
Research Article
Several Guaranteed Descent Conjugate Gradient Methods for
Unconstrained Optimization

San-Yang Liu and Yuan-Yuan Huang

School of Mathematics and Statistics, Xidian University, Xi’an 710071, China

Correspondence should be addressed to San-Yang Liu; liusanyang@126.com

Received 26 July 2013; Accepted 10 December 2013; Published 8 January 2014

Academic Editor: Kazutake Komori

Copyright © 2014 S.-Y. Liu and Y.-Y. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent condition
𝑔
𝑇

𝑘
𝑑
𝑘
≤ −(1 − 1/(4𝜃

𝑘
))‖𝑔
𝑘
‖
2
(𝜃
𝑘
> 1/4) and which is strongly convergent whenever the weak Wolfe line search is fulfilled.

Moreover, we present several specific guaranteed descent conjugate gradientmethods and give their numerical results for large-scale
unconstrained optimization.

1. Introduction

Consider the following unconstrained optimization problem:

min {𝑓 (𝑥) : 𝑥 ∈ 𝑅
𝑛
} , (1)

where 𝑅𝑛 is the 𝑛-dimensional Euclidean space, 𝑓 : 𝑅
𝑛

→

𝑅 is continuously differentiable, and its gradient 𝑔(𝑥) is
available.

Conjugate gradient methods are very efficient to solve
problem (1) due to their simple iteration and their low mem-
ory requirements. For any given starting point 𝑥

0
∈ 𝑅
𝑛, they

generate a sequence {𝑥
𝑘
} by the following recursive relation:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (2)

𝑑
𝑘
= {

−𝑔
𝑘
, if 𝑘 = 0,

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, if 𝑘 ≥ 1,
(3)

where 𝑔
𝑘
= 𝑔(𝑥

𝑘
), 𝛼
𝑘
is a step length obtained by means of a

one-dimensional search, and 𝛽
𝑘
is a scalar that characterizes

the method. In general, the step length 𝛼
𝑘
in (2) is obtained

by fulfilling the following weak Wolfe conditions [1, 2]:

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼

𝑘
𝑔
𝑇

𝑘
𝑑
𝑘
,

𝑔
𝑇

𝑘+1
𝑑
𝑘
≥ 𝜎𝑔
𝑇

𝑘
𝑑
𝑘
,

(4)

where 0 < 𝛿 ≤ 𝜎 < 1. And different choices for the
scalar𝛽

𝑘
in (3) result in different nonlinear conjugate gradient

methods. Well-known formulas for 𝛽
𝑘
are the Fletcher-

Reeves (FR), Hestenes-Stiefel (HS), Polak-Ribiére-Polyak
(PRP), Dai-Yuan (DY), and Liu-Storey (LS) formulas (see [3],
[4], [5], [6], [7], and [8], resp.) and are given by

𝛽
FR
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝛽

HS
𝑘

=
𝑔
𝑇

𝑘
𝑦
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

,

𝛽
PRP
𝑘

=
𝑔
𝑇

𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝛽

DY
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

𝑑𝑇
𝑘−1

𝑦
𝑘−1

,

𝛽
LS
𝑘

=
−𝑔
𝑇

𝑘
𝑦
𝑘−1

𝑔𝑇
𝑘−1

𝑑
𝑘−1

,

(5)

where ‖ ⋅ ‖ means the Euclidean norm and 𝑦
𝑘

= 𝑔
𝑘+1

−

𝑔
𝑘
. Their corresponding conjugate gradient methods are

viewed as basic conjugate gradient methods. Among these
basic conjugate gradient methods, the PRP and HS methods
perform very similarly and perform better than other basic
conjugate gradient methods [9]. While Powell [10] utilized
an example illustrating that the PRP and HS methods may
cycle without approaching any solution point, then modified
versions of the PRP andHSmethods were presented bymany
researchers (see, e.g., [11–16]).

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 825958, 14 pages
http://dx.doi.org/10.1155/2014/825958

http://dx.doi.org/10.1155/2014/825958


2 Journal of Applied Mathematics

The following (sufficient) descent condition,

𝑔
𝑇

𝑘
𝑑
𝑘
≤ −𝑐

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
, ∀𝑘 ≥ 0, 𝑐 > 0, (6)

is very important for conjugate gradient methods, so we
are particularly interested in the conjugate gradient methods
with sufficient descent conditions. Up to now, there are many
descent conjugate gradientmethods proposed by researchers;
please see [12, 16–19] and references therein.

One well-known guaranteed descent conjugate gradient
method was proposed by Hager and Zhang [16, 20, 21] with

𝛽
HZ
𝑘

= 𝛽
HS
𝑘

−
2
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩
2

(𝑦𝑇
𝑘−1

𝑑
𝑘−1

)
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

. (7)

Themethod is designed based on theHSmethod and satisfies
the sufficient descent condition (6) with 𝑐 = 7/8 for any
(inexact) line search. In [18], Zhang and Li proposed a general
case of the HZ method with

𝛽
ZL
𝑘

=
𝑔
𝑇

𝑘
(𝑦
𝑘−1

− 2 (
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩
2
/max {ℎ2󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2
, 𝑧
𝑘
}) 𝑑
𝑘−1

)

max {ℎ2󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑧
𝑘
}

,

(8)

where ℎ > 0 and 𝑧
𝑘
is a scalar to be specified. It also satisfies

the sufficient descent condition (6) with 𝑐 = 7/8, and it is
globally convergent in the sense of lim inf

𝑘→∞
‖𝑔
𝑘
‖ = 0. For

𝑧
𝑘
= ‖𝑔
𝑘−1

‖
2 and 𝑧

𝑘
= −𝑑
𝑇

𝑘−1
𝑔
𝑘−1

, it becomes a descent PRP
type method and a descent LS type method, respectively.

Amore general formof the scalar𝛽
𝑘
was suggested byDai

[22] and was defined as

𝛽
𝐷

𝑘
=
𝑔
𝑇

𝑘
V
𝑘

𝜉
𝑘

−
𝐶
󵄩󵄩󵄩󵄩V𝑘

󵄩󵄩󵄩󵄩
2

𝜉2
𝑘

𝑔
𝑇

𝑘
𝑑
𝑘−1

, (9)

where 𝜉
𝑘
∈ 𝑅, V

𝑘
∈ 𝑅
𝑛, and 𝐶 > 1/4, while its convergence

has not been given in [22]. More recently, Nakamura et al.
[19] proved that the method is globally convergent in the
sense of lim inf

𝑘→∞
‖𝑔
𝑘
‖ = 0with theweakWolfe conditions.

Moreover, we say that a conjugate gradientmethod is strongly
convergent if lim

𝑘→∞
𝑔
𝑘
= 0. Obviously, the later is stronger

than the former, that is, the global convergence indicates that
there exists at least one cluster point which is a stationary
point of 𝑓, while the strong convergence means that every
cluster point of {𝑥

𝑘
} will be a stationary point of 𝑓.

Observe formulas (8) and (9); we find that although 𝛽
ZL
𝑘

is a special case of formula (9), it has its own feature; that is,
its denominator is lower bounded by ℎ2‖𝑑

𝑘−1
‖
2. Motivated by

this, we consider the general formula (9) by

𝛽
CGM
𝑘

=
𝑔
𝑇

𝑘
V
𝑘

max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
𝜃
𝑘

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

(max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
,

(10)

where 𝜃
𝑘

> 1/4 and 𝜖 > 0, and prove that the general
conjugate gradient method with 𝛽

CGM
𝑘

has better conver-
gence properties; that is, it is strongly convergent. Another

difference between the two formulas (9) and (10) is their
choices of V

𝑘
. In order to guarantee convergence, the choices

of V
𝑘
and 𝜉

𝑘
in (9) must satisfy the assumption that for all

𝑘 ≥ 0, there exist positive constants 𝜏
1
and 𝜏

2
such that

‖V
𝑘
‖
2
|𝑔
𝑇

𝑘
𝑑
𝑘−1

|/𝜉
2

𝑘
≤ 𝜏
2
‖𝑠
𝑘−1

‖
2 and |𝑔

𝑇

𝑘
V
𝑘
/𝜉
𝑘
| ≤ 𝜏
1
‖𝑠
𝑘−1

‖ hold.
If we choose V

𝑘
= 𝑔
𝑘
and 𝜉

𝑘
= 0.5(‖𝑔

𝑘−1
‖
2
+ |𝑔
𝑇

𝑘
𝑑
𝑘−1

|),
then whether the above assumption is satisfied is difficult
to verify, while the requirement of V

𝑘
in (10) only is norm-

bounded.
The rest of this paper is organized as follows. In Section 2,

we describe the general form of guaranteed descent conjugate
gradient methods with (10) and establish that the corre-
sponding search directions always yield descent condition
𝑔
𝑇

𝑘
𝑑
𝑘

≤ −(1 − (1/4𝜃
𝑘
))‖𝑔
𝑘
‖
2
(𝜃
𝑘

> 1/4) independently
of choices of the parameters V

𝑘
and 𝜉

𝑘
. And under some

mild conditions, we prove its strong convergence with the
weak Wolfe conditions. Moreover, we specifically design
several efficient descent conjugate gradient methods com-
bined with the features of the basic conjugate gradient
methods above. In Section 3, we test the proposed conju-
gate gradient methods using the large-scale unconstrained
problems in the CUTEr test library and compare them
with the ZL method. Finally, we give some conclusions in
Section 4.

2. Algorithm and Convergence

In this section, we describe the conjugate gradient method
with (10) and show its strong convergence. And we give
several specific conjugate gradient methods by combining
formula (10) with some basic conjugate gradient methods.
Firstly, we make the following assumption.

Assumption 1. Assume that 𝑓 : 𝑅
𝑛
→ 𝑅 is bounded below

in the level L = {𝑥 ∈ 𝑅
𝑛
: 𝑓(𝑥) ≤ 𝑓(𝑥

0
)}. And its gradient

𝑔 : 𝑅
𝑛
→ 𝑅
𝑛 is 𝐿-Lipschitz continuous in 𝑋 ⊂ 𝑅

𝑛; that is,
there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑋. (11)

Assumption 1 implies that there exists a positive constant
𝛾 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑥 ∈ L. (12)

Algorithm 2.
Step 0. Choose 𝜖 > 0, 𝜀 > 0. Set 𝑑

0
= −𝑔
0
and 𝑘 := 0.

Step 1. If ‖𝑔
𝑘
‖
∞

≤ 𝜀, then stop; otherwise find 𝛼
𝑘
such that

the weak Wolfe conditions (4) hold.

Step 2. Compute the new iterate by (2).Then generate the new
search direction by (3) with 𝛽

𝑘
from (10). Set 𝑘 := 𝑘 + 1 and

go to Step 1.

Next, we analyze the convergence properties of
Algorithm 2. Under Assumption 1, we state the following
Zoutendijk condition, which is originally given by Zoutendijk



Journal of Applied Mathematics 3

[23] and Wolfe [1, 2] and is used to prove global convergence
of nonlinear conjugate gradient methods.

Theorem 3. Suppose that 𝑥
0
is a starting point for which

Assumption 1 holds. Consider any iterative method in the form
(2), where 𝑑

𝑘
is a descent direction and 𝛼

𝑘
satisfies the weak

Wolfe conditions (4); then

∑

𝑘≥0

(𝑔
𝑇

𝑘
𝑑
𝑘
)
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

< +∞. (13)

The following lemma shows that the directions of
Algorithm 2 satisfy the sufficient descent condition.

Lemma 4. If 𝑑
𝑘
is generated by (3)with 𝛽

𝑘
from (10) and 𝜃

𝑘
>

1/4, then for every 𝑘 ≥ 0,

𝑔
𝑇

𝑘
𝑑
𝑘
≤ −(1 −

1

4𝜃
𝑘

)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
. (14)

Proof. Since 𝑑
0
= −𝑔
0
, then 𝑔

𝑇

0
𝑑
0
= −‖𝑔

0
‖
2 which satisfies

(14). For every 𝑘 ≥ 1, multiplying (3) by 𝑔
𝑘
, we have

𝑔
𝑇

𝑘
𝑑
𝑘
= −

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
+ 𝛽
𝑘
𝑔
𝑇

𝑘
𝑑
𝑘−1

= −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
+

𝑔
𝑇

𝑘
V
𝑘

max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}
𝑔
𝑇

𝑘
𝑑
𝑘−1

−
𝜃
𝑘

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩
2

(max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
(𝑔
𝑇

𝑘
𝑑
𝑘−1

)
2

.

(15)

Denote 𝑢
𝑘

= 𝑔
𝑘
/√2𝜃
𝑘
and 𝑤

𝑘
= √2𝜃

𝑘
(𝑔
𝑇

𝑘
𝑑
𝑘−1

)/max{𝜉
𝑘
,

𝜖‖𝑑
𝑘−1

‖}V
𝑘
. By applying the inequality 𝑢𝑇

𝑘
𝑤
𝑘
≤ 1/2(‖𝑢

𝑘
‖
2
+

‖𝑤
𝑘
‖
2
) to the second term in (15), we obtain the desired

result.

The lemma above is similar to Theorem 1.1 in [16]. And
from this lemma, we can see that the descent property is
independent of any line search and choices of the parameters
V
𝑘
and 𝜉
𝑘
, while different choices of the parameters V

𝑘
, 𝜉
𝑘
, and

𝜃
𝑘
may yield very different numerical behaviors.

Theorem 5. Consider Algorithm 2, where 𝛼
𝑘
satisfies the weak

Wolfe conditions (4) and 𝛽
𝑘
is defined by (10) with ‖V

𝑘
‖ being

bounded. Then, either 𝑔
𝑘
= 0 for some 𝑘 or

lim
𝑘→∞

𝑔
𝑘
= 0. (16)

Proof. Suppose that 𝑔
𝑘

̸= 0 for all 𝑘. Utilizing (13) and (14), we
have

(1 −
1

4𝜃
𝑘

)∑

𝑘≥0

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
4

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
< +∞. (17)

Since ‖V
𝑘
‖ is bounded, then there must exist a large number

𝑀 < ∞ such that ‖V
𝑘
‖ ≤ 𝑀 for all 𝑘. By using the definition

of 𝛽
𝑘
, we have

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘
V
𝑘

max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}
−

𝜃
𝑘

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩
2

(max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘
V
𝑘

max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
𝜃
𝑘

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩
2

(max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘
𝑑
𝑘−1

󵄨󵄨󵄨󵄨󵄨

≤ (

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}
+

𝜃
𝑘

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2

(max {𝜉
𝑘
, 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ (
𝑀

𝜖
+
𝜃
𝑘
𝑀
2

𝜖2
)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

,

(18)

where the second inequality is obtained using the Cauchy-
Schwary inequality. Then, we have

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

≤ (1 +
𝑀

𝜖
+
𝜃
𝑘
𝑀
2

𝜖2
)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 .

(19)

Inserting this upper bound for 𝑑
𝑘
in (17) yields

∑

𝑘≥0

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
< ∞, (20)

which implies (16).

Now, we propose several specific versions of Algorithm 2.
Since hybrid conjugate gradient methods are regarded as bet-
ter performing conjugate gradient methods in practice, then
the specific methods are designed as hybrid versions based
on some basic conjugate gradient methods. As mentioned in
Section 1, the PRP andHSmethods are two efficientmethods,
so the first specific hybrid method is designed using the
features of the PRP and HS methods with

𝛽
CGM1
𝑘

=
𝑔
𝑇

𝑘
𝑦
𝑘−1

max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑑𝑇
𝑘−1

𝑦
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

(max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑑𝑇
𝑘−1

𝑦
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
.

(21)

Since the LS method has a similar structure to the PRP
method, then the second hybrid method is proposed based
on the PRP and LS methods with

𝛽
CGM2
𝑘

=
𝑔
𝑇

𝑘
𝑦
𝑘−1

max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, −𝑔𝑇
𝑘−1

𝑑
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

(max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, −𝑔𝑇
𝑘−1

𝑑
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
.

(22)



4 Journal of Applied Mathematics

The third one is derived from the FR and DY methods with

𝛽
CGM3
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑑𝑇
𝑘−1

𝑦
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

(max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑑𝑇
𝑘−1

𝑦
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
.

(23)

And the last one is proposed with

𝛽
CGM4
𝑘

=
𝑔
𝑇

𝑘
𝑦
∗

𝑘−1

max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑑𝑇
𝑘−1

𝑦∗
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩}

−
2
󵄩󵄩󵄩󵄩𝑦
∗

𝑘−1

󵄩󵄩󵄩󵄩
2
𝑔
𝑇

𝑘
𝑑
𝑘−1

(max {max {󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝑑𝑇
𝑘−1

𝑦∗
𝑘−1

} , 𝜖
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩})
2
,

(24)

where 𝑦
∗

𝑘−1
= 𝑦
𝑘−1

+ 𝜖‖𝑔
𝑘−1

‖𝛼
𝑘−1

𝑑
𝑘−1

is similar to that of
[24] and utilizes some secant condition. In addition, many
conjugate gradient methods have been proposed based on
different secant conditions; please refer to [15, 25–28] for
further information.

From Assumption 1 and inequality (19), we have that 𝑔
𝑘

and 𝑑
𝑘
are norm-bounded for all 𝑘; then global convergence

properties of the four new hybrid descent conjugate gradient
methods can be given following the proof of Algorithm 2.

Here, the parameter 𝜃
𝑘
in (10) is chosen to be the constant

number 2. It also could have other choices, such as 𝜃
𝑘

=

max{1/4+𝜖, |𝜉
𝑘
|/‖V
𝑘
‖
2
}, while, inmost cases, 𝜃

𝑘
= 2 performs

better than other choices.

3. Numerical Experiments

In this section, we did some numerical experiments to test
the performances of the proposed methods and compared
them with the ZL method. Numerical results reported in
[18] showed that the ZL method with 𝑧

𝑘
= −𝑑

𝑇

𝑘−1
𝑔
𝑘−1

in
(8), denoted by TDLS method, performs better than the
HZ method and the descent PRP type method, so we only
compared the proposed methods with the TDLS method.
All codes were written in Matlab and run on a desktop
computer with an Intel(R) Xeon(R) 2.40GHZ CPU, 6.00GB
of RAM, and Linux operating system Ubuntu 8.04. All test
problems were drawn from the CUTEr test library [29, 30]
and were accessed from within Matlab R2012a by using
Matlab interface. We were particularly interested in large-
scale problems, so the dimension of each test problem was
at least 100.

For all the implementedmethods, the step size𝛼
𝑘
satisfied

the weak Wolfe conditions (4) with 𝜎 = 0.1 and 𝛿 = 0.9 and
its initial guess was generated by the rules in [21], the value of
ℎ in TDLS method was taken to be 10−5 following [18], and
the stopping criterion was

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩∞ ≤ max {𝜖, 𝜖 (1 + 𝑓

𝑘
)} , (25)

where 𝜖 = 10
−6 and 𝑓

𝑘
= 𝑓(𝑥

𝑘
).

2 4 6 8 10 12 14 16

TDLS
CGM1
CGM2

CGM3
CGM4

1

0.9

0.8

0.7

0.6

0.5

0.4

𝜏

Figure 1: Performance profile based on the number of function
evaluations.

The numerical results were reported in Table 1, where
Problem, Dim, Iter, Nf, Ng, and CPU represent the name of
the test problems, the dimension, the number of iterations,
the number of function evaluations, the number of gradient
evaluations, and the CPU time elapsed in seconds, respec-
tively, and “−” means that the method failed to achieve a
prescribed accuracy when the number of iterations exceeded
50,000 or the cost function generated a “NaN.”

The performances of all methods were evaluated using
the profiles of Dolan and Morè [31]. That is, we plotted
the fraction 𝑃 of the test problems for which each of the
methods was within a factor 𝜏. Obviously, the top curve
represented the most roust one within the same factor 𝜏.
And the left curve represented the fastest one to solve the
same percentage of the test problems. Figures 1, 2, and 3
showed the performance profiles referring to the number
of function evaluations, the number of gradient evaluations,
and CPU time, respectively. These figures revealed that all
the test methods were efficient and the CGM1, CGM2, and
CGM4 methods were comparable with the TDLS method,
while the CGM3method performed relatively bad. It is worth
noting that theCGM1,CGM2 andCGM4methods are hybrid
versions related to the PRP method, so they inherit the
good numerical performance of the PRP method. Among
the three methods and the TDLSmethod, the CGM1method
performedmore efficiently than theCGM2method andmore
robustly than the TDLS and CGM4 methods, so the CGM1
method was the winner of these test methods.

4. Conclusions

This paper has studied a general form of guaranteed descent
conjugate gradient methods and has proven that whenever



Journal of Applied Mathematics 5

Table 1: Numerical results for test problems from the CUTEr library.

Name (Dim) Method Iter/Nf/Ng/CPU

ARGLINA (200)

TDLS 1/3/2/0.002
CGM1 1/3/2/0.001
CGM2 1/3/2/0.002
CGM3 1/3/2/0.001
CGM4 1/3/2/0.001

ARGLINB (100)

TDLS 7/275/273/0.109
CGM1 6/259/257/0.099
CGM2 7/275/273/0.106
CGM3 7/132/130/0.052
CGM4 6/259/257/0.100

ARGLINC (100)

TDLS 8/213/212/0.084
CGM1 6/104/103/0.040
CGM2 8/306/304/0.117
CGM3 8/232/231/0.091
CGM4 6/105/104/0.041

ARWHEAD (10000)

TDLS 10/311/304/0.492
CGM1 8/17/9/0.025
CGM2 9/118/110/0.186
CGM3 30/351/332/0.569
CGM4 20/527/520/0.882

BDQRTIC (5000)

TDLS 1156/2348/1226/2.650
CGM1 1599/3226/1654/3.742
CGM2 1399/2827/1452/3.237
CGM3 495/1089/623/1.166
CGM4 1477/2994/1547/3.541

BIGGSB1 (5000)

TDLS 2500/5001/2501/2.990
CGM1 2500/5001/2501/3.349
CGM2 2500/5001/2501/3.141
CGM3 2500/5001/2501/2.957
CGM4 2501/5003/2503/3.602

BOX (10000)

TDLS 10/28/22/0.074
CGM1 9/25/20/0.065
CGM2 8/22/16/0.054
CGM3 41/177/144/0.428
CGM4 9/24/19/0.063

BROWNAL (200)

TDLS 50/107/64/0.043
CGM1 9/25/19/0.011
CGM2 12/26/17/0.011
CGM3 56/114/64/0.045
CGM4 25/60/44/0.027

BROYDN7D (1000)

TDLS 342/691/354/0.461
CGM1 327/655/328/0.456
CGM2 320/644/327/0.455
CGM3 311/623/312/0.417
CGM4 319/639/320/0.448

BRYBND (5000)

TDLS 443/859/498/1.150
CGM1 52/109/60/0.166
CGM2 275/550/290/0.740
CGM3 127/260/134/0.337
CGM4 41/86/48/0.133



6 Journal of Applied Mathematics

Table 1: Continued.

Name (Dim) Method Iter/Nf/Ng/CPU

CHAINWOO (4000)

TDLS 300/591/345/0.625
CGM1 276/540/321/0.629
CGM2 248/484/284/0.545
CGM3 4107/158741/162278/1.605
CGM4 260/515/299/0.591

COSINE (5000)

TDLS 5/17/14/0.025
CGM1 5/17/14/0.025
CGM2 5/17/14/0.024
CGM3 6/19/15/0.025
CGM4 5/17/14/0.024

CRAGGLVY (5000)

TDLS 56/113/57/0.221
CGM1 58/117/59/0.234
CGM2 57/115/58/0.223
CGM3 63/130/67/0.246
CGM4 57/115/58/0.235

CURLY10 (1000)

TDLS 1621/3256/1637/0.836
CGM1 1583/3179/1598/0.923
CGM2 1626/3266/1642/0.862
CGM3 2404/4821/2419/1.146
CGM4 1583/3179/1598/0.874

CURLY20 (600)

TDLS 1804/3619/1817/0.889
CGM1 1797/3605/1810/1.007
CGM2 1735/3481/1748/0.872
CGM3 3463/6937/3476/1.573
CGM4 1809/3629/1822/0.978

CURLY30 (1000)

TDLS 2573/5158/2587/1.910
CGM1 2587/5186/2601/1.914
CGM2 2629/5270/2643/1.892
CGM3 18710/37432/18724/12.670
CGM4 2586/5184/2600/1.942

DIXMAANA (9000)

TDLS 7/15/8/0.018
CGM1 8/17/9/0.021
CGM2 7/15/8/0.019
CGM3 18/37/19/0.044
CGM4 8/17/9/0.021

DIXMAANB (9000)

TDLS 9/19/10/0.024
CGM1 9/19/10/0.025
CGM2 9/19/10/0.025
CGM3 10/21/11/0.025
CGM4 9/19/10/0.024

DIXMAANC (6000)

TDLS 10/21/11/0.020
CGM1 10/21/11/0.020
CGM2 10/21/11/0.020
CGM3 10/21/11/0.018
CGM4 10/21/11/0.021

DIXMAAND (9000)

TDLS 11/23/12/0.030
CGM1 12/25/13/0.033
CGM2 11/23/12/0.032
CGM3 13/27/14/0.033
CGM4 12/25/14/0.033



Journal of Applied Mathematics 7

Table 1: Continued.

Name (Dim) Method Iter/Nf/Ng/CPU

DIXMAANE (9000)

TDLS 340/681/341/0.878
CGM1 337/675/338/0.900
CGM2 340/681/341/0.898
CGM3 413/827/414/1.036
CGM4 337/675/338/0.909

DIXMAANF (9000)

TDLS 252/505/253/0.675
CGM1 253/507/254/0.682
CGM2 252/505/253/0.671
CGM3 250/501/251/0.609
CGM4 253/507/254/0.711

DIXMAANG (9000)

TDLS 251/503/252/0.636
CGM1 248/497/249/0.666
CGM2 251/503/252/0.658
CGM3 238/477/239/0.578
CGM4 248/497/249/0.660

DIXMAANH (9000)

TDLS 246/493/247/0.621
CGM1 247/495/248/0.663
CGM2 246/493/247/0.646
CGM3 246/493/247/0.597
CGM4 247/495/248/0.689

DIXMAANI (9000)

TDLS 1856/3713/1857/4.770
CGM1 1801/3603/1802/4.932
CGM2 1912/3825/1913/4.981
CGM3 1586/3173/1587/3.904
CGM4 1801/3603/1802/4.965

DIXMAANJ (1500)

TDLS 651/1303/652/0.396
CGM1 519/1039/520/0.349
CGM2 651/1303/652/0.426
CGM3 474/949/475/0.288
CGM4 518/1037/519/0.359

DIXMAANK (3000)

TDLS 194/389/195/0.252
CGM1 207/415/208/0.322
CGM2 194/389/195/0.252
CGM3 198/397/199/0.232
CGM4 207/415/208/0.291

DIXMAANL (3000)

TDLS 168/337/169/0.226
CGM1 186/373/187/0.277
CGM2 168/337/169/0.238
CGM3 195/391/196/0.227
CGM4 186/373/187/0.281

DIXON3DQ (1000)

TDLS 2001/4003/2004/0.810
CGM1 1227/2455/1230/0.577
CGM2 1225/2451/1228/0.535
CGM3 2003/4007/2005/0.744
CGM4 1065/2131/1068/0.481

DQDRTIC (10000)

TDLS 7/15/8/0.025
CGM1 7/15/8/0.025
CGM2 7/15/8/0.025
CGM3 6/13/7/0.020
CGM4 11/23/13/0.042



8 Journal of Applied Mathematics

Table 1: Continued.

Name (Dim) Method Iter/Nf/Ng/CPU

DQRTIC (1000)

TDLS 29/59/30/0.013
CGM1 29/59/30/0.014
CGM2 29/59/30/0.014
CGM3 29/59/30/0.012
CGM4 29/59/30/0.014

EG2 (1000)

TDLS 3/7/4/0.003
CGM1 3/7/4/0.003
CGM2 3/7/4/0.002
CGM3 3/7/4/0.002
CGM4 3/7/4/0.003

EIGENALS (420)

TDLS 6491/12989/6500/5.960
CGM1 6620/13247/6629/6.377
CGM2 6683/13373/6692/6.238
CGM3 7358/14723/7367/6.544
CGM4 6632/13271/6641/6.398

EIGENBLS (110)

TDLS 391/791/401/0.149
CGM1 340/683/343/0.151
CGM2 356/722/373/0.153
CGM3 355/714/359/0.134
CGM4 379/761/382/0.173

EIGENCLS (132)

TDLS 543/1101/565/0.226
CGM1 540/1090/551/0.259
CGM2 564/1144/586/0.259
CGM3 595/1191/596/0.242
CGM4 586/1177/592/0.287

ENGVAL1 (10000)

TDLS 12/25/13/0.040
CGM1 13/27/14/0.045
CGM2 12/25/13/0.041
CGM3 12/25/13/0.039
CGM4 13/27/14/0.046

EXTROSNB (10000)

TDLS 10044/20294/10301/23.500
CGM1 —
CGM2 —
CGM3 —
CGM4 9342/18870/9573/23.720

FLETCBV2 (500)

TDLS 591/1183/593/0.321
CGM1 542/1085/544/0.329
CGM2 542/1085/544/0.321
CGM3 582/1165/584/0.315
CGM4 540/1081/542/0.336

FLETCBV3 (10000)

TDLS 2/22/21/0.087
CGM1 2/22/21/0.083
CGM2 2/22/21/0.081
CGM3 2/21/20/0.077
CGM4 2/22/21/0.083

FLETCHBV (10000)

TDLS 2/21/20/0.078
CGM1 2/21/20/0.077
CGM2 2/21/20/0.081
CGM3 2/20/19/0.071
CGM4 2/21/20/0.076



Journal of Applied Mathematics 9

Table 1: Continued.

Name (Dim) Method Iter/Nf/Ng/CPU

FLETCHCR (1000)

TDLS 7312/15021/7844/3.960
CGM1 6944/14415/7514/4.052
CGM2 7754/16085/8474/4.494
CGM3 4255/8519/4267/2.125
CGM4 6847/14134/7330/4.121

FMINSRF2 (961)

TDLS 240/481/241/0.131
CGM1 245/491/246/0.150
CGM2 240/481/241/0.142
CGM3 254/510/256/0.139
CGM4 246/493/247/0.154

FMINSURF (121)

TDLS 76/154/78/0.025
CGM1 71/146/75/0.027
CGM2 77/158/82/0.028
CGM3 90/184/94/0.028
CGM4 71/146/75/0.029

FREUROTH (500)

TDLS 36/79/46/0.021
CGM1 32/69/39/0.018
CGM2 15/36/23/0.009
CGM3 32/70/40/0.016
CGM4 32/69/39/0.020

GENHUMPS (200)

TDLS 2659/5502/2894/1.160
CGM1 2508/5123/2631/1.207
CGM2 2633/5410/2819/1.146
CGM3 62/191/146/0.037
CGM4 2376/4887/2542/1.111

GENROSE (1000)

TDLS 2540/5140/2615/1.390
CGM1 2400/4836/2446/1.395
CGM2 2548/5163/2635/1.395
CGM3 2105/4240/2143/1.059
CGM4 2391/4820/2440/1.470

HILBERTA (100)

TDLS 197/395/203/0.174
CGM1 197/395/203/0.188
CGM2 197/395/203/0.183
CGM3 105/211/113/0.094
CGM4 242/485/250/0.234

HILBERTB (100)

TDLS 5/11/6/0.005
CGM1 5/11/6/0.005
CGM2 5/11/6/0.005
CGM3 5/11/6/0.005
CGM4 5/11/6/0.005

LIARWHD (5000)

TDLS 28/67/47/0.075
CGM1 21/44/25/0.048
CGM2 31/67/44/0.067
CGM3 996/1994/999/1.794
CGM4 21/44/25/0.047

MANCINO (150)

TDLS 11/23/12/0.198
CGM1 11/23/12/0.198
CGM2 11/23/12/0.198
CGM3 10/21/11/0.180
CGM4 11/23/12/0.199



10 Journal of Applied Mathematics

Table 1: Continued.

Name (Dim) Method Iter/Nf/Ng/CPU

MODBEALE (2000)

TDLS 523/1042/702/0.970
CGM1 3455/6821/3664/5.597
CGM2 3352/6735/3392/5.255
CGM3 666/1348/693/1.121
CGM4 851/1715/896/1.455

MOREBV (1000)

TDLS 425/851/426/0.208
CGM1 391/783/392/0.216
CGM2 391/783/392/0.208
CGM3 363/727/364/0.176
CGM4 391/783/392/0.226

MSQRTALS (100)

TDLS 310/629/321/0.112
CGM1 309/627/320/0.132
CGM2 305/619/316/0.124
CGM3 358/725/369/0.129
CGM4 309/627/320/0.137

NCB20 (1010)

TDLS 276/557/290/0.573
CGM1 255/514/270/0.547
CGM2 303/612/313/0.641
CGM3 407/817/415/0.785
CGM4 255/513/266/0.499

NCB20B (1000)

TDLS 45/91/48/0.093
CGM1 60/121/62/0.126
CGM2 60/121/62/0.125
CGM3 55/111/57/0.112
CGM4 60/121/62/0.127

NONCVXU2 (1000)

TDLS 1032/2065/1033/0.695
CGM1 848/1697/849/0.622
CGM2 1024/2049/1025/0.728
CGM3 813/1627/814/0.498
CGM4 829/1659/830/0.575

NONCVXUN (1000)

TDLS 1577/3155/1578/1.070
CGM1 1571/3143/1572/1.154
CGM2 1174/2349/1175/0.776
CGM3 12594/25189/12595/7.857
CGM4 1493/2987/1494/1.042

NONDIA (10000)

TDLS 14/40/31/0.061
CGM1 22/52/36/0.081
CGM2 17/43/32/0.068
CGM3 16/35/23/0.051
CGM4 10/22/14/0.034

NONDQUAR (5000)

TDLS 13250/26511/13362/17.300
CGM1 7857/15717/7868/11.170
CGM2 7697/15402/7748/10.330
CGM3 6296/12601/6306/7.575
CGM4 7754/15513/7847/11.470

NONSCOMP (10000)

TDLS 36/73/37/0.086
CGM1 32/65/33/0.075
CGM2 36/73/37/0.081
CGM3 39/79/40/0.083
CGM4 32/65/33/0.077



Journal of Applied Mathematics 11

Table 1: Continued.

Name (Dim) Method Iter/Nf/Ng/CPU

OSCIPATH (1000)

TDLS 10/19/14/0.005
CGM1 10/19/14/0.006
CGM2 10/19/14/0.005
CGM3 10/19/14/0.005
CGM4 10/19/14/0.006

OSCIGRAD (10000)

TDLS 78/157/79/0.256
CGM1 81/163/82/0.271
CGM2 79/159/80/0.260
CGM3 97/195/98/0.303
CGM4 81/163/82/0.276

PENALTY1 (1000)

TDLS 45/110/68/0.025
CGM1 44/105/66/0.027
CGM2 49/120/77/0.029
CGM3 89/190/102/0.042
CGM4 45/106/67/0.027

POWELLSG (5000)

TDLS 68/138/74/0.087
CGM1 56/114/61/0.078
CGM2 122/248/132/0.166
CGM3 2828/5657/2829/3.180
CGM4 233/482/254/0.323

POWER (1000)

TDLS 134/269/135/0.048
CGM1 116/233/117/0.048
CGM2 134/269/135/0.053
CGM3 —
CGM4 116/233/117/0.050

QUARTC (1000)

TDLS 29/59/30/0.012
CGM1 29/59/30/0.014
CGM2 29/59/30/0.017
CGM3 29/59/30/0.012
CGM4 29/59/30/0.016

SCHMVETT (5000)

TDLS 14/29/15/0.074
CGM1 14/29/15/0.076
CGM2 14/29/15/0.074
CGM3 15/31/16/0.077
CGM4 14/29/15/0.075

SENSORS (100)

TDLS 26/85/63/0.391
CGM1 17/44/29/0.206
CGM2 27/80/58/0.376
CGM3 27/64/40/0.292
CGM4 17/44/29/0.207

SINQUAD (100)

TDLS 40/89/52/0.018
CGM1 31/71/46/0.014
CGM2 40/89/52/0.016
CGM3 32/73/47/0.012
CGM4 31/71/46/0.014

SPARSINE (1000)

TDLS 4344/8689/4345/3.120
CGM1 4467/8935/4468/3.305
CGM2 4378/8757/4379/3.205
CGM3 5455/10911/5456/3.698
CGM4 4467/8935/4468/3.369



12 Journal of Applied Mathematics

Table 1: Continued.

Name (Dim) Method Iter/Nf/Ng/CPU

SPARSQUR (1000)

TDLS 19/39/20/0.011
CGM1 19/39/20/0.012
CGM2 19/39/20/0.012
CGM3 19/39/20/0.011
CGM4 19/39/20/0.012

SPMSRTLS (499)

TDLS 113/233/122/0.056
CGM1 114/235/123/0.062
CGM2 114/235/123/0.060
CGM3 109/225/118/0.052
CGM4 114/235/123/0.063

SROSENBR (5000)

TDLS 11/24/15/0.017
CGM1 12/26/17/0.024
CGM2 11/24/15/0.016
CGM3 27/57/33/0.036
CGM4 12/26/17/0.018

TESTQUAD (3000)

TDLS 1470/2941/1471/1.140
CGM1 1434/2869/1435/1.369
CGM2 1472/2945/1473/1.271
CGM3 1507/3015/1508/1.179
CGM4 1748/3497/1749/1.803

TOINTGSS (10000)

TDLS 3/7/4/0.017
CGM1 3/7/4/0.016
CGM2 3/7/4/0.017
CGM3 3/7/4/0.016
CGM4 3/7/4/0.016

TQUARTIC (10000)

TDLS 32/81/56/0.104
CGM1 32/72/45/0.091
CGM2 27/71/51/0.092
CGM3 97/203/114/0.230
CGM4 26/58/38/0.078

TRIDIA (10000)

TDLS 1115/2231/1116/2.110
CGM1 1115/2231/1116/2.208
CGM2 1115/2231/1116/2.139
CGM3 1116/2233/1117/1.944
CGM4 1119/2239/1120/2.303

VARDIM (1000)

TDLS 37/75/39/0.016
CGM1 37/75/39/0.018
CGM2 37/75/39/0.017
CGM3 38/78/41/0.016
CGM4 37/77/41/0.019

VAREIGVL (1000)

TDLS 73/198/125/0.075
CGM1 78/210/132/0.084
CGM2 70/190/120/0.075
CGM3 —
CGM4 76/204/128/0.083

WOODS (1000)

TDLS 433/897/484/0.215
CGM1 358/756/414/0.204
CGM2 225/515/306/0.133
CGM3 250/529/289/0.126
CGM4 220/485/291/0.135



Journal of Applied Mathematics 13

2 4 6 8 10 12 14 16

TDLS
CGM1
CGM2

CGM3
CGM4

1

0.9

0.8

0.7

0.6

0.5

0.4

𝜏

Figure 2: Performance profile based on the number of gradient
evaluations.

2 4 6 8 10 12 14 16

TDLS
CGM1
CGM2

CGM3
CGM4

1

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

𝜏

Figure 3: Performance profile based on the CPU time.

the weak Wolfe conditions are fulfilled, it is strongly conver-
gent with lim

𝑘→∞
𝑔
𝑘
= 0.Then, we gave several specific guar-

anteed descent conjugate gradient methods and investigated
their numerical behaviors using the test problems from the
CUTEr library. From the numerical results, we can conclude
that the specific methods are efficient to solve unconstrained
nonlinear problems.

More recently, a class of conjugate gradient methods [28]
was proposed based on different secant conditions. They
followed the form of the HZ method and satisfied sufficient
descent condition. While not all of the global convergence
properties of them were obtained for a general objective

function, then our further investigation is to improve these
methods from theory analysis and numerical efficiency.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are very grateful to the associate editor and the
referees for their valuable comments. This work is supported
by the National Science Foundation of China, no. 61373174.

References

[1] P. Wolfe, “Convergence conditions for ascent methods,” SIAM
Review, vol. 11, no. 2, pp. 226–235, 1969.

[2] P.Wolfe, “Convergence conditions for ascent methods. II: some
corrections,” SIAM Review, vol. 13, no. 2, pp. 185–188, 1971.

[3] R. Fletcher andC. Reeves, “Functionminimization by conjugate
gradients,”The Computer Journal, vol. 7, pp. 149–154, 1964.

[4] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients
for solving linear systems,” Journal of Research of the National
Bureau of Standards, vol. 49, no. 6, pp. 409–436, 1952.

[5] E. Polak and G. Ribière, “Note sur la convergence de méthodes
de directions conjuguées,” Revue Française D’informatique et de
Recherche Opérationnelle, Série Rouge, vol. 3, no. 16, pp. 35–43,
1969.

[6] B. T. Polyak, “The conjugate gradient method in extremal prob-
lems,” USSR Computational Mathematics and Mathematical
Physics, vol. 9, no. 4, pp. 94–112, 1969.

[7] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method
with a strong global convergence property,” SIAM Journal on
Optimization, vol. 10, no. 1, pp. 177–182, 2000.

[8] Y. Liu and C. Storey, “Efficient generalized conjugate gradient
algorithms, part 1: theory,” Journal of Optimization Theory and
Applications, vol. 69, no. 1, pp. 129–137, 1991.

[9] Y. H. Dai and Q. Ni, “Testing different conjugate gradient
methods for large-scale unconstrained optimization,” Journal of
Computational Mathematics, vol. 21, no. 3, pp. 311–320, 2003.

[10] M. J. D. Powell, “Nonconvex minimization calculations and the
conjugate gradient method,” in Numerical Analysis, vol. 1066
of Lecture Notes in Mathematics, pp. 122–141, Springer, Berlin,
Germany, 1984.

[11] J. C. Gilbert and J. Nocedal, “Global convergence properties of
conjugate gradient methods for optimization,” SIAM Journal on
Optimization, vol. 2, no. 1, pp. 21–42, 1992.

[12] L. Zhang, W. Zhou, and D.-H. Li, “A descent modified Polak-
Ribière-Polyak conjugate gradient method and its global con-
vergence,” IMA Journal of Numerical Analysis, vol. 26, no. 4, pp.
629–640, 2006.

[13] Y. F. Hu and C. Storey, “Global convergence result for conjugate
gradient methods,” Journal of OptimizationTheory and Applica-
tions, vol. 71, no. 2, pp. 399–405, 1991.

[14] Y. H. Dai and Y. Yuan, “An efficient hybrid conjugate gradient
method for unconstrained optimization,” Annals of Operations
Research, vol. 103, no. 1–4, pp. 33–47, 2001.

[15] Y.-H. Dai and L.-Z. Liao, “New conjugacy conditions and
related nonlinear conjugate gradient methods,” Applied Math-
ematics & Optimization, vol. 43, no. 1, pp. 87–101, 2001.



14 Journal of Applied Mathematics

[16] W. W. Hager and H. Zhang, “A new conjugate gradient method
with guaranteed descent and an efficient line search,” SIAM
Journal on Optimization, vol. 16, no. 1, pp. 170–192, 2006.

[17] L. Zhang, W. Zhou, and D. Li, “Global convergence of a mod-
ified Fletcher–Reeves conjugate gradient method with Armijo-
type line search,” Numerische Mathematik, vol. 104, no. 4, pp.
561–572, 2006.

[18] L. Zhang and J. Li, “A new globalization technique for nonlinear
conjugate gradient methods for nonconvex minimization,”
Applied Mathematics and Computation, vol. 217, no. 24, pp.
10295–10304, 2011.

[19] W. Nakamura, Y. Narushima, and H. Yabe, “Nonlinear con-
jugate gradient methods with sufficient descent properties for
unconstrained optimization,” Journal of Industrial andManage-
ment Optimization, vol. 9, no. 3, pp. 595–619, 2013.

[20] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate
gradient methods,” Pacific Journal of Optimization, vol. 2, no. 1,
pp. 35–58, 2006.

[21] W. W. Hager and H. Zhang, “Algorithm 851: CG DESCENT,
a conjugate gradient method with guaranteed descent,” ACM
Transactions on Mathematical Software, vol. 32, no. 1, pp. 113–
137, 2006.

[22] Y. H. Dai, “Nonlinear conjugate gradient methods,” in Wiley
Encyclopedia of Operations Research and Management Science,
J. J. Cochran, L. A. Cox Jr., P. Keskinocak, J. P. Kharoufeh, and
J. C. Smith, Eds., vol. 8, JohnWiley & Sons, Hoboken, NJ, USA,
2011.

[23] G. Zoutendijk, “Nonlinear programming, computational meth-
ods,” in Integer and Nonlinear Programming, J. Abadie, Ed., pp.
37–86, North-Holland, Amsterdam, The Netherlands, 1970.

[24] D.-H. Li and M. Fukushima, “A modified BFGS method and
its global convergence in nonconvex minimization,” Journal of
Computational and Applied Mathematics, vol. 129, no. 1-2, pp.
15–35, 2001.

[25] H. Yabe and M. Takano, “Global convergence properties of
nonlinear conjugate gradient methods with modified secant
condition,” Computational Optimization and Applications, vol.
28, no. 2, pp. 203–225, 2004.

[26] S. Babaie-Kafaki, R. Ghanbari, and N. Mahdavi-Amiri, “Two
new conjugate gradient methods based on modified secant
equations,” Journal of Computational and Applied Mathematics,
vol. 234, no. 5, pp. 1374–1386, 2010.

[27] K. Sugiki, Y. Narushima, and H. Yabe, “Globally convergent
three-term conjugate gradient methods that use secant condi-
tions and generate descent search directions for unconstrained
optimization,” Journal of OptimizationTheory and Applications,
vol. 153, no. 3, pp. 733–757, 2012.

[28] Y. Narushima and H. Yabe, “Conjugate gradient methods based
on secant conditions that generate descent search directions
for unconstrained optimization,” Journal of Computational and
Applied Mathematics, vol. 236, no. 17, pp. 4303–4317.

[29] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE:
constrained and unconstrained testing environment,” ACM
Transactions on Mathematical Software, vol. 21, no. 1, pp. 123–
160, 1995.

[30] N. I. M. Gould, D. Orban, and P. L. Toint, “CUTEr and SifDec: a
constrained and unconstrained testing environment, revisited,”
ACM Transactions on Mathematical Software, vol. 29, no. 4, pp.
373–394, 2003.

[31] E. D. Dolan and J. J. Moré, “Benchmarking optimization soft-
ware with performance profiles,” Mathematical Programming,
vol. 91, no. 2, pp. 201–213, 2002.


