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A new epidemiological model is introduced with nonlinear incidence, in which the infected disease may lose infectiousness and
then evolves to a chronic noninfectious disease when the infected disease has not been cured for a certain time 𝜏. The existence,
uniqueness, and stability of the disease-free equilibrium and endemic equilibrium are discussed. The basic reproductive number
𝑅
0
is given. The model is studied in two cases: with and without time delay. For the model without time delay, the disease-free

equilibrium is globally asymptotically stable provided that 𝑅
0
≤ 1; if 𝑅

0
> 1, then there exists a unique endemic equilibrium, and

it is globally asymptotically stable. For the model with time delay, a sufficient condition is given to ensure that the disease-free
equilibrium is locally asymptotically stable. Hopf bifurcation in endemic equilibrium with respect to the time 𝜏 is also addressed.

1. Introduction

As we know, in the SIR model, the population is divided into
three classes, 𝑆, 𝐼, and 𝑅, where 𝑆 denotes the number of
susceptible individuals, 𝐼 the number of infective individuals,
and 𝑅 the number of removed individuals, respectively. With
respect to the SIR models, many studies have proposed
several reasons for the nonlinearity of incidence rate at which
susceptible individual becomes infective. In 1978, Capasso
and Serio [1] found a saturated incidence rate ℎ(𝐼) = 𝑘𝐼/(1 +
𝛼𝐼), where ℎ(𝐼) tends to a saturation level when 𝐼 gets large. It
is more reasonable than the bilinear incidence rate, because
it reflects the behavioral change and crowding effect of the
infective individuals and prevents the unboundedness of the
contact rate by choosing suitable parameters. In 2007, Xiao
and Ruan studied the global SIR model with nonmonotone
incidence rate ℎ(𝐼) = 𝑘𝐼/(1 + 𝛼𝐼

2
) in [2]. Recently, Yang

and Xiao [3] extended this nonlinear incidence rate to ℎ(𝐼) =
𝑘𝐼/(1 + 𝛼𝐼

ℎ
), ℎ ≥ 1, by using standard method.

However, the time period of immunity for many infec-
tious diseases is short, or even they have no immunity.
Furthermore, these diseases often lead to some other more
dangerous diseases. For examples, Chagas disease, hepatitis
C, gonorrhea, and other sexually transmitted diseases may
advance through several infective stages and have different

ability to transmit these infections in different stages of
infection. Their infectivity usually depends on the parasite
or viral loads in infected individuals or vectors [4]. For
instance, in the case of Chagas disease [5], the acute stage
follows the invasion of the blood stream by the protozoan T.
cruzi. This stage lasts from one to two months and infected
individuals may or may not show symptoms of the disease.
After the acute phase, the infected individuals enter the
chronic stage and stay there for variable duration that lasts
from 10 to 20 years. At its end, the diseasemay follow different
paths: some individuals may develop mega syndromes and
others may present myocarditis. Myocarditis is the terminal
form which causes the highest mortality in the group of
individuals between 20 and 50 years of age. In fact, there
are some research achievements about this phenomenon [6–
10]. For example, Cai et al. [11] investigated a stage-structured
epidemic model with a nonlinear incidence and a factor 𝑆𝑝.

Motivated by the above discussions, we introduce a new
epidemiological model in this paper. In this model, the
population is divided into three classes, 𝑆, 𝐼, and 𝐷, where
𝑆(𝑡) is the number of susceptible individuals, 𝐼(𝑡) the number
of infective individuals, and 𝐷(𝑡) the number of individuals
who are pathologically changed from the infective individuals
not being cured for a certain time 𝜏 at time 𝑡, respectively.
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Our model to be considered takes the following form:

𝑆
󸀠
(𝑡) = 𝑏 − 𝑑𝑆 (𝑡) −

𝑘𝐼 (𝑡) 𝑆 (𝑡)

1 + 𝛼𝐼 (𝑡)

+ 𝑢
1
𝐼 (𝑡) + 𝑢

2
𝐷 (𝑡) ,

𝐼
󸀠
(𝑡) =

𝑘𝐼 (𝑡) 𝑆 (𝑡)

1 + 𝛼𝐼 (𝑡)

− 𝑚𝑒
−𝑑𝜏
𝐼 (𝑡 − 𝜏) − (𝑢

1
+ 𝑑) 𝐼 (𝑡) ,

𝐷
󸀠
(𝑡) = 𝑚𝑒

−𝑑𝜏
𝐼 (𝑡 − 𝜏) − (𝑑 + 𝑢

2
)𝐷 (𝑡) ,

(1)

where 𝑏 is the recruitment of the population, 𝑑 is the natural
death rate of the population, 𝑘 is the proportional constant,
𝑢
1
is the natural recovery rate of the infective individuals 𝐼,

𝑢
2
is the natural recovery rate of the disease𝐷 (by𝐷, we also

denote the disease induced by infective disease 𝐼), and 𝜏 is
the average time period from infectious disease 𝐼 evolving
to noninfectious disease 𝐷. 𝑚 is the rate by which infective
individuals 𝐼 change into noninfectious individuals𝐷, and 𝛼
is the parameter thatmeasures the psychological or inhibitory
effect. 𝑒−𝑑𝜏 is the probability that an individual during the
incubation period time 𝜏 survived to develop the disease 𝐷
and did not emigrate [12]. For simplicity, we set 𝑐 = 𝑚𝑒−𝑑𝜏.
We only consider the system in the first quadrant due to the
epidemiological meaning.

It is easy to see that system (1) always has a disease-
free equilibrium 𝐸

0
= (𝑏/𝑑, 0, 0). To find the other positive

equilibria, set

𝑏 − 𝑑𝑆 −

𝑘𝐼𝑆

1 + 𝛼𝐼

+ 𝑢
1
𝐼 + 𝑢
2
𝐷 = 0,

𝑘𝐼𝑆

1 + 𝛼𝐼

− 𝑐𝐼 − (𝑢
1
+ 𝑑) 𝐼 = 0,

𝑐𝐼 − (𝑑 + 𝑢
2
)𝐷 = 0.

(2)

By direct computation, we have

[(𝑢
2
+ 𝑑) 𝛼𝑑 (𝑢

1
+ 𝑐 + 𝑑) + 𝑘𝑑 (𝑢

2
+ 𝑐 + 𝑑)] 𝐼

+ (𝑢
2
+ 𝑑) [𝑑 (𝑢

1
+ 𝑐 + 𝑑) − 𝑘𝑏] = 0.

(3)

Then, system (1) has exactly a positive equilibrium
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
) if and only if 𝑑(𝑢

1
+ 𝑐 + 𝑑) − 𝑘𝑏 < 0 with

𝑆
∗
=

(𝑐 + 𝑑 + 𝑢
1
) (1 + 𝛼𝐼

∗
)

𝑘

,

𝐼
∗
=

(𝑢
2
+ 𝑑) [𝑘𝑏 − 𝑑 (𝑢

1
+ 𝑐 + 𝑑)]

(𝑢
2
+ 𝑑) 𝛼𝑑 (𝑢

1
+ 𝑐 + 𝑑) + 𝑘𝑑 (𝑢

2
+ 𝑐 + 𝑑)

,

𝐷
∗
=

𝑐𝐼
∗

𝑑 + 𝑢
2

.

(4)

For system (1) with 𝜏 = 0, define the basic reproduction
number [13] as follows:

𝑅
0
=

𝑘𝑏

𝑑 (𝑢
1
+ 𝑐 + 𝑑)

. (5)

By (2) and (3), it is easy to see that
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Figure 1: When 𝜏 = 0, 𝑏 = 6, 𝛼 = 𝑑 = 𝑘 = 1, 𝑐 = 4, and 𝑢
1
= 𝑢
2
= 2,

then 𝑅
0
= 0.8571 < 1. Taking the initial value (3, 1, 1), then the

solution (𝑆(𝑡), 𝐼(𝑡), 𝐷(𝑡)) approaches to the disease-free equilibrium
𝐸
0
= (6, 0, 0) as 𝑡 → ∞.

(i) if 𝑅
0
≤ 1, then system (1) has no positive equilibrium;

(ii) if 𝑅
0
> 1, then system (1) has a unique positive

equilibrium 𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
), which is called the

endemic equilibrium;

(iii) the equilibrium 𝐸
0
and the equillibrium 𝐸

∗
are on the

hyperplane 𝑆 + 𝐼 + 𝐷 = 𝑏/𝑑.

The rest of this paper is organized as follows. In Section 2,
we will study the stability of disease-free equilibrium and
endemic equilibrium, respectively, of the systemwithout time
delay. In Section 3, the system with time delay is considered.
The stability conditions for disease-free equilibrium and
endemic equilibrium are investigated see Figures 1, 2, 3, and 4.
Hopf bifurcation of the endemic equilibrium at a critical time
𝜏 is studied. Finally, some conclusions and discussions will be
given in the last section.

2. The System without Time Delay

If 𝜏 = 0, system (1) becomes the following form:

𝑆
󸀠
(𝑡) = 𝑏 − 𝑑𝑆 (𝑡) −

𝑘𝐼 (𝑡) 𝑆 (𝑡)

1 + 𝛼𝐼 (𝑡)

+ 𝑢
1
𝐼 (𝑡) + 𝑢

2
𝐷 (𝑡) ,

𝐼
󸀠
(𝑡) =

𝑘𝐼 (𝑡) 𝑆 (𝑡)

1 + 𝛼𝐼 (𝑡)

− 𝑐𝐼 (𝑡) − (𝑢
1
+ 𝑑) 𝐼 (𝑡) ,

𝐷
󸀠
(𝑡) = 𝑐𝐼 (𝑡) − (𝑑 + 𝑢2

)𝐷 (𝑡) .

(6)

In this case, we neglect the time from infectious disease 𝐼
evolving to noninfectious disease 𝐷, and by 𝑐 we denote the
rate of disease 𝐼 changed into disease𝐷.
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Figure 2: When 𝜏 = 0, 𝑏 = 3, 𝛼 = 𝑑 = 𝑘 = 𝑐 = 𝑢
1
= 1,

𝑢
2
= 2, and the initial value is (3, 1, 1), then 𝑅

0
= 1, and the

solution (𝑆(𝑡), 𝐼(𝑡), 𝐷(𝑡)) approaches to the disease-free equilibrium
𝐸
0
= (3, 0, 0) as 𝑡 → ∞.

2.1. Local Stability of Equilibria. In order to examine local sta-
bility of an equilibrium, we should compute the eigenvalues
of the linearized operator for system (6) at the equilibrium.

Consider disease-free equilibrium 𝐸
0
; the characteristic

equation is obtained by the standard method as follows:

(𝜆 + 𝑑) (𝜆 + 𝑑 + 𝑢
2
) (𝜆 −

𝑘𝑏

𝑑

+ 𝑢
1
+ 𝑑 + 𝑐) = 0. (7)

It is obvious that 𝜆
1
= −𝑑 < 0, 𝜆

2
= −𝑑 − 𝑢

2
< 0, and

𝜆
3
= (𝑢
1
+ 𝑐 + 𝑑)(𝑅

0
− 1) are the characteristic roots of (7).

Thus, we have the following theorem.

Theorem 1. The local stability of disease-free equilibrium 𝐸
0

has the following conclusions as 𝜏 = 0.

(i) If 𝑅
0
> 1, then the disease-free equilibrium 𝐸

0
is

unstable.

(ii) If 𝑅
0
< 1, then the disease-free equilibrium 𝐸

0
is locally

asymptotically stable.

(iii) If 𝑅
0
= 1, then the disease-free equilibrium 𝐸

0
is

degenerated.

Now, the local stability of the endemic equilibrium
𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
) is considered. As we know, the endemic

equilibrium 𝐸
∗
exists if and only if 𝑅

0
> 1. By computation,

the characteristic equation of (6) at 𝐸
∗
becomes

𝜆
3
+ 𝐴𝜆
2
+ 𝐵𝜆 + 𝐶 = 0, (8)
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Figure 3: Taking the initial value (3, 1, 1) and 𝜏 = 0, 𝑏 = 6,
𝛼 = 𝑑 = 𝑘 = 𝑐 = 𝑢

1
= 1, and 𝑢

2
= 2, then 𝑅

0
= 2 > 1,

and the solution (𝑆(𝑡), 𝐼(𝑡), 𝐷(𝑡)) tends to the endemic equilibrium
𝐸
∗
= (5.0769, 0.6923, 0.2308) as 𝑡 → ∞.

where

𝐴 = 2𝑑 + 𝑢
2
+

𝑘𝐼
∗

1 + 𝛼𝐼
∗

+ (𝑢
1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

> 0,

𝐵 = 𝑑
2
+ 𝑢
2
𝑑 + (2𝑑 + 𝑢

2
) (𝑢
1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

+ (2𝑑 + 𝑢
2
+ 𝑐)

𝑘𝐼
∗

1 + 𝛼𝐼
∗

> 0,

𝐶 = 𝑑 (𝑢
2
+ 𝑑) (𝑢

1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

+ 𝑑 (𝑢
2
+ 𝑑 + 𝑐)

𝑘𝐼
∗

1 + 𝛼𝐼
∗

> 0.

(9)

By calculation, we see that 𝐴𝐵 > 𝐶. Hence, all roots of
(8) have negative real parts by the Routh-Hurwitz criterion.
Therefore, we obtain the following result on the locally
asymptotic stability of the endemic equilibrium.

Theorem 2. If 𝑅
0
> 1, then the endemic equilibrium 𝐸

∗
is

locally asymptotically stable.

2.2. Global Stability of Equilibria. To study the global stability
of an equilibrium, we first present two lemmas.

Lemma 3. There exists a positively invariant set Λ for system
(6), where

Λ = {(𝑆, 𝐼, 𝐷) ∈ 𝑅
3

+
: 𝑆 ≥ 0, 𝐼 ≥ 0,𝐷 ≥ 0, 𝑆 + 𝐼 + 𝐷 ≤

𝑏

𝑑

} .

(10)
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(a) When 𝜏 = 4, then the solution (𝑆(𝑡), 𝐼(𝑡), 𝐷(𝑡)) converges to the
endemic equilibrium 𝐸∗ = (4.4138, 5.0136, 5.726) as 𝑡 → ∞
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(b) When 𝜏 = 4.8924, then a periodic orbit appears in the small
neighborhood of the endemic equilibrium 𝐸∗ = (4.4138, 5.0136, 5.726)

Figure 4: Taking 𝑏 = 6, 𝛼 = 1, 𝑑 = 0.4, 𝑘 = 3, 𝑐 = 1, 𝑢
1
= 0.8, and 𝑢

2
= 0.5, then 𝑅

0
= 20.4545 > 1, 𝑝

1
= −6.9925 < 0, 𝑞

1
= −8.2363 < 0, and

𝑟
1
= −0.4091 < 0. And set the initial condition (𝑆(𝜃), 𝐼(𝜃), 𝐷(𝜃)) = (1, 2, 2), 𝜃 ∈ [−𝜏, 0].

That is, if the initial value (𝑆(0), 𝐼(0), 𝐷(0)) ∈ Λ, then the
solutions of (6) are in the set Λ, for all 𝑡 ≥ 0.

Proof. If the initial value (𝑆(0), 𝐼(0), 𝐷(0)) ∈ Λ, then the
solution of (6) locally exists and is unique by standard theory
on ordinary differential equations [14].

By (6), it is easy to see that on the surface 𝑆(𝑡) = 0,𝑑𝑆/𝑑𝑡 >
0, if (0, 𝐼(0), 𝐷(0)) ∈ Λ, on the surface 𝐼(𝑡) = 0, 𝑑𝐼/𝑑𝑡 = 0, if
(𝑆(𝑡), 0, 𝐷(𝑡)) ∈ Λ, and on the surface 𝐷(𝑡) = 0, 𝑑𝐷/𝑑𝑡 ≥ 0,
if (𝑆(𝑡), 𝐼(𝑡), 0) ∈ Λ. Hence, no solution of system (6) can exit
from the boundary 𝑆 = 0, 𝐼 = 0, 𝐷 = 0, if (𝑆(0), 𝐼(0), 𝐷(0)) ∈
Λ [15].

By adding the first three equations of system (6), we
obtain

𝑑𝑁

𝑑𝑡

= 𝑏 − 𝑑𝑁 (𝑡) , (11)

where𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝐷(𝑡). Thus,

𝑁(𝑡) =

𝑏

𝑑

− (

𝑏

𝑑

− 𝑁 (0)) 𝑒
−𝑑𝑡
. (12)

If the initial value (𝑆(0), 𝐼(0), 𝐷(0)) ∈ Λ and 0 < 𝑁(0) ≤ 𝑏/𝑑,
then 0 < 𝑁(𝑡) ≤ 𝑏/𝑑. Hence, the solution (𝑆(𝑡), 𝐼(𝑡), 𝐷(𝑡)) of
system (6) cannot blow up to infinite for all 𝑡 ≥ 0.

In summary, if the initial value (𝑆(0), 𝐼(0), 𝐷(0)) ∈ Λ,
then the solution of (6) is in Λ, for all 𝑡 ≥ 0.

It is clear that the limit set of system (6) is on the plane
𝑆 + 𝐼 + 𝐷 = 𝑏/𝑑. Thus, we have the following lemma.

Lemma 4. The limit set of system (6) inΛ is equivalent to that
of the following reduced system:

𝐼
󸀠
(𝑡) =

𝑘𝐼 (𝑡)

1 + 𝛼𝐼 (𝑡)

(

𝑏

𝑑

− 𝐼 (𝑡) − 𝐷 (𝑡))

− (𝑐 + 𝑢
1
+ 𝑑) 𝐼 (𝑡) ≜ 𝑃 (𝐼, 𝐷) ,

𝐷
󸀠
(𝑡) = 𝑐𝐼 (𝑡) − (𝑢

2
+ 𝑑)𝐷 (𝑡) ≜ 𝑄 (𝐼, 𝐷) ,

(13)

in the triangle regionΩ = {(𝐼, 𝐷) : 𝐼 ≥ 0,𝐷 ≥ 0, 𝑏/𝑑 ≥ 𝐼 +𝐷}.

One has the following result regarding the nonexistence
of periodic orbits in system (13), which implies the nonexis-
tence of periodic orbits of system (6) by Lemmas 3 and 4.

Theorem 5. System (13) does not have nontrivial periodic
orbits.

Proof. Consider system (13) for 𝐼 ≥ 0 and𝐷 ≥ 0. Take aDulac
function

𝐵 (𝐼, 𝐷) =

1 + 𝛼𝐼 (𝑡)

𝑘𝐼 (𝑡)

. (14)

We have

𝜕 (𝐵𝑃)

𝜕𝐼

+

𝜕 (𝐵𝑄)

𝜕𝐷

= −1 −

(𝑢
1
+ 𝑐 + 𝑑) 𝛼

𝑘

−

1 + 𝛼𝐼

𝑘𝐼

(𝑢
2
+ 𝑑) < 0.

(15)

The conclusion follows.
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Theorem 6. When 𝜏 = 0, system (1) has the following global
dynamics.

(i) If 𝑅
0
≤ 1, then system (1) has a unique equilibrium.

The disease-free equilibrium 𝐸
0
of system (1) is globally

asymptotically stable in the interior of Λ.
(ii) If𝑅

0
> 1, then the system (1) has two equilibria,𝐸

0
and

𝐸
∗
. Moreover, the endemic equilibrium 𝐸

∗
is globally

asymptotically stable in the interior of Λ.

Proof. (i) It is easy to check the conclusion by Theorem 1(ii),
Lemma 3, and Theorem 5 as 𝑅

0
< 1. Therefore, we only

consider the case 𝑅
0
= 1. For simplicity, we rescale (13) by

𝑥 =

𝑘𝐼

𝑢
2
+ 𝑑

𝐼, 𝑦 =

𝑘𝐷

𝑢
2
+ 𝑑

, 𝑠 = (𝑑 + 𝑢
2
) 𝑡. (16)

Then, we obtain

𝑑𝑥

𝑑𝑠

=

𝑥

1 + 𝑝𝑥
2
(𝐴 − 𝑥 − 𝑦) − 𝑚𝑥,

𝑑𝑦

𝑑𝑠

= 𝑞𝑥 − 𝑦,

(17)

where

𝑝 =

𝛼 (𝑢
2
+ 𝑑)

𝑘

, 𝐴 =

𝑘𝑏

𝑑 (𝑑 + 𝑢
2
)

,

𝑚 =

𝑐 + 𝑢
1
+ 𝑑

𝑑 + 𝑢
2

, 𝑞 =

𝑐

𝑑 + 𝑢
2

.

(18)

Clearly, 𝑅
0
= 1 if and only if 𝐴 − 𝑚 = 0, and system

(17) has a unique equilibrium (0, 0) in the region Ω. Hence,
there exists a small neighborhood 𝑂(𝜀) of (0, 0) such that the
dynamics of system (17) is equivalent to that of

𝑑𝑥

𝑑𝑠

= −𝑥
2
− 2𝑥𝑦 + 𝑂 (𝑟

3
) ,

𝑑𝑦

𝑑𝑠

= 𝑞𝑥 − 𝑦,

(19)

where 𝑟 = √𝑥
2
+ 𝑦
2. By Theorem 7.1 in [16] (pp. 114) or

Theorem 2.11.1 in [17] (pp. 1500), we know that (0, 0) is a
saddle-node.

(ii) By Theorem 1(i), Theorem 2, Lemma 3, and
Theorem 5, we see that the endemic equilibrium 𝐸

∗
is

globally asymptotically stable in the interior of Λ. This
completes the proof.

3. System with Time Delay and
Hopf Bifurcation

3.1. Local Stability of Equilibria. In this section, we consider
the system (1) with time delay 𝜏 > 0. To derive the local
stability of equilibrium, we should linearize the system (1) as
the form

𝑥
󸀠
(𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) , (20)

where 𝐴 and 𝐵 are real matrixes. The characteristic equation
[18] is

det [𝜆𝐼 − 𝐴 − 𝑒−𝜆𝜏𝐵] = 0. (21)

By this method, we linearize the system (1) at the disease-
free equilibrium 𝐸

0
and obtain the following characteristic

equation:

(𝜆 + 𝑑) (𝜆 + 𝑑 + 𝑢2
) (𝜆 −

𝑘𝑏

𝑑

+ 𝑢
1
+ 𝑑 + 𝑐𝑒

−𝜆𝜏
) = 0. (22)

It is easy to see that 𝜆
1
= −𝑑 < 0 and 𝜆

2
= −𝑑 − 𝑢

2
< 0

are two characteristic roots of (22). Hence, we only need to
discuss the roots of the following equation:

ℎ (𝜆, 𝜏) ≜ (𝜆 −

𝑘𝑏

𝑑

+ 𝑢
1
+ 𝑑 + 𝑐𝑒

−𝜆𝜏
) = 0. (23)

By discussing (22), we have the following result on the
local asymptotic stability of the disease-free equilibrium.

Theorem 7. When 𝜏 > 0, the disease-free equilibrium 𝐸
0
of

system (1) has the following conclusion.

(i) If 𝑅
0
< 𝑅
1
= (𝑐𝑑 + 𝑘𝑏)/(𝑢

1
𝑑 + 𝑑

2
) < 1, then

the disease-free equilibrium 𝐸
0
of system (1) is locally

asymptotically stable.
(ii) If𝑅

0
> 1, then the disease-free equilibrium𝐸

0
of system

(1) is unstable.
(iii) If𝑅

0
= 1, then the disease-free equilibrium𝐸

0
of system

(1) is degenerated.

Proof. (i) By implicit function theorem for complex variables,
we know that the root of (23) is continuous on the parameter
𝜏.

If 𝑅
0
< 1, then 0 is not a root of (23), for all 𝜏 > 0. Note

that all complex roots of (23) must come in conjugate pairs
and all roots of (23) are negative for 𝜏 = 0. Thus, all roots of
(23) have negative real parts for small 𝜏; that is, 0 < 𝜏 ≪ 1.
Assume that there exists a positive number 𝜏 = 𝜏

0
such that

(23) has a pair of purely imaginary roots 𝜆 = ±𝜔𝑖, where 𝜔 is
a positive number. Then,

𝑐 cos𝜔𝜏
0
=

𝑘𝑏

𝑑

− 𝑢
1
− 𝑑,

𝑐 sin𝜔𝜏
0
= 𝜔
0
.

(24)

Adding up the square of both equations in (24), we obtain

𝜔
2
= (1 − 𝑅

0
) (𝑅
1
− 1) (𝑢

1
+ 𝑐 + 𝑑) (𝑑 + 𝑢

1
) . (25)

When 𝑅
0
< 𝑅
1
< 1, then 𝜔2 < 0. It is a contradiction with

𝜔
2
> 0 which leads to the nonexistence of 𝜏

0
.

(ii)We set ℎ(𝜆, 𝜏) = (𝜆−(𝑘𝑏/𝑑)+𝑢
1
+𝑑+𝑐𝑒

−𝜆𝑟
) = 0.When

𝜆 = 0 and 𝑅
0
> 1, then ℎ(0, 𝜏) = (𝑑 + 𝑢

1
+ 𝑐)(1 − 𝑅

0
) < 0

and lim
𝜆→+∞

ℎ(𝜆, 𝜏) → +∞. Therefore, (23) must have a
positive real root for all 𝜏 > 0.

(iii) If𝑅
0
= 1, it is easy to know that 𝜆 = 0 is a root of (23),

for all 𝜏 > 0, which leads to conclusion (iii). This completes
the proof of the theorem.
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Now, the local stability of the endemic equilibrium
𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
) is considered. As we know, the endemic

equilibrium 𝐸
∗
exists if and only if 𝑅

0
> 1. By computation,

the associated transcendental characteristic equation of (1) at
𝐸
∗
becomes

𝜆
3
+ 𝐴𝜆
2
+ 𝐵𝜆 + 𝐶 + (𝐴

1
𝜆
2
+ 𝐵
1
𝜆 + 𝐶

1
) 𝑒
−𝜆𝜏

= 0, (26)

where

𝐴 = 2𝑑 + 𝑢
2
− 𝑐 +

𝑘𝐼
∗

1 + 𝛼𝐼
∗

+ (𝑢
1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

,

𝐴
1
= 𝑐,

𝐵 = 𝑑
2
− 2𝑐𝑑 + 𝑢

2
𝑑 − 𝑐𝑢

2

+ (2𝑑 + 𝑢
2
) (𝑢
1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

+ (2𝑑 + 𝑢
2
)

𝑘𝐼
∗

1 + 𝛼𝐼
∗

,

𝐵
1
= 2𝑐𝑑 + 𝑢

2
𝑐 + 𝑐

𝑘𝐼
∗

1 + 𝛼𝐼
∗

,

𝐶 = 𝑑 (𝑑 + 𝑢
2
) (−𝑐 + (𝑢

1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

+

𝑘𝐼
∗

1 + 𝛼𝐼
∗

) ,

𝐶
1
= (𝑢
2
+ 𝑑) 𝑑𝑐 + 𝑐𝑑

𝑘𝐼
∗

1 + 𝛼𝐼
∗

.

(27)

When 𝜏 = 0, (26) becomes

𝜆
3
+ (𝐴 + 𝐴

1
) 𝜆
2
+ (𝐵 + 𝐵

1
) 𝜆 + 𝐶 + 𝐶

1
= 0, (28)

where

𝐴 + 𝐴
1
= 2𝑑 + 𝑢

2
+

𝑘𝐼
∗

1 + 𝛼𝐼
∗

+ (𝑢
1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

> 0,

𝐵 + 𝐵
1
= 𝑑
2
+ 𝑢
2
𝑑 + (2𝑑 + 𝑢

2
) (𝑢
1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

+ (2𝑑 + 𝑢
2
+ 𝑐)

𝑘𝐼
∗

1 + 𝛼𝐼
∗

> 0,

𝐶 + 𝐶
1
= 𝑑 (𝑢

2
+ 𝑑) (𝑢

1
+ 𝑐 + 𝑑)

𝛼𝐼
∗

1 + 𝛼𝐼
∗

+ 𝑑 (𝑢
2
+ 𝑑 + 𝑐)

𝑘𝐼
∗

1 + 𝛼𝐼
∗

> 0.

(29)

Thus, we obtain the following result on the local asymptotic
stability of the endemic equilibrium.

Theorem 8. If 𝑅
0
> 1, 𝑐 ≤ 𝑢

2
, 2𝑐 ≤ 𝑑,

2𝑘𝑐 (𝑅
0
− 1) (𝑢

2
+ 𝑐 + 𝑑)

[(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)−2𝑐](𝑢

2
+ 𝑑)(𝑅

0
− 1)(𝑢

1
+ 𝑑 + 𝑐)

≤ 𝛼,

(30)

and 0 < (𝑢
1
+𝑑−𝑐)(𝑅

0
−1)−2𝑐, then the endemic equilibrium

𝐸
∗
of system (1) is locally asymptotically stable for 𝜏 > 0.

Proof. By implicit function theorem for complex variables,
we know that the root of (23) is continuous on the parameter
𝜏. If 𝑅

0
> 1, then 0 is not a root of (26) for all 𝜏 > 0. Note that

all complex roots of (26)must come in conjugate pairs and all
roots of (26) have negative real parts as 𝜏 = 0 by Theorem 2.
Thus, all roots of (26) have negative real parts for very small
𝜏, 0 < 𝜏 ≪ 1. Suppose that there exists a positive 𝜏

0
such that

(26) has a pair of purely imaginary roots ±𝜔, 𝜔 > 0. Then,
𝜔 > 0 satisfies

− 𝑖 (𝜔
3
+ 𝐴𝜔
2
− 𝐵𝜔) + 𝐶

+ (𝐶
1
− 𝐴
1
𝜔
2
+ 𝑖𝐵
1
𝜔) (cos𝜔𝜏

0
− 𝑖 sin𝜔𝜏

0
) = 0.

(31)

Separating the real and imaginary parts, we have

(𝐶
1
− 𝐴
1
𝜔
2
) cos𝜔𝜏

0
+ 𝐵
1
𝜔 sin𝜔𝜏

0
= 𝐴𝜔
2
− 𝐶,

𝐵
1
𝜔 cos𝜔𝜏

0
− (𝐶
1
− 𝐴
1
𝜔
2
) sin𝜔𝜏

0
= 𝜔
3
− 𝐵𝜔,

(32)

which implies that

𝜔
6
+ (𝐴
2
− 2𝐵 − 𝐴

2

1
) 𝜔
4

+ (𝐵
2
+ 2𝐴
1
𝐶
1
− 2𝐴𝐶 − 𝐵

2

1
) 𝜔
2
+ 𝐶
2
− 𝐶
2

1
= 0.

(33)

Let 𝑧 = 𝜔2. Then, (33) becomes

𝑧
3
+ 𝑝
1
𝑧
2
+ 𝑞
1
𝑧 + 𝑟
1
= 0, (34)

where 𝑝
1
= 𝐴
2
− 2𝐵 − 𝐴

2

1
, 𝑞
1
= 𝐵
2
+ 2𝐴
1
𝐶
1
− 2𝐴𝐶 − 𝐵

2

1
, and

𝑟
1
= 𝐶
2
− 𝐶
2

1
. By computation, we have

𝑝
1
= 2𝑑
2
+ 2𝑢
2
𝑑 + 𝑢
2

2
− 2𝑐𝑥 − 2𝑐𝑦 + 𝑥

2
+ 2𝑥𝑦 + 𝑦

2

≥ 7𝑐
2
+ 2𝑢
2
𝑑 + 𝑢
2

2
+ (𝑐
2
− 2𝑐𝑥 + 𝑥

2
) + 2𝑥𝑦

+ (𝑦 − 2𝑐) 𝑦

= 7𝑐
2
+ 2𝑢
2
𝑑 + 𝑢
2

2
+ (𝑐 − 𝑥)

2
+ 2𝑥𝑦 + (𝑦 − 2𝑐) 𝑦,

𝑞
1
= (𝑢
2

2
+ 2𝑢
2
𝑑 + 2𝑑

2
) 𝑦 (𝑦 − 2𝑐)

+ (4𝑑
2
+ 4𝑢
2
𝑑 + 2𝑢

2

2
) 𝑥𝑦 + 𝐻 (𝑥) ,

𝑟
1
= [𝑑 (𝑢

2
+ 𝑑 − 𝑐) 𝑥

+𝑑 (𝑢
2
+ 𝑑) (𝑦 − 2𝑐) , (𝑢

2
+ 𝑑) 𝑑 (𝑥 + 𝑦) + 𝑐𝑑𝑥] ,

(35)

where 𝑥 = 𝑘𝐼
∗
/(1 + 𝛼𝐼

∗
), 𝑦 = (𝑢

1
+ 𝑐 + 𝑑)(𝛼𝐼

∗
/(1 + 𝛼𝐼

∗
)), and

𝐻(𝑥) = (2𝑑
2
+ 2𝑢
2
𝑑 + 𝑢
2

2
− 𝑐
2
) 𝑥
2

− (4𝑐𝑑
2
+ 2𝑢
2

2
𝑐 + 2𝑢

2
𝑐
2
+ 4𝑐𝑑𝑢

2
+ 2𝑐
2
𝑑) 𝑥

+ 𝑢
2

2
𝑑
2
+ 𝑑
4
+ 2𝑑
3
𝑢
2
.

(36)

It is easy to check that if 𝑦 > 2𝑐 and 𝐻(𝑥) > 0, then 𝑝
1
> 0,

𝑞
1
> 0, and 𝑟

1
> 0.
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Now, we examine the sign of𝐻(𝑥) as follows:

𝐻(𝑥) = (2𝑑
2
+ 2𝑢
2
𝑑 + 𝑢
2

2
− 𝑐
2
) 𝑥
2

− (4𝑐𝑑
2
+ 2𝑢
2

2
𝑐 + 2𝑢

2
𝑐
2
+ 4𝑐𝑑𝑢

2
+ 2𝑐
2
𝑑) 𝑥

+ 𝑢
2

2
𝑑
2
+ 𝑑
4
+ 2𝑑
3
𝑢
2

≥ (7𝑐
2
+ 𝑐𝑑 + 𝑢

2
𝑑 + 𝑢
2

2
) 𝑥
2

− (4𝑐𝑑
2
+ 2𝑢
2

2
𝑐 + 2𝑢

2
𝑐
2
+ 4𝑐𝑑𝑢

2
+ 2𝑐
2
𝑑) 𝑥

+ 𝑑
4
+ 2𝑢
2

2
𝑐
2
+

1

2

𝑢
2

2
𝑑
2
+ 2𝑑
3
𝑐

= (2𝑐𝑥 − 𝑑
2
)

2

+ (𝑢
2
𝑥 − 𝑢
2
𝑐)
2
+ (𝑐𝑥 − 𝑢

2
𝑐)
2

+ (√𝑐𝑑𝑥 − √𝑐
3
𝑑)

2

+ (2𝑐
2
+ 𝑢
2
𝑑) 𝑥
2
− 4𝑐𝑑𝑢

2
𝑥 +

1

2

𝑢
2

2
𝑑
2
+ 𝑑
3
𝑐

≥ (2𝑐𝑥 − 𝑑
2
)

2

+ (𝑢
2
𝑥 − 𝑢
2
𝑐)
2
+ (𝑐𝑥 − 𝑢

2
𝑐)
2

+ (√𝑐𝑑𝑥 − √𝑐
3
𝑑)

2

+ 4𝑐
2
𝑥
2
− 4𝑐𝑑𝑢

2
𝑥

+

1

2

𝑢
2

2
𝑑
2
+ 𝑑
3
𝑐

≥ (2𝑐𝑥 − 𝑑
2
)

2

+ (𝑢
2
𝑥 − 𝑢
2
𝑐)
2
+ (𝑐𝑥 − 𝑢

2
𝑐)
2

+ (√𝑐𝑑𝑥 − √𝑐
3
𝑑)

2

+ (√8𝑐𝑥 − √
1

2

𝑢
2
𝑑)

2

+ 𝑑
3
𝑐

≥ 0.

(37)

By (2), we know that 𝐼
∗
= ((𝑢

1
+ 𝑐 + 𝑑)(𝑢

2
+ 𝑑)(𝑅

0
−

1))/(𝛼(𝑢
2
+𝑑)(𝑢

1
+𝑐+𝑑)+𝑘(𝑢

2
+𝑐+𝑑)). Now, we set 𝑦 > 2𝑐;

then it follows that

1

𝛼𝐼
∗

+ 1 ≤

𝑢
1
+ 𝑐 + 𝑑

2𝑐

,

1

𝛼𝐼
∗

≤

𝑢
1
+ 𝑑 − 𝑐

2𝑐

1

𝑅
0
− 1

+

𝑘 (𝑢
2
+ 𝑐 + 𝑑)

𝛼 (𝑢
2
+ 𝑑) (𝑢

1
+ 𝑐 + 𝑑) (𝑅

0
− 1)

≤

𝑢
1
+ 𝑑 − 𝑐

2𝑐

𝑘 (𝑢
2
+ 𝑐 + 𝑑)

𝛼 (𝑢
2
+ 𝑑)(𝑢

1
+ 𝑐 + 𝑑)(𝑅

0
− 1)

≤

(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)− 2𝑐

2𝑐 (𝑅
0
− 1)

2𝑘𝑐 (𝑅
0
− 1) (𝑢

2
+ 𝑐 + 𝑑)

[(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)− 2𝑐](𝑢

2
+ 𝑑)(𝑅

0
− 1)(𝑢

1
+ 𝑑 + 𝑐)

≤ 𝛼.

(38)

Now that 𝑝
1
> 0, 𝑞

1
> 0, and 𝑟

1
> 0 under the conditions

of this theorem, (34) has no positive roots, which implies the
nonexistence of 𝜏

0
. Thus, all roots of (26) have negative real

parts for 𝜏 > 0. The proof is finished.

3.2. Hopf Bifurcation. In what follows, we consider the Hopf
bifurcation of the disease-free equilibrium 𝐸

0
.

Theorem 9. If 𝜏 > 0, 𝑅
0
< 1, and 𝑅

1
= (𝑐𝑑 + 𝑘𝑏)/(𝑢

1
𝑑 +

𝑑
2
) > 1, then there exists a pair of purely imaginary eigenvalues

±𝜔
0
𝑖 as 𝜏 = 𝜏

0
, and the disease-free equilibrium of system (1)

is locally asymptotically stable as 0 < 𝜏 < 𝜏
0
. On the other

hand, system (1) can undergo aHopf bifurcation if 𝜏 > 𝜏
0
, and a

periodic orbit appears in the small neighborhood of the disease-
free equilibrium 𝐸

0
.

Proof. When 𝑅
1
> 1, we obtain 𝜔

0
from (25). Let

𝜏
0
=

1

𝜔
0

(arcsin
𝜔
0

𝑐

) . (39)

By the implicit function theorem for complex variables, the
first conclusion is completely proved.

Suppose that 𝜆(𝜏) = 𝜎(𝜏)+𝑖𝜔(𝜏) is a root of (23) as 𝜏 > 𝜏
0
.

Differentiating (23) with respect to 𝜏, we obtain

𝑑𝜆

𝑑𝜏

=

𝑐𝜆𝑒
−𝜆𝜏

1 − 𝑐𝜏𝑒
−𝜆𝜏
. (40)

Note that 𝜆(𝜏
0
) = ±𝜔

0
. We consider

Re[ 𝑑𝜏

𝑑𝜆 (𝜏
0
)

] = Re [ 1

𝑐𝜆𝑒
−𝜆𝜏

−

𝜏

𝜆

]

𝜏=𝜏0

= Re[ 1

𝑐𝑖𝜔
0
(cos𝜔

0
𝜏
0
− 𝑖 sin𝜔

0
𝜏
0
)

−

𝜏
0

𝑖𝜔
0

]

= Re [
cos𝜔
0
𝜏
0
+ 𝑖 sin𝜔

0
𝜏
0

𝑐𝑖𝜔
0

] =

sin𝜔
0
𝜏
0

𝑐𝜔
0

.

(41)

By (24), we have that sin𝜔
0
𝜏
0
/𝑐𝜔
0
= 1/𝑐
2
> 0. Thus,

Re [𝑑𝜆
𝑑𝜏

]

𝜏=𝜏0

> 0, (42)

which leads to Re(𝜆(𝜏)) > 0 as 𝜏 > 𝜏
0
. The proof is finished.

Now, we consider the Hopf bifurcation of the endemic
equilibrium 𝐸

∗
.

ByTheorem 9, we know that the endemic equilibrium 𝐸
∗

is locally asymptotically stable for all 𝜏 > 0 if 𝑐 ≤ 𝑢
2
, 2𝑐 ≤ 𝑑,

2𝑘𝑐 (𝑅
0
− 1) (𝑢

2
+ 𝑐 + 𝑑)

[(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)−2𝑐](𝑢

2
+ 𝑑) (𝑅

0
− 1)(𝑢

1
+ 𝑑 + 𝑐)

≤ 𝛼,

(43)

and 0 < (𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1) − 2𝑐. Now, we consider the case

that 𝑢
2
+ 𝑑 < 𝑐, 0 < (𝑢

1
+ 𝑑 − 𝑐)(𝑅

0
− 1) − 2𝑐,

𝛼 <

2𝑘𝑐 (𝑅
0
− 1) (𝑢

2
+ 𝑐 + 𝑑)

[(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)−2𝑐](𝑢

2
+ 𝑑)(𝑅

0
− 1)(𝑢

1
+ 𝑑 + 𝑐)

,

(44)

if 𝑅
0
> 1, 𝜏 > 0.
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Lemma 10. If 𝑅
0
> 1, 𝑢

2
+𝑑 < 𝑐, 0 < (𝑢

1
+𝑑−𝑐)(𝑅

0
−1)−2𝑐,

and

𝛼 <

2𝑘𝑐 (𝑅
0
− 1) (𝑢

2
+ 𝑐 + 𝑑)

[(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)−2𝑐](𝑢

2
+ 𝑑)(𝑅

0
− 1)(𝑢

1
+ 𝑑 + 𝑐)

,

(45)

then there exists a pair of purely imaginary eigenvalues ±𝜔
0
𝑖 as

𝜏 = 𝜏
0
, and the endemic equilibrium 𝐸

∗
of system (6) is locally

asymptotically stable as 0 < 𝜏 < 𝜏
0
.

Proof. By Theorem 9, we know that characteristic equation
(26) may have a pair of purely imaginary roots ±𝜔

0
𝑖 for some

𝜏 > 0 when 𝑅
0
> 1 and (34) has positive real roots.

We know that (34) has at least a positive root if 𝑟
1
< 0,

where

𝑟
1
= [𝑑 (𝑢

2
+ 𝑑 − 𝑐) 𝑥 + 𝑑 (𝑢

2
+ 𝑑) (𝑦 − 2𝑐)]

× [(𝑢
2
+ 𝑑) 𝑑 (𝑥 + 𝑦) + 𝑐𝑑𝑥] .

(46)

It is easy to check that 𝑟
1
< 0 if 𝑢

2
+ 𝑑 − 𝑐 < 0, 𝑦 < 2𝑐. From

Theorem 9, if

𝛼 <

2𝑘𝑐 (𝑅
0
− 1) (𝑢

2
+ 𝑐 + 𝑑)

[(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)−2𝑐](𝑢

2
+ 𝑑)(𝑅

0
− 1)(𝑢

1
+ 𝑑 + 𝑐)

,

(47)

then 𝑦 < 2𝑐. Hence, (34) has at least a positive root and at
most three different positive real roots under the conditions
of this lemma.

Assume that (34) has positive real roots, denoted by 𝑧
𝑘
,

𝑘 = 1, 2, 3. Then, (33) has positive roots 𝜔2
𝑘
= 𝑧
𝑘
. Let

𝜏
𝑗

𝑘

=

1

𝜔
𝑘

× [arccos(
(𝐵
1
−𝐴𝐴
1
) 𝜔
4

𝑘
+(𝐶
1
𝐴+𝐴
1
𝐶−𝐵
1
𝐵)𝜔
2

𝑘
−𝐶
1
𝐶

𝐴
2

1
𝜔
4

𝑘
+ (𝐵
2

1
− 2𝐴
1
𝐶
1
) 𝜔
2

𝑘
+ 𝐶
2

1

)

+2𝑗𝜋] , 𝑘 = 1, 2, 3; 𝑗 ∈ 𝑍
+
.

(48)

We set

𝜏
∗
= min
𝑘=1,2,3

{𝜏
0

𝑘
} . (49)

Then, the characteristic equation (26) of equilibrium 𝐸
∗
has

a pair of purely imaginary roots ±𝜔
0
𝑖 as 𝜏 = 𝜏

∗
. Note that

all roots of (26) have negative real parts as 𝜏 = 0. Therefore,
all roots of (26) have negative real parts as 0 < 𝜏 < 𝜏

0
by

continuity of roots on parameter 𝜏. This completes the proof
of Lemma 10.

Theorem 11. Assume that the condition of Lemma 10 holds.
Then, system (1) can undergo aHopf bifurcation if 𝜏 > 𝜏

∗
, and a

periodic orbit appears in the small neighborhood of the endemic
equilibrium 𝐸

∗
if either 𝑝

1
≥ 0 or 𝑞

1
≤ 0.

Proof. We consider the transversal conditions [19] for the
complex eigenvalues of the endemic equilibrium𝐸

∗
at 𝜏 = 𝜏

∗
.

Suppose that𝜆(𝜏) = 𝜎(𝜏)+𝑖𝜔(𝜏) is a root of (26) as 𝜏 > 𝜏
∗
.

Differentiating (26) with respect to 𝜏, we obtain [3]

[

𝑑Re 𝜆(𝜏
∗
)

𝑑𝜏

]

−1

=

𝑧
0

𝑍

(3𝑧
2

0
+ 2𝑝
1
𝑧
0
+ 𝑞
1
) , (50)

where 𝑍 = [𝐵2
1
𝜔
2

0
+ (𝐶
1
− 𝐴
1
𝜔
2

0
)
2
]𝜔
2

0
> 0.

Since 𝑧3+𝑝
1
𝑧
2
+𝑞
1
𝑧+𝑟
1
= 0 and 𝑟

1
< 0, 3𝑧2

0
+2𝑝
1
𝑧
0
+𝑞
1
> 0

if either 𝑝
1
≥ 0 or 𝑞

1
≤ 0. Therefore we have

𝑑Re 𝜆 (𝜏
∗
)

𝑑𝜏

> 0, (51)

if either 𝑝
1
≥ 0 or 𝑞

1
≤ 0.

By Lemma 10 and Hopf bifurcation theorem in [18],
system (6) can undergo a Hopf bifurcation as 𝜏 > 𝜏

∗
, and

a periodic orbit appears in the small neighborhood of the
endemic 𝐸

∗
. This completes the proof.

4. Conclusion

In this paper, we propose the SID model with time delays.
Our purpose is to comprehend the number of disease 𝐷
which is caused by the infectious disease 𝐼 in a certain area.
For example, hepatitis B causes liver cancer and we want to
know the number of liver cancer caused by hepatitis B as
𝑡 → ∞. Our analytical results and numerical simulations
with different parameter values show that this SIDmodel has
some interesting dynamics as follows. When 𝜏 = 0, the basic
reproductive number 𝑅

0
plays a role in the behaviors of this

system. If 𝑅
0
≤ 1, then the disease 𝐷 will become extinct as

𝑡 → ∞; when 𝑅
0
> 1, the endemic equilibrium is globally

asymptotically stable. Namely, the number of disease 𝐷 will
tend to a certain number and will not die out as 𝑡 → ∞. But,
for the stability of the time delayed model, we cannot give
complete analysis because of the complexity of the system
and it is the work in the future. Here, we give some stability
analysis in some special case. When 𝜏 > 0, 𝑅

0
< 1, and

𝑅
1
= (𝑐𝑑+𝑘𝑏)/(𝑢

1
𝑑+𝑑
2
) > 1, the Hopf bifurcation appeared

which implies that the disease will appear again even it dies
out at this time. We have shown that if 𝑅

0
> 1, 𝑢

2
+ 𝑑 < 𝑐,

0 < (𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1) − 2𝑐, and

𝛼 <

2𝑘𝑐 (𝑅
0
− 1) (𝑢

2
+ 𝑐 + 𝑑)

[(𝑢
1
+ 𝑑 − 𝑐)(𝑅

0
− 1)−2𝑐](𝑢

2
+ 𝑑)(𝑅

0
− 1)(𝑢

1
+ 𝑑 + 𝑐)

,

(52)

then there exists a positive time period 𝜏
0
such that themodel

has a periodic solution as 𝜏 > 𝜏
0
which does not appear by

bilinear incidence rate [20].
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