishes on six basis elements in B and the roots corresponding to the remaining
two basis elements are indecomposable. In view of this observation, one may simplify
computations in checking that ϕk is a derivation. For example, let us check that ϕ3 is
an odd derivation. To do that, it is sufficient to check that

(4.2) ϕ3([x, y]) = (−1)|x|x · ϕ3(y)− (−1)|y|(|x|+1)y · ϕ3(x),

for x = e12 or x = e13 and y ∈ B. Firstly, let x = e12 and y = hi, i = 1, 2. In this
case, (4.2) holds, since the left hand side of (4.2) is

ϕ3([e12, hi]) = (−1)iϕ3(e12) = (−1)ivp−2
2 v3
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and the right hand side is

−hi · ϕ3(e12) = −hi · vp−2
2 v3 = (−1)ivp−2

2 v3.

Secondly, letting x = e12 and y = eij with i �= j, one computes the left hand side of
(4.2):

ϕ3([e12, eij]) = ϕ3(δi,2e1j − δj,1ei2) = δi,2δj,3v
p−1
2

and the right hand side:

δi,1e12 · ϕ3(e1j) − (−1)|eij |eij · vp−2
2 v3 = δi,2δj,3v

p−1
2 .

Analogously, one may check (4.2) in the remaining cases x = e13 and y ∈ B. Thus
ϕ3 is a derivation. In the same manner, one may check that each ϕk is a derivation,
k = 1, . . . , 8.
Let us show that ϕk is outer. Suppose conversely ϕk is an inner derivation given

by wk ∈ W , for k = 1, . . . , 8. By (4.1), h · wk = ϕk(h) = 0 and consequently,

(4.3) wk ∈ H0(h, W ) for k = 1, . . . , 8.

For i = 2, . . . , 7, the definition (4.1) implies that ϕi(g) ⊆ V . Thus one may assume
that wi ∈ V . Then by (4.3), we have

wi ∈ H0(h, V) for i = 2, . . . , 7.

It follows from (3.3) and (3.4) that

wi ∈ H0(h, V) = H0(g, V) for i = 2, . . . , 7.

This shows that ϕi = 0 for i = 2, . . . , 7. Let us consider ϕ1 and ϕ8. By (4.1), one
sees that ϕ1(g) ⊆ sl(2|1)∗ and ϕ8(g) ⊆ V ⊗ sl(2|1)∗. Then one may assume that
w1 ∈ sl(2|1)∗ and w8 ∈ V ⊗ sl(2|1)∗. By (4.3), we have w1 ∈ H0(h, sl(2|1)∗) and
w8 ∈ H0(h, V ⊗ sl(2|1)∗). Thanks to (3.2), we have w1 = 0. From the definition of
ϕ8, one sees that

e12 ·w8 = e21 ·w8 = e32 · w8 = 0.

Then, as in the proof (3.5), one gets w8 = v1v
∗
1 + v2v

∗
2 + v3v

∗
3, and then ϕ8(x) =

x ·w8 = 0 for any x ∈ g. Summarizing, we have shown that ϕk = 0 for k = 1, . . . , 8.

This contradicts (4.1), proving that all ϕk are outer.
The remaining conclusion follows from Tables 2.2–2.4.

In view of Remark 2.1 and Lemma 2.3, computing H1(g, W ) is reduced to com-
puting the weight derivations from g to sl(2|1)∗, V and V ⊗ sl(2|1)∗, respectively.
For simplicity, for an outer derivation we write the image in the first homology

group still by the outer derivation itself.
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Proposition 4.2. We have

H1(g, sl(2|1)∗) = 〈ϕ1〉.

In particular,
dim H1(g, sl(2|1)∗) = 1.

Proof. In view of Lemma 2.3, one may suppose ϕ is a weight derivation from g

to g-module sl(2|1)∗. From (2.12), (3.1) and Table 2.2, it follows that

ϕ(B \ {e13, e23}) = 0,

ϕ(e13) = av∗2 , ϕ(e23) = bv∗1 for some a, b ∈ F.

Clearly, |ϕ| = 1 and

av∗2 = ϕ(e13) = ϕ([e12, , e23]) = e12 · (bv∗1) = −bv∗2 .

This forces b = −a and then ϕ = aϕ1. By Lemma 4.1, ϕ is an outer derivation if
a �= 0. Now our conclusions follow from Lemma 2.3.

To determine H1(g, V), in view of (2.1), Lemma 2.3, Tables 2.2 and 2.3, we have
to compute the weight derivations ϕ from g to Vk for k = 1, p−1, p, 2p−2 and 2p−1.

Lemma 4.3. (1) H1(g, V1) = 〈ϕ2〉, (2) H1(g, V2p−2) = 〈ϕ7〉.

Proof. We only prove (2) while (1) can be treated analogously. Let ϕ be a weight
derivation from g to V2p−2. By Tables (2.2) and (2.3), one may assume that

ϕ(B \ {e13, e23}) = 0,

ϕ(e13) = avp−1
1 vp−2

2 v3, ϕ(e23) = bvp−2
1 vp−1

2 v3 for some a, b ∈ F.

Clearly, |ϕ| = 0̄ and

avp−1
1 vp−2

2 v3 = ϕ(e13) = ϕ([e12, e23]) = e12 · ϕ(e23) = −bvp−1
1 vp−2

2 v3.

It follows that a = −b and hence ϕ = aϕ7. Then (2) holds according to Lemmas 4.1
and 2.3.

Lemma 4.4. (1) H1(g, Vp−1) = 〈ϕ3, ϕ4〉, (2) H1(g, Vp) = 〈ϕ5, ϕ6〉.

Proof. We only prove (1) while (2) can be treated analogously. Let ϕ be a weight
derivation from g to Vp−1. By Tables 2.2 and 2.3, one may assume that

ϕ(B \ {e12, e21, e13, e23}) = 0,

ϕ(e12) = a12v
p−2
2 v3, ϕ(e21) = a21v

p−2
1 v3,

ϕ(e13) = a13v
p−1
2 , ϕ(e23) = a23v

p−1
1 for some aij ∈ F.
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Clearly, |ϕ| = 1 and

a13v
p−1
2 = ϕ(e13) = ϕ([e12, e23]) = e12 · ϕ(e23) + e23 · ϕ(e12) = a12v

p−1
2 .

It follows that a12 = a13. Analogously,

a21v
p−2
1 v3 =ϕ(e21) = ϕ([e23, e31])=−e23 · ϕ(e31) − e31 · ϕ(e23)=a23v

p−2
1 v3.

This forces a23 = a21. Let a = a12 = a13 and b = a23 = a21. By (4.1), ϕ = aϕ3

+bϕ4.

Lemma 4.5. H1(g, V2p−1) = 0.

Proof. Let ϕ be a weight derivation from g to V2p−1. By Tables 2.2 and 2.3,

ϕ(B \ {h1, h2}) = 0

and then
ϕ(hi) = ϕ([ei3, e3i]) = 0 for i = 1, 2.

Thus ϕ = 0. By Lemma 2.3, the conclusion holds.

Proposition 4.6. We have

H1(g, V) = 〈ϕ2, . . . , ϕ7〉.

In particular,
dimH1(g, V) = 6.

Proof. By Lemmas 4.3–4.5, the first conclusion holds. For the dimension formula,
it suffices to show that ϕ2, . . . , ϕ7 ∈ Der(g, V) are linearly independent modulo the
inner derivation space Ider(g, V). By the definitions (4.1) and Lemma 4.1, ϕ2, . . . , ϕ7

are weight derivations and their Z-degrees are

deg(ϕ2) = 1, deg(ϕ3) = deg(ϕ4) = p−1, deg(ϕ5) = deg(ϕ6) = p, deg(ϕ7) = 2p−2.

Thus it suffices to show that {ϕ3, ϕ4} and {ϕ5, ϕ6} are linearly independent modulo
the inner derivation space Ider(g, V), respectively. Indeed, this follows from the general
fact that Der(g, V) are Z × h∗-graded and an observation from Table 2.3:

Vp−1 ∩ Vθ = 0 = Vp ∩ Vθ,

since ϕ3, . . . , ϕ6 ∈ Der(g, V) are linearly independent.

In the below we computeH1(g, V⊗sl(2|1)∗). As before, we only need to compute
the weight derivations from g to Vk ⊗ sl(2|1)∗ for k = 1, 2, 3, p − 1, p, p + 1 and
2p− 1.
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Lemma 4.7. H1(g, Vk ⊗ sl(2|1)∗) = 0 for k = 1, 2, 3, p− 1, p, p + 1.

Proof. (1) Let ϕ be a weight derivation from g to V1 ⊗ sl(2|1)∗. According to
Tables 2.2 and 2.4, suppose

ϕ(hi) =
3∑

j=1

aijvjv
∗
j for i = 1, 2,

ϕ(eij) = bijviv
∗
j for 1 ≤ i �= j ≤ 3.

Note that |ϕ| = 0. We have

3∑
j=1

aijvjv
∗
j = ϕ(hi) = ϕ([ei3, e3i]) = (bi3 + b3i)viv

∗
i + (bi3 − b3i)v3v

∗
3.(4.4)

It follows that

a12 = a21 = 0.(4.5)

Thus
ϕ(h1 − h2) = a11v1v

∗
1 − a22v2v

∗
2 + (a13 − a23)v3v

∗
3 .

On the other hand

ϕ(h1 − h2) = ϕ([e12, e21]) = (b12 + b21)v1v
∗
1 − (b12 + b21)v2v

∗
2.(4.6)

Then

a11 = a22, a13 = a23.(4.7)

Noting that b12v1v
∗
2 = ϕ(e12) = ϕ([h1, e12]) = (b12 + a11)v1v

∗
2 , one gets

a11 = 0.(4.8)

Similarly, since 0 = ϕ(0) = ϕ([h1, e13]) = −a13v1v
∗
3, one gets

a13 = 0.(4.9)

From (4.5) and (4.7)–(4.9), we have

aij = 0 for i = 1, 2 and j = 1, 2, 3.(4.10)

Applying (4.10) to (4.4), one gets

b13 = b31 = b23 = b32 = 0.(4.11)
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Since
b13v1v

∗
3 = ϕ(e13) = ϕ([e12, e23]) = (b32 + b12)v1v

∗
3,

it follows from (4.6) that

b12 = b21 = 0.(4.12)

According to (4.10)–(4.12), we have ϕ = 0. By Lemma 2.3, H1(g, V1⊗sl(2|1)∗) = 0.
(2) Let ϕ be a weight derivation from g to V2⊗sl(2|1)∗. According to Tables (2.2)

and (2.4), one may assume that

ϕ(ei3) = 0, ϕ(hi) = aiv1v2v
∗
3, ϕ(eij) = aijv

2
i v∗3,

ϕ(e3i) = a3iv
2
j v∗j + b3ivivjv

∗
i + c3ivjv3v

∗
3 for i, j = 1, 2 and i �= j.

Note that |ϕ| = 1 and

(−1)i−1ϕ(e12) = ϕ([hi, e12]) = hi · ϕ(e12) − e12 · ϕ(hi) = (−1)i−1ϕ(e12) − aiv
2
1v

∗
3

It follows that ai = 0, i = 1, 2. That is

ϕ(h) = 0.(4.13)

Applying (4.13) to the equations

ϕ(h1) = ϕ([e13, e31]) = (a31 − c31)v1v2v
∗
3

and
ϕ(h2) = ϕ([e23, e32]) = (b32 − c32)v1v2v

∗
3,

one has

a31 = c31, b32 = c32.(4.14)

Noting that

0 = ϕ([e31, e31]) = −2e31 · ϕ(e31) = −2(a31 + c31)v2v3v
∗
1

and
0 = ϕ([e32, e32]) = −2e32 · ϕ(e32) = −2(b32 + c32)v1v3v

∗
2,

one has

a31 = −c31, b32 = −c32.(4.15)

Combining (4.14) and (4.15), one gets

a31 = c31 = 0, b32 = c32 = 0.(4.16)
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By (4.16), a simple computation shows

0 = ϕ([e31, e32]) = −2a32v1v3v
∗
1 − 2b31v2v3v

∗
2 .

It follows that

a32 = 0, b31 = 0.(4.17)

According to (4.16) and (4.17), we have

ϕ(e31) = ϕ(e32) = 0.(4.18)

Noting that

0 = ϕ(e32) = ϕ([e31, e12]) = −2a12v1v3v
∗
3 − a12v

2
1v

∗
1

and
0 = ϕ(e31) = ϕ([e32, e21]) = −2a21v2v3v

∗
3 − a21v

2
2v

∗
2,

we have a12 = 0, a21 = 0. Therefore,

ϕ(e12) = ϕ(e21) = 0.(4.19)

From (4.13), (4.18) and (4.19), we have ϕ = 0. By Lemma 2.3, the conclusion
holds.
(3) Let ϕ be a weight derivation from g to V3⊗sl(2|1)∗. According to Tables (2.2)

and (2.4), one may assume that

ϕ(B \ {e31, e32}) = 0,

ϕ(e31) = a31v1v
2
2v

∗
3 , ϕ(e32) = a32v

2
1v2v

∗
3 for some a31, a32 ∈ F.

Clearly, |ϕ| = 0 and

0 = ϕ([e31, e32]) = 2(a32 + a31)v1v2v3v
∗
3 + a32v

2
1v2v

∗
1 + a31v1v

2
2v

∗
2.

Then we have a31 = a32 = 0. Consequently, ϕ = 0 and thenH1(g, V3⊗sl(2|1)∗) = 0.
Similarly, one may check the conclusion for k = p − 1, p, p + 1.

Lemma 4.8. H1(g, V2p−1 ⊗ sl(2|1)∗) = 〈ϕ8〉.

Proof. Let ϕ be a weight derivation from g to V2p−1 ⊗ sl(2|1)∗. According to
Tables 2.2 and 2.4, suppose

ϕ(B \ {e13, e23}) = 0,

ϕ(e13) = a13v
p−1
1 vp−1

2 v3v
∗
2 , ϕ(e23) = a23v

p−1
1 vp−1

2 v3v
∗
1 for some a13, a23 ∈ F.
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Note that |ϕ| = 0̄ and

0 = ϕ([e13, e23]) = (a13 + a23)v
p−1
1 vp−1

2 v3v
∗
3.

It follows that a13 = −a23 and then

ϕ = aϕ8.

According to Lemma 2.3, the conclusion holds.

The following is a direct consequence of Lemmas 4.1, 4.7 and 4.8.

Proposition 4.9. We have

H1(g, V ⊗ sl(2|1)∗) = 〈ϕ8〉,

In particular,
dimH1(g, V ⊗ sl(2|1)∗) = 1.

We are in position to prove the main result of this paper:

Theorem 4.10. The 1-dimensional cohomology group of g with coefficients in W
is as follows:

H1(g, W ) = 2n−1pm−2(〈ϕ1〉 ⊕ (m + n − 3)〈ϕ2, . . . , ϕ7〉 ⊕ 〈ϕ8〉).

In particular,
dimH1(g, W ) = (3m + 3n − 8)2npm−2.

Proof. Using the fundamental fact (2.11), we have H1(g, T ) = 0. Then, by (2.1)
and (2.9),

H1(g, W ) = s(H1(g, sl(2|1)∗) ⊕ tH1(g, V)⊕ H1(g, V ⊗ sl(2|1)∗))

and our conclusions follow from Propositions 4.2, 4.5 and 4.9.

5. APPLICATION

In this section, we apply the results obtained in Section 4 to compute the low-
dimensional cohomology groups of g with coefficients in the Special superalgebra.
Recall that

S̄(m, n) = S(m, n)⊕ 〈x(π−(p−1)εi)xω∂i | 1 ≤ i ≤ m〉,(5.1)

and

dimS(m, n) = (m + n − 1)2npm − m + 1,(5.2)

where π = (p − 1, . . . , p − 1) ∈ Nm and ω = 〈m + 1, . . . , m + n〉 for all m + 1 ≤
j ≤ m + n. Before computing the zero-dimensional cohomology groups, we establish
a technical lemma.
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Lemma 5.1. Let d = v1v
∗
1 + v2v

∗
2 + v3v

∗
3 and N = (T ⊕ Ôd) ∩ S. Then

dimN = (m + n − 3)2n−1pm−2 − m + 2.

Proof. Fix the standard basis of Ô as in (2.3): {fi | i = 1, . . . , s}, where

fs = xp−1
3 · · ·xp−1

m xm+2 · · ·xm+n.

For fi, i �= s, suppose that ki is the first one of the ordered set {3, . . . , m, m +
2, . . . , m + n} such that xkifi �= 0. Set

gi = −(−1)(|fi|+1)|ki|cixkifi,(5.3)

where ci ∈ F is chosen so that the coefficient of cixkifi is 1. One sees that such gi

and ki are uniquely determined by fi for i = 1, . . . , s − 1. By (2.4),

gi∂ki ∈ T = 〈Ô∂i | i /∈ J〉.(5.4)

(5.3) ensures that

div(fid+ gi∂ki) = 0.(5.5)

By (5.1), fid + gi∂ki ∈ S. Clearly, {fid + gi∂ki | i = 1, . . . , s − 1} is linearly
independent.
Next, let us show that

N = (T ∩ S) ⊕ 〈fid+ gi∂ki | i = 1, . . . , s − 1〉.(5.6)

The inclusion “⊇” is clear. To show the converse, suppose that

x = y +
s∑

i=1

aifid ∈ N = (T ⊕ Ôd) ∩ S,

where y ∈ T and
∑s

i=1 aifid ∈ Ôd, ai ∈ F. By (5.1),

divy = −
s∑

i=1

aifi.(5.7)

It follows that as = 0. So one may assume that x = y +
∑s−1

i=1 fid. On the other hand,

x = y −
( s−1∑

i=1

aigi∂ki −
s−1∑
i=1

aigi∂ki

)
+

s∑
i=1

aifid

=
(
y −

s−1∑
i=1

aigi∂ki

)
+

s−1∑
i=1

ai(fid+ gi∂ki).
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(5.4), (5.5) and (5.7) imply that y−
∑s−1

i=1 aigi∂ki ∈ T ∩S. Then x ∈ (T ∩S)⊕〈fid+
gi∂ki | i = 1, . . . , s− 1〉. Thus, (5.6) holds.
Note that as a vector space, T ∩ S is isomorphic to S(m − 2, n− 1). By (5.2),

dim(T ∩ S) = dimS(m− 2, n− 1) = (t − 1)s − m + 3.

According to (5.6), we have

dimN = (t−1)s−m+3+(s−1) = (m+n−3)2n−1pm−2−m+2.

Theorem 5.2. The 0-dimensional cohomology group of g with coefficients in S is

H0(g, S) = N ⊕ dimS(m− 2, n− 1)〈vp−1
1 vp−1

2 v3〉.

In particular,

dimH0(g, S) = (2m + 2n − 7)2n−1pm−2 − 2m + 5.

Clearly, H0(g, S) = H0(g, W ) ∩ S. By Theorem 3.1,

H0(g, W ) = T ⊕ st〈v〉 ⊕ s〈d〉,

where s = 2n−1pm−2, t = m + n − 3 and v = vp−1
1 vp−1

2 v3, d = v1v
∗
1 + v2v

∗
2 + v3v

∗
3.

It is easy to see that for any x ∈ T \ S, y ∈ st〈v〉 \ S and z ∈ s〈d〉 \ S, one has

div(x + y) �= 0 and div(y + z) �= 0.

Then, according to (5.1),

x + y /∈ S and y + z /∈ S.

Thus,

H0(g, S) = H0(g, W )∩ S = ((T ⊕ s〈d〉) ∩ S)⊕ (st〈v〉 ∩ S).(5.8)

Recall that as g-module, s〈d〉 � Ôd. By Lemma 5.1, one gets

(T ⊕ s〈d〉) ∩ S � N .(5.9)

Analogously, as g-module, st〈v〉 � 〈vÔ∂i | i /∈ J〉. Then

st〈v〉 ∩ S � dim(〈vÔ∂j | i /∈ J〉 ∩ S)〈v〉.

As vector spaces, 〈vÔ∂i | i /∈ J〉 ∩ S � S(m− 2, n − 1). Then

st〈v〉 ∩ S � dimS(m− 2, n− 1)〈v〉(5.10)
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In view of Lemma 5.1, from (5.8)–(5.10) and (5.2) we have

H0(g, S) = N ⊕ dimS(m − 2, n− 1)〈v〉

and

dimH0(g, S) = (2m + 2n− 7)2n−1pm−2 − 2m + 5.

Finally, we compute H1(g, S). Since S is a subalgebra of W , each derivation from
g to S may be viewed as a derivation from g toW . Thus, it is sufficient to compute the
derivations in Der(g, W ) which are outer derivations from g to S. For convenience,
write

Dk :=

{
〈σ∈Der(g, W ) | ∃ f ∈ Ô : σ(x)=fϕk(x) for all x∈g〉, k=1, 8;

〈σ∈Der(g, W ) | ∃T ∈ T : σ(x)=ϕk(x)T for all x∈g〉, k = 2, . . . , 7.

By (4.1), we have

D̄1 := D1 ∩ Der(g, S) = D1 and dimD̄1 = s.(5.11)

Lemma 5.3. Let D̄k := Dk ∩ Der(g, S) for k = 2, . . . , 7. Then

dimD̄k = (m + n − 4)2n−1pm−2 − m + 3.

Proof. As vector spaces, Dk � W (m − 2, n − 1) for k = 2, . . . , 7 and D̄k �
S(m− 2, n − 1). By (5.2), we have

dimD̄k = dimS(m−2, n−1) = (m+n−4)2n−1pm−2 −m+3.

Let us consider (D7⊕D8)∩Der(g, S). Since dimD8 = dimÔ = s, fix a standard
basis of D8 :

{ϕ8,i ∈ D8 | ϕ8,i(x) = fiϕ8(x), x ∈ g, i = 1, . . . , s},

where {fi | i = 1, . . . , s} is the standard basis of Ô in (2.3) and

fs = xp−1
3 · · ·xp−1

m xm+2 · · ·xm+n.

For fi with i �= s, suppose that ki is the first element in the ordered set {3, . . . m, m+
2, . . . , m + n} such that xkifi �= 0. Set

gi = −(−1)|fi||ki|+|ki|+|fi|cixkifi,(5.12)
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where ci ∈ F is chosen so that the coefficient of cixkifi is 1. One sees that such
gi and ki are uniquely determined by fi. Let ϕ7,i be the derivation in D7 such that
ϕ7,i(x) = ϕ7(x)gi∂ki . By (5.12) and (4.1),

div(ϕ8,i(x) + ϕ7,i(x)) = 0 for x ∈ g.(5.13)

According to (5.1), ϕ8,i+ϕ7,i ∈ (D7⊕D8)∩Der(g, S) for i �= s. Clearly, {ϕ8,i+ϕ7,i |
i = 1, . . . , s − 1} is linearly independent. Let

D̄8 := 〈ϕ8,i + ϕ7,i | i = 1, . . . , s − 1〉.(5.14)

Then

dimD̄8 = s − 1.(5.15)

Lemma 5.4. (D7 ⊕ D8) ∩ Der(g, S) = D̄7 ⊕ D̄8.

Proof. Suppose σ7 + σ8 ∈ Der(g, S) and σ7 ∈ D7, σ8 ∈ D8. Then for any
x ∈ g,

div(σ7(x)) = −div(σ8(x)).(5.16)

Suppose σ8 =
∑s

i=1 aiϕ8,i and ai ∈ F.We assert that as = 0.Otherwise, div(σ7(e13)+
σ8(e13)) �= 0 for any σ7 ∈ D7. By (5.1), σ7 + σ8 /∈ Der(g, S), contradicting our as-
sumption. So one may assume that σ =

∑s−1
i=1 aiϕ8,i. Then

σ7 + σ8 = σ7 −
( s−1∑

i=1

aiϕ7,i −
s−1∑
i=1

aiϕ7.i

)
+

s−1∑
i=1

aiϕ8,i

=
(
σ7 −

s−1∑
i=1

aiϕ7,i

)
+

s−1∑
i=1

ai(ϕ8,i + ϕ7,i).

(5.13) implies that for any x ∈ g,

div
( s−1∑

i=1

aiϕ7,i(x)
)

= −div
( s−1∑

i=1

aiϕ8,i(x)
)

= −div(σ8(x)).(5.17)

Then (5.16) and (5.17) show that

div(σ7(x)) = div
( s−1∑

i=1

aiϕ7(x)gi∂ki

)
for any x ∈ g.

It follows that

σ7 −
s−1∑
i=1

aiϕ7,i ∈ D̄7.

Thus σ7+σ8 ∈ D̄7+D̄8. Clearly, D̄7+D̄8 ⊆ (D7⊕D8)∩Der(g, S) and D̄7∩D̄8 = 0.

So we have (D7 ⊕ D8) ∩ Der(g, S) = D̄7 ⊕ D̄8.
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Lemma 5.5. Suppose w ∈ Wθ. Then adw ≡ ad(fv1v
∗
1) (mod Ider(g, S)) for

some f ∈ Ô.

Proof. By Tables 2.3 and 2.4 and, (3.1) and (3.3), one may assume that

w =
∑
j∈J

gjvjv
∗
j + g4v1v2v

∗
3 + g5v

p−1
1 v3v

∗
2 + g6v

p−1
2 v3v

∗
1, where gi ∈ Ô.

A simple computation and (5.1) show that adw(g) ⊆ S. Then adw ∈ Der(g, S). Note
that

g4v1v2v
∗
3 + g5v

p−1
1 v3v

∗
2 + g6v

p−1
2 v3v

∗
1 ∈ S

and ∑
j∈J

gjvjv
∗
j ≡ g1v1v

∗
1 (mod S).

It follows that adw ≡ ad(fv1v
∗
1) (mod Ider(g, S)) for some f ∈ Ô.

Set

D9 := 〈ad(fv1v
∗
1) | f ∈ Ô〉.(5.18)

Then D̄9 := D9 ∩ Der(g, S) = D9 and

dimD̄9 = s = 2n−1pm−2.(5.19)

Lemma 5.6. Let σk ∈ Dk for k = 1, . . . , 9. Then
9∑

k=1

σk ∈ Der(g, S) ⇐⇒ σk ∈ D̄k for k �= 7, 8 and σ7 + σ8 ∈ D̄7 ⊕ D̄8.

Proof. It suffices to show the implication “=⇒”. Since D̄1 = D1 and D̄9 = D9,
one may suppose that σ =

∑8
k=2 σk ∈ Der(g, S). (4.1) shows that for any x ∈ g,

ϕk(x) ∈ O(2, 1), k = 2, . . . , 7. Since σk ∈ Dk, one may suppose that

σk(x) = ϕk(x)qk, where qk ∈ T , k = 2, . . . , 7.

Assume that σ2 /∈ D̄2. Then there exists some x ∈ B such that σ2(x) /∈ S. By
(4.1), x = e31 or e32. If x = e31, again by (4.1), σk(e31) = 0 for k = 3, 4, 5, 7, 8 and
σ2(e31) = v2q2, σ6(e31) = vp−1

1 v3q6. Thus,

σ(e31) = σ2(e31) + σ6(e31) = v2q2 + vp−1
1 v3q6 ∈ S.(5.20)

The assumption that σ2(e31) /∈ S forces σ6(e31) /∈ S. Then

divσ2(e31) = div(v2q2) = v2divq2 �= 0,

divσ6(e31) = div(vp−1
1 v3q6) = ±vp−1

1 v3divq6 �= 0.
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It follows that divq2 �= 0 and divq6 �= 0. Then div(σ2(e31) + σ6(e31)) �= 0. This
contradicts (5.20).
If x = e32, a similar discussion yields that σ2 ∈ D̄2. Next, we want to show that

σ3 ∈ D̄3. Assume that σ3 /∈ D̄3. According to (4.1), σ3(x) /∈ S for x = e12 or x = e13

. If x = e13, then σk(e13) = 0 for k = 4, 5, 6 and

σ3(e13) = vp−1
2 q3,

σ7(e13) = ±vp−1
1 vp−2

2 v3q7,

σ8(e13) = fvp−1
1 vp−1

2 v3∂2, f ∈ Ô.

Thus,

σ(e13) = σ3(e13) + (σ7 + σ8)(e13) ∈ S.(5.21)

The assumption that σ3(e13) /∈ S forces (σ7 + σ8)(e13) /∈ S. Then

divσ3(e13) = vp−1
2 divq3 �= 0,

div((σ7 + σ8)(e13)) = vp−1
1 vp−2

2 v3(±divq7 + f) �= 0.

It follows that
div(σ3(e13) + (σ7 + σ8)(e13)) �= 0.

This contradicts (5.21). If x = e12, the discussion is similar. So we have σ3 ∈ D̄3.

Analogously, one may prove that σk ∈ D̄k for k = 4, 5, 6. Then σ7 + σ8 ∈
Der(g, S), since

∑6
k=2 σk ∈ Der(g, S). By Lemma 5.4, σ7 + σ8 ∈ D̄7 ⊕ D̄8. The

proof is complete.

Theorem 5.7. The 1-dimensional cohomology group of g with coefficients in S is

H1(g, S) = ⊕9
k=1D̄k.

In particular,

dimH1(g, S) = 3(2m + 2n − 7)2n−1pm−2 − 6m + 17.

Proof. Let σ be an outer derivation from g to S. By Theorem 4.10,

Der(g, W ) = ⊕8
k=1Dk ⊕ Ider(g, W ).

Then one may assume that

σ =
8∑

k=1

σk + adw ∈ Der(g, S), where σk ∈ Dk, w ∈ W.
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Since σk are weight derivations, by Lemma 2.3, one may assume that w ∈ Wθ. Ac-
cording to Lemma 5.5 and (5.18), one may assume further that σ =

∑9
k=1 σk, where

σk ∈ Dk. Then by Lemma 5.6, one gets σ ∈ ⊕9
k=1D̄k.

Next, we are going to show that any nonzero σ ∈ ⊕9
k=1D̄k is an outer derivation

from g to S. By (5.18), assume that

σ =
8∑

k=1

σk + ad(fv1v
∗
1), where σk ∈ D̄k, ai ∈ F, f ∈ Ô.

If σ is inner, there exists some z ∈ S such that
8∑

k=1

σk + ad(fv1v
∗
1) = adz.

Recall that nonzero φk ∈ Dk, k = 1, . . . , 8, are linearly independentmodulo Ider(g, W ).
Consequently, σk = 0, k = 1, . . . , 8, and then ad(fv1v

∗
1) = adz. Note that ad(fv1v

∗
1)

is an outer derivation from g to S when f �= 0. Since z ∈ S, one has f = 0. Thus
σ = 0, contradicting our assumption. So σ is outer.
Up to now we have shown that H1(g, S) = ⊕9

k=1D̄k. Then, by Lemma 5.3 and,
(5.11), (5.15) and (5.19), we have

dimH1(g, S) =
9∑

k=1

dimD̄k

= s + 6((m + n − 4)2n−1pm−2 − m + 3) + (s − 1) + s

= 3(2m + 2n − 7)2n−1pm−2 − 6m + 17.

Finally, we explain that, as in Lie algebra case, some classical conclusions in
characteristic zero do not hold in characteristic p > 0 :

Remark 5.8. Over a field F of characteristic zero, the first cohomology group of
A(1, 0)with coefficients in a finite-dimensional simple module is trivial or of dimension
1 (see [11]). However, in the case of characteristic p > 2, from Lemma 4.4 and
Proposition 4.9 one sees that

dimH1(A(1, 0), Vp−1) = dimH1(A(1, 0), Vp) = 2,

while both Vp−1 and Vp as A(1, 0)-modules are finite-dimensional and simple.
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