HYPERSURFACES IN NON-FLAT PSEUDO-RIEMANNIAN SPACE FORMS SATISFYING A LINEAR CONDITION IN THE LINEARIZED OPERATOR OF A HIGHER ORDER MEAN CURVATURE

Pascual Lucas* and Hector Fabián Ramírez-Ospina

Abstract

We study hypersurfaces either in the pseudo-Riemannian De Sitter space $\mathbb{S}_{t}^{n+1} \subset \mathbb{R}_{t}^{n+2}$ or in the pseudo-Riemannian anti De Sitter space $\mathbb{H}_{t}^{n+1} \subset \mathbb{R}_{t+1}^{n+2}$ whose position vector ψ satisfies the condition $L_{k} \psi=A \psi+b$, where L_{k} is the linearized operator of the $(k+1)$-th mean curvature of the hypersurface, for a fixed $k=0, \ldots, n-1, A$ is an $(n+2) \times(n+2)$ constant matrix and b is a constant vector in the corresponding pseudo-Euclidean space. For every k, we prove that when H_{k} is constant, the only hypersurfaces satisfying that condition are hypersurfaces with zero $(k+1)$-th mean curvature and constant k-th mean curvature, open pieces of a totally umbilical hypersurface in $\mathbb{S}_{t}^{n+1}\left(\mathbb{S}_{t-1}^{n}(r), r>1 ; \mathbb{S}_{t}^{n}(r), 0<r<1\right.$; $\mathbb{H}_{t-1}^{n}(-r), r>0 ; \mathbb{R}_{t-1}^{n}$), open pieces of a totally umbilical hypersurface in $\mathbb{H}_{t}^{n+1}\left(\mathbb{H}_{t}^{n}(-r), r>1 ; \mathbb{H}_{t-1}^{n}(-r), 0<r<1 ; \mathbb{S}_{t}^{n}(r), r>0 ; \mathbb{R}_{t}^{n}\right)$, open pieces of a standard pseudo-Riemannian product in $\mathbb{S}_{t}^{n+1}\left(\mathbb{S}_{u}^{m}(r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1-r^{2}}\right)\right.$, $\left.\mathbb{H}_{u-1}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1+r^{2}}\right), \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v-1}^{n-m}\left(-\sqrt{r^{2}-1}\right)\right)$, open pieces of a standard pseudo-Riemannian product in $\mathbb{H}_{t}^{n+1}\left(\mathbb{H}_{u}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{r^{2}-1}\right), \mathbb{S}_{u}^{m}(r) \times\right.$ $\left.\mathbb{H}_{v}^{n-m}\left(-\sqrt{1+r^{2}}\right), \mathbb{H}_{u}^{m}(-r) \times \mathbb{H}_{v-1}^{n-m}\left(-\sqrt{1-r^{2}}\right)\right)$ and open pieces of a quadratic hypersurface $\left\{x \in \mathbb{M}_{t}^{n+1}(c) \mid\langle R x, x\rangle=d\right\}$, where R is a self-adjoint constant matrix whose minimal polynomial is $\mu_{R}(z)=z^{2}+a z+b, a^{2}-4 b \leq 0$, and $\mathbb{M}_{t}^{n+1}(c)$ stands for $\mathbb{S}_{t}^{n+1} \subset \mathbb{R}_{t}^{n+2}$ or $\mathbb{H}_{t}^{n+1} \subset \mathbb{R}_{t+1}^{n+2}$.

1. Introduction

The Laplacian operator Δ of a hypersurface M^{n} immersed into \mathbb{R}^{n+1} can be seen as the first one of a sequence of operators $\left\{L_{0}=\Delta, L_{1}, \ldots, L_{n-1}\right\}$, where L_{k} stands

[^0]for the linearized operator of the first variation of the $(k+1)$-th mean curvature, arising from normal variations of the hypersurface (see, for instance, [21]). These operators are defined by $L_{k}(f)=\operatorname{tr}\left(P_{k} \circ \nabla^{2} f\right)$, for a smooth function f on M, where P_{k} denotes the k-th Newton transformation associated to the second fundamental form of the hypersurface, and $\nabla^{2} f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f.

From this point of view, and inspired by Garay's extension of Takahashi theorem and its subsequent generalizations and extensions ([24, 6, 10, 8, 12, 1, 2, 3]), Alías and Gürbüz initiated in [4] the study of hypersurfaces in Euclidean space satisfying the general condition $L_{k} \psi=A \psi+b$, where $A \in \mathbb{R}^{(n+1) \times(n+1)}$ is a constant matrix and $b \in \mathbb{R}^{n+1}$ is a constant vector. Recently, we have completely extended to the Lorentz-Minkowski space the previous classification theorem obtained by Alías and Gürbüz. In particular, we proved in [15] that the only hypersurfaces immersed in the Lorentz-Minkowski space \mathbb{L}^{n+1} satisfying the condition $L_{k} \psi=A \psi+b$, where $A \in \mathbb{R}^{(n+1) \times(n+1)}$ is a constant matrix and $b \in \mathbb{L}^{n+1}$ is a constant vector, are open pieces of hypersurfaces with zero $(k+1)$-th mean curvature, or open pieces of totally umbilical hypersurfaces $\mathbb{S}_{1}^{n}(r)$ or $\mathbb{H}^{n}(-r)$, or open pieces of generalized cylinders $\mathbb{S}_{1}^{m}(r) \times \mathbb{R}^{n-m}, \mathbb{H}^{m}(-r) \times \mathbb{R}^{n-m}$, with $k+1 \leq m \leq n-1$, or $\mathbb{L}^{m} \times \mathbb{S}^{n-m}(r)$, with $k+1 \leq n-m \leq n-1$.

In [5], and as a natural continuation of the study started in [4], Alías and Kashani consider the study of hypersurfaces M^{n} immersed either into the sphere $\mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}$ or into the hyperbolic space $\mathbb{H}^{n+1} \subset \mathbb{R}_{1}^{n+2}$ whose position vector ψ satisfies the condition $L_{k} \psi=A \psi+b$, for some constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and some constant vector $b \in \mathbb{R}_{q}^{n+2}, q=0,1$. They obtain classification results in two cases: when A is self-adjoint and $b=0$, and when the k-th mean curvature H_{k} is constant and b is a non-zero constant vector. When the ambient space is a Lorentzian space form \mathbb{S}_{1}^{n+1} or \mathbb{H}_{1}^{n+1}, the shape operator of the hypersurface needs not be diagonalizable, condition which plays a chief role in the Riemannian case. In this case, the shape operator of the hypersurface can be expressed, in an appropriate frame, in one of four types. In [16] we have extended, to the Lorentzian case, the results obtained in [5].

However, when the ambient space is a general pseudo-Riemannian space form $\mathbb{S}_{t}^{n+1} \subset \mathbb{R}_{t}^{n+2}$ or $\mathbb{H}_{t}^{n+1} \subset \mathbb{R}_{t+1}^{n+2}$, the shape operator of the hypersurface can be much more complicated than in the Riemannian or Lorentzian cases, and then the reasoning followed in [5] and [16] is not applicable in the general case. In this paper, we extend to arbitrary pseudo-Riemannian space forms \mathbb{S}_{t}^{n+1} or \mathbb{H}_{t}^{n+1} the results obtained in [5] and [16].

Our approach in this paper is completely different to that given in above papers. First, we do not assume that A is a self-adjoint matrix, but we only assume that the k-th mean curvature of the hypersurface is constant. Secondly, the techniques developed in $[4,5,15,16]$ are not applicable in the general case, so that we have needed to follow
a different way. The new and more general proof is based on the complexification of the shape operator of the hypersurface (see sections 2 and 5 for details).

For the sake of simplifying the notation and unifying the statements of our main results, let us denote by $\mathbb{M}_{t}^{n+1}(c)$ either the pseudo-Riemannian De Sitter space $\mathbb{S}_{t}^{n+1} \subset$ \mathbb{R}_{t}^{n+2} if $c=1$, or the pseudo-Riemannian anti De Sitter space $\mathbb{H}_{t}^{n+1} \subset \mathbb{R}_{t+1}^{n+2}$ if $c=-1$. In this paper, we are able to give the following classification result.

Theorem 1. Let $\psi: M_{s}^{n} \rightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ be an orientable hypersurface immersed into the pseudo-Riemannian space form $\mathbb{M}_{t}^{n+1}(c)$, and let L_{k} be the linearized operator of the $(k+1)$-th mean curvature of M_{s}^{n}, for some fixed $k=0,1, \ldots, n-1$. Assume that H_{k} is constant. Then the immersion satisfies the condition $L_{k} \psi=A \psi+b$, for some constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and some constant vector $b \in \mathbb{R}_{q}^{n+2}$, if and only if it is one of the following hypersurfaces:
(1) a hypersurface having zero $(k+1)$-th mean curvature and constant k-th mean curvature.
(2) an open piece of one of the following totally umbilical hypersurfaces in \mathbb{S}_{t}^{n+1} : $\mathbb{S}_{t-1}^{n}(r), r>1 ; \mathbb{S}_{t}^{n}(r), 0<r<1 ; \mathbb{H}_{t-1}^{n}(-r), r>0 ; \mathbb{R}_{t-1}^{n}$.
(3) an open piece of one of the following totally umbilical hypersurfaces in \mathbb{H}_{t}^{n+1} : $\mathbb{H}_{t}^{n}(-r), r>1 ; \mathbb{H}_{t-1}^{n}(-r), 0<r<1 ; \mathbb{S}_{t}^{n}(r), r>0 ; \mathbb{R}_{t}^{n}$.
(4) an open piece of a standard pseudo-Riemannian product in \mathbb{S}_{t}^{n+1} :
$\mathbb{S}_{u}^{m}(r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1-r^{2}}\right), \quad \mathbb{H}_{u-1}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1+r^{2}}\right), \quad \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v-1}^{n-m}$ $\left(-\sqrt{r^{2}-1}\right)$.
(5) an open piece of a standard pseudo-Riemannian product in \mathbb{H}_{t}^{n+1} :
$\mathbb{H}_{u}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{r^{2}-1}\right), \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v}^{n-m}\left(-\sqrt{1+r^{2}}\right), \quad \mathbb{H}_{u}^{m}(-r) \times \mathbb{H}_{v-1}^{n-m}$ $\left(-\sqrt{1-r^{2}}\right)$.
(6) an open piece of a quadratic hypersurface $\left\{x \in \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2} \mid\langle R x, x\rangle=\right.$ $d\}$, where R is a self-adjoint constant matrix whose minimal polynomial is $z^{2}+a z+b, a^{2}-4 b \leq 0$.

In the case when $b=0$, the condition that the matrix A is self-adjoint implies that the k-th mean curvature H_{k} is constant, and then we obtain the following consequence.

Theorem 2. Let $\psi: M_{s}^{n} \rightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ be an orientable hypersurface immersed into the pseudo-Riemannian space form $\mathbb{M}_{t}^{n+1}(c)$, and let L_{k} be the linearized operator of the $(k+1)$-th mean curvature of M_{s}^{n}, for some fixed $k=0,1, \ldots, n-1$. Then the immersion satisfies the condition $L_{k} \psi=A \psi$, for some self-adjoint constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$, if and only if it is one of the following hypersurfaces:
(1) a hypersurface having zero $(k+1)$-th mean curvature and constant k-th mean curvature;
(2) an open piece of a standard pseudo-Riemannian product in \mathbb{S}_{t}^{n+1} : $\mathbb{S}_{u}^{m}(r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1-r^{2}}\right), \mathbb{H}_{u-1}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1+r^{2}}\right), \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v-1}^{n-m}\left(-\sqrt{r^{2}-1}\right)$.
(3) an open piece of a standard pseudo-Riemannian product in \mathbb{H}_{t}^{n+1} :
$\mathbb{H}_{u}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{r^{2}-1}\right), \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v}^{n-m}\left(-\sqrt{1+r^{2}}\right), \mathbb{H}_{u}^{m}(-r) \times \mathbb{H}_{v-1}^{n-m}$ $\left(-\sqrt{1-r^{2}}\right)$.
(4) an open piece of a quadratic hypersurface $\left\{x \in \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2} \mid\langle R x, x\rangle=\right.$ $d\}$, where R is a self-adjoint constant matrix whose minimal polynomial is $z^{2}+a z+b, a^{2}-4 b \leq 0$.

2. Preliminaries

In this section we will recall basic formulas and notions about hypersurfaces in pseudo-Riemannian space forms that will be used later on. Let \mathbb{R}_{q}^{n+2} be the $(n+2)$-dimensional pseudo-Euclidean space of index $q \geq 0$, whose metric tensor \langle,$\rangle is given by$

$$
\langle,\rangle=-\sum_{i=1}^{q} \mathrm{~d} x_{i} \otimes \mathrm{~d} x_{i}+\sum_{i=q+1}^{n+2} \mathrm{~d} x_{i} \otimes \mathrm{~d} x_{i}
$$

where $x=\left(x_{1}, \ldots, x_{n+2}\right)$ denotes the usual rectangular coordinates in \mathbb{R}^{n+2}. The pseudo-Riemannian De Sitter space of index t is defined by

$$
\mathbb{S}_{t}^{n+1}(r)=\left\{x \in \mathbb{R}_{t}^{n+2} \mid\langle x, x\rangle=r^{2}\right\}, \quad r>0
$$

and the pseudo-Riemannian anti-De Sitter space of index t is defined by

$$
\mathbb{H}_{t}^{n+1}(-r)=\left\{x \in \mathbb{R}_{t+1}^{n+2} \mid\langle x, x\rangle=-r^{2}\right\}, \quad r>0
$$

Throughout this paper, we will consider both the case of hypersurfaces immersed into pseudo-Riemannian De Sitter space $\mathbb{S}_{t}^{n+1} \equiv \mathbb{S}_{t}^{n+1}(1)$, and the case of hypersurfaces immersed into pseudo-Riemannian anti De Sitter space $\mathbb{H}_{t}^{n+1} \equiv \mathbb{H}_{t}^{n+1}(-1)$. In order to simplify our notation and computations, we will denote by $\mathbb{M}_{t}^{n+1}(c)$ both the De Sitter space \mathbb{S}_{t}^{n+1} and the anti De Sitter space \mathbb{H}_{t}^{n+1} according to $c=1$ or $c=-1$, respectively. We will use \mathbb{R}_{q}^{n+2} to denote the corresponding pseudo-Euclidean space where $\mathbb{M}_{t}^{n+1}(c)$ lives, so that $q=t$ if $c=1$ and $q=t+1$ if $c=-1$. Then the metric of \mathbb{R}_{q}^{n+2} is given by

$$
\langle,\rangle=-\sum_{i=1}^{t} \mathrm{~d} x_{i} \otimes \mathrm{~d} x_{i}+c \mathrm{~d} x_{t+1} \otimes \mathrm{~d} x_{t+1}+\sum_{i=t+2}^{n+2} \mathrm{~d} x_{i} \otimes \mathrm{~d} x_{i}
$$

and we can write

$$
\mathbb{M}_{t}^{n+1}(c)=\left\{x \in \mathbb{R}_{q}^{n+2} \mid-\sum_{i=1}^{t} x_{i}^{2}+c x_{t+1}^{2}+\sum_{i=t+2}^{n+2} x_{i}^{2}=c\right\}
$$

It is well known that $\mathbb{S}_{t}^{n+1} \subset \mathbb{R}_{t}^{n+2}$ and $\mathbb{H}_{t}^{n+1} \subset \mathbb{R}_{t+1}^{n+2}$ are pseudo-Riemannian totally umbilical hypersurfaces with constant sectional curvature +1 and -1 , respectively.

Let $\psi: M_{s}^{n} \longrightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ be an isometric immersion of a connected orientable hypersurface M_{s}^{n} of index s with Gauss map $N,\langle N, N\rangle=\varepsilon$ (where $\varepsilon=1$ if $s=t$ or $\varepsilon=-1$ if $s=t-1$). Let $\nabla^{0}, \bar{\nabla}$ and ∇ denote the Levi-Civita connections on $\mathbb{R}_{q}^{n+2}, \mathbb{M}_{t}^{n+1}(c)$ and M_{s}^{n}, respectively. Then the Gauss and Weingarten formulae are given by

$$
\begin{align*}
\nabla_{X}^{0} Y & =\nabla_{X} Y+\varepsilon\langle S X, Y\rangle N-c\langle X, Y\rangle \psi \tag{1}\\
S X & =-\bar{\nabla}_{X} N=-\nabla_{X}^{0} N
\end{align*}
$$

for all tangent vector fields $X, Y \in \mathfrak{X}(M)$, where $S: \mathfrak{X}\left(M_{s}^{n}\right) \longrightarrow \mathfrak{X}\left(M_{s}^{n}\right)$ stands for the shape operator (or Weingarten endomorphism) of M_{s}^{n}, with respect to the chosen orientation N.

It is well-known [20, pp. 261-262] that a linear self-adjoint endomorphism B on a vector space V can be expressed as a direct sum of subspaces V_{ℓ} that are mutually orthogonal (hence non-degenerate) and B-invariant, and each $B_{\ell}=\left.B\right|_{V_{\ell}}$ has a matrix of form either

$$
\text { I. }\left(\begin{array}{ccccc}
\kappa & & & & \mathbf{0} \\
1 & \kappa & & & \\
& \ddots & \ddots & & \\
& & 1 & \kappa & \\
\mathbf{0} & & & 1 & \kappa
\end{array}\right)
$$

relative to a basis $\left\{E_{1}, \ldots, E_{p}\right\}(p \geq 1)$ such that

$$
\left\langle E_{i}, E_{j}\right\rangle=\left\{\begin{array}{cl}
\epsilon= \pm 1 & \text { if } i+j=p+1 \tag{3}\\
0 & \text { otherwise }
\end{array}\right.
$$

or

$$
\text { II. }\left(\begin{array}{rrrrrr}
\alpha & \beta & & & & \\
-\beta & \alpha & & & & \\
1 & 0 & \alpha & \beta & & \\
0 & 1 & -\beta & \alpha & & \\
& & \ddots & & \ddots & \\
& & 1 & 0 & \alpha \beta \\
\mathbf{0} & & & 0 & 1 & -\beta \alpha
\end{array}\right) \quad(\beta \neq 0)
$$

relative to a basis $\left\{E_{1}, \ldots, E_{q}\right\}(q \geq 2$ and even $)$ such that

$$
\left\langle E_{i}, E_{j}\right\rangle=\left\{\begin{align*}
1 & \text { if } i, j \text { are odd and } i+j=q \tag{4}\\
-1 & \text { if } i, j \text { are even and } i+j=q+2 \\
0 & \text { otherwise }
\end{align*}\right.
$$

Here p, ϵ and q depend on V_{ℓ}. A matrix of type I is called a Jordan block corresponding to the (real) eigenvalue κ, whereas a matrix of type II is said to be a Jordan block corresponding to the (complex) eigenvalue $\alpha+i \beta$.

Jordan blocks of type II can be transformed in matrices of form I by a complexification process, see [22]. If V is a real vector space, then the set $V^{\mathbb{C}}=V \times V$ of ordered pairs, with component addition

$$
\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=\left(u_{1}+u_{2}, v_{1}+v_{2}\right)
$$

and scalar multiplication over \mathbb{C} defined by

$$
(\alpha+i \beta)(u, v)=(\alpha u-\beta v, \beta u+\alpha v),
$$

for $\alpha, \beta \in \mathbb{R}$, is a complex vector space, called the complexification of V. The set $V^{\mathbb{C}}$ can be described as $V^{\mathbb{C}}=\{u+i v \mid u, v \in V\}$ and then the addition and scalar multiplication operations resemble the usual for complex numbers:

$$
\begin{array}{r}
\left(u_{1}+i v_{1}\right)+\left(u_{2}+i v_{2}\right)=\left(u_{1}+u_{2}\right)+i\left(v_{1}+v_{2}\right) \\
(\alpha+i \beta)(u+i v)=(\alpha u-\beta v)+i(\beta u+\alpha v)
\end{array}
$$

An interesting map from V to $V^{\mathbb{C}}$ is the complexification map cpx : $V \rightarrow V^{\mathbb{C}}$ defined by $\operatorname{cpx}(v)=v+i 0$. It is easy to see that cpx is an injective linear transformation, and in this way we can say that $V^{\mathbb{C}}$ contains an embedded copy of V. If $\mathcal{B}=\left\{v_{j} \mid j \in I\right\}$ is a basis of V over \mathbb{R} then the complexification of $\mathcal{B}, \operatorname{cpx}(\mathcal{B})=\left\{v_{j}+i 0 \mid v_{j} \in \mathcal{B}\right\}$, is a basis for $V^{\mathbb{C}}$ over \mathbb{C}. Hence, $\operatorname{dim}_{\mathbb{C}}\left(V^{\mathbb{C}}\right)=\operatorname{dim}_{\mathbb{R}}(V)$.

A linear operator τ on a real vector space V can be extended to a linear operator $\tau^{\mathbb{C}}$ on the complexification $V^{\mathbb{C}}$ by defining

$$
\tau^{\mathbb{C}}(u+i v)=\tau(u)+i \tau(v) .
$$

The following properties of this complexification can be easily obtained. If τ, σ are linear operators on V, then
(1) $(a \tau)^{\mathbb{C}}=a \tau^{\mathbb{C}}, \quad a \in \mathbb{R}$.
(2) $(\tau+\sigma)^{\mathbb{C}}=\tau^{\mathbb{C}}+\sigma^{\mathbb{C}}$.
(3) $(\tau \sigma)^{\mathbb{C}}=\tau^{\mathbb{C}} \sigma^{\mathbb{C}}$.
(4) $[\tau(v)]^{\mathbb{C}}=\tau^{\mathbb{C}}\left(v^{\mathbb{C}}\right)$.

Let B be a linear self-adjoint endomorphism on V and consider V_{ℓ} a B-invariant subspace such that $B_{\ell}=\left.B\right|_{V_{\ell}}$ is a Jordan block of type II in a basis (4). Let $V_{\ell}^{\mathbb{C}}$ be the complexification of V_{ℓ} and define the following complex vectors

$$
F_{j}= \begin{cases}\frac{1}{\sqrt{2}}\left(E_{j}+i E_{j+1}\right) & \text { for } j \text { odd } \tag{5}\\ \frac{1}{\sqrt{2}}\left(E_{j-1}-i E_{j}\right) & \text { for } j \text { even. }\end{cases}
$$

It is not difficult to see that $\left\{F_{1}, \ldots F_{q}\right\}$ is a basis for $V_{\ell}^{\mathbb{C}}$ and

$$
\begin{aligned}
B_{\ell}^{\mathbb{C}} F_{j} & =\kappa F_{j}+F_{j+2}, \quad 1 \leq j \leq q-3, \quad j \text { odd }, \\
B_{\ell}^{\mathbb{C}} F_{q-1} & =\kappa F_{q-1}, \\
B_{\ell}^{\mathbb{C}} F_{j} & =\bar{\kappa} F_{j}+F_{j+2}, \quad 2 \leq j \leq q-2, \quad j \text { even }, \\
B_{\ell}^{\mathbb{C}} F_{q} & =\bar{\kappa} F_{q},
\end{aligned}
$$

where $\kappa=\alpha+i \beta$. Then we can reorder the basis in such a way that $B_{\ell}^{\mathbb{C}}$ has matrix of form

$$
\left(\begin{array}{ccc:cccc}
\kappa & & & & & & \mathbf{0} \tag{6}\\
1 & \kappa & & & & & \\
& \ddots & \ddots & & & & \\
\\
& & 1 & \kappa & & & \\
\\
\hdashline & & & \bar{\kappa} & \bar{\kappa} & & \\
& & & & 1 & \bar{\kappa} & \\
\\
\mathbf{0} & & & & & & \\
& & & & & \\
& & & \bar{\kappa}
\end{array}\right)
$$

Therefore every Jordan block of type II can be reduced to two Jordan blocks of type I by the complexification process.

The (possibly complex) eigenvalues of shape operator S are called the principal curvatures of M_{s}^{n}. When M_{s}^{n} is endowed with an indefinite metric the algebraic and geometric multiplicity of a principal curvature need not coincide. If they coincide, it is called simply the multiplicity of the principal curvature. For every point $x \in M_{s}^{n}$, consider the decomposition $T_{x} M=V_{1} \oplus \cdots \oplus V_{r}$ where subspaces $V_{\ell}, \ell=1, \ldots, r$, are mutually orthogonal and S-invariant, and each $S_{\ell}=\left.S\right|_{V_{\ell}}$ is a Jordan block. We can write $S_{x}=\operatorname{diag}\left(S_{1}, \ldots, S_{r}\right)$ or $S_{x}=S_{1} \oplus \cdots \oplus S_{r}$. These decompositions of $T_{x} M$ and S_{x} also work in a neighborhood of point x. Characteristic polynomial $Q_{S}(t)$ of S is given by

$$
Q_{S}(t)=\operatorname{det}(t I-S)=\prod_{\ell=1}^{r} \operatorname{det}\left(t I-S_{\ell}\right)=\prod_{\ell=1}^{r} Q_{S_{\ell}}(t)
$$

where characteristic polynomial $Q_{S_{\ell}}(t)$ of S_{ℓ} is given by

$$
Q_{S_{\ell}}(t)=\left\{\begin{array}{cl}
(t-\kappa)^{p} & \text { if } S_{\ell} \text { is of type I, } \\
\left((t-\alpha)^{2}+\beta^{2}\right)^{p}=(t-\kappa)^{p}(t-\bar{\kappa})^{p} & \text { if } S_{\ell} \text { is of type II }(q=2 p) .
\end{array}\right.
$$

If we write

$$
Q_{S}(t)=\prod_{\ell=1}^{n}\left(t-\kappa_{\ell}\right)=\sum_{k=0}^{n} a_{k} t^{n-k}, \quad \text { with } a_{0}=1
$$

where $\left\{\kappa_{1}, \ldots, \kappa_{n}\right\}$ are the n roots (real or complex) of $Q_{S}(t)$, then it is not difficult to see that

$$
\left\{\begin{array}{l}
a_{1}=-\sum_{i=1}^{n} \kappa_{i}, \\
a_{k}=(-1)^{k} \sum_{\substack{i_{1}<\cdots<i_{k}}} \kappa_{i_{1}} \cdots \kappa_{i_{k}}, \quad k=2, \ldots, n
\end{array}\right.
$$

These equations can be easily obtained by making use of the Leverrier-Faddeev method (see $[14,9]$), since coefficients of $Q_{S}(t)$ can be computed, in terms of the traces of S^{j}, as follows:

$$
\begin{equation*}
a_{k}=-\frac{1}{k} \sum_{j=1}^{k} a_{k-j} \operatorname{tr}\left(S^{j}\right), \quad k=1, \ldots, n, \quad \text { with } a_{0}=1 \tag{7}
\end{equation*}
$$

From now on, we will write

$$
\mu_{k}=\sum_{\substack{i_{1}<\cdots<i_{k}}}^{n} \kappa_{i_{1}} \cdots \kappa_{i_{k}} \quad \text { and } \quad \mu_{k}^{J}=\sum_{\substack{i_{1}<\cdots<i_{i} \\ i_{j} \notin J}}^{n} \kappa_{i_{1}} \cdots \kappa_{i_{k}}
$$

where $1 \leq k \leq n$ and $J \subset\{1, \ldots, n\}$.
The k-th mean curvature H_{k} or mean curvature of order k of M_{s}^{n} is defined by

$$
\begin{equation*}
\binom{n}{k} H_{k}=(-\varepsilon)^{k} a_{k}=\varepsilon^{k} \mu_{k} \tag{8}
\end{equation*}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. In particular, when $k=1$,

$$
n H_{1}=-\varepsilon a_{1}=\varepsilon \operatorname{tr}(S)
$$

and so H_{1} is nothing but the usual mean curvature H of M_{s}^{n}, which is one of the most important extrinsic curvatures of the hypersurface. The hypersurface M_{s}^{n} is said to be k-maximal if $H_{k+1} \equiv 0$.

3. The Newton Transformations

The k-th Newton transformation of M is the operator $P_{k}: \mathfrak{X}\left(M_{s}^{n}\right) \longrightarrow \mathfrak{X}\left(M_{s}^{n}\right)$ defined by

$$
\begin{equation*}
P_{k}=\sum_{j=0}^{k} a_{k-j} S^{j} \tag{9}
\end{equation*}
$$

Equivalently, P_{k} can be defined inductively by

$$
\begin{equation*}
P_{0}=I \quad \text { and } \quad P_{k}=a_{k} I+S \circ P_{k-1} \tag{10}
\end{equation*}
$$

Note that by Cayley-Hamilton theorem we have $P_{n}=0$. The Newton transformations were introduced by Reilly [21] in the Riemannian context; its definition was $\bar{P}_{k}=(-1)^{k} P_{k}$. We have the following properties of P_{k} (the proof is algebraic and straightforward).

Lemma 3. Let $\psi: M_{s}^{n} \rightarrow \mathbb{M}_{t}^{n+1}(c)$ be an isometric immersion of a hypersurface M_{s}^{n} in the pseudo-Riemannian space form $\mathbb{M}_{t}^{n+1}(c)$. The Newton transformations P_{k}, $k=1, \ldots, n-1$, satisfy:
(a) P_{k} is self-adjoint and commutes with S,
(b) $\operatorname{tr}\left(P_{k}\right)=(n-k) a_{k}=c_{k} H_{k}$,
(c) $\operatorname{tr}\left(S \circ P_{k}\right)=-(k+1) a_{k+1}=\varepsilon c_{k} H_{k+1}$,
(d) $\operatorname{tr}\left(S^{2} \circ P_{k}\right)=a_{1} a_{k+1}-(k+2) a_{k+2}=C_{k}\left[n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right]$, $1 \leq k \leq n-2$,
where constants c_{k} and C_{k} are given by

$$
(k+1) C_{k}=c_{k}=(-\varepsilon)^{k}(n-k)\binom{n}{k}=(-\varepsilon)^{k}(k+1)\binom{n}{k+1} .
$$

In a neighborhood of any point, let $W \subset T_{p} M$ be an m-dimensional, nondegenerate and S-invariant subspace such that $\left.S\right|_{W}$ is a Jordan block. Then its d-power is given by either

$$
\left(\left.S\right|_{W}\right)^{d}=\left(\begin{array}{ccccc}
\kappa^{d} & 0 & 0 & \cdots & 0 \\
\binom{d}{1} \kappa^{d-1} & \kappa^{d} & 0 & \cdots & 0 \\
\binom{d}{2} \kappa^{d-2} & \binom{d}{1} \kappa^{d-1} & \kappa^{d} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\binom{d}{m-1} \kappa^{d-m+1} & \binom{d}{m-2} \kappa^{d-m+2} & \binom{d}{m-3} \kappa^{d-m+3} & \cdots & \kappa^{d}
\end{array}\right)
$$

if $\left.S\right|_{W}$ is of type I, where $\binom{d}{r}=0$ when $d<r$, or

$$
\left(\left.S\right|_{W}\right)^{d}=\left(\begin{array}{ccccc}
{\left[\Lambda_{d}\right]} & \mathbf{0}_{2} & \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} \\
\binom{d}{1}\left[\Lambda_{d-1}\right] & {\left[\Lambda_{d}\right]} & \mathbf{0}_{2} & \cdots & \mathbf{0}_{2} \\
\binom{d}{2}\left[\Lambda_{d-2}\right] & \binom{d}{1}\left[\Lambda_{d-1}\right] & {\left[\Lambda_{d}\right]} & \cdots & \mathbf{0}_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\binom{d}{m-1}\left[\Lambda_{d-m+1}\right] & \binom{d}{m-2}\left[\Lambda_{d-m+2}\right] & \left.\begin{array}{c}
d \\
m-3
\end{array}\right)\left[\Lambda_{d-m+3}\right] & \cdots & {\left[\Lambda_{d}\right]}
\end{array}\right)
$$

if $\left.S\right|_{W}$ is of type II, where $\mathbf{0}_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), \Lambda_{0}$ is the identity map and
$\Lambda_{r}=\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]^{r}=\left[\begin{array}{cc}C_{r} & D_{r} \\ -D_{r} & C_{r}\end{array}\right]$ with $\left\{\begin{array}{l}C_{r}=\sum_{t=0}^{\left[\frac{r}{2}\right]}(-1)^{t}\binom{r}{2 t} \beta^{2 t} \alpha^{r-2 t} \\ D_{r}=\sum_{t=0}^{\left[\frac{r-1}{2}\right]}(-1)^{t}\binom{r}{2 t+1} \beta^{2 t+1} \alpha^{r-(2 t+1)}\end{array}\right.$

Here $[z]$ stands for the integer part of z.
The following two propositions describe operator P_{k} in W, according to $\left.S\right|_{W}$ is of type I or type II, respectively.

Proposition 4. ($\left.S\right|_{W}$ is of type I).
Let $\left\{E_{1}, E_{2} \ldots, E_{m}\right\}$ be a local frame of tangent vector fields on W satisfying (3) such that $\left.S\right|_{W}$ is a Jordan block of type $I: S E_{i}=\kappa E_{i}+E_{i+1}$, for $1 \leq i \leq m-1$, and $S E_{m}=\kappa E_{m}$. Then the k-th Newton transformation P_{k} in W is given by

$$
\left.P_{k}\right|_{W}=(-1)^{k}\left(\begin{array}{cccc}
\mu_{k}^{1} & 0 & \cdots & 0 \\
-\mu_{k-1}^{1,2} & \mu_{k}^{2} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
(-1)^{m-1} \mu_{k-(m-1)}^{1, \ldots, m} & \cdots & -\mu_{k-1}^{m-1, m} & \mu_{k}^{m}
\end{array}\right),
$$

where $\kappa_{i}=\kappa$ for all i.
Proposition 5. ($\left.S\right|_{W}$ is of type II).
Let $\left\{E_{1}, E_{2} \ldots, E_{m}\right\}$ be a local frame of tangent vector fields on W satisfying (4) such that $\left.S\right|_{W}$ is a Jordan block of type II (hence necessarily m is even):

$$
\begin{aligned}
S E_{i} & =\alpha E_{i}-\beta E_{i+1}+E_{i+2}, \quad 1 \leq i(\text { odd }) \leq m-3, \\
S E_{m-1} & =\alpha E_{m-1}-\beta E_{m}, \\
S E_{j} & =\beta E_{j-1}+\alpha E_{j}+E_{j+2}, \quad 2 \leq j(\text { even }) \leq m-2, \\
S E_{m} & =\beta E_{m-1}+\alpha E_{m} .
\end{aligned}
$$

The k-th Newton transformation P_{k} in W is given by

$$
\left.P_{k}\right|_{W}=\left(\begin{array}{rrrrrrr}
U_{0} & Z_{0} & & & & & \\
-Z_{0} & U_{0} & & & & & \\
U_{1} & Z_{1} & U_{0} & Z_{0} & & & \\
-Z_{1} & U_{1} & -Z_{0} & U_{0} & & & \\
\vdots & \vdots & & & \ddots & \ddots & \\
& & \cdots & U_{1} & Z_{1} & U_{0} & Z_{0} \\
& & \cdots & -Z_{1} & U_{1} & -Z_{0} & U_{0}
\end{array}\right),
$$

where $U_{r}=\sum_{j=0}^{k} a_{k-j}\binom{j}{r} C_{j-r}$ and $Z_{r}=\sum_{j=0}^{k} a_{k-j}\binom{j}{r} D_{j-r}$.
Expression for $\left.P_{k}\right|_{W}$ obtained in Proposition 5 can be reformulated as follows when the tangent frame is complexificated according to (5). The proof is straightforward.

Proposition 6. Let $\mathcal{B}=\left\{E_{1}, E_{2} \ldots, E_{m}\right\}$ be a local frame of tangent vector fields on W satisfying (4) such that $\left.S\right|_{W}$ is a Jordan block of type II (hence $m=2 d$ even). Let $\mathcal{B}^{\mathbb{C}}=\left\{F_{1}, F_{2} \ldots, F_{m}\right\}$ be the complexification of \mathcal{B} such that $\left(\left.S\right|_{W}\right)^{\mathbb{C}}$ has in this frame a matrix of form (6), with $\kappa=\alpha+i \beta$. Then the k-th Newton transformation P_{k} in W is given by $\left.P_{k}\right|_{W}=(-1)^{k} \operatorname{diag}(Z(\kappa), \overline{Z(\kappa)})$ where

$$
Z(\kappa)=\left(\begin{array}{cccc}
\mu_{k}^{1} & 0 & \cdots & 0 \\
-\mu_{k-1}^{1,2} & \mu_{k}^{2} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
(-1)^{d-1} \mu_{k-(d-1)}^{1, \ldots, d} & \cdots & -\mu_{k-1}^{d-1, d} & \mu_{k}^{d}
\end{array}\right)
$$

Here $\kappa_{1}=\cdots=\kappa_{d}=\kappa$ and $\kappa_{d+1}=\cdots=\kappa_{2 d}=\bar{\kappa}$.
Now, we recall the notion of divergence of a vector field X or an operator T. For any differentiable function $f \in \mathcal{C}^{\infty}\left(M_{s}^{n}\right)$, the gradient of f is the vector field ∇f metrically equivalent to $d f$, which is characterized by $\langle\nabla f, X\rangle=X(f)$, for every differentiable vector field $X \in \mathfrak{X}\left(M_{s}^{n}\right)$. The divergence of a vector field X is the differentiable function defined as the trace of operator ∇X, where $\nabla X(Y):=\nabla_{Y} X$, that is,

$$
\operatorname{div}(X)=\operatorname{tr}(\nabla X)=\sum_{i, j} g^{i j}\left\langle\nabla_{E_{i}} X, E_{j}\right\rangle
$$

$\left\{E_{i}\right\}$ being any local frame of tangent vectors fields, where $\left(g^{i j}\right)$ represents the inverse of the metric $\left(g_{i j}\right)=\left(\left\langle E_{i}, E_{j}\right\rangle\right)$. Analogously, the divergence of an operator T : $\mathfrak{X}\left(M_{s}^{n}\right) \longrightarrow \mathfrak{X}\left(M_{s}^{n}\right)$ is the vector field $\operatorname{div}(T) \in \mathfrak{X}\left(M_{s}^{n}\right)$ defined as the trace of ∇T, that is,

$$
\operatorname{div}(T)=\operatorname{tr}(\nabla T)=\sum_{i, j} g^{i j}\left(\nabla_{E_{i}} T\right) E_{j}
$$

where $\nabla T\left(E_{i}, E_{j}\right)=\left(\nabla_{E_{i}} T\right) E_{j}$.
In the following lemma we present two interesting properties of the Newton transformations.

Lemma 7. The Newton transformation P_{k}, for $k=0, \ldots, n-1$, satisfies:
(a) $\operatorname{tr}\left(\nabla_{X} S \circ P_{k}\right)=-X\left(a_{k+1}\right)$.
(b) $\operatorname{div}\left(P_{k}\right)=0$.

Proof. (a) From definition of P_{k} (9) we deduce

$$
\nabla_{X} S \circ P_{k}=\sum_{j=0}^{k} a_{k-j}\left(\nabla_{X} S \circ S^{j}\right)=\sum_{i=1}^{k+1} \frac{a_{k+1-i}}{i} \nabla_{X} S^{i}
$$

By taking traces and using that ∇_{X} commutes with trace operator we have

$$
\begin{equation*}
\operatorname{tr}\left(\nabla_{X} S \circ P_{k}\right)=\sum_{i=1}^{k+1} \frac{a_{k+1-i}}{i} \operatorname{tr}\left(\nabla_{X} S^{i}\right)=\sum_{i=1}^{k+1} \frac{a_{k+1-i}}{i} X\left(\operatorname{tr} S^{i}\right) . \tag{11}
\end{equation*}
$$

From (7) it is not difficult to see that

$$
\frac{1}{i} X\left(\operatorname{tr} S^{i}\right)=\sum_{t=1}^{i} \lambda_{i+1-t} X\left(a_{t}\right),
$$

where

$$
\lambda_{1}=-1 \quad \text { and } \quad \lambda_{b+1}=\sum_{\substack{i_{1}+\ldots+i_{r}=b \\ i_{j} \geq 1}}(-1)^{r+1} a_{i_{1}} \cdots a_{i_{r}} \quad \text { for } b \geq 1 .
$$

That equation, jointly with (11), yields

$$
\begin{equation*}
\operatorname{tr}\left(\nabla_{X} S \circ P_{k}\right)=\sum_{i=1}^{k+1} \sum_{t=1}^{i} \lambda_{i+1-t} a_{k+1-i} X\left(a_{t}\right)=\sum_{t=1}^{k+1} \beta_{t} X\left(a_{t}\right), \tag{12}
\end{equation*}
$$

where

$$
\beta_{t}=\sum_{i=t}^{k+1} \lambda_{i+1-t} a_{k+1-i} .
$$

It is not difficult to see that

$$
\sum_{t=1}^{b} \lambda_{t} a_{b+1-t}=-\sum_{\substack{i_{1}+\ldots+i_{r}=b \\ i_{j} \geq 1}}(-1)^{r+1} a_{i_{1}} \cdots a_{i_{r}}=-\lambda_{b+1},
$$

and then $\beta_{t}=0$ for $t=1, \ldots, k$. Using this equation in (12) we obtain

$$
\operatorname{tr}\left(\nabla_{X} S \circ P_{k}\right)=\sum_{t=1}^{k+1} \beta_{t} X\left(a_{t}\right)=\lambda_{1} a_{0} X\left(a_{k+1}\right)=-X\left(a_{k+1}\right),
$$

and the proof finishes.
(b) From the inductive definition (10) of P_{k} we have

$$
\left(\nabla_{X} P_{k}\right) Y=X\left(a_{k}\right) Y+\left(\nabla_{X} S \circ P_{k-1}\right) Y+\left(S \circ \nabla_{X} P_{k-1}\right) Y,
$$

and then

$$
\begin{aligned}
\operatorname{div}\left(P_{k}\right) & =\sum_{i, j=1}^{n} g^{i j}\left[E_{i}\left(a_{k}\right) E_{j}+\left(\nabla_{E_{i}} S \circ P_{k-1}\right) E_{j}+\left(S \circ \nabla_{E_{i}} P_{k-1}\right) E_{j}\right] \\
& =\nabla a_{k}+\sum_{i, j=1}^{n} g^{i j}\left(\nabla_{E_{i}} S \circ P_{k-1}\right) E_{j}+S\left(\sum_{i, j=1}^{n} g^{i j}\left(\nabla_{E_{i}} P_{k-1}\right) E_{j}\right) \\
& =\nabla a_{k}+\sum_{i, j=1}^{n} g^{i j}\left(\nabla_{E_{i}} S \circ P_{k-1}\right) E_{j}+S\left(\operatorname{div}\left(P_{k-1}\right)\right),
\end{aligned}
$$

where $\left\{E_{1}, \ldots, E_{n}\right\}$ is a frame of the tangent space. Then for every tangent vector field $X \in \mathfrak{X}\left(M_{s}^{n}\right)$ we have

$$
\left\langle\operatorname{div}\left(P_{k}\right), X\right\rangle=\left\langle\nabla a_{k}, X\right\rangle+\operatorname{tr}\left(\nabla_{X} S \circ P_{k-1}\right)+\left\langle S\left(\operatorname{div}\left(P_{k-1}\right)\right), X\right\rangle,
$$

which implies from (a) that

$$
\left\langle\operatorname{div}\left(P_{k}\right), X\right\rangle=\left\langle S\left(\operatorname{div}\left(P_{k-1}\right)\right), X\right\rangle .
$$

Therefore we deduce

$$
\operatorname{div}\left(P_{k}\right)=S\left(\operatorname{div}\left(P_{k-1}\right)\right)=S^{2}\left(\operatorname{div}\left(P_{k-2}\right)\right)=\cdots=S^{k}\left(\operatorname{div}\left(P_{0}\right)\right)=0 .
$$

Bearing in mind this lemma we obtain

$$
\operatorname{div}\left(P_{k}(\nabla f)\right)=\operatorname{tr}\left(P_{k} \circ \nabla^{2} f\right)
$$

where $\nabla^{2} f: \mathfrak{X}\left(M_{s}^{n}\right) \longrightarrow \mathfrak{X}\left(M_{s}^{n}\right)$ denotes the self-adjoint linear operator metrically equivalent to the Hessian of f, given by

$$
\left\langle\nabla^{2} f(X), Y\right\rangle=\left\langle\nabla_{X}(\nabla f), Y\right\rangle, \quad X, Y \in \mathfrak{X}\left(M_{s}^{n}\right) .
$$

Associated to each Newton transformation P_{k}, we can define the second-order linear differential operator $L_{k}: \mathcal{C}^{\infty}\left(M_{s}^{n}\right) \longrightarrow \mathcal{C}^{\infty}\left(M_{s}^{n}\right)$ by

$$
\begin{equation*}
L_{k}(f)=\operatorname{tr}\left(P_{k} \circ \nabla^{2} f\right) \tag{13}
\end{equation*}
$$

An interesting property of L_{k} is the following. For every couple of differentiable functions $f, g \in C^{\infty}\left(M_{s}^{n}\right)$ we have

$$
\begin{align*}
L_{k}(f g) & =\operatorname{div}\left(P_{k} \circ \nabla(f g)\right)=\operatorname{div}\left(P_{k} \circ(g \nabla f+f \nabla g)\right) \\
& =g L_{k}(f)+f L_{k}(g)+2\left\langle P_{k}(\nabla f), \nabla g\right\rangle . \tag{14}
\end{align*}
$$

4. Examples

This section is devoted to show some examples of hypersurfaces in pseudo-Riemannian space forms $\mathbb{M}_{t}^{n+1}(c)$ satisfying the condition $L_{k} \psi=A \psi+b$, where $A \in \mathbb{R}^{(n+2) \times(n+2)}$ is a constant matrix and $b \in \mathbb{R}_{q}^{n+2}$ is a constant vector. Before that, we are going to compute L_{k} acting on the coordinate components of the immersion ψ, that is, a function given by $\langle\psi, a\rangle$, where $a \in \mathbb{R}_{q}^{n+2}$ is an arbitrary fixed vector.

A direct computation shows that

$$
\begin{equation*}
\nabla\langle\psi, a\rangle=a^{\top}=a-\varepsilon\langle N, a\rangle N-c\langle\psi, a\rangle \psi \tag{15}
\end{equation*}
$$

where $a^{\top} \in \mathfrak{X}(M)$ denotes the tangential component of a. Taking covariant derivative in (15), and using that $\nabla_{X}^{0} a=0$, jointly with the Gauss and Weingarten formulae, we obtain

$$
\begin{equation*}
\nabla_{X} \nabla\langle\psi, a\rangle=\nabla_{X} a^{\top}=\varepsilon\langle N, a\rangle S X-c\langle\psi, a\rangle X, \tag{16}
\end{equation*}
$$

for every vector field $X \in \mathfrak{X}(M)$. Finally, by using (13) and Lemma 3, we find that

$$
\begin{align*}
L_{k}\langle\psi, a\rangle & =\varepsilon\langle N, a\rangle \operatorname{tr}\left(P_{k} \circ S\right)-c\langle\psi, a\rangle \operatorname{tr}\left(P_{k} \circ I\right) \tag{17}\\
& =c_{k} H_{k+1}\langle N, a\rangle-c c_{k} H_{k}\langle\psi, a\rangle .
\end{align*}
$$

This expression allows us to extend operator L_{k} to vector functions $F=\left(f_{1}, \ldots, f_{n+2}\right)$, $f_{i} \in \mathcal{C}^{\infty}\left(M_{s}^{n}\right)$, as follows

$$
L_{k} F:=\left(L_{k} f_{1}, \ldots, L_{k} f_{n+2}\right),
$$

and then $L_{k} \psi$ can be computed as

$$
\begin{align*}
L_{k} \psi= & \left(L_{k}\left(\varepsilon_{1}\left\langle\psi, e_{1}\right\rangle\right), \ldots, L_{k}\left(\varepsilon_{n+2}\left\langle\psi, e_{n+2}\right\rangle\right)\right) \\
= & c_{k} H_{k+1}\left(\varepsilon_{1}\left\langle N, e_{1}\right\rangle, \ldots, \varepsilon_{n+2}\left\langle N, e_{n+2}\right\rangle\right) \tag{18}\\
& -c c_{k} H_{k}\left(\varepsilon_{1}\left\langle\psi, e_{1}\right\rangle, \ldots, \varepsilon_{n+2}\left\langle\psi, e_{n+2}\right\rangle\right) \\
= & c_{k} H_{k+1} N-c c_{k} H_{k} \psi,
\end{align*}
$$

where $\left\{e_{1}, \ldots, e_{n+2}\right\}$ stands for the standard orthonormal basis in \mathbb{R}_{q}^{n+2} and $\varepsilon_{i}=$ $\left\langle e_{i}, e_{i}\right\rangle$.

Example 1. An easy consequence of (18) is that every hypersurface with $H_{k+1} \equiv 0$ and constant k-th mean curvature H_{k} trivially satisfies $L_{k} \psi=A \psi+b$, with $A=$ $-c c_{k} H_{k} I_{n+2} \in \mathbb{R}^{(n+2) \times(n+2)}$ and $b=0$.

Example 2. (Totally umbilical hypersurfaces in $\mathbb{M}_{t}^{n+1}(c)$) Is is well known that totally umbilical hypersurfaces in $\mathbb{M}_{t}^{n+1}(c)$ are obtained as the intersection of $\mathbb{M}_{t}^{n+1}(c)$ with a hyperplane of \mathbb{R}_{q}^{n+2}, and the causal character of the hyperplane determines the type of the hypersurface. More precisely, let $a \in \mathbb{R}_{q}^{n+2}$ be a non-zero constant vector with $\langle a, a\rangle \in\{1,0,-1\}$, and take the differentiable function $f_{a}: \mathbb{M}_{t}^{n+1}(c) \rightarrow$ \mathbb{R} defined by $f_{a}(x)=\langle x, a\rangle$. It is not difficult to see that for every $\tau \in \mathbb{R}$ with $\langle a, a\rangle-c \tau^{2} \neq 0$, the set

$$
M_{\tau}=f_{a}^{-1}(\tau)=\left\{x \in \mathbb{M}_{t}^{n+1}(c) \mid\langle x, a\rangle=\tau\right\}
$$

is a totally umbilical hypersurface in $\mathbb{M}_{t}^{n+1}(c)$, with Gauss map

$$
N(x)=\frac{1}{\sqrt{\left|\langle a, a\rangle-c \tau^{2}\right|}}(a-c \tau x),
$$

and shape operator

$$
\begin{equation*}
S X=-\nabla_{X}^{0} N=\frac{c \tau}{\sqrt{\left|\langle a, a\rangle-c \tau^{2}\right|}} X . \tag{19}
\end{equation*}
$$

Now, by using (8) and (19), we obtain that the k-th mean curvature is given by

$$
\begin{equation*}
H_{k}=\frac{(\varepsilon c \tau)^{k}}{\left|\langle a, a\rangle-c \tau^{2}\right|^{k / 2}}, \quad k=1, \ldots, n, \tag{20}
\end{equation*}
$$

where $\varepsilon=\langle N, N\rangle= \pm 1$. Therefore, by equation (18), we see that M_{τ} satisfies the condition $L_{k} \psi=A \psi+b$, for every $k=0, \ldots, n-1$, with

$$
A=-\frac{c_{k}(\varepsilon c \tau)^{k}\left(\varepsilon \tau^{2}+c\left|\langle a, a\rangle-c \tau^{2}\right|\right)}{\left|\langle a, a\rangle-c \tau^{2}\right|^{(k+2) / 2}} I_{n+2} \quad \text { and } \quad b=\frac{c_{k}(\varepsilon c \tau)^{k+1}}{\left|\langle a, a\rangle-c \tau^{2}\right|^{(k+2) / 2}} a .
$$

In particular, $b=0$ only when $\tau=0$, and then M_{0} is a totally geodesic hypersurface in $\mathbb{M}_{t}^{n+1}(c)$.

It is easy to see, from (19), that M_{τ} has constant curvature

$$
K=c+\frac{\tau^{2}}{\langle a, a\rangle-c \tau^{2}},
$$

and it is a hypersurface of index t or $t-1$ according to $\langle a, a\rangle-c \tau^{2}$ is negative or positive, respectively.

Next two tables collect the different possibilities.
$\underline{\text { Table 1. Totally umbilical hypersurfaces in } \mathbb{S}_{t}^{n+1} \subset \mathbb{R}_{t}^{n+2}}$

$\langle a, a\rangle$	τ	K	ε	Hypersurface
-1	$\forall \tau$	$\frac{1}{\tau^{2}+1}$	-1	$\mathbb{S}_{t-1}^{n}\left(\sqrt{\tau^{2}+1}\right)$
0	$\tau \neq 0$	0	-1	\mathbb{R}_{t-1}^{n}
1	$\|\tau\|<1$	$\frac{1}{1-\tau^{2}}$	1	$\mathbb{S}_{t}^{n}\left(\sqrt{1-\tau^{2}}\right)$
1	$\|\tau\|>1$	$\frac{-1}{\tau^{2}-1}$	-1	$\mathbb{H}_{t-1}^{n}\left(-\sqrt{\tau^{2}-1}\right)$

Table 2. Totally umbilical hypersurfaces in $\mathbb{H}_{t}^{n+1} \subset \mathbb{R}_{t+1}^{n+2}$

$\langle a, a\rangle$	τ	K	ε	Hypersurface
-1	$\|\tau\|<1$	$\frac{-1}{1-\tau^{2}}$	-1	$\mathbb{H}_{t-1}^{n}\left(-\sqrt{1-\tau^{2}}\right)$
-1	$\|\tau\|>1$	$\frac{1}{\tau^{2}-1}$	1	$\mathbb{S}_{t}^{n}\left(\sqrt{\tau^{2}-1}\right)$
0	$\tau \neq 0$	0	1	\mathbb{R}_{t}^{n}
1	$\forall \tau$	$\frac{-1}{\tau^{2}+1}$	1	$\mathbb{H}_{t}^{n}\left(-\sqrt{\tau^{2}+1}\right)$

Example 3. (Standard pseudo-Riemannian products in $\mathbb{M}_{t}^{n+1}(c)$). In order to simplify the notation, we will consider in this example that the metric tensor in \mathbb{R}_{q}^{n+2} is given by

$$
\langle,\rangle=\sum_{i=1}^{m+1} \varepsilon_{i} \mathrm{~d} x_{i} \otimes \mathrm{~d} x_{i}+c \mathrm{~d} x_{m+2} \otimes \mathrm{~d} x_{m+2}+\sum_{j=m+3}^{n+2} \varepsilon_{j} \mathrm{~d} x_{i} \otimes \mathrm{~d} x_{j}
$$

where $t=\operatorname{card}\left\{i \mid \varepsilon_{i}=-1\right\}$. Let $f: \mathbb{M}_{t}^{n+1}(c) \longrightarrow \mathbb{R}$ be the differentiable function defined by

$$
f(x)=\delta_{1}\left(\sum_{i=1}^{m} \varepsilon_{i} x_{i}^{2}\right)+\delta_{1} \delta_{2} x_{m+1}^{2}+c x_{m+2}^{2}+\delta_{2}\left(\sum_{j=m+3}^{n+2} \varepsilon_{j} x_{j}^{2}\right)
$$

where $m \in\{1, \ldots, n-1\}$ and $\delta_{1}, \delta_{2} \in\{0,1\}$ with $\delta_{1}+\delta_{2}=1$. In short, $f(x)=$ $\langle D x, x\rangle$, where D is the diagonal matrix $D=\operatorname{diag}\left[\delta_{1}, \ldots, \delta_{1}, \delta_{1} \delta_{2}, 1, \delta_{2} \ldots, \delta_{2}\right]$. Then, for every $r>0$ and $\rho= \pm 1$ with $\rho-c r^{2} \neq 0$, the level set $M_{s}^{n}=f^{-1}\left(\rho r^{2}\right)$ is a hypersurface in $\mathbb{M}_{t}^{n+1}(c)$, for appropriate values of ($\left.\delta_{1}, \delta_{2}, \rho, c\right)$.

The Gauss map is given by

$$
\begin{equation*}
N(x)=\frac{\bar{\nabla} f(x)}{|\bar{\nabla} f(x)|}=\frac{1}{r \sqrt{\left|\rho-c r^{2}\right|}}\left(D x-\rho c r^{2} x\right) \tag{21}
\end{equation*}
$$

and the shape operator is

$$
S=\frac{-1}{r \sqrt{\left|\rho-c r^{2}\right|}}\left[\begin{array}{cc}
\left(\delta_{1}-\rho c r^{2}\right) I_{m} & \\
& \left(\delta_{2}-\rho c r^{2}\right) I_{n-m}
\end{array}\right]
$$

In other words, M_{s}^{n} has two constant principal curvatures

$$
\kappa_{1}=\frac{\rho c r^{2}-\delta_{1}}{r \sqrt{\left|\rho-c r^{2}\right|}} \quad \text { and } \quad \kappa_{2}=\frac{\rho c r^{2}-\delta_{2}}{r \sqrt{\left|\rho-c r^{2}\right|}}
$$

with multiplicities m and $n-m$, respectively. In particular, every mean curvature H_{k} is constant. Therefore, by using (18) and (21), we get that

$$
\begin{aligned}
L_{k} \psi & =c_{k} H_{k+1} N \circ \psi-c c_{k} H_{k} \psi \\
& =\left(\lambda^{1} \psi_{1}, \ldots, \lambda^{1} \psi_{m}, \theta^{0} \psi_{m+1}, \theta^{1} \psi_{m+2}, \lambda^{2} \psi_{m+3} \ldots, \lambda^{2} \psi_{n+2}\right)
\end{aligned}
$$

where

$$
\lambda^{i}=\frac{c c_{k} H_{k+1}\left(\delta_{i}-\rho c r^{2}\right)}{r \sqrt{\left|\rho-c r^{2}\right|}}-c c_{k} H_{k}, \quad \text { and } \quad \theta^{i}=\frac{c c_{k} H_{k+1}\left(i-\rho c r^{2}\right)}{r \sqrt{\left|\rho-c r^{2}\right|}}-c c_{k} H_{k}
$$

That is, M_{s}^{n} satisfies the condition $L_{k} \psi=A \psi+b$, with $b=0$ and

$$
A=\operatorname{diag}\left[\lambda^{1}, \ldots, \lambda^{1}, \theta^{0}, \theta^{1}, \lambda^{2}, \ldots, \lambda^{2}\right] .
$$

Table 3 shows the different hypersurfaces in $\mathbb{M}_{t}^{n+1}(c)$. Parameters u and v are defined by

$$
u=\left\{i \mid i \leq m, \varepsilon_{i}=-1\right\} \quad \text { and } \quad v=\left\{i \mid i \geq m+3, \varepsilon_{i}=-1\right\},
$$

where $u+v=t$.
Example 4. (Quadratic hypersurfaces with non-diagonalizable shape operator) The hypersurfaces shown in Examples 2 and 3 have diagonalizable shape operators. However, since we are working in a pseudo-Riemannian space form, it seems natural thinking of hypersurfaces with non-diagonalizable shape operator satisfying $L_{k} \psi=A \psi+b$. Let R be a self-adjoint endomorphism of \mathbb{R}_{q}^{n+2}, that is, $\langle R x, y\rangle=\langle x, R y\rangle$, for all $x, y \in$ \mathbb{R}_{q}^{n+2}. Let $f: \mathbb{M}_{t}^{n+1}(c) \rightarrow \mathbb{R}$ be the quadratic function defined by $f(x)=\langle R x, x\rangle$, and assume that the minimal polynomial of R is given by $\mu_{R}(z)=z^{2}+a_{1} z+a_{0}$, $a_{1}, a_{0} \in \mathbb{R}$, with $a_{1}^{2}-4 a_{0} \leq \underline{0}$. Then, by computing the gradient in $\mathbb{M}_{t}^{n+1}(c)$ at each point $x \in \mathbb{M}_{t}^{n+1}(c)$, we have $\bar{\nabla} f(x)=2 R x-2 c f(x) x$.

Let us consider the level set $M_{d}=f^{-1}(d)$, for a real constant d. Then, at a point x in M_{d}, we have

$$
\langle\bar{\nabla} f(x), \bar{\nabla} f(x)\rangle=4\left\langle R^{2} x, x\right\rangle-4 c f(x)^{2}=-4 c \mu_{R}(c d),
$$

Table 3. Standard pseudo-Riemannian products in $\mathbb{M}_{t}^{n+1}(c)$

δ_{1}	δ_{2}	ρ	Hypersurfaces in \mathbb{S}_{t}^{n+1}	Hypersurfaces in \mathbb{H}_{t}^{n+1}
1	0	1	$\mathbb{S}_{u}^{m}(r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1-r^{2}}\right)$	$\mathbb{S}_{u+1}^{m}(r) \times \mathbb{H}_{v-1}^{n-m}\left(-\sqrt{1+r^{2}}\right)$
0	1	1	$\mathbb{S}_{u}^{m}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}_{v}^{n-m}(r)$	
$\mathbb{H}_{u-1}^{m}\left(-\sqrt{r^{2}-1}\right) \times \mathbb{S}_{v}^{n-m}(r)$	$\mathbb{H}_{u-1}^{m}\left(-\sqrt{1+r^{2}}\right) \times \mathbb{S}_{v+1}^{n-m}(r)$			
1	0	-1	$\mathbb{H}_{u-1}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1+r^{2}}\right)$	$\mathbb{H}_{u}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{r^{2}-1}\right)$ $\mathbb{H}_{u}^{m}(-r) \times \mathbb{H}_{v-1}^{n-m}\left(-\sqrt{1-r^{2}}\right)$ 0
	1	-1	$\mathbb{S}_{u}^{m}\left(\sqrt{1+r^{2}}\right) \times \mathbb{H}_{v-1}^{n-m}(-r)$	$\mathbb{S}_{u}^{m}\left(\sqrt{r^{2}-1}\right) \times \mathbb{H}_{v}^{n-m}(-r)$ $\mathbb{H}_{u-1}^{m}\left(-\sqrt{1-r^{2}}\right) \times \mathbb{H}_{v}^{n-m}(-r)$

where we have used that $R^{2} x=-a_{1} R x-a_{0} x$. Then, for every $d \in \mathbb{R}$ with $\mu_{R}(c d) \neq 0$, $M_{d}=f^{-1}(d)$ is a pseudo-Riemannian hypersurface in $\mathbb{M}_{t}^{n+1}(c)$. The Gauss map at a point x is given by

$$
\begin{equation*}
N(x)=\frac{1}{\left|\mu_{R}(c d)\right|^{1 / 2}}(R x-c d x) \tag{22}
\end{equation*}
$$

and thus the shape operator is given by

$$
\begin{equation*}
S X=-\frac{1}{\left|\mu_{R}(c d)\right|^{1 / 2}}(R X-c d X) \tag{23}
\end{equation*}
$$

for every tangent vector field X. From here, and bearing in mind that $R^{2}+a_{1} R+a_{0} I=$ 0 , we obtain that

$$
S^{2} X=-\frac{1}{\left|\mu_{R}(c d)\right|}\left(\left(a_{1}+2 c d\right) R X+\left(a_{0}-d^{2}\right) X\right)
$$

for every tangent vector field X. At this point, it is very easy to deduce that

$$
\mu_{S}(z)=z^{2}-\frac{a_{1}+2 c d}{\left|\mu_{R}(c d)\right|^{1 / 2}} z+\frac{a_{0}+a_{1} c d+d^{2}}{\left|\mu_{R}(c d)\right|}
$$

is the minimal polynomial of S, and that every k-th mean curvature is constant. On the other hand, since the discriminant of $\mu_{S}(t)$ is not positive, the shape operator is non-diagonalizable.

Finally, from (18), we obtain that $L_{k} \psi=A \psi$, where A is the matrix given by

$$
A=\frac{c_{k} H_{k+1}}{\left|\mu_{R}(c d)\right|^{1 / 2}} R-\left(\frac{c_{k} H_{k+1} c d}{\left|\mu_{R}(c d)\right|^{1 / 2}}+c c_{k} H_{k}\right) I .
$$

5. A Key Lemma

In this section we need to compute $L_{k} N$, and to do that we are going to compute the operator L_{k} acting on the coordinate functions of the Gauss map N, that is, the functions $\langle N, a\rangle$ where $a \in \mathbb{R}_{q}^{n+2}$ is an arbitrary fixed vector. A straightforward computation yields

$$
\nabla\langle N, a\rangle=-S a^{\top}
$$

From Weingarten formula and (16), we find that

$$
\begin{aligned}
\nabla_{X} \nabla\langle N, a\rangle & =-\nabla_{X}\left(S a^{\top}\right)=-\left(\nabla_{X} S\right) a^{\top}-S\left(\nabla_{X} a^{\top}\right) \\
& =-\left(\nabla_{a^{\top}} S\right) X-\varepsilon\langle N, a\rangle S^{2} X+c\langle\psi, a\rangle S X,
\end{aligned}
$$

for every tangent vector field X. This equation, jointly with Lemma 3 and (13), yields

$$
\begin{align*}
& L_{k}\langle N, a\rangle \\
= & -\operatorname{tr}\left(P_{k} \circ \nabla_{a^{\top}} S\right)-\varepsilon\langle N, a\rangle \operatorname{tr}\left(P_{k} \circ S^{2}\right)+c\langle\psi, a\rangle \operatorname{tr}\left(P_{k} \circ S\right) \\
= & -\varepsilon C_{k}\left\langle\nabla H_{k+1}, a^{\top}\right\rangle-\varepsilon C_{k}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right)\langle N, a\rangle \tag{24}\\
& +\varepsilon c c_{k} H_{k+1}\langle\psi, a\rangle .
\end{align*}
$$

In other words,
(25) $L_{k} N=-\varepsilon C_{k} \nabla H_{k+1}-\varepsilon C_{k}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right) N+\varepsilon c c_{k} H_{k+1} \psi$.

On the other hand, equations (14) and (17) lead to

$$
\begin{aligned}
L_{k}\left(L_{k}\langle\psi, a\rangle\right)= & c_{k} H_{k+1} L_{k}\langle N, a\rangle+L_{k}\left(c_{k} H_{k+1}\right)\langle N, a\rangle+2 c_{k}\left\langle P_{k}\left(\nabla H_{k+1}\right), \nabla\langle N, a\rangle\right\rangle \\
& -c c_{k} H_{k} L_{k}\langle\psi, a\rangle-L_{k}\left(c c_{k} H_{k}\right)\langle\psi, a\rangle-2 c c_{k}\left\langle P_{k}\left(\nabla H_{k}\right), \nabla\langle\psi, a\rangle\right\rangle,
\end{aligned}
$$

and by using again (17) and (24) we get that

$$
\begin{aligned}
L_{k}\left(L_{k}\langle\psi, a\rangle\right)= & -\varepsilon c_{k} C_{k} H_{k+1}\left\langle\nabla H_{k+1}, a\right\rangle-2 c_{k}\left\langle\left(S \circ P_{k}\right)\left(\nabla H_{k+1}\right), a\right\rangle \\
& -2 c c_{k}\left\langle P_{k}\left(\nabla H_{k}\right), a\right\rangle-\left[\varepsilon C_{k} H_{k+1}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right)\right. \\
& \left.+c c_{k} H_{k} H_{k+1}-L_{k}\left(H_{k+1}\right)\right] c_{k}\langle N, a\rangle \\
& +\left[\varepsilon c c_{k} H_{k+1}^{2}+c_{k} H_{k}^{2}-c L_{k}\left(H_{k}\right)\right] c_{k}\langle\psi, a\rangle .
\end{aligned}
$$

Therefore, we get

$$
\begin{align*}
L_{k}\left(L_{k} \psi\right)= & -\varepsilon c_{k} C_{k} H_{k+1} \nabla H_{k+1}-2 c_{k}\left(S \circ P_{k}\right)\left(\nabla H_{k+1}\right)-2 c c_{k} P_{k}\left(\nabla H_{k}\right) \\
& -\left[\varepsilon C_{k} H_{k+1}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right)\right. \tag{26}\\
& \left.+c c_{k} H_{k} H_{k+1}-L_{k}\left(H_{k+1}\right)\right] c_{k} N \\
& +\left[\varepsilon c c_{k} H_{k+1}^{2}+c_{k} H_{k}^{2}-c L_{k}\left(H_{k}\right)\right] c_{k} \psi .
\end{align*}
$$

Let us assume that, for a fixed $k=0,1, \ldots, n-1$, the immersion $\psi: M_{s}^{n} \longrightarrow$ $\mathbb{M}_{t}^{n+1}(c)$ satisfies the condition

$$
\begin{equation*}
L_{k} \psi=A \psi+b, \tag{27}
\end{equation*}
$$

for a constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and a constant vector $b \in \mathbb{R}_{q}^{n+2}$. Then we have $L_{k}\left(L_{k} \psi\right)=A L_{k} \psi$, that, jointly with (26) and (18), yields

$$
\begin{align*}
& H_{k+1} A N-c H_{k} A \psi \\
= & -\varepsilon C_{k} H_{k+1} \nabla H_{k+1}-2\left(S \circ P_{k}\right)\left(\nabla H_{k+1}\right)-2 c P_{k}\left(\nabla H_{k}\right) \\
& -\left[\varepsilon C_{k} H_{k+1}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right)\right. \tag{28}\\
& \left.+c c_{k} H_{k} H_{k+1}-L_{k}\left(H_{k+1}\right)\right] N \\
& +\left[\varepsilon c c_{k} H_{k+1}^{2}+c_{k} H_{k}^{2}-c L_{k}\left(H_{k}\right)\right] \psi .
\end{align*}
$$

On the other hand, from (27), and using again (18), we have

$$
\begin{align*}
A \psi & =c_{k} H_{k+1} N-c c_{k} H_{k} \psi-b^{\top}-\varepsilon\langle b, N\rangle N-c\langle b, \psi\rangle \psi \tag{29}\\
& =-b^{\top}+\left[c_{k} H_{k+1}-\varepsilon\langle b, N\rangle\right] N-\left[c c_{k} H_{k}+c\langle b, \psi\rangle\right] \psi,
\end{align*}
$$

where $b^{\top} \in \mathfrak{X}\left(M_{s}^{n}\right)$ denotes the tangential component of b. Finally, from here and (28), we get

$$
\begin{align*}
& H_{k+1} A N \\
= & -\varepsilon C_{k} H_{k+1} \nabla H_{k+1}-2\left(S \circ P_{k}\right)\left(\nabla H_{k+1}\right)-2 c P_{k}\left(\nabla H_{k}\right)-c H_{k} b^{\top} \tag{3}\\
& -\left[\varepsilon C_{k} H_{k+1}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right)+\varepsilon c H_{k}\langle b, N\rangle-L_{k}\left(H_{k+1}\right)\right] N \\
& +\left[\varepsilon c c_{k} H_{k+1}^{2}-H_{k}\langle b, \psi\rangle-c L_{k}\left(H_{k}\right)\right] \psi .
\end{align*}
$$

If we take covariant derivative in (27), and use equation (18) as well as Weingarten formula, we obtain

$$
\begin{equation*}
A X=-c_{k} H_{k+1} S X-c c_{k} H_{k} X+c_{k}\left\langle\nabla H_{k+1}, X\right\rangle N-c c_{k}\left\langle\nabla H_{k}, X\right\rangle \psi, \tag{31}
\end{equation*}
$$

for every tangent vector field X, and therefore

$$
\begin{equation*}
\langle A X, Y\rangle=\langle X, A Y\rangle, \tag{32}
\end{equation*}
$$

for every tangent vector fields $X, Y \in \mathfrak{X}\left(M_{s}^{n}\right)$. That means A is a self-adjoint endomorphism when it is restricted to the tangent space.

By taking covariant derivative in (32) we obtain

$$
\begin{aligned}
& \varepsilon(\langle A N, Y\rangle-\langle N, A Y\rangle)\langle S X, Z\rangle-c(\langle A \psi, Y\rangle-\langle\psi, A Y\rangle)\langle X, Z\rangle \\
= & \varepsilon(\langle A N, X\rangle-\langle N, A X\rangle)\langle S Y, Z\rangle-c(\langle A \psi, X\rangle-\langle\psi, A X\rangle)\langle Y, Z\rangle,
\end{aligned}
$$

for every tangent vector field $Z \in \mathfrak{X}\left(M_{s}^{n}\right)$, and then

$$
\begin{align*}
& \varepsilon(\langle A N, Y\rangle-\langle N, A Y\rangle) S X-c(\langle A \psi, Y\rangle-\langle\psi, A Y\rangle) X \tag{33}\\
= & \varepsilon(\langle A N, X\rangle-\langle N, A X\rangle) S Y-c(\langle A \psi, X\rangle-\langle\psi, A X\rangle) Y .
\end{align*}
$$

Lemma 8. Let $\psi: M_{s}^{n} \longrightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ be an orientable hypersurface satisfying the condition $L_{k} \psi=A \psi+b$, for a fixed $k=0,1, \ldots, n-1$, some constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and some constant vector $b \in \mathbb{R}_{q}^{n+2}$. If H_{k} is constant and H_{k+1} is non-constant, then $b=0$.

Proof. Consider the open set

$$
\mathcal{U}_{k+1}=\left\{p \in M_{s}^{n} \mid \nabla H_{k+1}^{2}(p) \neq 0\right\},
$$

which is non-empty by hypothesis. From (31) we have $\langle A X, \psi\rangle=0$ on \mathcal{U}_{k+1}, and by taking covariant derivative here we obtain

$$
\varepsilon\langle S X, Y\rangle\langle A N, \psi\rangle-c\langle X, Y\rangle\langle A \psi, \psi\rangle+\langle A X, Y\rangle=0 \quad \text { on } \mathcal{U}_{k+1} .
$$

This equation, jointly with (29)-(31), leads to

$$
\begin{equation*}
\left(H_{k}\langle S X, Y\rangle-\varepsilon H_{k+1}\langle X, Y\rangle\right)\langle b, \psi\rangle=0 \quad \text { on } \mathcal{U}_{k+1}, \tag{34}
\end{equation*}
$$

for every tangent vector fields $X, Y \in \mathfrak{X}\left(M_{s}^{n}\right)$. Let us consider the open set

$$
\mathcal{V}=\left\{p \in \mathcal{U}_{k+1} \mid\langle b, \psi\rangle(p) \neq 0\right\} .
$$

Our goal is to show that \mathcal{V} is empty. Otherwise, from (34) we get

$$
H_{k}\langle S X, Y\rangle-\varepsilon H_{k+1}\langle X, Y\rangle=0 \quad \text { on } \mathcal{V},
$$

which implies that $H_{k} \neq 0$, and therefore

$$
S X=\lambda X, \quad \lambda=\varepsilon \frac{H_{k+1}}{H_{k}}, \quad \text { on } \mathcal{V} .
$$

This equation yields \mathcal{V} is totally umbilical in $\mathbb{M}_{t}^{n+1}(c)$ and then $\lambda\left(\right.$ and $\left.H_{k+1}\right)$ is constant, which is a contradiction.

Therefore $\mathcal{V}=\varnothing$ and then we have $b=\varepsilon\langle b, N\rangle N$. But N is a non-constant vector field (otherwise \mathcal{U}_{k+1} should be totally umbilical with constant ($k+1$)-th mean curvature), which implies $b=0$.

The following auxiliar result is the key point in the proof of the main theorems.
Lemma 9. Let $\psi: M_{s}^{n} \longrightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ be an orientable hypersurface satisfying the condition $L_{k} \psi=A \psi+b$, for a fixed $k=0,1, \ldots, n-1$, some constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and some constant vector $b \in \mathbb{R}_{q}^{n+2}$. If H_{k} is constant then H_{k+1} is constant.

Proof. Let us assume that H_{k} is constant, and consider the open set

$$
\mathcal{U}_{k+1}=\left\{p \in M_{s}^{n} \mid \nabla H_{k+1}^{2}(p) \neq 0\right\}
$$

Our goal is to show that \mathcal{U}_{k+1} is empty. Otherwise, from Lemma 8 we have that $b=0$ and then from (29) we get

$$
\langle A \psi, X\rangle=0
$$

for every tangent vector field X. Since H_{k} is constant, from (31) we get $\langle A X, \psi\rangle=0$, and thus (33) is equivalent to

$$
\begin{equation*}
(\langle A N, Y\rangle-\langle N, A Y\rangle) S X=(\langle A N, X\rangle-\langle N, A X\rangle) S Y \tag{35}
\end{equation*}
$$

for every tangent vector fields $X, Y \in \mathfrak{X}\left(M_{s}^{n}\right)$. From equation (30), we get that the tangential component of $A N$ is given in \mathcal{U}_{k+1} by

$$
(A N)^{\top}=-\varepsilon C_{k} \nabla H_{k+1}-\frac{2}{H_{k+1}}\left(S \circ P_{k}\right)\left(\nabla H_{k+1}\right)
$$

Now, bearing in mind (31) and (35), we find that

$$
\begin{equation*}
\left\langle T_{k}\left(\nabla H_{k+1}\right), Y\right\rangle S X=\left\langle X, T_{k}\left(\nabla H_{k+1}\right)\right\rangle S Y, \quad X, Y \in \mathfrak{X}(M) \tag{36}
\end{equation*}
$$

where T_{k} is the linear self-adjoint operator defined by

$$
\begin{equation*}
T_{k}=\varepsilon(k+2) C_{k} I+\frac{2}{H_{k+1}}\left(S \circ P_{k}\right) . \tag{37}
\end{equation*}
$$

We claim that $T_{k}\left(\nabla H_{k+1}\right)=0$ on \mathcal{U}_{k+1}. Indeed, if $T_{k}\left(\nabla H_{k+1}\right)\left(p_{0}\right) \neq 0$ at some point $p_{0} \in \mathcal{U}_{k+1}$, then there exists a neighborhood of p_{0} where $T_{k}\left(\nabla H_{k+1}\right) \neq 0$, and we may choose a local orthonormal (or pseudo-orthonormal, respectively) frame $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ with E_{1} in the direction of $T_{k}\left(\nabla H_{k+1}\right)$. As a consequence, equation (36) implies that $S E_{i}=0$ for every $i \neq 1$ (or $i \neq 2$, respectively), and then $\operatorname{rank}(S) \leq 1$ on \mathcal{U}_{k+1}. But this implies that $H_{k+1}=0$ for every $k \geq 1$, which is not possible. Therefore, $T_{k}\left(\nabla H_{k+1}\right)=0$ on \mathcal{U}_{k+1}, which implies by (37) that

$$
\begin{equation*}
\left(S \circ P_{k}\right)\left(\nabla H_{k+1}\right)=-\frac{\varepsilon(k+2) C_{k}}{2} H_{k+1} \nabla H_{k+1} \quad \text { on } \mathcal{U}_{k+1} \tag{38}
\end{equation*}
$$

This equation leads to the proof in the case where $k=n-1$. In fact, from the inductive definition we see that $P_{n}=a_{n} I+S \circ P_{n-1}$, and then $S \circ P_{n-1}=-a_{n} I=-(-\varepsilon)^{n} H_{n} I$. From this we have

$$
S \circ P_{n-1}\left(\nabla H_{n}\right)=-(-\varepsilon)^{n} H_{n} \nabla H_{n},
$$

that jointly with (38) implies $H_{n} \nabla H_{n}=0$ on \mathcal{U}_{n}, which is not possible.

Now consider the case where $1 \leq k \leq n-2$ (and $n \geq 3$ necessarily). From the inductive definition of P_{k+1} and (38) we obtain

$$
\begin{equation*}
P_{k+1}\left(\nabla H_{k+1}\right)+\bar{D}_{k} H_{k+1} \nabla H_{k+1}=0 \quad \text { on } \mathcal{U}_{k+1} \tag{39}
\end{equation*}
$$

where $\bar{D}_{k}=\frac{\varepsilon}{2}(k+4) C_{k}$.
Let us assume that the tangent space is $V=V_{1} \oplus \cdots \oplus V_{m}$ where each V_{i} is S-invariant and $S_{i}=\left.S\right|_{V_{i}}$ is a Jordan block of type I or II. Then

$$
\nabla H_{k+1}=\left(\begin{array}{c}
\left.\nabla H_{k+1}\right|_{V_{1}} \\
\vdots \\
\left.\nabla H_{k+1}\right|_{V_{m}}
\end{array}\right)
$$

and therefore (39) is equivalent to

$$
\left(\left.P_{k+1}\right|_{V_{i}}+\bar{D}_{k} H_{k+1} I\right)\left(\left.\nabla H_{k+1}\right|_{V_{i}}\right)=0 \quad \text { on } \mathcal{U}_{k+1}
$$

for every $i=1, \ldots, m$.
When S_{i} is a Jordan block of type II we can complexify and then S_{i} is reduced to two Jordan blocks of type I. In consequence and without loss of generality, in what follows we shall consider that every S_{i} is a Jordan block of type I associated to a (real or complex) root κ of S.

Let $\left\{E_{i_{1}}, \ldots, E_{i_{p}}\right\}$ be a tangent frame of subspace $V_{i}=V_{i}(\kappa)$, where $S_{i}=\left.S\right|_{V_{i}}$ is a Jordan block associated to κ. From Propositions 4 and 6 we deduce

$$
\left(\begin{array}{cccc}
\mu_{k+1}^{i_{1}}+D_{k} H_{k+1} & & \\
-\mu_{k}^{i_{1}, i_{2}} & \mu_{k+1}^{i_{2}}+D_{k} H_{k+1} & & \\
\mu_{k-1}^{i_{1}, i_{2}, i_{3}} & -\mu_{k}^{i_{2}, i_{3}} & \mu_{k+1}^{i_{3}}+D_{k} H_{k+1} \\
\vdots & \ddots & \ddots & \\
(-1)^{p+1} \mu_{k-(p-2)}^{i_{1}, \ldots, i_{p}} & \cdots & -\mu_{k}^{i_{p-1}, i_{p}} & \mu_{k+1}^{i_{p}}+D_{k} H_{k+1}
\end{array}\right)\left(\begin{array}{c}
\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle \\
\left\langle\nabla H_{k+1}, E_{i_{p-1}}\right\rangle \\
\left\langle\nabla H_{k+1}, E_{i_{p-2}}\right\rangle \\
\vdots \\
\left\langle\nabla H_{k+1}, E_{i_{1}}\right\rangle
\end{array}\right)=0,
$$

where $D_{k}=(-1)^{k+1} \bar{D}_{k}$. Since $\kappa_{i_{1}}=\cdots=\kappa_{i_{p}}=\kappa$, then last equation is equivalent to

$$
\left(\begin{array}{cccc}
\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle & & & \\
\left\langle\nabla H_{k+1}, E_{i_{p-1}}\right\rangle & \left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle & & \\
\vdots & \vdots & \ddots & \\
\left\langle\nabla H_{k+1}, E_{i_{1}}\right\rangle & \left\langle\nabla H_{k+1}, E_{i_{2}}\right\rangle & \ldots & \left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle
\end{array}\right)\left(\begin{array}{c}
\mu_{k+1}^{i_{1}}+D_{k} H_{k+1} \\
-\mu_{k}^{i_{1}, i_{2}} \\
\mu_{k-1}^{i_{1}, i_{2}, i_{3}} \\
\vdots \\
(-1)^{p+1} \mu_{k-(p-2)}^{i_{1}, \ldots, i_{p}}
\end{array}\right)=0 .
$$

As a consequence, if $\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle \neq 0$, then

$$
\left\{\begin{array}{cc}
\mu_{k+1}^{i_{1}}+D_{k} H_{k+1}=0, & \left(e_{1}\right) \tag{40}\\
\mu_{k}^{i_{1}, i_{2}}=0, & \left(e_{2}\right) \\
\mu_{k-1}^{i_{1}, i_{2}, i_{3}}=0, & \left(e_{3}\right) \\
\vdots & \\
\mu_{k-(p-2)}^{i_{1}, \ldots, i_{p}}=0 . & \left(e_{p}\right)
\end{array}\right.
$$

Equations $\left(e_{2}\right)-\left(e_{p}\right)$ yield

$$
\begin{equation*}
\mu_{(k+2)-l}^{i_{1}, \ldots, i_{q}}=0, \quad \text { for } 2 \leq l \leq q \leq p \tag{41}
\end{equation*}
$$

We can easily prove (41) by induction on $q-l=0, \ldots, p-2$. If $q-l=0$ then equation (41) follows from (40). Let us assume that (41) holds for $q-l=0,1 \ldots, s<p-2$, and consider $q-l=s+1$. Observe that

$$
\mu_{(k+2)-l}^{i_{1}, \ldots, i_{l+s}}=\kappa_{i_{l+s+1}} \mu_{(k+2)-(l+1)}^{i_{1}, \ldots, i_{l+s+1}}+\mu_{(k+2)-l}^{i_{1}, \ldots, i_{l+s+1}},
$$

then by using the induction hypothesis on both sides of this equation we find that $\mu_{(k+2)-l}^{i_{1}, \ldots, i_{l+s+1}}=0$. That concludes the proof of (41).

Claim 1. Let $\left\{E_{i_{1}}, \ldots, E_{i_{p}}\right\}$ be a tangent frame of an S-invariant subspace $V_{i}(\kappa)$, where $\left.S\right|_{V_{i}}$ is a Jordan block of type I associated to a root κ. If $\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle \neq 0$ then

$$
\begin{equation*}
\mu_{k+1}^{J}+D_{k} H_{k+1}=0, \tag{42}
\end{equation*}
$$

for every $J \subseteq\left\{i_{i}, \ldots, i_{p}\right\}:=J_{i}(\kappa)$.
We shall prove (42) by induction on the cardinality of $J, \operatorname{card}(J)$. If $\operatorname{card}(J)=1$, then (42) is nothing but equation $\left(e_{1}\right)$ in (40). If $\operatorname{card}(J)=2, J=\left\{i_{1}, i_{2}\right\}$, then (42) is a consequence of $\left(e_{1}\right)$ and $\left(e_{2}\right)$ in (40), since we have

$$
0=\mu_{k+1}^{i_{1}}+D_{k} H_{k+1}=\left(\kappa_{i_{2}} \mu_{k}^{i_{1}, i_{2}}+\mu_{k+1}^{i_{1}, i_{2}}\right)+D_{k} H_{k+1}=\mu_{k+1}^{i_{1}, i_{2}}+D_{k} H_{k+1} .
$$

Let us assume that (42) is true for every subset J with $\operatorname{card}(J)=1,2, \ldots, m<p$ and consider a set $J_{0}=\left\{i_{1}, \ldots, i_{m+1}\right\}$ with cardinality $m+1 \leq p$. Let J_{1} be the set of cardinality m such that $J_{0}=J_{1} \cup\left\{i_{m+1}\right\}$. By the induction hypothesis applied to J_{1} and bearing in mind (41) we get

$$
0=\mu_{k+1}^{J_{1}}+D_{k} H_{k+1}=\left(\kappa_{i_{m+1}} \mu_{k}^{J_{0}}+\mu_{k+1}^{J_{0}}\right)+D_{k} H_{k+1}=\mu_{k+1}^{J_{0}}+D_{k} H_{k+1},
$$

and that concludes the proof of Claim 1.
An immediate and important consequence of this claim is that $\left\langle\nabla H_{k+1}, E_{i}\right\rangle=0$ for some i. Otherwise, from Claim 1 we deduce

$$
\operatorname{tr}\left(P_{k+1}\right)=\sum_{\ell, j=1}^{n} g^{\ell j}\left\langle P_{k+1} E_{\ell}, E_{j}\right\rangle=\sum_{\ell=1}^{n}(-1)^{k+1} \mu_{k+1}^{\ell}=(-1)^{k} n D_{k} H_{k+1},
$$

that jointly with Lemma 3 leads to $H_{k+1}=0$ on \mathcal{U}_{k+1}, which is a contradiction.
Claim 2. Let $\left\{E_{i_{1}}, \ldots, E_{i_{p}}\right\}$ and $\left\{E_{j_{1}}, \ldots, E_{j_{q}}\right\}$ be tangent frames of two S invariant subspaces $V_{i}\left(\kappa_{1}\right)$ and $V_{j}\left(\kappa_{2}\right)$, where $\left.S\right|_{V_{i}}$ and $\left.S\right|_{V_{j}}$ are Jordan blocks associated to two distinct roots κ_{1} and κ_{2}, respectively. If $\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle \neq 0$ and $\left\langle\nabla H_{k+1}, E_{j_{q}}\right\rangle \neq 0$ then

$$
\begin{equation*}
\mu_{k+1}^{J}+D_{k} H_{k+1}=0, \tag{43}
\end{equation*}
$$

for every set $J \subseteq\left\{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}\right\}=J_{i}\left(\kappa_{1}\right) \cup J_{j}\left(\kappa_{2}\right)$.
We can write $J=J_{1} \cup J_{2}$, where $J_{1} \subseteq J_{i}\left(\kappa_{1}\right)$ and $J_{2} \subseteq J_{j}\left(\kappa_{2}\right)$, and then $\operatorname{card}(J)=m_{1}+m_{2}$, with $m_{1}=\operatorname{card}\left(J_{1}\right)$ and $m_{2}=\operatorname{card}\left(J_{2}\right)$. We shall prove (43) by induction on $m=m_{1}+m_{2}$. If $m=1$, then (43) is nothing but (42).

Let us assume that (43) holds for every set J with $\operatorname{card}(J)=1,2, \ldots, r<p+q$ and consider a set $J_{0}=\left\{h_{1}, \ldots, h_{r+1}\right\} \subseteq\left\{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}\right\}$ with cardinality $r+1 \leq p+q$. In the case where J_{0} is a subset either of J_{1} or J_{2}, there is nothing to prove. Thus let us assume that J_{0} has elements of J_{1} and J_{2}.

Without loss of generality, we can assume that $h_{1} \in J_{1}$ and $h_{r+1} \in J_{2}$, and let I_{1} and I_{2} be the two sets of cardinality r such that $J_{0}=I_{1} \cup\left\{h_{r+1}\right\}=\left\{h_{1}\right\} \cup I_{2}$. From the induction hypothesis we deduce

$$
\begin{aligned}
& 0=\mu_{k+1}^{I_{1}}+D_{k} H_{k+1}=\left(\kappa_{h_{r+1}} \mu_{k}^{J_{0}}+\mu_{k+1}^{J_{0}}\right)+D_{k} H_{k+1}, \\
& 0=\mu_{k+1}^{I_{2}}+D_{k} H_{k+1}=\left(\kappa_{h_{1}} \mu_{k}^{J_{0}}+\mu_{k+1}^{J_{0}}\right)+D_{k} H_{k+1}
\end{aligned}
$$

and then $\left(\kappa_{h_{1}}-\kappa_{h_{r+1}}\right) \mu_{k}^{J_{0}}=0$. Since $\kappa_{h_{1}} \neq \kappa_{h_{r+1}}$ we obtain $0=\mu_{k+1}^{J_{0}}+D_{k} H_{k+1}$, as desired. That concludes the proof of Claim 2.

Claim 3. Let $\left\{E_{i_{1}}, \ldots, E_{i_{p}}\right\}$ and $\left\{E_{j_{1}}, \ldots, E_{j_{q}}\right\}$ be tangent frames of two S invariant subspaces $V_{i}(\kappa)$ and $V_{j}(\kappa)$, where $\left.S\right|_{V_{i}}$ and $\left.S\right|_{V_{j}}$ are Jordan blocks associated to the same root κ. Then there exists a tangent vector \tilde{E} such that

$$
S \widetilde{E}=\kappa \widetilde{E} \quad \text { and } \quad\left\langle\nabla H_{k+1}, \widetilde{E}\right\rangle=0 .
$$

To prove this claim, we distinguish two cases:
(a) If $\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle=0$ (or $\left\langle\nabla H_{k+1}, E_{j_{q}}\right\rangle=0$, respectively), there is nothing to prove, we can take $\widetilde{E}=E_{i_{p}}$ (or $\widetilde{E}=E_{j_{q}}$, respectively).
(b) If $\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle \neq 0$ and $\left\langle\nabla H_{k+1}, E_{j_{q}}\right\rangle \neq 0$, then we take

$$
\widetilde{E}=-\left\langle\nabla H_{k+1}, E_{j_{q}}\right\rangle E_{i_{p}}+\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle E_{j_{q}} .
$$

Two consequences can be obtained from this claim.
(C1) If κ is real, then from (31) we get

$$
A \widetilde{E}=-c_{k} H_{k+1} \kappa \widetilde{E}
$$

and then there exists a constant eigenvalue η of matrix A such that

$$
\begin{equation*}
\kappa=\frac{\eta}{-c_{k} H_{k+1}} . \tag{44}
\end{equation*}
$$

(C2) If $\kappa=\alpha+i \beta$ is complex, then there exist two (real) tangent vectors $\widetilde{E}_{1}, \widetilde{E}_{2}$ such that $\widetilde{\widetilde{E}}=\widetilde{E}_{1}+i \widetilde{E}_{2}$ and $\left\langle\nabla H_{k+1}, \widetilde{E}_{i}\right\rangle=0$ for $i=1,2$. In this case, $W=$ $\operatorname{span}\left\{\widetilde{E}_{1}, \widetilde{E}_{2}\right\}$ is an S-invariant subspace and $\left.S\right|_{W}$ has matrix of form

$$
\left.S\right|_{W}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)
$$

By using (31) we get that W is also an A-invariant subspace with matrix of form

$$
\left.A\right|_{W}=\left(\begin{array}{cc}
-c_{k} H_{k+1} \alpha & -c_{k} H_{k+1} \beta \\
c_{k} H_{k+1} \beta & -c_{k} H_{k+1} \alpha
\end{array}\right) .
$$

As a consequence, we obtain that

$$
\theta=\operatorname{tr}\left(\left.A\right|_{W}\right) \quad \text { and } \quad \rho=\operatorname{det}\left(\left.A\right|_{W}\right)
$$

are invariants of A (and constant). Explicitly, they are given by $\theta=-2\left(c_{k} H_{k+1} \alpha\right)$ and $\rho=\left(c_{k} H_{k+1}\right)^{2}\left(\alpha^{2}+\beta^{2}\right)$, and then it is easy to see that there exist two constants s_{1} and s_{2} such that

$$
\alpha=\frac{s_{1}}{-c_{k} H_{k+1}} \quad \text { and } \quad \beta=\frac{s_{2}}{-c_{k} H_{k+1}} .
$$

Thus we can write

$$
\begin{equation*}
\kappa=\frac{\eta}{-c_{k} H_{k+1}}, \quad \eta=s_{1}+i s_{2} . \tag{45}
\end{equation*}
$$

To finish the proof of Lemma, let K be the following subset of roots of $Q_{S}(t)$:

$$
K=\left\{\kappa \mid \operatorname{JB}(\kappa)=1 \text { and }\left\langle\nabla H_{k+1}, E_{i_{p}}\right\rangle \neq 0\right\},
$$

where $\mathrm{JB}(\kappa)$ stands for the number of Jordan blocks associated to the root κ. From Claim 2 we deduce

$$
\mu_{k+1}^{J}+D_{k} H_{k+1}=0,
$$

for every subset $J \subseteq \bigcup_{\kappa_{i} \in K} J\left(\kappa_{i}\right)$. In particular, for $J=\bigcup_{\kappa_{i} \in K} J\left(\kappa_{i}\right)$ we obtain

$$
-D_{k} H_{k+1}=\mu_{k+1}^{J}=\sum_{\substack{i_{1}<\cdots<i_{k+1} \\ i_{j} \notin J}}^{n} \kappa_{i_{1}} \ldots \kappa_{i_{k+1}}=\sum_{\substack{i_{1}<\cdots<i_{k+1} \\ \kappa_{i_{j}} \notin K}}^{n} \kappa_{i_{1}} \ldots \kappa_{i_{k+1}}
$$

that jointly with (44) and (45) lead to

$$
-D_{k} H_{k+1}=\frac{\sum_{i_{1}<\cdots<i_{k+1}} \eta_{i_{1}} \cdots \eta_{i_{k+1}}}{\left(-c_{k} H_{k+1}\right)^{k+1}} \quad \text { on } \mathcal{U}_{k+1},
$$

showing that H_{k+1} is locally constant on \mathcal{U}_{k+1}, which is a contradiction.

6. Main Results

This section is devoted to prove the main result of this paper.
Theorem 1. Let $\psi: M_{s}^{n} \rightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ be an orientable hypersurface immersed into the pseudo-Riemannian space form $\mathbb{M}_{t}^{n+1}(c)$, and let L_{k} be the linearized operator of the $(k+1)$-th mean curvature of M_{s}^{n}, for some fixed $k=0,1, \ldots, n-1$. Assume that H_{k} is constant. Then the immersion satisfies the condition $L_{k} \psi=A \psi+b$, for some constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and some constant vector $b \in \mathbb{R}_{q}^{n+2}$, if and only if it is one of the following hypersurfaces:
(1) a hypersurface having zero $(k+1)$-th mean curvature and constant k-th mean curvature.
(2) an open piece of one of the following totally umbilical hypersurfaces in \mathbb{S}_{t}^{n+1} : $\mathbb{S}_{t-1}^{n}(r), r>1 ; \mathbb{S}_{t}^{n}(r), 0<r<1 ; \mathbb{H}_{t-1}^{n}(-r), r>0 ; \mathbb{R}_{t-1}^{n}$.
(3) an open piece of one of the following totally umbilical hypersurfaces in \mathbb{H}_{t}^{n+1} : $\mathbb{H}_{t}^{n}(-r), r>1 ; \mathbb{H}_{t-1}^{n}(-r), 0<r<1 ; \mathbb{S}_{t}^{n}(r), r>0 ; \mathbb{R}_{t}^{n}$.
(4) an open piece of a standard pseudo-Riemannian product in \mathbb{S}_{t}^{n+1} : $\mathbb{S}_{u}^{m}(r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1-r^{2}}\right), \quad \mathbb{H}_{u-1}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1+r^{2}}\right), \quad \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v-1}^{n-m}$ $\left(-\sqrt{r^{2}-1}\right)$.
(5) an open piece of a standard pseudo-Riemannian product in \mathbb{H}_{t}^{n+1} :
$\mathbb{H}_{u}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{r^{2}-1}\right), \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v}^{n-m}\left(-\sqrt{1+r^{2}}\right), \mathbb{H}_{u}^{m}(-r) \times \mathbb{H}_{v-1}^{n-m}$ $\left(-\sqrt{1-r^{2}}\right)$.
(6) an open piece of a quadratic hypersurface $\left\{x \in \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2} \mid\langle R x, x\rangle=\right.$ $d\}$, where R is a self-adjoint constant matrix whose minimal polynomial is $z^{2}+a z+b, a^{2}-4 b \leq 0$.

Proof. We have already checked in Section 4 that each one of the hypersurfaces mentioned in Theorem 1 does satisfy the condition $L_{k} \psi=A \psi+b$, for a constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and some constant vector $b \in \mathbb{R}_{q}^{n+2}$.

Conversely, let us assume that $\psi: M_{s}^{n} \rightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ satisfies the condition $L_{k} \psi=A \psi+b$, for some constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$ and some constant vector $b \in \mathbb{R}_{q}^{n+2}$. Since H_{k} is constant on M_{s}^{n}, from Lemma 9 we know that H_{k+1} is also constant on M_{s}^{n}. Let us assume that H_{k+1} is a non-zero constant (otherwise, there is nothing to prove).

From (31) and (28) we have

$$
\begin{align*}
& A X=-c_{k} H_{k+1} S X-c c_{k} H_{k} X \tag{46}\\
& A N=\left(\lambda-c c_{k} H_{k}\right) N+c_{k}\left(\varepsilon c H_{k+1}+\frac{H_{k}^{2}}{H_{k+1}}\right) \psi+\frac{c H_{k}}{H_{k+1}} A \psi, \tag{4}
\end{align*}
$$

with $\lambda=-\varepsilon C_{k}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right)$. Taking covariant derivative in (47), and using (46), we have

$$
\nabla_{X}^{0}(A N)=\langle\nabla \lambda, X\rangle N-\lambda S X+\varepsilon c c_{k} H_{k+1} X,
$$

but also from (46) we obtain

$$
\nabla_{X}^{0}(A N)=A\left(\nabla_{X}^{0} N\right)=-A(S X)=c_{k} H_{k+1} S^{2} X+c c_{k} H_{k} S X .
$$

From the last two equations we deduce that λ is constant on M_{s}^{n}, and also that the shape operator S satisfies the equation

$$
\begin{equation*}
S^{2}+a_{1} S-\varepsilon c I=0, \quad a_{1}=\frac{\lambda+c c_{k} H_{k}}{c_{k} H_{k+1}}=\text { constant. } \tag{48}
\end{equation*}
$$

As a consequence, M_{s}^{n} is an isoparametric hypersurface in $\mathbb{M}_{t}^{n+1}(c)$ and the minimal polynomial of its shape operator S is of degree at most two. If the degree of that polynomial is one, then M_{s}^{n} is totally umbilical (but not totally geodesic) in $\mathbb{M}_{t}^{n+1}(c)$ and so it is one of the hypersurfaces listed in paragraphs (2) or (3) of the theorem, according to $c=1$ or $c=-1$, respectively (Example 2). Let us assume that the minimal polynomial of S is exactly of degree two. If S is diagonalizable, then M_{s}^{n} has exactly two distinct constant principal curvatures, and then from standard arguments (similar to those used in $[13,23,19,18,25,26]$) it is an open piece of a standard pseudo-Riemannian product (Example 3).

Suppose now that S is not diagonalizable, so that the minimal polynomial of S is given by $\mu_{S}(z)=z^{2}+a_{1} z-\varepsilon c$, with discriminant $d_{S}=a_{1}^{2}+4 \varepsilon c \leq 0$. From above equations we easily deduce that the minimal polynomial of A is given by $\mu_{A}(z)=z^{2}+$ $b_{1} z+b_{0}$, where $b_{1}=2 c c_{k} H_{k}-a_{1} c_{k} H_{k+1}$ and $b_{0}=c_{k}^{2} H_{k}^{2}-a_{1} c c_{k}^{2} H_{k} H_{k+1}-\varepsilon c c_{k}^{2} H_{k+1}^{2}$ are constants. Since the discriminant d_{A} of $\mu_{A}(z)$ is given by $d_{A}=c_{k}^{2} H_{k+1}^{2} d_{S}$, then A also is not diagonalizable. Since $\langle A \psi, \psi\rangle=-c_{k} H_{k}$ is constant and $\mu_{A}\left(-c c_{k} H_{k}\right) \neq 0$, then M_{s}^{n} is an open piece of a quadratic hypersurface as in Example 4. That concludes the proof.

As an easy consequence of this theorem we obtain the following result.
Theorem 2. Let $\psi: M_{s}^{n} \rightarrow \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2}$ be an orientable hypersurface immersed into the pseudo-Riemannian space form $\mathbb{M}_{t}^{n+1}(c)$, and let L_{k} be the linearized operator of the $(k+1)$-th mean curvature of M_{s}^{n}, for some fixed $k=0,1, \ldots, n-1$. Then the immersion satisfies the condition $L_{k} \psi=A \psi$, for some self-adjoint constant matrix $A \in \mathbb{R}^{(n+2) \times(n+2)}$, if and only if it is one of the following hypersurfaces:
(1) a hypersurface having zero $(k+1)$-th mean curvature and constant k-th mean curvature;
(2) an open piece of a standard pseudo-Riemannian product in \mathbb{S}_{t}^{n+1} :
$\mathbb{S}_{u}^{m}(r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1-r^{2}}\right), \quad \mathbb{H}_{u-1}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{1+r^{2}}\right), \quad \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v-1}^{n-m}$ $\left(-\sqrt{r^{2}-1}\right)$.
(3) an open piece of a standard pseudo-Riemannian product in \mathbb{H}_{t}^{n+1} :
$\mathbb{H}_{u}^{m}(-r) \times \mathbb{S}_{v}^{n-m}\left(\sqrt{r^{2}-1}\right), \mathbb{S}_{u}^{m}(r) \times \mathbb{H}_{v}^{n-m}\left(-\sqrt{1+r^{2}}\right), \quad \mathbb{H}_{u}^{m}(-r) \times \mathbb{H}_{v-1}^{n-m}$ $\left(-\sqrt{1-r^{2}}\right)$.
(4) an open piece of a quadratic hypersurface $\left\{x \in \mathbb{M}_{t}^{n+1}(c) \subset \mathbb{R}_{q}^{n+2} \mid\langle R x, x\rangle=\right.$ $d\}$, where R is a self-adjoint constant matrix whose minimal polynomial is $z^{2}+a z+b, a^{2}-4 b \leq 0$.

Proof. Since A is a self-adjoint matrix we have $\langle A X, \psi\rangle=\langle X, A \psi\rangle$, and by using (29) and (31) we deduce

$$
\nabla\langle b, \psi\rangle=b^{\top}=c_{k} \nabla H_{k}
$$

which implies that H_{k} is constant. Now the result follows from Theorem 1.

References

1. L. J. Alías, A. Ferrández and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x=A x+B$, Pacific J. Math., 156(2) (1992), 201-208.
2. L. J. Alías, A. Ferrández and P. Lucas, Submanifolds in pseudo-Euclidean spaces satisfying the condition $\Delta x=A x+B$, Geom. Dedicata, 42 (1992), 345-354.
3. L. J. Alías, A. Ferrández and P. Lucas, Hypersurfaces in space forms satisfying the condition $\Delta x=A x+B$, Trans. Amer. Math. Soc., 347 (1995), 1793-1801.
4. L. J. Alías and N. Gürbüz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121 (2006), 113-127.
5. L. J. Alías and M. B. Kashani, Hypersurfaces in space forms satisfying the condition $L_{k} \psi=A \psi+b$, Taiwanese Journal of Mathematics, 14 (2010), 1957-1978.
6. B.-Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc., 44 (1991), 117-129.
7. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204.
8. F. Dillen, J. Pas and L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10-21.
9. V. N. Faddeeva, Computational Methods of Linear Algebra, Dover Publ. Inc, 1959, New York.
10. O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata, 34 (1990), 105-112.
11. J. Hahn, Isoparametric hypersurfaces in the pseudo-Riemannian space forms, Math. Z., 187 (1984), 195-208.
12. T. Hasanis and T. Vlachos, Hypersurfaces of E^{n+1} satisfying $\Delta x=A x+B, J$. Austral. Math. Soc. Ser. A, 53 (1992), 377-384.
13. H. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. Math., 89 (1969), 187-197.
14. U. J. J. Leverrier, Sur les variations séculaire des élements des orbites pour les sept planétes principales, J. de Math., s.1, 5 (1840), 230ff.
15. P. Lucas and H. F. Ramírez-Ospina, Hypersurfaces in the Lorentz-Minkowski space satisfying $L_{k} \psi=A \psi+b$, Geom. Dedicata, 153 (2011), 151-175.
16. P. Lucas and H. F. Ramírez-Ospina, Hypersurfaces in non-flat Lorentzian space forms satisfying $L_{k} \psi=A \psi+b$, Taiwanese J. Math., 16 (2012), 1173-1203.
17. P. Lucas and H. F. Ramírez-Ospina, Hypersurfaces in pseudo-Euclidean spaces satisfying the condition $L_{k} \psi=A \psi+b$, submitted for publication, 2011.
18. M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math., 118 (1985), 165-197.
19. K. Nomizu, On isoparametric hypersurfaces in the Lorentzian space forms, Japan J. Math. (N.S.), 7 (1981), 217-226.
20. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York London, 1983.
21. R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom., 8 (1973), 465-477.
22. S. Roman, Advanced Linear Algebra, 3ed. Springer, 2008, New York.
23. P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J., 21 (1969), 363-388.
24. T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.
25. L. Xiao, Lorentzian isoparametric hypersurfaces in \mathbb{H}_{1}^{n+1}, Pacific J. Math., 189 (1999), 377-397.
26. L. Zhen-Qi and X. Xian-Hua, Space-like Isoparametric Hypersurfaces in Lorentzian Space Forms, J. Nanchang Univ. Nat. Sci. Ed., 28 (2004), 113-117.

Pascual Lucas and Hector Fabián Ramírez-Ospina
Departamento de Matemáticas
Universidad de Murcia
Campus de Espinardo
30100 Murcia
Spain
E-mail: plucas@um.es
hectorfabian.ramirez@um.es

[^0]: Received March 9, 2012, accepted May 5, 2012.
 Communicated by Bang-Yen Chen.
 2010 Mathematics Subject Classification: 53C50, 53B25, 53B30.
 Key words and phrases: Linearized operator L_{k}, Isoparametric hypersurface, k-maximal hypersurface, Takahashi theorem, Higher order mean curvatures, Newton transformations.
 This work has been partially supported by MICINN/FEDER Project No. MTM2009-10418, and Fundación Séneca, Spain Project No. 04540/GERM/06. This research is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Region de Murcia, Spain, by Fundación Séneca, Regional Agency for Science and Technology (Regional Plan for Science and Technology 2007-2010). Second author is supported by FPI Grant BES-2010-036829.
 *Corresponding author.

