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Determining the winners in combinatorial auctions to maximize the auctioneer’s revenue is an NP-complete problem. Computing
an optimal solution requires huge computation time in some instances. In this paper, we apply three concepts of the game theory
to design an approximation algorithm: the stability of the Nash equilibrium, the self-learning of the evolutionary game, and the
mistake making of the trembling hand assumption. According to our simulation results, the proposed algorithm produces near-
optimal solutions in terms of the auctioneer’s revenue. Moreover, reasonable computation time is another advantage of applying

the proposed algorithm to the real-world services.

1. Introduction

The combinatorial auctions support the complementarity for
bidding. The complementarity means that bidders can bid
several goods with a price. The combinatorial auctions are
useful in the instances with some considerations. For exam-
ple, the Federal Communications Commission (FCC) used
the combinatorial auction to sell electromagnetic spectra.
Most bidders in the auction prefer to buy successive, rather
than nonsuccessive, electromagnetic spectra. If the FCC used
traditional auctions in selling a group of spectra to a single
buyer, for example, the English auctions, the bidders may
win some nonsuccessive spectra. Thus, the winners will drop
out the auction because the expected utility is not achieved
[1]. After the FCC used the combinatorial auction to sell
the electromagnetic spectra, the combinatorial auctions are
widely applied to solve the optimization problems, such as the
study of economic performance [2] and task assignment [3].

Determining the winners in the combinatorial auctions
is called as the winner determination problem (WDP) [4-
9]. Solving the WDP to maximize the auctioneer’s revenue
is an NP-complete problem [5]. This indicates that the
auctioneer requires huge time to solve some large-scale WDP

instances. Currently, the approaches of solving the WDPs can
be classified into three categories.

(1) The optimal algorithms can find the optimal solutions,
but huge computation cost is required in some prob-
lem instances, such as [5-7].

(2) The approximation algorithms can find the winners
rapidly, but they do not guarantee to find the optimal
solutions for all kinds of instances, such as [8, 10, 11].

(3) The restricted algorithms can find the optimal solu-
tions rapidly, but they can be used for the combina-
torial auctions only with some restricted conditions,
such as [6].

Although the optimal algorithms can find the solutions
with maximum auctioneer’s revenue, they require long CPU
time for solving some instances. This approach is appropriate
for small-scale problems. On the other hand, it is not suitable
for the large-scale or on-line version because of its huge
computation cost. The restricted algorithms are useful for the
problems with special properties. This kind of approaches
rapidly finds an optimal solution in a constrained problem.
If the auctioneer applies the restricted algorithm to a general
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problem, the solution may not reach the expected objective.
Comparing to the optimal algorithms, the second approach
can find the winners rapidly. Even if the optimal solu-
tion is not guaranteed, it reduces considerable computation
cost to find the approximation solutions. Furthermore, the
auctioneer must build the auction environment to fit the
requirements of the restricted algorithm, but he does not
need so by using the second approach. Therefore, a better
approximation algorithm is more efficient and convenient for
the auctioneers to solve WDPs.

In this paper, we formulate the WDP as a noncooperative
game and apply some concepts of the game theory to design
an approximation algorithm for solving the WDPs. We treat
each auction good as a player who can determine the winner.
In the proposed noncooperative game, all players use the
auctioneer’s revenue as their utility functions. Our proposed
algorithm adopts the stability of Nash equilibria (NEs) that
the obtained solutions are accepted by all players [12-14].
We utilize the evolutionary game to iteratively improve the
solution quality and consider the hand trembling assumption
to increase the solution diversity. According to our simulation
results, our proposed algorithm achieves 97.81% revenue
comparing to the optimal solutions. Moreover, our proposed
algorithm is more efficient and convenient for the auctioneers
to determine winners in combinatorial auctions.

2. Related Work

Finding the optimal solutions in the general WDPs has been
proofed as an NP-complete problem [5]. The approaches of
solving the general WDPs can be divided into two categories.
The first one is finding the optimal winners, and the other one
is the approximation algorithms. The optimal algorithms cal-
culate the winners with maximum revenue, and the research
goal is to decrease the computation cost. The approximation
algorithms focus on increasing the solution quality under a
reasonable running time.

Sandholm proposed the optimal algorithm, named the
Combinatorial Auction Branch On Bids (CABOB), to find
the winners with maximum auctioneer’s revenue [7]. The
Divide-and-Conquer is performed to partition the original
WDP instance into some subproblems. Then, the CABOB
applies the Linear Programming and the Branch-and-Bound
approaches to eliminate unnecessary calculations. So, the
CABOB decreases the computation cost. Although the com-
putation efficiency is improved, the auctioneer still requires
huge running time in some instances to obtain the optimal
solution via adopting the CABOB. For the large-scale WDP
instances, decreasing the computation cost is the major
consideration of designing the optimal algorithms.

Another approach is to develop heuristic algorithms for
increasing the solution quality. Avasarala et al. observed
that the bid rank affects the solution quality [10]. They
formulate the solutions in the bit string format that each
element is a bid, and the genetic algorithm (GA) is applied
to solve the WDP. When generating the initial population,
each gene is given a rank as the evaluation sequence. Next,
the crossover and mutation operators are applied to generate
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various solutions. After some iterations, the solution quality is
improved. However, the parameter setting is a major problem
for applying GAs to solve WDPs, such as the population
size, crossover rate, and mutation rate. Thus, the auctioneers
require some preprocesses to evaluate the optimal parameter
settings.

Hoos and Boutilier applied the stochastic local search to
design the Casanova [8]. The Casanova evaluates the feasible
solutions as many as possible. Furthermore, the Casanova
uses the revenue-per-item (RPI) of each bid to determine
the evaluation order and keeps track of the age for each
bid. The evaluation order affects the solution quality, and
many studies have proposed heuristics to determine the order
[15]. Generating solutions rapidly is the advantage of the
Casanova, but increasing the solution quality is the major
implementation issue.

The optimal algorithms and the approximation algo-
rithms have different advantages in solving WDPs. The
advantage of one approach is the drawback of another
approach. In this paper, we propose an algorithm which
combines the advantages of above approaches to maximize
auctioneer’s revenue and minimize the computation cost. The
proposed algorithm can compute the solution rapidly and
improve the solution quality iteratively. Thus, our proposed
algorithm is valuable for the real-world implementations.

3. Problem Model

3.1. Winner Determination Problem. The WDP consists of
a bid set B = {B},B,,...,Bjg} and a good set G =
{91 92> > g} Each bid B, includes a bundle b, € G and a
bid price p; € R. The bidder i pays p; to buy all goods claimed
in b, ifiis declared as a winner. Assume that a bidder proposes
only one bid. The auctioneer’s objective is to compute an
assignment X = (x;,x,,... ,x|B|), Vx; € {0, 1} for all bidders
to maximize the revenue. When x; = 1, the bidder i is a
winner, and he can buy the bundle 4, by paying p; and can buy
nothing as x; = 0. Therefore, the WDP can be formulated as
an integer linear program shown as follows:

|B|

max Zpix,- 1
i=1

st Y x <1, Vji=12,..,[G] 2
il jeb,
x; €{0,1}. 3)

The WDP has one constraint shown in (2). The candidates
of winning the good g; are the bidders i whose bundles
include g;, thatis, i | j € b. Equation (2) shows that g; can
be assigned to at most one bidder. In other words, only one
candidate of g, can be the winner.

We use an example illustrated in Table 1 to show the WDP.
There are two solutions X; = (1,0, 1) with revenue 5 + 3 = 8
and X, = (0, 1,0) with revenue 7. The constraint drawn in (2)
indicates that each good can be sold to at most one bidder,
so either bidder 1 or bidder 2 can be the winner of g,. In
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TABLE 1: An example of a WDP with three bids and three goods.

Bundle b, Bid price p;
(91> 92) $5
(92 95) $7
(93) $3

TABLE 2: The WDP game of Table 1. The player is a good, and the
strategy indicates the candidates of winning the good.

Player Strategy
1 {By, ¢}

2 {B,, B, ¢}
3 {B,, B;, ¢}

this example, X, maximizes the auctioneer’s revenue, where
selling (g,, g,) to bidder 1 and selling (g;) to bidder 3.

3.2. Proposed Game Model. We formulate the WDP as a
noncooperative game that each player considers the common
utility function. The elements of this game I' = (N, S, u) are
listed as follows.

(i) A set of players N = {n;,n,,...,nq}. We treat each
good as a player in I'.

(ii) A set of all players’ strategies S = {S,,S,,...,S,g}
For each player n), the strategy set is {¢,i | j € b}.
This means that n; can determine the winner of g;,
where g; must appear in the bundle of each winner
candidate i. Moreover, g; is unsold for the strategy ¢.

(iii) A utility function u. Each player’s utility function is
the revenue of the auctioneer in the WDP, as shown
in (1).

Given a union of all players” actions s = (s,$,,...,5g), the
outcome of I' is a winner set of the WDP. Each action s; in s
points out the winner of g; or it is unsold for ¢. Therefore, we
can transform the solution from I’ to the WDP. Considering a
WDP instance, s = (s,,5,,...,5g) and X = (x1, X,,..., X|p))
are the solutions of ' and the WDP, respectively. Supposing
s; =iins,wehavex; = 1in X. Thus, we have u(s) = ZE'I Pix;,
where x; = 1 means that the bundle b, is sold, that is, 3j, s.t.
s;=1, VI <i<|Gl.

We use the example shown in Table 1 to explain I'. Each
good is a player, so the game consists of three players. The
strategy is the set of the winner candidates. Both bidders 1
and 2 bid at good 2, so player 2 can claim bidder 1 or bidder 2
as the winner. Notice that each good is unnecessary to be sold,
s0 ¢ is a feasible strategy for each player. In Table 2, we have
two solutions s’ = (1,1,3) and s = (¢,2,2) with revenue 8
and 7, respectively.

It is reasonable to treat each bundle, rather than a good,
as a player. We discuss the rationality of regarding a good as
a player from two aspects: the computation complexity and
the property of the WDP. In the real-world applications, the
number of bidders is greater than the number of the goods,
and we have that |B| is much larger than |G|. Computing an
NE solution in the game with more players is more complex

TaBLE 3: The classical normal-form game: the prisoner’s dilemma.
Each prison has two choices: confess and silent. If they both confess,
each one serves for one year, and two years as they remain silent. If
one of them confesses, the prison who confesses does not need to
serve, and the other one get a sentence of three years.

Player 1 Player 2

Confesses Silent
Confesses (-1,-1 0,-3)
Silent (-3,0) (=2,-2)

than that with fewer players. Thus, treating each good as a
player is more appropriate than formulating the bundle as a
player in terms of the computation efficiency consideration.
On the other hand, (2) specifies that each good can be sold
to at most one bidder or unsold. Regarding a good as a player
completely satisfies the meaning that claimed in (2). Treating
a bundle as a player also can reach the restriction stated
in (2), but the auctioneer must maintain the information of
indicating which good is sold. In summary, formulating the
good as a player in a game is appropriate for the computation
efficiency and matches the property of the WDP.

4. Proposed Method

4.1. Finding Nash Equilibrium in the Normal-Form Game.
Before introducing our approach, we first present the idea
of finding a pure NE in a normal-form game. This is
the foundation of the proposed algorithm. As shown in
Table 3, the classical prisoner’s dilemma includes two players.
Given an initial solution, we will seek an NE outcome from
this solution. Supposing the initial solution (silent, silent)
and each player receives two-year serving. Because each
player only cares about the self-utility, Player 1 observes
that performing “confess” is more beneficial than “silent”
under (silent, silent). Thus, Player 1 chooses “confess” and
the outcome becomes (confess, silent). Then, Player 2 is
aware that the utility is decreased from -2 to -3, and the
strategy “confess” is more beneficial than “silent” currently
under (confess, silent). Therefore, Player 2 also moves from
“silent” to “confess”, and the outcome is (confess, confess).
Eventually, both Player 1 and Player 2 accept the outcome
(confess, confess). If any player deviates from the outcome,
their utility will be decreased from —1 to —3. No unilateral
deviation will occur under (confess, confess), so this solution
is an NE.

4.2. Nash Equilibrium Search Algorithm. In above prisoner’s
dilemma, we have the following procedure of seeking an NE.
Consider an initial solution s = (s;,$,,...,5)g). Pick up a
player n;, and change their action from s; to s;.. The outcome

becomes s’ = (s,... ,s;, ...»8ig)- If all players are satisfied

with s', it is an NE. Otherwise, pick up another player and
check the existence of the other auction with higher utility.
Repeat this idea until all players simultaneously accept the
outcome.
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Result: the winner set s

(1) begin

(2)  generate a solution s at random
(3)  while not meet stop condition do
(4) s’ « findNE(s)

(5) if r(s') > r(s) then

(6) update gvc

(7) se—s

(8) end

9) s « longJump(s)
(10) end

(11) returns

(12) end

ALGORITHM I: The main algorithm of NESA.

We use the WDP example I drawn in Table 1 to explain
the manner of finding an NE. Let the initial solution be s =
(¢,2,2). The bidder 2 is the winner of g, and g5, and the utility
of each player is $7. The player n; has two strategies: ¢ and 1.
If n, chooses ¢, the outcome is still s. If n; picks up another
strategy (selling g, to bidder 1), bidder 2 will lose n, and #;,
and bidder 3 can be the new winner of g;. The outcome moves
tos’ = (1,1,3), and the utility is increased from $7 to $8.
Performing the strategy 1 (selling the good to bidder 1) is more
beneficial than the current action ¢, so n; changes the action
from ¢ to 1. The outcome moves from s to s'. In s, no player
can gain more utility by performing the other strategy, so s’
is an NE.

Based on the above principle of searching the NE, we
propose the Nash equilibrium search approach (NESA) to
compute the winner set in the WDP. Except for the idea
of searching NEs, we also consider other two ideas of the
game theory to design the NESA. We adopt the learning
strategy from the evolutionary game to improve the solution
quality. To increase the solution diversity, the hand trembling
assumption is taken into account for simulating the mistake
making behavior in the real-world. The NESA includes two
major procedures. The first one, termed findNE(), is used to
seek an equilibrium outcome. Another procedure is named
by longJump(), and that is designed to increase the solution
diversity.

The main algorithm of the NESA is shown in Algorithm 1.
The auctioneer should provide the stop criterion of the NESA,
for example, up to ten minutes. First, the NESA randomly
generates a feasible solution s. The NESA invokes findNE()
to calculate the equilibrium solution s’ from s. We apply the
revenue calculation function r(s) to compute the revenue that
the auctioneer can earn from s. If the NE solution s is more
beneficial then s for the auctioneer, s’ survives to the next
iteration. Simultaneously, we update the good victim count
(gvc) information of each bid. The gvc is a count that indicates
the importance of each bid in terms of the auctioneer’s
revenue. Supposing 7(s") > r(s), which means the auctioneer
can gain more revenue from s', we increase the gvc of each
good in s’ by one. Thus, the good with higher gvc value
implies that selling the good contributes more revenue for
the auctioneer. In the last step, the NESA invokes the diversity

Data: s: the base solution
Result: s: the NE solution

(1) begin

(2) foreachgood g;in s do

3) s e—s

(4) remove the winner of g ;in s'

(5) add feasible bids to s" except for gjbasedona
given ranking function
(6) if 7(s") > r(s) then

(7) update gvc

(8) return findNE(s')
9) end

(10) end

(11)  return s

(12) end

ALGORITHM 2: The procedure findNE(s).

increase procedure longJump() to produce the solution which
is quite different to the NE. If the stop criterion is not satisfied,
findNE() finds the NE from the solution produced by the
longJump().

4.3.  The Local Search. Finding the NE solutions is the
objective of the local search procedure findNE(). The NE
represents a steady status that each player will not receive
more utility by the unilateral deviation [13, 14]. The player
n; chooses the winner from the candidates whose bundles
include the good g;. All players use the same utility function:
r(s) which is the auctioneer’s revenue.

The procedure of the local search findNE() is illustrated in
Algorithm 2. findNE() receives a base solution s and outputs
an NE solution s'. First, findNE() changes the action of 9;
to ¢ and then declares the possible candidates as winners
to establish a new feasible solution s’ by a given ranking
function. If s’ contributes more auctioneer’s revenue than s,
findNE() returns s Simultaneously, increase the gvc of each
good in s’ by one. If we cannot find another solution better
than s, all players accept with s, and s is an NE. Therefore,
findNE() returns the NE solution s.

Because we focus on the game without any special
property, findNE() must consider some techniques to prune
unnecessary searches. In line (5) of Algorithm 2, there are
some strategies for determining the ranking of adding feasible
bids. For example, the auctioneer can rank the feasible bids
via the criteria: (1) the bid price, (2) the RPL or (3) the
random approach. The ranking function which includes a
specific search direction can compute the new solution s’
quickly. However, the solution quality may be restricted. If
the auctioneer does not well investigate the properties of the
instance, the random approach is more appropriate to the
general cases than other heuristics. Therefore, we adopt the
random process for ranking the feasible bids in this paper.

4.4.  'The Diversity Increase Procedure. The procedure
longJump(), shown in Algorithm 3, is used for computing
another base solution of findNE(). Given a base solution s,
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Data: s: the base solution
Result: s': the diversity increased solution

(1) begin

2 s s

(3) foreachbid g, ins’ do

(4) if the random value > gvr(g,) then
(5) remove g, in s

(6) end

(7) end

(8)  add feasible bids to s’ except for g, with trembling at
random based on a given ranking function

(9) if r(s') > r(s) then

(10) update gvc

11) return s’

(12)  elseif trembling then
(13) return s’

(14) else

(15) return s

(16) end

(17) end

ArgorrTHM 3: The procedure longJump(s).

first, the good g, is removed according to the probability
gvr(g,) that is called as the good victim rate (gvr). The gvr of
good g, is the gvc ratio that is normalized by the maximum
gvc over all winners in the solution s:

gvr(gy) = — e (4)
MaXyg cs §VCy

Higher gvr(g,) indicates that the good g, contributes more
auctioneer’s revenue than other goods. Removing g, from the
solution is not beneficial for the auctioneer in expectation.
So, the remove probability of g, is inversely proportional to
gvr(g,). The remove process is shown from step 3 to step 7.

In step 8, we randomly declare some winners to s’ to
establish a new feasible solution which is identical to that
we considered in line (5) of Algorithm 2. When choosing
a winner, the hand trembling assumption is considered to
increase the solution diversity [16]. The hand trembling
assumption means that all players may make a mistake even if
the mistake probability is very small. In other words, thereisa
small probability that we declare the other bidder as a winner.

If s' contributes more revenue than s, there is an NE
solution with higher revenue that we have not found.
longJump() updates the gvc of each element in s" and outputs
s'. Otherwise, s is returned. Based on the hand trembling
assumption, s’ with less auctioneer’s revenue still can be
accepted with a small probability.

5. Simulation Result

We consider three metrics to evaluate the NESA: the revenue
performance, the anytime performance, and the optimal
solution comparison. The simulation results are compared
with the general GA and the Casanova. The GA is outstand-
ing in solving optimization problems, such as optimizing

5
TABLE 4: The average number of goods in each bundle.
Decay Random Uniform
Large-scale model 2.01 100.9453 5
Small-scale model 1.9946 50.4188 5
TABLE 5: The parameter settings of the genetic algorithm.
Parameters Settings
Population size 100
Crossover rate 0.9
Mutation rate 0.025

the complex network system [17] and solving the WDP [10].
The Casanova converges rapidly, so we combine findNE()
with the Casanova, termed as the Hybrid, in the anytime
performance evaluation. Because the NESA outperforms
the GA and the Casanova, we only compare findNE() with
the optimal solution. The objective of the optimal solution
comparison is to measure the effects of different initial
solutions.

5.1. Simulation Environment. By referring to [4, 8, 10], we
consider three bid models, and each instance includes m
goods and # bids.

(1) Decay(m,n,0.75): (1) Randomly assign a good, (2)
repeatedly add a good with the probability 0.75, which
is the same as [4, 8], until a good is not added or the
bundle includes all goods, (3) pick up a price between
0 and the number of goods in this bundle.

(2) Random(m,n): (1) Determine the number of goods
from {1,2, 3, ..., m} at random, (2) randomly choose
enough goods without replacement, (3) pick up a
price from the uniform distribution on [0, 1].

(3) Uniform(m,n,5): (1) Choose five goods from
{1,2,3,...,m} without replacement, (2) pick up a
random price from a uniform distribution on [0, 1].

We consider the large-scale model with 2000 bids and
200 goods and the small-scale model with 1000 bids and
100 goods. Table 4 shows the average number of goods in a
bundle. We generate five instances for each bid model and
use the average values over ten runs for each algorithm.

Table 5 shows the parameters of the GA. The population
size is not as large as that applied in [10]. During our param-
eter tuning phase, the GA averagely requires seven seconds
when the population size is set as 100. The computation
time requires more than 100 seconds for the population size
1000. To increase the solution diversity and decrease the
computation cost, we use the population size 100. For the
Casanova, all parameters are the same as that proposed in [8],
and they are shown in Table 6. The NESA includes only one
parameter, the trembling probability, and it is set as 5%. We
observed that various trembling probabilities do not affect the
solution qualities dramatically.

5.2. Revenue Performance. Given 200 seconds, the revenue
performance in the Decay, Random and Uniform bid models



TABLE 6: The parameter settings of the Casanova.

Parameters Settings
wp 0.15
np 0.5
Restart 1000
105 103.00% LoL80%
0, 0, 5 °
~ 100 100.00% 100.00%
3\/
L
Z 95
S 92.10%
& 90 88.52%

85
Small-scale model

Large-scale model
Bid models

= GA
m Casanova
= NESA

FIGURE 1: The revenue performance in the Decay model.

is shown in Figures 1, 2, and 3, respectively. In each figure,
the results of the large-scale model with 200 goods and 2000
bids are arranged in the left, and the small-scale model results
are in the right. The auctioneer’s revenue is presented in the
percentage, and the base line is the GA.

The Casanova produces less revenue than the GA in all
our simulations, but the difference is not too much. The
maximum gap is 11.48% comparing to the GA, and it takes
place in the small-scale Decay bid model. In addition, the
revenue gap between the Casanova and the NESA is 13.05%
at most. The Casanova performs worse than the GA in terms
of the auctioneer’s revenue, and we have two observations.
First, the search direction of the Casanova is invariant. So, it
is difficult to improve the solution quality without increasing
the solution diversity. For example, the NESA considers
longJump() to increase the solution diversity, and the GA has
the mutation operator. Another issue is the parameter setting.
The Casanova has three parameters. During the parameter
training phase, we did not find the optimal settings for all bid
models. We applied the same settings as that appeared in [8]
to our simulations. Thus, the Casanova does not perform well
in all simulations. In summary, even though the Casanova
provides the solutions worse than the GA and the NESA, the
gap is not too much. After overcoming the above issues, the
Casanova could increase the solution quality in expectation.

For the overall performance, the auctioneer gains more
revenue by using the NESA than other algorithms in all
our simulations. The extra revenue that the NESA can reach
(comparing to the GA) is proportional to the number of
goods in a bundle. If each bidder prefers to buy larger number
of auction goods, the auction can obtain more revenue via
using the NESA. For example, the NESA in the Random bid
model performs better than in the Decay bid model.

On the other hand, in the large-scale instances, the NESA
obtains the solutions with more auctioneer’s revenue than in
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FIGURE 2: The revenue performance in the Random model.
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FIGURE 3: The revenue performance in the Uniform model.

the small-scale instances. Although the NESA in the large-
scale instances provides higher solution quality than in the
small-scale instances, the improvement is not proportional to
the problem scale. For example, the auctioneer in the large-
scale Decay model only receives 1.8% extra revenue than
in the small-scale Decay model, but the problem scale is
increased two times. So, we conjecture that the computation
time is not sufficient for the NESA to compute the solution
with maximum revenue. We will discuss this observation in
the next section.

In summary, the NESA is an outstanding approach
in terms of the solution quality for solving the WDP. In
particular, in the large-scale instances and the large number
of goods in a bundle, the NESA can provide the solutions with
more auctioneer’s revenue.

5.3. Anytime Performance. We randomly select an instance
of each bid model and use the average values of ten runs
for each algorithm. The revenue is tracked in every second.
To capture the explicit convergence information, we only
considered the large-scale models. Except for the GA, the
Casanova, and the NESA, we combine the findNE() with the
Casanova, labeled by the Hybrid. Figures 4, 5, and 6 show the
anytime performance in various bid models.
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FIGURE 4: The anytime performance in the large-scale Decay model.

15
14
13
12 F
g |
§ 10
g 9
~
8
7
6
5
1 21 41 61 81 101 121 141 161 181
CPU time
— GAs NESA
—— Casanova —— Hybrid

FIGURE 5: The anytime performance in the large-scale Random
model.

Because the GA searches widely in each iteration, the
curve of the anytime performance is not raised very fast.
The GA may obtain better results given enough time for the
complete search. To improve the running time of the GA, the
auctioneer can take into account the initial solution with high
quality. Avasarala used a Casanova solution to seed the initial
population of the GA [10]. Their experiments showed that the
anytime performance could be improved but not too much.
So, seeding the initial population may improve the anytime
performance of the GA, but how to guarantee the quality of
the obtained solution is another problem.

The Casanova converges rapidly in all bid models. In the
early stage, for example, first 100 seconds in Figure 4, the
Casanova outputs more revenue than other algorithms. How-
ever, more running time does not result in higher solution
quality. For the aspect of the search amount, the Casanova
only estimates one solution in an iteration. Moreover, the
search direction is fixed because the RPI is applied to rank
each bid. So, the Casanova rapidly meets the solution with
maximum revenue. We tried to use the findNE() to search
the NE from the solutions obtained by the Casanova, but
the revenue is improved slightly. In Figures 4, 5, and 6,
the curves of the Casanova and the Hybrid are very close.
This simulation turns out that requiring low computation
time is the major advantage of the Casanova, but the search
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FIGURE 6: The anytime performance in the large-scale Uniform
model.
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FIGURE 7: The convergence between all algorithms in the large-scale
Decay model.

direction restricts the solution quality. In the instances that
the auctioneer must obtain the solutions in a short time, the
Casanova is the best approach.

The NESA considers single solution in each iteration, but
it requires more running time than the Casanova to finish
an iteration. Each solution stays in the findNE() for a long
time to check whether it is an NE solution or not. Computing
the NE solution is the bottleneck of the NESA. From the
results shown in Figures 4, 5, and 6, the NESA requires more
time to converge in the instances that each bundle includes
fewer goods, for example, the Decay bid model. Therefore, the
computation efficiency of the NESA is inversely proportional
to the number of goods in a bundle.

In Figure 4, the solution quality of the NESA is still
increased, so the NESA requires more running to meet the
solution with maximum revenue. To capture more details
about the convergence information of all algorithms, we
evaluate the anytime performance in the large-scale Decay
model. Moreover, we increase the running time from 200
to 1200 seconds. The results are shown in Figure 7. After
900 seconds, all algorithms do not significantly improve the
solution qualities, so we only drew the results within first 900
seconds. The curves of all algorithms shown in Figure 7 are
clearer than those shown in Figure 4 in terms of reaching



the solutions with maximum auctioneer’s revenue. Increasing
the running time does not improve the auctioneer’s revenue
very much for the GA, the Casanova, and the Hybrid. The
revenue is improved 5.689%, 2.70%, and 2.41% approximately
for the GA, the Casanova, and the Hybrid, respectively. The
NESA requires 421 seconds to obtain the solution with max-
imum revenue. Although the NESA spends more running
time to meet the best solution than other algorithms, it
produces more 6.63% revenue than the GA after 900 seconds.
Moreover, this simulation also shows that the running time
required by the NESA is acceptable for reaching the best
solution in the worst case. Therefore, the NESA is appropriate
to be implemented in the real-world services even if the large-
scale WDP problems are considered.

5.4. Optimal Solution Comparison. According to above
simulations, the NESA outperforms the GA and the Casanova
in terms of the auctioneer’s revenue and requires reasonable
running time. In this section, we compare the auctioneer’s
revenue obtained by the NESA with the optimal solution.
The WDP is formulated as an integer linear program,
so we use the CPLEX (http://www-0Libm.com/software/
commerce/optimization/cplex-optimizer/) to compute the
optimal solutions. We only consider the small-scale problems
with 100 goods and 1000 bids because the computation
resource required by the CPLEX in the large-scale problem
exceeds that equipped in our simulation environment.

Auctioneer’s revenue obtained from the findNE() may
depend on the input solution quality. An initial solution with
higher revenue may lead to a better NE solution. Except
for the random approach, we use an RPI-based approach to
improve the initial solutions. For each bid b, the RPI-based
approach computes the RPI values as follows:

bi
RPI, = —.
" ®

We first rank each bid b; as the decreasing order of RPI,.
Then, adding the bids to build a feasible solution based on
the rank result. We consider this solution as the input of
the findNE(). So, three algorithms participate in the optimal
solution comparison. We take 200 rounds for each algorithm
and keep track of the variance of the solution quality in each
round. The results of the optimal solution comparison are
shown in Figures 8, 9, and 10, where the base line is the
optimal solution.

The findNE() with the RPI-based approach, which is
drawn in the red line, produces the stable results which are
very close to the optimal solutions. In Figures 8, 9, and 10,
we observe that there are some break-out points, and those
results have more revenue than others. After tracking the log,
each break-out point results from the successful trembling,
but not all trembles improve the solution quality. Therefore,
the trembling hand assumption is useful for seeking better
solutions.

The qualities of the solutions obtained by the findNE()
with random input solutions illustrated by the green line are
unstable. Except for the Random model, the findNE() with
random input solutions performs worse than the findNE()
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FIGURE 8: The optimal solution comparison in the large-scale Decay
model.
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FIGURE 9: The optimal solution comparison in the large-scale
Random model.

with the RPI-based approach and the optimal solutions.
Although the random input solution provides the unre-
stricted search direction, the quality of the NE solution is
only outstanding in few instances of the Random model. So,
seeding the input solution will result in stable solutions and
high solution qualities.

6. Discussion and Remark

Computing the NE with maximum utility for each player
has been proved as a PPAD-complete problem [13, 18]. In
a game, if the number of the union of strategy sets for all
players is grown exponentially, reaching the NE requires huge
computation time. Theoretically, finding a steady solution via
the NESA may require huge computation time.

Solving the WDP is an NP-complete problem [5]. This
means that in general cases no algorithm can compute
the optimal winner set in the polynomial time unless P =
NP. The search space is the critical issue to evaluate the
computation complexity of the NESA. The computation com-
plexity is inversely proportional to the degree of intersections
between bundles. The worst case takes place when each
bundle includes exactly two goods. Declaring a bidder as a
winner means that many bidders cannot win their bundles
simultaneously. In our simulations, we consider three bid
models with different average numbers of goods in each
bundle to prove this discussion. The simulation results turn



Journal of Applied Mathematics

1.2 -
. 1
£ 08
2 06
S 04
z 0.
M 02
0 T T T T
0 50 100 150 200
Rounds
—— OPT
—— FindNE with RPI
FindNE with random

FIGURE 10: The optimal solution comparison in the large-scale
Uniform model.

out that the computation complexity of the NESA is inversely
proportional to the number of goods in a bundle. So, this
discussion is correct.

The procedures in line (5) of Algorithm 2 and line (8)
of Algorithm 3 deal with declaring some bidders as winners.
The selection strategy of determining winners affects the
solution quality. In general, the convergence speed and the
auction’s revenue are the trade-off. As shown in Section 5.3,
the Casanova (the search with the fixed direction) rapidly
finds a solution, but the auctioneer’s revenue is not the major
consideration. On the other hand, the GA (the compre-
hensive search) requires more computation time than the
Casanova to generate a solution, but the auctioneer can gain
more revenue. Different strategies of selecting winners can
be applied to the NESA based on the consideration of the
auctioneer. In this paper, we apply the idea of searching the
NE to propose the framework for solving the WDP. The
auctioneer can adjust the search direction when using the
NESA to solve the WDP. For example, the search direction
which includes the specific goal, for example, the RPI ranking
function, is better in the larger-scale cases based on the
computation efficiency consideration. In Section 5.4, using
the input solutions with RPI approach is more stable and
provides more revenue than the random input solutions.

In this paper, we propose a game model to represent the
WDP and the NESA to find the NE solutions. The properties
of the NESA can be discussed in the aspects of the game
model and the solution quality. When selling several goods
to multiple buyers, most sellers usually estimate the revenue
improvement of selling a good to another buyer. We use
this impression to formulate the game model of conceiving
each good as a player. Each player (the auction good) can
determine the winner and evaluate the revenue improvement
of changing the winner. The translation from the WDP to
the proposed game model does not violate the real-world
behaviors, so the auctioneers would accept the proposed
game. On the other hand, the NESA provides the solutions
that the revenue is very close to the optimal solution.
Furthermore, the running is reasonable. In summary, the
NESA is appropriate to be implemented in the real-world
service to compute the WDPs.

7. Conclusion

We propose the NESA to solve the WDP in the combinatorial
auctions. The NESA utilizes the stability of the NE, the self-
learning of the evolutionary game, and the mistake making
of the trembling hand assumption to seek for the solutions
with high auctioneer’s revenue. The auctioneers can earn
the revenue which is very close to the optimal solution
via adopting the NESA. Moreover, the NESA requires only
rational running time.

In our simulations, we consider the bid prices with some
specific distributions to evaluate the performance of the
NESA. According to the real-world data analysis [19], most
bidders submit the prices with their private considerations.
We only consider three major bid models to evaluate the
performance of the NESA in this paper. However, this may
be not sufficient to understand the performance of the NESA
in the real-world services. For example, the bid profile may
not be satisfied with a well-defined distribution. To apply
the NESA in the real-world services, taking into account the
relationship between the auction item and the bid profile is
our next research issue. Upon understanding the properties
of the received bid profile, the auctioneer can use some
techniques to improve the search efliciency and the solution
quality.

In the future, we will first study the data mining
approaches, such as the mining association rules [20] and
feature extraction [21], to explore the relationship between
the auction items and the bidding behaviors. Then, we will
evaluate the instances that are generated via simulating the
real-world bidding behaviors. We focus on pruning the
unnecessary searches of the NESA to reduce the computation
complexity, but the solution quality should not be decreased.
The NESA will provide a more efficient way to compute the
solutions with high auctioneer’s revenue in expectation.
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