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HYPERSURFACES IN NON-FLAT PSEUDO-RIEMANNIAN SPACE FORMS
SATISFYING A LINEAR CONDITION IN THE LINEARIZED OPERATOR

OF A HIGHER ORDER MEAN CURVATURE

Pascual Lucas* and Hector Fabián Ramı́rez-Ospina
Abstract. We study hypersurfaces either in the pseudo-RiemannianDe Sitter space
S

n+1
t ⊂ R

n+2
t or in the pseudo-Riemannian anti De Sitter space H

n+1
t ⊂ R

n+2
t+1

whose position vector ψ satisfies the condition Lkψ = Aψ + b, where Lk is the
linearized operator of the (k+1)-th mean curvature of the hypersurface, for a fixed
k = 0, . . . , n−1, A is an (n+2)×(n+2) constant matrix and b is a constant vec-
tor in the corresponding pseudo-Euclidean space. For every k, we prove that when
Hk is constant, the only hypersurfaces satisfying that condition are hypersurfaces
with zero (k+1)-th mean curvature and constant k-th mean curvature, open pieces
of a totally umbilical hypersurface in S

n+1
t (Sn

t−1(r), r > 1; Sn
t (r), 0 < r < 1;

Hn
t−1(−r), r > 0; Rn

t−1), open pieces of a totally umbilical hypersurface in
H

n+1
t (Hn

t (−r), r > 1; Hn
t−1(−r), 0 < r < 1; Sn

t (r), r > 0; Rn
t ), open pieces

of a standard pseudo-Riemannian product in S
n+1
t (Sm

u (r) × Sn−m
v (

√
1 − r2),

Hm
u−1(−r)×Sn−m

v (
√

1 + r2), Sm
u (r)×H

n−m
v−1 (−√

r2 − 1)), open pieces of a stan-
dard pseudo-Riemannian product in H

n+1
t (Hm

u (−r)×Sn−m
v (

√
r2 − 1), Sm

u (r)×
Hn−m

v (−√
1 + r2), Hm

u (−r)×H
n−m
v−1 (−√

1 − r2)) and open pieces of a quadratic
hypersurface {x ∈ M

n+1
t (c) | 〈Rx, x〉 = d}, where R is a self-adjoint constant

matrix whose minimal polynomial is μR(z) = z2 + az + b, a2 − 4b ≤ 0, and
M

n+1
t (c) stands for S

n+1
t ⊂ R

n+2
t or H

n+1
t ⊂ R

n+2
t+1 .

1. INTRODUCTION

The Laplacian operator Δ of a hypersurface Mn immersed into Rn+1 can be seen
as the first one of a sequence of operators {L0 = Δ, L1, . . . , Ln−1}, where Lk stands
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for the linearized operator of the first variation of the (k+1)-th mean curvature, arising
from normal variations of the hypersurface (see, for instance, [21]). These operators
are defined by Lk(f) = tr(Pk ◦ ∇2f), for a smooth function f on M , where Pk

denotes the k-th Newton transformation associated to the second fundamental form of
the hypersurface, and ∇2f denotes the self-adjoint linear operator metrically equivalent
to the hessian of f .
From this point of view, and inspired by Garay’s extension of Takahashi theorem

and its subsequent generalizations and extensions ([24, 6, 10, 8, 12, 1, 2, 3]), Alı́as
and Gürbüz initiated in [4] the study of hypersurfaces in Euclidean space satisfying
the general condition Lkψ = Aψ + b, where A ∈ R

(n+1)×(n+1) is a constant matrix
and b ∈ R

n+1 is a constant vector. Recently, we have completely extended to the
Lorentz-Minkowski space the previous classification theorem obtained by Alı́as and
Gürbüz. In particular, we proved in [15] that the only hypersurfaces immersed in
the Lorentz-Minkowski space Ln+1 satisfying the condition Lkψ = Aψ + b, where
A ∈ R

(n+1)×(n+1) is a constant matrix and b ∈ L
n+1 is a constant vector, are open

pieces of hypersurfaces with zero (k + 1)-th mean curvature, or open pieces of totally
umbilical hypersurfaces S

n
1 (r) or H

n(−r), or open pieces of generalized cylinders
Sm

1 (r)× Rn−m, Hm(−r)× Rn−m, with k + 1 ≤ m ≤ n− 1, or Lm × Sn−m(r), with
k + 1 ≤ n−m ≤ n− 1.
In [5], and as a natural continuation of the study started in [4], Alı́as and Kashani

consider the study of hypersurfaces Mn immersed either into the sphere S
n+1 ⊂ R

n+2

or into the hyperbolic space H
n+1 ⊂ R

n+2
1 whose position vector ψ satisfies the

condition Lkψ = Aψ + b, for some constant matrix A ∈ R(n+2)×(n+2) and some
constant vector b ∈ R

n+2
q , q = 0, 1. They obtain classification results in two cases:

when A is self-adjoint and b = 0, and when the k-th mean curvature Hk is constant and
b is a non-zero constant vector. When the ambient space is a Lorentzian space form
S

n+1
1 or H

n+1
1 , the shape operator of the hypersurface needs not be diagonalizable,

condition which plays a chief role in the Riemannian case. In this case, the shape
operator of the hypersurface can be expressed, in an appropriate frame, in one of four
types. In [16] we have extended, to the Lorentzian case, the results obtained in [5].
However, when the ambient space is a general pseudo-Riemannian space form

S
n+1
t ⊂ R

n+2
t or H

n+1
t ⊂ R

n+2
t+1 , the shape operator of the hypersurface can be much

more complicated than in the Riemannian or Lorentzian cases, and then the reasoning
followed in [5] and [16] is not applicable in the general case. In this paper, we extend
to arbitrary pseudo-Riemannian space forms S

n+1
t or H

n+1
t the results obtained in [5]

and [16].
Our approach in this paper is completely different to that given in above papers.

First, we do not assume that A is a self-adjoint matrix, but we only assume that the k-th
mean curvature of the hypersurface is constant. Secondly, the techniques developed in
[4, 5, 15, 16] are not applicable in the general case, so that we have needed to follow



Hypersurfaces Satisfying a Linear Condition in Lk 17

a different way. The new and more general proof is based on the complexification of
the shape operator of the hypersurface (see sections 2 and 5 for details).
For the sake of simplifying the notation and unifying the statements of our main

results, let us denote byM
n+1
t (c) either the pseudo-Riemannian De Sitter space S

n+1
t ⊂

R
n+2
t if c = 1, or the pseudo-Riemannian anti De Sitter spaceH

n+1
t ⊂ R

n+2
t+1 if c = −1.

In this paper, we are able to give the following classification result.

Theorem 1. Let ψ : Mn
s → M

n+1
t (c) ⊂ R

n+2
q be an orientable hypersurface im-

mersed into the pseudo-Riemannian space form M
n+1
t (c), and let Lk be the linearized

operator of the (k+ 1)-th mean curvature of Mn
s , for some fixed k = 0, 1, . . . , n− 1.

Assume that Hk is constant. Then the immersion satisfies the condition Lkψ = Aψ+b,
for some constant matrix A ∈ R

(n+2)×(n+2) and some constant vector b ∈ R
n+2
q , if

and only if it is one of the following hypersurfaces:
(1) a hypersurface having zero (k + 1)-th mean curvature and constant k-th mean

curvature.
(2) an open piece of one of the following totally umbilical hypersurfaces in S

n+1
t :

S
n
t−1(r), r > 1; S

n
t (r), 0 < r < 1; H

n
t−1(−r), r > 0; R

n
t−1.

(3) an open piece of one of the following totally umbilical hypersurfaces in H
n+1
t :

Hn
t (−r), r > 1; Hn

t−1(−r), 0 < r < 1; Sn
t (r), r > 0; Rn

t .
(4) an open piece of a standard pseudo-Riemannian product in S

n+1
t :

S
m
u (r) × S

n−m
v (

√
1 − r2), H

m
u−1(−r) × S

n−m
v (

√
1 + r2), S

m
u (r) × H

n−m
v−1

(−√
r2 − 1).

(5) an open piece of a standard pseudo-Riemannian product in H
n+1
t :

Hm
u (−r) × Sn−m

v (
√
r2 − 1), Sm

u (r) × Hn−m
v (−√

1 + r2), Hm
u (−r) × H

n−m
v−1

(−√
1 − r2).

(6) an open piece of a quadratic hypersurface {x ∈ M
n+1
t (c) ⊂ Rn+2

q | 〈Rx, x〉 =
d}, where R is a self-adjoint constant matrix whose minimal polynomial is
z2 + az + b, a2 − 4b ≤ 0.

In the case when b = 0, the condition that the matrix A is self-adjoint implies that
the k-th mean curvature Hk is constant, and then we obtain the following consequence.

Theorem 2. Let ψ : Mn
s → M

n+1
t (c) ⊂ R

n+2
q be an orientable hypersurface im-

mersed into the pseudo-Riemannian space form M
n+1
t (c), and let Lk be the linearized

operator of the (k+ 1)-th mean curvature of Mn
s , for some fixed k = 0, 1, . . . , n− 1.

Then the immersion satisfies the condition Lkψ = Aψ, for some self-adjoint constant
matrix A ∈ R(n+2)×(n+2), if and only if it is one of the following hypersurfaces:
(1) a hypersurface having zero (k + 1)-th mean curvature and constant k-th mean

curvature;
(2) an open piece of a standard pseudo-Riemannian product in S

n+1
t :

S
m
u (r)×S

n−m
v (

√
1−r2), Hm

u−1(−r)×S
n−m
v (

√
1+r2), Sm

u (r)×H
n−m
v−1 (−√

r2−1).
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(3) an open piece of a standard pseudo-Riemannian product in H
n+1
t :

H
m
u (−r) × S

n−m
v (

√
r2 − 1), S

m
u (r) × H

n−m
v (−√

1 + r2), H
m
u (−r) × H

n−m
v−1

(−√
1 − r2).

(4) an open piece of a quadratic hypersurface {x ∈ M
n+1
t (c) ⊂ R

n+2
q | 〈Rx, x〉 =

d}, where R is a self-adjoint constant matrix whose minimal polynomial is
z2 + az + b, a2 − 4b ≤ 0.

2. PRELIMINARIES

In this section we will recall basic formulas and notions about hypersurfaces in
pseudo-Riemannian space forms that will be used later on. Let Rn+2

q be the (n+2)-di-
mensional pseudo-Euclidean space of index q≥0, whose metric tensor 〈,〉 is given by

〈, 〉 = −
q∑

i=1

dxi ⊗ dxi +
n+2∑

i=q+1

dxi ⊗ dxi,

where x = (x1, . . . , xn+2) denotes the usual rectangular coordinates in R
n+2. The

pseudo-Riemannian De Sitter space of index t is defined by

S
n+1
t (r) = {x ∈ R

n+2
t | 〈x, x〉 = r2}, r > 0,

and the pseudo-Riemannian anti-De Sitter space of index t is defined by

H
n+1
t (−r) = {x ∈ R

n+2
t+1 | 〈x, x〉 = −r2}, r > 0.

Throughout this paper, we will consider both the case of hypersurfaces immersed into
pseudo-Riemannian De Sitter space S

n+1
t ≡ S

n+1
t (1), and the case of hypersurfaces

immersed into pseudo-Riemannian anti De Sitter space H
n+1
t ≡ H

n+1
t (−1). In order

to simplify our notation and computations, we will denote by M
n+1
t (c) both the De

Sitter space S
n+1
t and the anti De Sitter space H

n+1
t according to c = 1 or c = −1,

respectively. We will use R
n+2
q to denote the corresponding pseudo-Euclidean space

where M
n+1
t (c) lives, so that q = t if c = 1 and q = t+ 1 if c = −1. Then the metric

of R
n+2
q is given by

〈, 〉 = −
t∑

i=1

dxi ⊗ dxi + c dxt+1 ⊗ dxt+1 +
n+2∑

i=t+2

dxi ⊗ dxi,

and we can write

M
n+1
t (c) = {x ∈ R

n+2
q | −

t∑
i=1

x2
i + c x2

t+1 +
n+2∑

i=t+2

x2
i = c}.

It is well known that S
n+1
t ⊂ R

n+2
t and H

n+1
t ⊂ R

n+2
t+1 are pseudo-Riemannian totally

umbilical hypersurfaces with constant sectional curvature +1 and −1, respectively.
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Let ψ : Mn
s −→ M

n+1
t (c) ⊂ Rn+2

q be an isometric immersion of a connected
orientable hypersurface Mn

s of index s with Gauss map N , 〈N,N 〉 = ε (where ε = 1
if s = t or ε = −1 if s = t−1). Let ∇0, ∇ and ∇ denote the Levi-Civita connections
on R

n+2
q , M

n+1
t (c) and Mn

s , respectively. Then the Gauss and Weingarten formulae
are given by

∇0
XY = ∇XY + ε 〈SX, Y 〉N − c 〈X, Y 〉ψ,(1)

SX = −∇XN = −∇0
XN,(2)

for all tangent vector fields X, Y ∈ X(M), where S : X(Mn
s ) −→ X(Mn

s ) stands for
the shape operator (or Weingarten endomorphism) of Mn

s , with respect to the chosen
orientation N .
It is well-known [20, pp. 261–262] that a linear self-adjoint endomorphism B on

a vector space V can be expressed as a direct sum of subspaces V� that are mutually
orthogonal (hence non-degenerate) and B-invariant, and each B� = B|V�

has a matrix
of form either

I.

⎛⎜⎜⎜⎜⎜⎜⎝
κ 0
1 κ
. . . . . .

1 κ

0 1 κ

⎞⎟⎟⎟⎟⎟⎟⎠
relative to a basis

{
E1, . . . , Ep

}
(p ≥ 1) such that

〈Ei, Ej〉 =

⎧⎨⎩ ε = ±1 if i+ j = p+ 1

0 otherwise
(3)

or

II.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α β 0
−β α

1 0 α β

0 1 −β α
. . . . . .

1 0 α β

0 0 1 −β α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(β �= 0)

relative to a basis
{
E1, . . . , Eq

}
(q ≥ 2 and even) such that

〈Ei, Ej〉 =

⎧⎪⎪⎨⎪⎪⎩
1 if i, j are odd and i+ j = q

−1 if i, j are even and i+ j = q + 2

0 otherwise

(4)
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Here p, ε and q depend on V�. A matrix of type I is called a Jordan block corresponding
to the (real) eigenvalue κ, whereas a matrix of type II is said to be a Jordan block
corresponding to the (complex) eigenvalue α+ iβ.
Jordan blocks of type II can be transformed in matrices of form I by a complex-

ification process, see [22]. If V is a real vector space, then the set V C = V × V of
ordered pairs, with component addition

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2)

and scalar multiplication over C defined by

(α+ iβ)(u, v) = (αu− βv, βu+ αv),

for α, β ∈ R, is a complex vector space, called the complexification of V . The set
V C can be described as V C = {u + iv | u, v ∈ V } and then the addition and scalar
multiplication operations resemble the usual for complex numbers:

(u1 + iv1) + (u2 + iv2) = (u1 + u2) + i(v1 + v2),
(α+ iβ)(u+ iv) = (αu− βv) + i(βu+ αv).

An interesting map from V to V C is the complexification map cpx : V → V C defined
by cpx(v) = v+ i0. It is easy to see that cpx is an injective linear transformation, and
in this way we can say that V C contains an embedded copy of V . If B = {vj | j ∈ I}
is a basis of V over R then the complexification of B, cpx(B) = {vj + i0 | vj ∈ B},
is a basis for V C over C. Hence, dimC(V C) = dimR(V ).
A linear operator τ on a real vector space V can be extended to a linear operator

τC on the complexification V C by defining

τC(u+ iv) = τ(u) + iτ(v).

The following properties of this complexification can be easily obtained. If τ, σ are
linear operators on V , then
(1) (aτ)C = aτC, a ∈ R.
(2) (τ + σ)C = τC + σC.
(3) (τσ)C = τCσC.
(4) [τ(v)]C = τC

(
vC

)
.

Let B be a linear self-adjoint endomorphism on V and consider V� a B-invariant
subspace such that B� = B|V�

is a Jordan block of type II in a basis (4). Let V C
� be

the complexification of V� and define the following complex vectors

(5) Fj =

⎧⎪⎪⎨⎪⎪⎩
1√
2
(Ej + iEj+1) for j odd,

1√
2
(Ej−1 − iEj) for j even.
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It is not difficult to see that {F1, . . .Fq} is a basis for V C
� and

BC

� Fj = κFj + Fj+2, 1 ≤ j ≤ q − 3, j odd,

BC
� Fq−1 = κFq−1,

BC
� Fj = κFj + Fj+2, 2 ≤ j ≤ q − 2, j even,

BC
� Fq = κFq,

where κ = α + iβ. Then we can reorder the basis in such a way that BC
� has matrix

of form

Therefore every Jordan block of type II can be reduced to two Jordan blocks of
type I by the complexification process.
The (possibly complex) eigenvalues of shape operator S are called the principal

curvatures of Mn
s . When Mn

s is endowed with an indefinite metric the algebraic and
geometric multiplicity of a principal curvature need not coincide. If they coincide, it
is called simply the multiplicity of the principal curvature. For every point x ∈ Mn

s ,
consider the decomposition TxM = V1 ⊕ · · · ⊕ Vr where subspaces V�, 
 = 1, . . . , r,
are mutually orthogonal and S-invariant, and each S� = S|V�

is a Jordan block. We
can write Sx = diag(S1, . . . , Sr) or Sx = S1 ⊕ · · · ⊕ Sr. These decompositions of
TxM and Sx also work in a neighborhood of point x. Characteristic polynomial QS(t)
of S is given by

QS(t) = det(tI − S) =
r∏

�=1

det(tI − S�) =
r∏

�=1

QS�
(t),

where characteristic polynomial QS�
(t) of S� is given by

QS�
(t) =

⎧⎨⎩ (t− κ)p if S� is of type I,

((t− α)2 + β2)p = (t− κ)p(t− κ)p if S� is of type II (q = 2p).
If we write

QS(t) =
n∏

�=1

(t− κ�) =
n∑

k=0

akt
n−k , with a0 = 1,
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where {κ1, . . . , κn} are the n roots (real or complex) of QS(t), then it is not difficult
to see that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1 = −
n∑

i=1

κi,

ak = (−1)k
n∑

i1<···<ik

κi1 · · ·κik , k = 2, . . . , n.

These equations can be easily obtained by making use of the Leverrier–Faddeev method
(see [14, 9]), since coefficients of QS(t) can be computed, in terms of the traces of
Sj, as follows:

ak = −1
k

k∑
j=1

ak−jtr(Sj), k = 1, . . . , n, with a0 = 1.(7)

From now on, we will write

μk =
n∑

i1<···<ik

κi1 · · ·κik and μJ
k

=
n∑

i1<···<ik
ij /∈J

κi1 · · ·κik ,

where 1 ≤ k ≤ n and J ⊂ {1, . . . , n}.
The k-th mean curvature Hk or mean curvature of order k of Mn

s is defined by

(8)
(
n

k

)
Hk = (−ε)kak = εkμk,

where
(
n

k

)
=

n!
k!(n− k)!

. In particular, when k = 1,

nH1 = −εa1 = εtr(S),

and so H1 is nothing but the usual mean curvature H ofMn
s , which is one of the most

important extrinsic curvatures of the hypersurface. The hypersurface Mn
s is said to be

k-maximal if Hk+1 ≡ 0.

3. THE NEWTON TRANSFORMATIONS

The k-th Newton transformation of M is the operator Pk : X(Mn
s ) −→ X(Mn

s )
defined by

Pk =
k∑

j=0

ak−jS
j.(9)

Equivalently, Pk can be defined inductively by
P0 = I and Pk = akI + S ◦ Pk−1.(10)

Note that by Cayley-Hamilton theorem we have Pn = 0. The Newton transforma-
tions were introduced by Reilly [21] in the Riemannian context; its definition was
P k = (−1)kPk . We have the following properties of Pk (the proof is algebraic and
straightforward).
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Lemma 3. Let ψ : Mn
s → M

n+1
t (c) be an isometric immersion of a hypersurface

Mn
s in the pseudo-Riemannian space form M

n+1
t (c). The Newton transformations Pk ,

k = 1, . . . , n− 1, satisfy:
(a) Pk is self-adjoint and commutes with S,
(b) tr(Pk) = (n− k)ak = ckHk,
(c) tr(S ◦ Pk) = −(k + 1)ak+1 = εckHk+1,
(d) tr(S2 ◦ Pk) = a1ak+1 − (k + 2)ak+2 = Ck

[
nH1Hk+1 − (n− k − 1)Hk+2

]
,

1 ≤ k ≤ n − 2,

where constants ck and Ck are given by

(k + 1)Ck = ck = (−ε)k(n− k)
(
n

k

)
= (−ε)k(k + 1)

(
n

k + 1

)
.

In a neighborhood of any point, let W ⊂ TpM be an m-dimensional, non-
degenerate and S-invariant subspace such that S|W is a Jordan block. Then its d-power
is given by either

(S|W )d =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

κd 0 0 · · · 0(d
1

)
κd−1 κd 0 · · · 0(d

2

)
κd−2

(d
1

)
κd−1 κd · · · 0

...
...

...
. . .

...( d
m−1

)
κd−m+1

( d
m−2

)
κd−m+2

( d
m−3

)
κd−m+3 · · · κd

⎞⎟⎟⎟⎟⎟⎟⎟⎠
if S|W is of type I, where

(d
r

)
= 0 when d < r, or

(S|W )d =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[Λd] 02 02 · · · 02(
d
1

)
[Λd−1] [Λd] 02 · · · 02(

d
2

)
[Λd−2]

(
d
1

)
[Λd−1] [Λd] · · · 02

...
...

... . . . ...(
d

m−1

)
[Λd−m+1]

(
d

m−2

)
[Λd−m+2]

(
d

m−3

)
[Λd−m+3] · · · [Λd]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
if S|W is of type II, where 02 =

(
0 0
0 0

)
, Λ0 is the identity map and

Λr =

⎡⎣ α β

−β α

⎤⎦r

=

⎡⎣ Cr Dr

−Dr Cr

⎤⎦ with

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Cr =

[ r
2
]∑

t=0

(−1)t

(
r

2t

)
β2tαr−2t

Dr =
[ r−1

2
]∑

t=0

(−1)t

(
r

2t+ 1

)
β2t+1αr−(2t+1)
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Here [z] stands for the integer part of z.
The following two propositions describe operator Pk in W , according to S|W is of

type I or type II, respectively.

Proposition 4. (S|W is of type I).
Let

{
E1, E2 . . . , Em

}
be a local frame of tangent vector fields on W satisfying (3)

such that S|W is a Jordan block of type I: SEi = κEi + Ei+1, for 1 ≤ i ≤ m − 1,
and SEm = κEm. Then the k-th Newton transformation Pk in W is given by

Pk|W = (−1)k

⎛⎜⎜⎜⎜⎜⎜⎝
μ

1

k
0 · · · 0

−μ1,2

k−1
μ

2

k
· · · 0

... . . . . . . ...

(−1)m−1 μ
1,...,m

k−(m−1)
· · · −μm−1,m

k−1
μ

m

k

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where κi = κ for all i.

Proposition 5. (S|W is of type II).
Let

{
E1, E2 . . . , Em

}
be a local frame of tangent vector fields on W satisfying (4)

such that S|W is a Jordan block of type II (hence necessarily m is even):

SEi = αEi − βEi+1 +Ei+2, 1 ≤ i (odd) ≤ m− 3,
SEm−1 = αEm−1 − βEm,

SEj = βEj−1 + αEj + Ej+2, 2 ≤ j (even) ≤ m− 2,
SEm = βEm−1 + αEm.

The k-th Newton transformation Pk in W is given by

Pk|W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 Z0

−Z0 U0

U1 Z1 U0 Z0

−Z1 U1 −Z0 U0

...
... . . . . . .

· · · U1 Z1 U0 Z0

· · · −Z1 U1 −Z0 U0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Ur =
k∑

j=0

ak−j

(
j
r

)
Cj−r and Zr =

k∑
j=0

ak−j

(
j
r

)
Dj−r .

Expression for Pk|W obtained in Proposition 5 can be reformulated as follows when
the tangent frame is complexificated according to (5). The proof is straightforward.
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Proposition 6. Let B =
{
E1, E2 . . . , Em

}
be a local frame of tangent vector fields

on W satisfying (4) such that S|W is a Jordan block of type II (hence m = 2d even).
Let BC =

{
F1, F2 . . . , Fm

}
be the complexification of B such that (S|W )C has in this

frame a matrix of form (6), with κ = α + iβ. Then the k-th Newton transformation
Pk in W is given by Pk|W = (−1)kdiag(Z(κ), Z(κ)) where

Z(κ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

μ
1

k
0 · · · 0

−μ1,2

k−1
μ

2

k
· · · 0

... . . . . . . ...

(−1)d−1 μ
1,...,d

k−(d−1)
· · · −μd−1,d

k−1
μ

d

k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here κ1 = · · · = κd = κ and κd+1 = · · · = κ2d = κ.

Now, we recall the notion of divergence of a vector field X or an operator T . For
any differentiable function f ∈ C∞(Mn

s ), the gradient of f is the vector field ∇f
metrically equivalent to df , which is characterized by 〈∇f, X〉 = X(f), for every
differentiable vector field X ∈ X(Mn

s ). The divergence of a vector field X is the
differentiable function defined as the trace of operator ∇X , where ∇X(Y ) := ∇Y X ,
that is,

div(X) = tr(∇X) =
∑
i,j

gij 〈∇EiX,Ej〉 ,

{Ei} being any local frame of tangent vectors fields, where (gij) represents the inverse
of the metric (gij) = (〈Ei, Ej〉). Analogously, the divergence of an operator T :
X(Mn

s ) −→ X(Mn
s ) is the vector field div(T ) ∈ X(Mn

s ) defined as the trace of ∇T ,
that is,

div(T ) = tr(∇T ) =
∑
i,j

gij(∇EiT )Ej,

where ∇T (Ei, Ej) = (∇EiT )Ej.
In the following lemma we present two interesting properties of the Newton trans-

formations.

Lemma 7. The Newton transformation Pk , for k = 0, . . . , n− 1, satisfies:
(a) tr(∇XS ◦ Pk) = −X(ak+1).
(b) div(Pk) = 0.

Proof. (a) From definition of Pk (9) we deduce

∇XS ◦ Pk =
k∑

j=0

ak−j(∇XS ◦ Sj) =
k+1∑
i=1

ak+1−i

i
∇XS

i.

By taking traces and using that ∇X commutes with trace operator we have
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(11) tr(∇XS ◦ Pk) =
k+1∑
i=1

ak+1−i

i
tr(∇XS

i) =
k+1∑
i=1

ak+1−i

i
X(tr Si).

From (7) it is not difficult to see that

1
i
X(tr Si) =

i∑
t=1

λi+1−tX(at),

where

λ1 = −1 and λb+1 =
∑

i1+···+ir=b
ij≥1

(−1)r+1ai1 · · ·air for b ≥ 1.

That equation, jointly with (11), yields

(12) tr(∇XS ◦ Pk) =
k+1∑
i=1

i∑
t=1

λi+1−t ak+1−iX(at) =
k+1∑
t=1

βtX(at),

where

βt =
k+1∑
i=t

λi+1−tak+1−i.

It is not difficult to see that
b∑

t=1

λt ab+1−t = −
∑

i1+···+ir=b
ij≥1

(−1)r+1ai1 · · ·air = −λb+1,

and then βt = 0 for t = 1, . . . , k. Using this equation in (12) we obtain

tr(∇XS ◦ Pk) =
k+1∑
t=1

βtX(at) = λ1a0X(ak+1) = −X(ak+1),

and the proof finishes.
(b) From the inductive definition (10) of Pk we have(∇XPk

)
Y = X(ak)Y +

(∇XS ◦ Pk−1

)
Y +

(
S ◦ ∇XPk−1

)
Y,

and then

div(Pk) =
n∑

i,j=1

gij

[
Ei(ak)Ej +

(∇EiS ◦ Pk−1

)
Ej +

(
S ◦ ∇EiPk−1

)
Ej

]
= ∇ak +

n∑
i,j=1

gij
(∇EiS ◦ Pk−1

)
Ej + S

( n∑
i,j=1

gij
(∇EiPk−1

)
Ej

)
= ∇ak +

n∑
i,j=1

gij
(∇EiS ◦ Pk−1

)
Ej + S

(
div(Pk−1)

)
,
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where
{
E1, . . . , En

}
is a frame of the tangent space. Then for every tangent vector

field X ∈ X(Mn
s ) we have

〈div(Pk), X〉 = 〈∇ak, X〉+ tr
(∇XS ◦ Pk−1

)
+

〈
S
(
div(Pk−1)

)
, X

〉
,

which implies from (a) that

〈div(Pk), X〉 =
〈
S
(
div(Pk−1)

)
, X

〉
.

Therefore we deduce

div(Pk) = S(div(Pk−1)) = S2(div(Pk−2)) = · · · = Sk(div(P0)) = 0.

Bearing in mind this lemma we obtain

div(Pk(∇f)) = tr
(
Pk ◦ ∇2f

)
,

where ∇2f : X(Mn
s ) −→ X(Mn

s ) denotes the self-adjoint linear operator metrically
equivalent to the Hessian of f , given by〈∇2f(X), Y

〉
= 〈∇X(∇f), Y 〉 , X, Y ∈ X(Mn

s ).

Associated to each Newton transformation Pk, we can define the second-order linear
differential operator Lk : C∞(Mn

s ) −→ C∞(Mn
s ) by

Lk(f) = tr
(
Pk ◦ ∇2f

)
.(13)

An interesting property of Lk is the following. For every couple of differentiable
functions f, g ∈ C∞(Mn

s ) we have

Lk(fg) = div
(
Pk ◦ ∇(fg)

)
= div

(
Pk ◦ (g∇f + f∇g))

= gLk(f) + fLk(g) + 2 〈Pk(∇f),∇g〉 .(14)

4. EXAMPLES

This section is devoted to show some examples of hypersurfaces in pseudo-Riemannian
space formsM

n+1
t (c) satisfying the condition Lkψ = Aψ+b, whereA ∈ R(n+2)×(n+2)

is a constant matrix and b ∈ R
n+2
q is a constant vector. Before that, we are going to

compute Lk acting on the coordinate components of the immersion ψ, that is, a function
given by 〈ψ, a〉, where a ∈ R

n+2
q is an arbitrary fixed vector.

A direct computation shows that

(15) ∇〈ψ, a〉 = a� = a− ε 〈N, a〉N − c 〈ψ, a〉ψ,
where a� ∈ X(M) denotes the tangential component of a. Taking covariant derivative
in (15), and using that ∇0

Xa = 0, jointly with the Gauss and Weingarten formulae, we
obtain
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(16) ∇X∇〈ψ, a〉 = ∇Xa
� = ε 〈N, a〉SX − c 〈ψ, a〉X,

for every vector field X ∈ X(M). Finally, by using (13) and Lemma 3, we find that

(17)
Lk 〈ψ, a〉 = ε 〈N, a〉 tr(Pk ◦ S) − c 〈ψ, a〉 tr(Pk ◦ I)

= ckHk+1 〈N, a〉 − cckHk 〈ψ, a〉 .
This expression allows us to extend operator Lk to vector functions F = (f1, . . . , fn+2),
fi ∈ C∞(Mn

s ), as follows

LkF :=
(
Lkf1, . . . , Lkfn+2

)
,

and then Lkψ can be computed as

(18)

Lkψ =
(
Lk(ε1 〈ψ, e1〉), . . . , Lk(εn+2 〈ψ, en+2〉)

)
= ckHk+1

(
ε1 〈N, e1〉 , . . . , εn+2 〈N, en+2〉

)
−cckHk

(
ε1 〈ψ, e1〉 , . . . , εn+2 〈ψ, en+2〉

)
= ckHk+1N − cckHkψ,

where {e1, . . . , en+2} stands for the standard orthonormal basis in Rn+2
q and εi =

〈ei, ei〉.
Example 1. An easy consequence of (18) is that every hypersurface withHk+1 ≡ 0

and constant k-th mean curvature Hk trivially satisfies Lkψ = Aψ + b, with A =
−cckHkIn+2 ∈ R

(n+2)×(n+2) and b = 0.

Example 2. (Totally umbilical hypersurfaces in M
n+1
t (c)) Is is well known that

totally umbilical hypersurfaces inM
n+1
t (c) are obtained as the intersection of M

n+1
t (c)

with a hyperplane of R
n+2
q , and the causal character of the hyperplane determines

the type of the hypersurface. More precisely, let a ∈ Rn+2
q be a non-zero constant

vector with 〈a, a〉 ∈ {1, 0,−1}, and take the differentiable function fa : M
n+1
t (c) →

R defined by fa(x) = 〈x, a〉. It is not difficult to see that for every τ ∈ R with
〈a, a〉 − cτ2 �= 0, the set

Mτ = f−1
a (τ) = {x ∈ M

n+1
t (c) | 〈x, a〉 = τ}

is a totally umbilical hypersurface in M
n+1
t (c), with Gauss map

N (x) =
1√| 〈a, a〉 − cτ2| (a− cτx),

and shape operator

(19) SX = −∇0
XN =

cτ√| 〈a, a〉 − cτ2|X.
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Now, by using (8) and (19), we obtain that the k-th mean curvature is given by

(20) Hk =
(εcτ)k

| 〈a, a〉 − cτ2|k/2
, k = 1, . . . , n,

where ε = 〈N,N 〉 = ±1. Therefore, by equation (18), we see that Mτ satisfies the
condition Lkψ = Aψ + b, for every k = 0, . . . , n− 1, with

A = −ck(εcτ)k
(
ετ2 + c| 〈a, a〉 − cτ2|)

| 〈a, a〉 − cτ2|(k+2)/2
In+2 and b =

ck(εcτ)k+1

| 〈a, a〉 − cτ2|(k+2)/2
a.

In particular, b = 0 only when τ = 0, and then M0 is a totally geodesic hypersurface
in M

n+1
t (c).
It is easy to see, from (19), that Mτ has constant curvature

K = c+
τ2

〈a, a〉 − cτ2
,

and it is a hypersurface of index t or t − 1 according to 〈a, a〉 − cτ2 is negative or
positive, respectively.
Next two tables collect the different possibilities.

Table 1. Totally umbilical hypersurfaces in S
n+1
t ⊂ R

n+2
t

〈a, a〉 τ K ε Hypersurface

−1 ∀τ 1
τ2 + 1

−1 Sn
t−1(

√
τ2 + 1)

0 τ �= 0 0 −1 Rn
t−1

1 |τ | < 1
1

1 − τ2
1 S

n
t (
√

1 − τ2)

1 |τ | > 1
−1

τ2 − 1
−1 H

n
t−1(−

√
τ2 − 1)

Table 2. Totally umbilical hypersurfaces in H
n+1
t ⊂ R

n+2
t+1

〈a, a〉 τ K ε Hypersurface

−1 |τ | < 1
−1

1 − τ2
−1 Hn

t−1(−
√

1− τ2)

−1 |τ | > 1
1

τ2 − 1
1 Sn

t (
√
τ2 − 1)

0 τ �= 0 0 1 Rn
t

1 ∀τ −1
τ2 + 1

1 H
n
t (−√

τ2 + 1)
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Example 3. (Standard pseudo-Riemannian products in M
n+1
t (c)). In order to

simplify the notation, we will consider in this example that the metric tensor in R
n+2
q

is given by

〈, 〉 =
m+1∑
i=1

εi dxi ⊗ dxi + c dxm+2 ⊗ dxm+2 +
n+2∑

j=m+3

εj dxi ⊗ dxj ,

where t = card{i | εi = −1}. Let f : M
n+1
t (c)−→ R be the differentiable function

defined by

f(x) = δ1

( m∑
i=1

εix
2
i

)
+ δ1δ2x

2
m+1 + cx2

m+2 + δ2

( n+2∑
j=m+3

εjx
2
j),

where m ∈ {1, . . . , n − 1} and δ1, δ2 ∈ {0, 1} with δ1 + δ2 = 1. In short, f(x) =
〈Dx, x〉, whereD is the diagonal matrixD = diag[δ1, . . . , δ1, δ1δ2, 1, δ2 . . . , δ2]. Then,
for every r > 0 and ρ = ±1 with ρ − cr2 �= 0, the level set Mn

s = f−1(ρr2) is a
hypersurface in M

n+1
t (c), for appropriate values of (δ1, δ2, ρ, c).

The Gauss map is given by

(21) N (x) =
∇f(x)
|∇f(x)| =

1
r
√|ρ− cr2| (Dx− ρcr2x),

and the shape operator is

S =
−1

r
√∣∣ρ− cr2

∣∣
⎡⎣(δ1 − ρcr2)Im

(δ2 − ρcr2)In−m

⎤⎦ .
In other words, Mn

s has two constant principal curvatures

κ1 =
ρcr2 − δ1

r
√|ρ− cr2| and κ2 =

ρcr2 − δ2

r
√|ρ− cr2| ,

with multiplicities m and n−m, respectively. In particular, every mean curvature Hk

is constant. Therefore, by using (18) and (21), we get that

Lkψ = ckHk+1N ◦ ψ − cckHkψ

=
(
λ1ψ1, . . . , λ

1ψm, θ
0ψm+1, θ

1ψm+2, λ
2ψm+3 . . . , λ

2ψn+2

)
,

where

λi =
cckHk+1(δi − ρcr2)

r
√∣∣ρ− cr2

∣∣ − cckHk, and θi =
cckHk+1(i− ρcr2)

r
√∣∣ρ− cr2

∣∣ − cckHk.
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That is, Mn
s satisfies the condition Lkψ = Aψ + b, with b = 0 and

A = diag[λ1, . . . , λ1, θ0, θ1, λ2, . . . , λ2].

Table 3 shows the different hypersurfaces in M
n+1
t (c). Parameters u and v are

defined by

u = {i | i ≤ m, εi = −1} and v = {i | i ≥ m+ 3, εi = −1},

where u+ v = t.

Example 4. (Quadratic hypersurfaces with non-diagonalizable shape operator) The
hypersurfaces shown in Examples 2 and 3 have diagonalizable shape operators. How-
ever, since we are working in a pseudo-Riemannian space form, it seems natural think-
ing of hypersurfaces with non-diagonalizable shape operator satisfying Lkψ = Aψ+ b.
LetR be a self-adjoint endomorphism of Rn+2

q , that is, 〈Rx, y〉 = 〈x, Ry〉, for all x, y ∈
R

n+2
q . Let f : M

n+1
t (c) → R be the quadratic function defined by f(x) = 〈Rx, x〉,

and assume that the minimal polynomial of R is given by μR(z) = z2 + a1z + a0,
a1, a0 ∈ R, with a2

1 − 4a0 ≤ 0. Then, by computing the gradient in M
n+1
t (c) at each

point x ∈ M
n+1
t (c), we have ∇f(x) = 2Rx− 2cf(x)x.

Let us consider the level set Md = f−1(d), for a real constant d. Then, at a point
x in Md, we have〈∇f(x),∇f(x)

〉
= 4

〈
R2x, x

〉− 4cf(x)2 = −4cμR(cd),

Table 3. Standard pseudo-Riemannian products in M
n+1
t (c)

δ1 δ2 ρ Hypersurfaces in S
n+1
t Hypersurfaces in H

n+1
t

1 0 1
Sm

u (r) × Sn−m
v (

√
1 − r2)

Sm
u (r) × H

n−m
v−1 (−√

r2 − 1)
Sm

u+1(r) × H
n−m
v−1 (−√

1 + r2)

0 1 1
Sm

u (
√

1− r2) × Sn−m
v (r)

Hm
u−1(−

√
r2 − 1) × Sn−m

v (r)
Hm

u−1(−
√

1 + r2) × S
n−m
v+1 (r)

1 0 −1 Hm
u−1(−r) × Sn−m

v (
√

1 + r2)
Hm

u (−r) × Sn−m
v (

√
r2 − 1)

Hm
u (−r) × H

n−m
v−1 (−√

1 − r2)

0 1 −1 Sm
u (

√
1 + r2) × H

n−m
v−1 (−r)

Sm
u (

√
r2 − 1) × Hn−m

v (−r)
Hm

u−1(−
√

1 − r2) × Hn−m
v (−r)
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where we have used thatR2x = −a1Rx−a0x. Then, for every d ∈ R with μR(cd) �= 0,
Md = f−1(d) is a pseudo-Riemannian hypersurface in M

n+1
t (c). The Gauss map at a

point x is given by

(22) N (x) =
1

|μR(cd)|1/2
(Rx− cdx),

and thus the shape operator is given by

(23) SX = − 1
|μR(cd)|1/2

(RX − cdX),

for every tangent vector fieldX . From here, and bearing in mind thatR2+a1R+a0I =
0, we obtain that

S2X = − 1
|μR(cd)|

(
(a1 + 2cd)RX + (a0 − d2)X

)
,

for every tangent vector field X . At this point, it is very easy to deduce that

μS(z) = z2 − a1 + 2cd
|μR(cd)|1/2

z +
a0 + a1cd+ d2

|μR(cd)|
is the minimal polynomial of S, and that every k-th mean curvature is constant. On
the other hand, since the discriminant of μS(t) is not positive, the shape operator is
non-diagonalizable.
Finally, from (18), we obtain that Lkψ = Aψ, where A is the matrix given by

A =
ckHk+1

|μR(cd)|1/2
R−

(
ckHk+1cd

|μR(cd)|1/2
+ cckHk

)
I.

5. A KEY LEMMA

In this section we need to compute LkN , and to do that we are going to compute
the operator Lk acting on the coordinate functions of the Gauss map N , that is, the
functions 〈N, a〉 where a ∈ R

n+2
q is an arbitrary fixed vector. A straightforward

computation yields
∇〈N, a〉 = −Sa�.

From Weingarten formula and (16), we find that

∇X∇〈N, a〉 = −∇X(Sa�) = −(∇XS)a� − S(∇Xa
�)

= −(∇a�S)X − ε 〈N, a〉S2X + c 〈ψ, a〉SX,
for every tangent vector field X . This equation, jointly with Lemma 3 and (13), yields
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(24)

Lk 〈N, a〉
= −tr(Pk ◦ ∇a�S)− ε 〈N, a〉 tr(Pk ◦ S2) + c 〈ψ, a〉 tr(Pk ◦ S)

= −εCk

〈
∇Hk+1, a

�
〉
− εCk(nH1Hk+1 − (n− k − 1)Hk+2) 〈N, a〉

+εcckHk+1 〈ψ, a〉 .

In other words,

(25) LkN = −εCk∇Hk+1 − εCk

(
nH1Hk+1 − (n− k− 1)Hk+2

)
N + εcckHk+1ψ.

On the other hand, equations (14) and (17) lead to

Lk(Lk 〈ψ, a〉) = ckHk+1Lk 〈N, a〉+ Lk(ckHk+1) 〈N, a〉+ 2ck
〈
Pk(∇Hk+1),∇〈N, a〉〉

− cckHkLk 〈ψ, a〉 − Lk(cckHk) 〈ψ, a〉 − 2cck
〈
Pk(∇Hk),∇〈ψ, a〉〉,

and by using again (17) and (24) we get that

Lk

(
Lk 〈ψ, a〉

)
= −εckCkHk+1 〈∇Hk+1, a〉 − 2ck 〈(S ◦ Pk)(∇Hk+1), a〉
− 2cck 〈Pk(∇Hk), a〉 −

[
εCkHk+1

(
nH1Hk+1 − (n− k − 1)Hk+2

)
+ cckHkHk+1 − Lk(Hk+1)

]
ck 〈N, a〉

+
[
εcckH

2
k+1 + ckH

2
k − cLk(Hk)

]
ck 〈ψ, a〉 .

Therefore, we get

(26)

Lk

(
Lkψ

)
= −εckCkHk+1∇Hk+1 − 2ck(S ◦ Pk)(∇Hk+1)− 2cckPk(∇Hk)

−[
εCkHk+1

(
nH1Hk+1 − (n− k − 1)Hk+2

)
+cckHkHk+1 − Lk(Hk+1)

]
ckN

+
[
εcckH

2
k+1 + ckH

2
k − cLk(Hk)

]
ckψ.

Let us assume that, for a fixed k = 0, 1, . . . , n − 1, the immersion ψ : Mn
s −→

M
n+1
t (c) satisfies the condition

Lkψ = Aψ + b,(27)

for a constant matrix A ∈ R(n+2)×(n+2) and a constant vector b ∈ Rn+2
q . Then we

have Lk

(
Lkψ

)
= ALkψ, that, jointly with (26) and (18), yields
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(28)

Hk+1AN − cHkAψ

= −εCkHk+1∇Hk+1 − 2(S ◦ Pk)(∇Hk+1)− 2cPk(∇Hk)

−[
εCkHk+1

(
nH1Hk+1 − (n− k − 1)Hk+2

)
+cckHkHk+1 − Lk(Hk+1)

]
N

+
[
εcckH

2
k+1 + ckH

2
k − cLk(Hk)

]
ψ.

On the other hand, from (27), and using again (18), we have

(29)
Aψ = ckHk+1N − cckHkψ − b� − ε 〈b, N 〉N − c 〈b, ψ〉ψ

= −b� +
[
ckHk+1 − ε 〈b, N 〉 ]N − [

cckHk + c 〈b, ψ〉]ψ,
where b� ∈ X(Mn

s ) denotes the tangential component of b. Finally, from here and
(28), we get

(30)

Hk+1AN

= −εCkHk+1∇Hk+1 − 2(S ◦ Pk)(∇Hk+1) − 2cPk(∇Hk) − cHkb
�

−[
εCkHk+1

(
nH1Hk+1−(n−k−1)Hk+2

)
+εcHk 〈b, N 〉−Lk(Hk+1)

]
N

+
[
εcckH

2
k+1 −Hk 〈b, ψ〉 − cLk(Hk)

]
ψ.

If we take covariant derivative in (27), and use equation (18) as well as Weingarten
formula, we obtain

(31) AX = −ckHk+1SX − cckHkX + ck 〈∇Hk+1, X〉N − cck 〈∇Hk, X〉ψ,
for every tangent vector field X , and therefore

(32) 〈AX, Y 〉 = 〈X,AY 〉 ,
for every tangent vector fields X, Y ∈ X(Mn

s ). That means A is a self-adjoint endo-
morphism when it is restricted to the tangent space.
By taking covariant derivative in (32) we obtain

ε(〈AN, Y 〉 − 〈N,AY 〉) 〈SX, Z〉 − c(〈Aψ, Y 〉 − 〈ψ, AY 〉) 〈X,Z〉
=ε(〈AN,X〉 − 〈N,AX〉) 〈SY, Z〉 − c(〈Aψ,X〉 − 〈ψ, AX〉) 〈Y, Z〉 ,

for every tangent vector field Z ∈ X(Mn
s ), and then

(33)
ε(〈AN, Y 〉 − 〈N,AY 〉)SX − c(〈Aψ, Y 〉 − 〈ψ, AY 〉)X

= ε(〈AN,X〉 − 〈N,AX〉)SY − c(〈Aψ,X〉− 〈ψ, AX〉)Y.
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Lemma 8. Let ψ : Mn
s −→ M

n+1
t (c) ⊂ Rn+2

q be an orientable hypersurface
satisfying the condition Lkψ = Aψ+ b, for a fixed k = 0, 1, . . . , n− 1, some constant
matrix A ∈ R(n+2)×(n+2) and some constant vector b ∈ Rn+2

q . If Hk is constant and
Hk+1 is non-constant, then b = 0.

Proof. Consider the open set

Uk+1 = {p ∈Mn
s | ∇H2

k+1(p) �= 0},

which is non-empty by hypothesis. From (31) we have 〈AX, ψ〉 = 0 on Uk+1, and by
taking covariant derivative here we obtain

ε 〈SX, Y 〉 〈AN, ψ〉 − c 〈X, Y 〉 〈Aψ, ψ〉+ 〈AX, Y 〉 = 0 on Uk+1.

This equation, jointly with (29)–(31), leads to

(34) (Hk 〈SX, Y 〉 − εHk+1 〈X, Y 〉) 〈b, ψ〉 = 0 on Uk+1,

for every tangent vector fields X, Y ∈ X(Mn
s ). Let us consider the open set

V = {p ∈ Uk+1 | 〈b, ψ〉 (p) �= 0}.

Our goal is to show that V is empty. Otherwise, from (34) we get

Hk 〈SX, Y 〉 − εHk+1 〈X, Y 〉 = 0 on V ,

which implies that Hk �= 0, and therefore

SX = λX, λ = ε
Hk+1

Hk
, on V .

This equation yields V is totally umbilical in M
n+1
t (c) and then λ (and Hk+1) is

constant, which is a contradiction.
Therefore V = ∅ and then we have b = ε 〈b, N 〉N . But N is a non-constant

vector field (otherwise Uk+1 should be totally umbilical with constant (k+ 1)-th mean
curvature), which implies b = 0.

The following auxiliar result is the key point in the proof of the main theorems.

Lemma 9. Let ψ : Mn
s −→ M

n+1
t (c) ⊂ R

n+2
q be an orientable hypersurface

satisfying the condition Lkψ = Aψ+ b, for a fixed k = 0, 1, . . . , n− 1, some constant
matrix A ∈ R(n+2)×(n+2) and some constant vector b ∈ Rn+2

q . If Hk is constant then
Hk+1 is constant.
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Proof. Let us assume that Hk is constant, and consider the open set

Uk+1 = {p ∈Mn
s | ∇H2

k+1(p) �= 0}.

Our goal is to show that Uk+1 is empty. Otherwise, from Lemma 8 we have that b = 0
and then from (29) we get

〈Aψ,X〉 = 0,

for every tangent vector field X . Since Hk is constant, from (31) we get 〈AX, ψ〉 = 0,
and thus (33) is equivalent to

(35) (〈AN, Y 〉 − 〈N,AY 〉)SX = (〈AN,X〉 − 〈N,AX〉)SY,

for every tangent vector fields X, Y ∈ X(Mn
s ). From equation (30), we get that the

tangential component of AN is given in Uk+1 by

(AN )� = −εCk∇Hk+1 − 2
Hk+1

(S ◦ Pk)(∇Hk+1).

Now, bearing in mind (31) and (35), we find that

〈Tk(∇Hk+1), Y 〉SX = 〈X, Tk(∇Hk+1)〉SY, X, Y ∈ X(M),(36)

where Tk is the linear self-adjoint operator defined by

Tk = ε(k + 2)CkI +
2

Hk+1
(S ◦ Pk).(37)

We claim that Tk(∇Hk+1) = 0 on Uk+1. Indeed, if Tk(∇Hk+1)(p0) �= 0 at some
point p0 ∈ Uk+1, then there exists a neighborhood of p0 where Tk(∇Hk+1) �= 0,
and we may choose a local orthonormal (or pseudo-orthonormal, respectively) frame
{E1, E2, . . . , En} with E1 in the direction of Tk(∇Hk+1). As a consequence, equation
(36) implies that SEi = 0 for every i �= 1 (or i �= 2, respectively), and then rank(S) ≤ 1
on Uk+1. But this implies that Hk+1 = 0 for every k ≥ 1, which is not possible.
Therefore, Tk(∇Hk+1) = 0 on Uk+1, which implies by (37) that

(S ◦ Pk)(∇Hk+1) = −ε(k + 2)Ck

2
Hk+1∇Hk+1 on Uk+1.(38)

This equation leads to the proof in the case where k = n−1. In fact, from the inductive
definition we see that Pn = anI+S◦Pn−1, and then S◦Pn−1 = −anI = −(−ε)nHnI .
From this we have

S ◦ Pn−1(∇Hn) = −(−ε)nHn∇Hn,

that jointly with (38) implies Hn∇Hn = 0 on Un, which is not possible.
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Now consider the case where 1 ≤ k ≤ n − 2 (and n ≥ 3 necessarily). From the
inductive definition of Pk+1 and (38) we obtain

Pk+1(∇Hk+1) +Dk Hk+1∇Hk+1 = 0 on Uk+1,(39)

where Dk = ε
2 (k + 4)Ck .

Let us assume that the tangent space is V = V1 ⊕ · · · ⊕ Vm where each Vi is
S-invariant and Si = S|Vi is a Jordan block of type I or II. Then

∇Hk+1 =

⎛⎜⎜⎜⎝
∇Hk+1|V1

...

∇Hk+1|Vm

⎞⎟⎟⎟⎠ ,

and therefore (39) is equivalent to(
Pk+1|Vi +DkHk+1I

)
(∇Hk+1|Vi) = 0 on Uk+1,

for every i = 1, . . . , m.
When Si is a Jordan block of type II we can complexify and then Si is reduced

to two Jordan blocks of type I. In consequence and without loss of generality, in what
follows we shall consider that every Si is a Jordan block of type I associated to a (real
or complex) root κ of S.
Let {Ei1, . . . , Eip} be a tangent frame of subspace Vi = Vi(κ), where Si = S|Vi

is a Jordan block associated to κ. From Propositions 4 and 6 we deduce⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ
i1

k+1 + DkHk+1

−µ
i1,i2

k
µ

i2

k+1 + DkHk+1

µ
i1 ,i2,i3

k−1 −µ
i2,i3

k
µ

i3

k+1 + DkHk+1

...
. . .

. . .

(−1)p+1µ
i1 ,...,ip

k−(p−2)
· · · −µ

ip−1 ,ip

k
µ

ip

k+1 + DkHk+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈∇Hk+1, Eip

〉〈∇Hk+1, Eip−1

〉〈∇Hk+1, Eip−2

〉
...

〈∇Hk+1, Ei1 〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=0,

where Dk = (−1)k+1Dk. Since κi1 = · · · = κip = κ, then last equation is equivalent
to

⎛⎜⎜⎜⎜⎜⎜⎝

〈∇Hk+1, Eip

〉〈∇Hk+1, Eip−1

〉 〈∇Hk+1, Eip

〉
...

...
. . .

〈∇Hk+1, Ei1〉 〈∇Hk+1, Ei2 〉 . . .
〈∇Hk+1, Eip

〉

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ
i1

k+1
+ DkHk+1

−µ
i1,i2

k

µ
i1 ,i2,i3

k−1

...

(−1)p+1µ
i1,...,ip

k−(p−2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.
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As a consequence, if
〈∇Hk+1, Eip

〉 �= 0, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
i1

k+1
+DkHk+1 = 0, (e1)

μ
i1,i2

k
= 0, (e2)

μ
i1,i2,i3

k−1
= 0, (e3)

...

μ
i1,...,ip

k−(p−2)
= 0. (ep)

(40)

Equations (e2)− (ep) yield

μ
i1,...,iq

(k+2)−l
= 0, for 2 ≤ l ≤ q ≤ p.(41)

We can easily prove (41) by induction on q−l = 0, . . . , p−2. If q−l = 0 then equation
(41) follows from (40). Let us assume that (41) holds for q − l = 0, 1 . . . , s < p− 2,
and consider q − l = s+ 1. Observe that

μ
i1,...,il+s

(k+2)−l
= κi

l+s+1
μ

i1,...,il+s+1

(k+2)−(l+1)
+ μ

i1,...,il+s+1

(k+2)−l
,

then by using the induction hypothesis on both sides of this equation we find that
μ

i1,...,il+s+1

(k+2)−l
= 0. That concludes the proof of (41).

Claim 1. Let {Ei1, . . . , Eip} be a tangent frame of an S-invariant subspace Vi(κ),
where S|Vi is a Jordan block of type I associated to a root κ. If

〈∇Hk+1, Eip

〉 �= 0
then

μJ
k+1

+DkHk+1 = 0,(42)

for every J ⊆ {ii, . . . , ip} := Ji(κ).

We shall prove (42) by induction on the cardinality of J , card(J). If card(J)=1,
then (42) is nothing but equation (e1) in (40). If card(J)=2, J = {i1, i2}, then (42) is
a consequence of (e1) and (e2) in (40), since we have

0 = μ
i1

k+1
+DkHk+1 =

(
κi2μ

i1,i2

k
+ μ

i1,i2

k+1

)
+DkHk+1 = μ

i1,i2

k+1
+DkHk+1.

Let us assume that (42) is true for every subset J with card(J) = 1, 2, . . . , m < p and
consider a set J0 = {i1, . . . , im+1} with cardinality m + 1 ≤ p. Let J1 be the set of
cardinality m such that J0 = J1 ∪ {im+1}. By the induction hypothesis applied to J1

and bearing in mind (41) we get

0 = μJ1
k+1

+DkHk+1 =
(
κim+1μ

J0
k

+ μJ0
k+1

)
+DkHk+1 = μJ0

k+1
+DkHk+1,
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and that concludes the proof of Claim 1.
An immediate and important consequence of this claim is that 〈∇Hk+1, Ei〉 = 0

for some i. Otherwise, from Claim 1 we deduce

tr(Pk+1) =
n∑

�,j=1

g�j 〈Pk+1E�, Ej〉 =
n∑

�=1

(−1)k+1μ�
k+1

= (−1)knDkHk+1,

that jointly with Lemma 3 leads to Hk+1 = 0 on Uk+1, which is a contradiction.

Claim 2. Let {Ei1, . . . , Eip} and {Ej1, . . . , Ejq} be tangent frames of two S-
invariant subspaces Vi(κ1) and Vj(κ2), where S|Vi and S|Vj are Jordan blocks as-
sociated to two distinct roots κ1 and κ2, respectively. If

〈∇Hk+1, Eip

〉 �= 0 and〈∇Hk+1, Ejq

〉 �= 0 then

μJ
k+1

+DkHk+1 = 0,(43)

for every set J ⊆ {i1, . . . , ip, j1, . . . , jq} = Ji(κ1) ∪ Jj(κ2).

We can write J = J1 ∪ J2, where J1 ⊆ Ji(κ1) and J2 ⊆ Jj(κ2), and then
card(J) = m1 + m2, with m1 = card(J1) and m2 = card(J2). We shall prove (43)
by induction on m = m1 +m2. If m = 1, then (43) is nothing but (42).
Let us assume that (43) holds for every set J with card(J) = 1, 2, . . . , r < p + q

and consider a set J0 = {h1, . . . , hr+1} ⊆ {i1, . . . , ip, j1, . . . , jq} with cardinality
r + 1 ≤ p+ q. In the case where J0 is a subset either of J1 or J2, there is nothing to
prove. Thus let us assume that J0 has elements of J1 and J2.
Without loss of generality, we can assume that h1 ∈ J1 and hr+1 ∈ J2, and let I1

and I2 be the two sets of cardinality r such that J0 = I1 ∪ {hr+1} = {h1} ∪ I2. From
the induction hypothesis we deduce

0 = μI1
k+1

+DkHk+1 =
(
κ

hr+1
μJ0

k
+ μJ0

k+1

)
+DkHk+1,

0 = μI2
k+1

+DkHk+1 =
(
κ

h1
μJ0

k
+ μJ0

k+1

)
+DkHk+1,

and then
(
κh1 − κhr+1

)
μJ0

k
= 0. Since κh1

�= κhr+1
we obtain 0 = μJ0

k+1
+DkHk+1,

as desired. That concludes the proof of Claim 2.

Claim 3. Let {Ei1, . . . , Eip} and {Ej1, . . . , Ejq} be tangent frames of two S-
invariant subspaces Vi(κ) and Vj(κ), where S|Vi and S|Vj are Jordan blocks associated
to the same root κ. Then there exists a tangent vector Ẽ such that

SẼ = κẼ and 〈∇Hk+1, Ẽ〉 = 0.
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To prove this claim, we distinguish two cases:
(a) If

〈∇Hk+1, Eip

〉
= 0 (or

〈∇Hk+1, Ejq

〉
= 0, respectively), there is nothing to

prove, we can take Ẽ = Eip (or Ẽ = Ejq , respectively).
(b) If

〈∇Hk+1, Eip

〉 �= 0 and
〈∇Hk+1, Ejq

〉 �= 0, then we take

Ẽ = − 〈∇Hk+1, Ejq

〉
Eip +

〈∇Hk+1, Eip

〉
Ejq .

Two consequences can be obtained from this claim.
(C1) If κ is real, then from (31) we get

AẼ = −ckHk+1κẼ,

and then there exists a constant eigenvalue η of matrix A such that

κ =
η

−ckHk+1
.(44)

(C2) If κ = α + iβ is complex, then there exist two (real) tangent vectors Ẽ1, Ẽ2

such that Ẽ = Ẽ1 + iẼ2 and 〈∇Hk+1, Ẽi〉 = 0 for i = 1, 2. In this case, W =
span{Ẽ1, Ẽ2} is an S-invariant subspace and S|W has matrix of form

S|W =

⎛⎝ α β

−β α

⎞⎠ .

By using (31) we get that W is also an A-invariant subspace with matrix of form

A|W =

⎛⎝−ckHk+1α −ckHk+1β

ckHk+1β −ckHk+1α

⎞⎠ .

As a consequence, we obtain that

θ = tr(A|W ) and ρ = det(A|W )

are invariants of A (and constant). Explicitly, they are given by θ = −2(ckHk+1α)
and ρ = (ckHk+1)2(α2 + β2), and then it is easy to see that there exist two constants
s1 and s2 such that

α =
s1

−ckHk+1
and β =

s2
−ckHk+1

.

Thus we can write

κ =
η

−ckHk+1
, η = s1 + is2.(45)

To finish the proof of Lemma, let K be the following subset of roots of QS(t):
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K =
{
κ | JB(κ) = 1 and

〈∇Hk+1, Eip

〉 �= 0
}
,

where JB(κ) stands for the number of Jordan blocks associated to the root κ. From
Claim 2 we deduce

μJ
k+1

+DkHk+1 = 0,

for every subset J ⊆ ⋃
κi∈K J(κi). In particular, for J =

⋃
κi∈K J(κi) we obtain

−DkHk+1 = μJ
k+1

=
n∑

i1<···<ik+1

ij /∈J

κi1 . . .κik+1
=

n∑
i1<···<ik+1

κij
/∈K

κi1 . . . κik+1

that jointly with (44) and (45) lead to

−DkHk+1 =

∑
i1<···<ik+1

ηi1 · · ·ηik+1(− ckHk+1

)k+1
on Uk+1,

showing that Hk+1 is locally constant on Uk+1, which is a contradiction.

6. MAIN RESULTS

This section is devoted to prove the main result of this paper.

Theorem 1. Let ψ : Mn
s → M

n+1
t (c) ⊂ Rn+2

q be an orientable hypersurface im-
mersed into the pseudo-Riemannian space form M

n+1
t (c), and let Lk be the linearized

operator of the (k+ 1)-th mean curvature of Mn
s , for some fixed k = 0, 1, . . . , n− 1.

Assume that Hk is constant. Then the immersion satisfies the condition Lkψ = Aψ+b,
for some constant matrix A ∈ R(n+2)×(n+2) and some constant vector b ∈ Rn+2

q , if
and only if it is one of the following hypersurfaces:
(1) a hypersurface having zero (k + 1)-th mean curvature and constant k-th mean

curvature.
(2) an open piece of one of the following totally umbilical hypersurfaces in S

n+1
t :

Sn
t−1(r), r > 1; Sn

t (r), 0 < r < 1; Hn
t−1(−r), r > 0; Rn

t−1.
(3) an open piece of one of the following totally umbilical hypersurfaces in H

n+1
t :

Hn
t (−r), r > 1; Hn

t−1(−r), 0 < r < 1; Sn
t (r), r > 0; Rn

t .
(4) an open piece of a standard pseudo-Riemannian product in S

n+1
t :

S
m
u (r) × S

n−m
v (

√
1 − r2), H

m
u−1(−r) × S

n−m
v (

√
1 + r2), S

m
u (r) × H

n−m
v−1

(−√
r2 − 1).

(5) an open piece of a standard pseudo-Riemannian product in H
n+1
t :

Hm
u (−r) × Sn−m

v (
√
r2 − 1), Sm

u (r) × Hn−m
v (−√

1 + r2), Hm
u (−r) × H

n−m
v−1

(−√
1 − r2).
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(6) an open piece of a quadratic hypersurface {x ∈ M
n+1
t (c) ⊂ Rn+2

q | 〈Rx, x〉 =
d}, where R is a self-adjoint constant matrix whose minimal polynomial is
z2 + az + b, a2 − 4b ≤ 0.

Proof. We have already checked in Section 4 that each one of the hypersurfaces
mentioned in Theorem 1 does satisfy the condition Lkψ = Aψ + b, for a constant
matrix A ∈ R(n+2)×(n+2) and some constant vector b ∈ Rn+2

q .
Conversely, let us assume that ψ : Mn

s → M
n+1
t (c) ⊂ R

n+2
q satisfies the condition

Lkψ = Aψ+ b, for some constant matrix A ∈ R
(n+2)×(n+2) and some constant vector

b ∈ Rn+2
q . Since Hk is constant on Mn

s , from Lemma 9 we know that Hk+1 is also
constant on Mn

s . Let us assume that Hk+1 is a non-zero constant (otherwise, there is
nothing to prove).
From (31) and (28) we have

AX = −ckHk+1SX − cckHkX,(46)

AN = (λ− cckHk)N + ck(εcHk+1 +
H2

k

Hk+1
)ψ +

cHk

Hk+1
Aψ,(47)

with λ = −εCk(nH1Hk+1 − (n − k − 1)Hk+2). Taking covariant derivative in (47),
and using (46), we have

∇0
X(AN ) = 〈∇λ,X〉N − λSX + εcckHk+1X,

but also from (46) we obtain

∇0
X(AN ) = A(∇0

XN ) = −A(SX) = ckHk+1S
2X + cckHkSX.

From the last two equations we deduce that λ is constant on Mn
s , and also that the

shape operator S satisfies the equation

(48) S2 + a1S − εcI = 0, a1 =
λ+ cckHk

ckHk+1
= constant.

As a consequence, Mn
s is an isoparametric hypersurface in M

n+1
t (c) and the minimal

polynomial of its shape operator S is of degree at most two. If the degree of that
polynomial is one, then Mn

s is totally umbilical (but not totally geodesic) in M
n+1
t (c)

and so it is one of the hypersurfaces listed in paragraphs (2) or (3) of the theorem,
according to c = 1 or c = −1, respectively (Example 2). Let us assume that the
minimal polynomial of S is exactly of degree two. If S is diagonalizable, thenMn

s has
exactly two distinct constant principal curvatures, and then from standard arguments
(similar to those used in [13, 23, 19, 18, 25, 26]) it is an open piece of a standard
pseudo-Riemannian product (Example 3).
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Suppose now that S is not diagonalizable, so that the minimal polynomial of S is
given by μS(z) = z2 + a1z − εc, with discriminant dS = a2

1 + 4εc ≤ 0. From above
equations we easily deduce that the minimal polynomial of A is given by μA(z) = z2+
b1z+b0, where b1 = 2cckHk−a1ckHk+1 and b0 = c2kH

2
k −a1cc

2
kHkHk+1−εcc2kH2

k+1

are constants. Since the discriminant dA of μA(z) is given by dA = c2kH
2
k+1dS , then A

also is not diagonalizable. Since 〈Aψ, ψ〉 = −ckHk is constant and μA(−cckHk) �= 0,
thenMn

s is an open piece of a quadratic hypersurface as in Example 4. That concludes
the proof.

As an easy consequence of this theorem we obtain the following result.

Theorem 2. Let ψ : Mn
s → M

n+1
t (c) ⊂ Rn+2

q be an orientable hypersurface im-
mersed into the pseudo-Riemannian space form M

n+1
t (c), and let Lk be the linearized

operator of the (k+ 1)-th mean curvature of Mn
s , for some fixed k = 0, 1, . . . , n− 1.

Then the immersion satisfies the condition Lkψ = Aψ, for some self-adjoint constant
matrix A ∈ R

(n+2)×(n+2), if and only if it is one of the following hypersurfaces:

(1) a hypersurface having zero (k + 1)-th mean curvature and constant k-th mean
curvature;

(2) an open piece of a standard pseudo-Riemannian product in S
n+1
t :

S
m
u (r) × S

n−m
v (

√
1 − r2), H

m
u−1(−r) × S

n−m
v (

√
1 + r2), S

m
u (r) × H

n−m
v−1

(−√
r2 − 1).

(3) an open piece of a standard pseudo-Riemannian product in H
n+1
t :

H
m
u (−r) × S

n−m
v (

√
r2 − 1), S

m
u (r) × H

n−m
v (−√

1 + r2), H
m
u (−r) × H

n−m
v−1

(−√
1 − r2).

(4) an open piece of a quadratic hypersurface {x ∈ M
n+1
t (c) ⊂ R

n+2
q | 〈Rx, x〉 =

d}, where R is a self-adjoint constant matrix whose minimal polynomial is
z2 + az + b, a2 − 4b ≤ 0.

Proof. Since A is a self-adjoint matrix we have 〈AX, ψ〉 = 〈X,Aψ〉, and by
using (29) and (31) we deduce

∇〈b, ψ〉 = b� = ck∇Hk,

which implies that Hk is constant. Now the result follows from Theorem 1.
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