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We apply the Krasnoselskii’s fixed point theorem to study the existence ofmultiple positive periodic solutions for a class of impulsive
functional differential equations with infinite delay and two parameters. In particular, the presented criteria improve and generalize
some related results in the literature. As an application, we study some special cases of systems, which have been studied extensively
in the literature.

1. Introduction

First, we give the following definitions. Let 𝐽 ⊂ 𝑅 denote
by 𝑃𝐶(𝐽, 𝑅𝑛

) the set of operators 𝜑 : 𝐽 → 𝑅
𝑛 which are

continuous for 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡
𝑘
and have discontinuities of the first

kind at the points 𝑡
𝑘
∈ 𝐽 (𝑘 ∈ 𝑍

+
) but are continuous from

the left at these points. For each 𝑦 = (𝑦
1
, 𝑦

2
, . . . , 𝑦

𝑛
)
𝑇

∈ 𝑅
𝑛,

the norm of 𝑦 is defined as |𝑦| = ∑
𝑛

𝑖=1
|𝑦

𝑖
|. The matrix 𝐴 >

𝐵 (𝐴 ≤ 𝐵) means that each pair of corresponding elements
of 𝐴 and 𝐵 satisfies the inequality “ > ” (“ ≤ ”). In particular,
𝐴 is called a positive matrix if 𝐴 > 0.

Impulsive differential equations are suitable for themath-
ematical simulation of evolutionary process whose states are
subject to sudden changes at certain moments. Equations of
this kind are found in almost every domain of applied sci-
ences; numerous examples are given in [1–3]. In recent years,
in [4–11], many researchers have obtained some properties of
impulsive differential equations, such as oscillation, asymp-
totic behavior, stability, and existence of solutions. However,
to this day, still no scholars investigate the existence of
multiple positive periodic solutions for impulsive functional
differential equations with infinite delay and two parameters.
Motivated by this, in this paper, we mainly consider the

following impulsive functional differential equations with
two parameters:

𝑦


(𝑡) = −𝐴 (𝑡, 𝑦 (𝑡)) 𝑦 (𝑡) + 𝜆𝐵 (𝑡, 𝑦 (𝑡)) 𝐹 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 ∈ 𝑍

+
,

(1)

𝑦


(𝑡) = 𝐴 (𝑡, 𝑦 (𝑡)) 𝑦 (𝑡) − 𝜆𝐵 (𝑡, 𝑦 (𝑡)) 𝐹 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 ∈ 𝑍

+
,

(2)

where

𝑢 (𝑡) = (𝑦 (𝑐
1
(𝑡)) , . . . , 𝑦 (𝑐

𝑛−1
(𝑡)) ,

∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉) ,

(3)

and 𝜆 > 0, 𝜇 > 0 are two parameters, 𝐴(𝑡, 𝑦(𝑡)) =

diag[𝑎
1
(𝑡, 𝑦(𝑡)), 𝑎

2
(𝑡, 𝑦(𝑡)), . . . , 𝑎

𝑛
(𝑡, 𝑦(𝑡))], 𝐵(𝑡, 𝑦(𝑡)) =

diag[𝑏
1
(𝑡, 𝑦(𝑡)), 𝑏

2
(𝑡, 𝑦(𝑡)), . . . , 𝑏

𝑛
(𝑡, 𝑦(𝑡))], 𝑎

𝑖
, 𝑏

𝑖
∈ 𝐶(𝑅 × 𝑅

+

,

𝑅
+

) (𝑖 = 1, 2, . . . , 𝑛) are𝜔-periodic, that is, 𝑎
𝑖
(𝑡+𝜔, 𝑦(𝑡+𝜔)) =
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𝑎
𝑖
(𝑡, 𝑦(𝑡)), 𝑏

𝑖
(𝑡 + 𝜔, 𝑦(𝑡 + 𝜔)) = 𝑏

𝑖
(𝑡, 𝑦(𝑡)), 𝐹 = (𝑓

1
, . . . , 𝑓

𝑛
)
𝑇,

𝐹(𝑡, 𝑢(𝑡)) is an operator on 𝑅 × 𝐵𝐶(𝑅, 𝑅𝑛

) (here 𝐵𝐶(𝑅, 𝑅𝑛

)

denotes the Banach space of bounded continuous operator
𝜙 : 𝑅 → 𝑅

𝑛 with the norm ‖𝜙‖ = ∑
𝑛

𝑖+1
sup

𝜃∈𝑅
|𝜙(𝜃)|,

where 𝜙 = (𝜙
1
, . . . , 𝜙

𝑛
)
𝑇

), 𝑓
𝑖
(𝑡 + 𝜔, 𝑢(𝑡 + 𝜔)) = 𝑓

𝑖
(𝑡, 𝑢(𝑡)),

Δ𝑦(𝑡
𝑘
) = 𝑦(𝑡

+

𝑘
)−𝑦(𝑡

𝑘
) (here 𝑦(𝑡+

𝑘
) represents the right limit of

𝑦(𝑡) at the point 𝑡
𝑘
), 𝐼

𝑘
= (𝐼

1𝑘
, 𝐼

2𝑘
, . . . , 𝐼

𝑛𝑘
) ∈ 𝐶(𝑅

𝑛

+
, 𝑅

𝑛

−
), that

is, 𝑦(𝑡) changes decreasingly suddenly at times 𝑡
𝑘
. 𝜔 > 0 is a

constant, 𝑍
+
= {1, 2, 3, . . .}, 𝑅 = (−∞, +∞), 𝑅

+
= [0, +∞),

and 𝑅
−
= (−∞, 0]. We assume that there exists an integer

𝑞 > 0 such that 𝑡
𝑘+𝑞

= 𝑡
𝑘
+ 𝜔, 𝐼

𝑖(𝑘+𝑞)
= 𝐼

𝑖𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

where 0 < 𝑡
1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑞
< 𝜔.

Models of forms (1) and (2) have been proposed for
population dynamics (single species growth models), physi-
ological processes (such as production of blood cells, respira-
tion, and cardiac arrhythmias), and other practical problems.
Equations (1) and (2) are very general and incorporate
many famousmathematicalmodels extensively studied in the
literature [12–21]. In this paper, we will study the existence of
positive periodic solutions in more cases than the previously
mentioned papers and obtain some easily verifiable sufficient
criteria.

Throughout the paper, we make the following assump-
tions.
(𝐻

1
) 𝑎

𝑖
, 𝑏

𝑖
: 𝑅 × 𝑅

+
→ 𝑅

+
satisfy Caratheodory

conditions; that is, 𝑎
𝑖
(𝑡, 𝑦) and 𝑏

𝑖
(𝑡, 𝑦) are locally

Lebesgue measurable in 𝑡 for each fixed 𝑦 and are
continuous in 𝑦 for each fixed 𝑡 are 𝜔-periodic func-
tions in 𝑡. Moreover, there exist 𝜔-periodic functions
𝑎
1𝑖
, 𝑎

2𝑖
, 𝑏

1𝑖
, 𝑏

2𝑖
: 𝑅 → 𝑅+, which are locally bounded

Lebesgue measurable so that 𝑎
1𝑖
(𝑡) ≤ 𝑎

𝑖
(𝑡, 𝑦(𝑡)) ≤

𝑎
2𝑖
(𝑡), 𝑏

1𝑖
(𝑡) ≤ 𝑏

1𝑖
(𝑡, 𝑦(𝑡)) ≤ 𝑏

2𝑖
(𝑡) and ∫𝜔

0

𝑎
1𝑖
(𝑡)𝑑𝑡 > 0,

∫
𝜔

0

𝑏
1𝑖
(𝑡)𝑑𝑡 > 0. 𝜆 > 0, 𝜇 > 0 are two parameters.

(𝐻
2
) 𝑓

𝑖
(𝑡, 𝑢(𝑡)) is 𝜔-periodic with respect to the first vari-

able, that is, 𝑓
𝑖
(𝑡 + 𝜔, 𝑢(𝑡 + 𝜔)) = 𝑓

𝑖
(𝑡, 𝑢(𝑡)) such that

𝑓
𝑖
(𝑡, 𝑢(𝑡)) ̸≡ 0, 𝑖 = 1, 2, . . . , 𝑛.

(𝐻
3
) The delay kernel 𝑘 : 𝑅

+
→ 𝑅

+
is integrable and is

normalized such that ∫+∞

0

𝑘(𝑡)𝑑𝑡 = 1, 𝑐
𝑗
(𝑡) : 𝑅 → 𝑅

such that 𝑐
𝑗
(𝑡) ≤ 𝑡, 𝑗 = 1, 2, . . . , 𝑛 − 1.

(𝐻
4
) {𝑡

𝑘
}, 𝑘 ∈ 𝑍

+
satisfies 0 < 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ , and lim
𝑘→+∞

𝑡
𝑘
= +∞; 𝐼

𝑘
: 𝑅 × 𝑅

+
→ 𝑅,

𝑘 ∈ 𝑍
+
satisfy Caratheodory conditions and are 𝜔-

periodic functions in 𝑡. Moreover, 𝐼
𝑘
(𝑡, 0) = 0 for all

𝑘 ∈ 𝑍
+. There exists a positive constant 𝑞 such that

𝑡
𝑘+𝑞

= 𝑡
𝑘
+𝜔, 𝐼

𝑘+𝑞
(𝑡

𝑘+𝑞
, 𝑦(𝑡

𝑘+𝑞
)) = 𝐼

𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
)), 𝑘 ∈ 𝑍

+
.

Without loss of generality, we can assume that 𝑡
𝑘
̸= 0

and [0, 𝜔] ∩ {𝑡
𝑘
, 𝑘 ∈ 𝑍

+

} = {𝑡
1
, 𝑡

2
, . . . , 𝑡

𝑞
}.

In addition, the parameters in this paper are assumed to
be not identically equal to zero.

To conclude this section, we summarize in the following a
few concepts and results thatwill be needed in our arguments.

Definition 1 (see [22]). Let𝑋 be a real Banach space and let 𝐸
be a closed, nonempty subset of𝑋. 𝐸 is said to be a cone if

(1) 𝛼𝑥 + 𝛽𝑦 ∈ 𝐸 for all 𝑥, 𝑦 ∈ 𝐸, and 𝛼, 𝛽 > 0;
(2) 𝑥, −𝑥 ∈ 𝐸 imply 𝑥 = 0.

Lemma 2 (see Krasnoselskii’s fixed point theorem [23–26]).
Let 𝐸 be a cone in a real Banach space𝑋. Assume thatΩ

1
and

Ω
2
are open subsets of 𝑋 with 0 ∈ Ω

1
⊂ Ω

1
⊂ Ω

2
, where

Ω
𝑖
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟

𝑖
} (𝑖 = 1, 2). Let 𝑇 : 𝐸 ∩ (Ω

2
\ Ω

1
) → 𝐸

be a completely continuous operator and satisfies either

(1) ‖𝑇𝑥‖ ≥ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≤ ‖𝑥‖,

for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2
,

or

(2) ‖𝑇𝑥‖ ≤ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≥ ‖𝑥‖,

for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2
.

Then, 𝑇 has a fixed point in 𝐸 ∩ (Ω
2
\ Ω

1
).

For convenience in the following discussion, we intro-
duce the following notations:

𝐹
𝑎

= lim sup
𝑢∈𝐸,‖𝑢‖→𝑎

max
𝑡∈[0,𝜔]

∫
𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

‖𝑢‖
,

𝐹
𝑎
= lim inf

𝑢∈𝐸,‖𝑢‖→𝑎

min
𝑡∈[0,𝜔]

∫
𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

‖𝑢‖
,

𝐼
𝑎

= lim sup
𝑦∈𝐸,‖𝑦‖→𝑎

max
𝑡∈[0,𝜔]

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


,

𝐼
𝑎
= lim inf

𝑦∈𝐸,‖𝑦‖→𝑎

min
𝑡∈[0,𝜔]

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


,

(4)

where 𝑎denotes either 0 or∞, ‖𝑢‖ = max{|𝑢
1
|, |𝑢

2
|, . . . , |𝑢

𝑛
|},

and ‖𝑦‖ = max{|𝑦
1
|, |𝑦

2
|, . . . , |𝑦

𝑛
|}.

The paper is organized as follows. In Section 2, firstly, we
give some definitions and lemmas. Secondly, we derive some
existence theorems for one or two positive periodic solutions
of (1) which are established by using Krasnoselskii’s fixed
point theorem under some conditions. In Section 3, existence
theorems for one or two positive periodic solutions of (2) are
also established by using Krasnoselskii’s fixed point theorem
under some conditions. As applications in Section 4, we study
some particular cases of systems (1) and (2) which have been
investigated extensively in the references mentioned earlier.

2. Existence of Periodic Solution of (1)
We establish the existence of positive periodic solutions of (1)
by applying the Krasnoselskii’s fixed point theorem on cones.
We will first make some preparations and list below a few
preliminary results. For (𝑡, 𝑠) ∈ 𝑅2, 1 ≤ 𝑖 ≤ 𝑛, we define

𝐺
𝑖
(𝑡, 𝑠) =

𝑒
∫

𝑠

𝑡
𝑎𝑖(𝜉,𝑦(𝜉))𝑑𝜉

𝑒
∫

𝜔

0
𝑎𝑖(𝜉,𝑦(𝜉))𝑑𝜉 − 1

,

𝐺 (𝑡, 𝑠) = diag [𝐺
1
(𝑡, 𝑠) , 𝐺

2
(𝑡, 𝑠) , . . . , 𝐺

𝑛
(𝑡, 𝑠)] .

(5)
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It is clear that 𝐺
𝑖
(𝑡 + 𝜔, 𝑠 + 𝜔) = 𝐺

𝑖
(𝑡, 𝑠), (𝜕𝐺

𝑖
(𝑡, 𝑠)/𝜕𝑡) =

𝑎
𝑖
(𝑡, 𝑦(𝑡))𝐺

𝑖
(𝑡, 𝑠),𝐺

𝑖
(𝑡, 𝑡+𝜔)−𝐺

𝑖
(𝑡, 𝑡) = 1. In view of (𝐻

1
), we

also define for 1 ≤ 𝑖 ≤ 𝑛

𝛼
𝑖
:= min

0≤𝑡≤𝑠≤𝜔

𝐺𝑖
(𝑡, 𝑠)

 =
1

𝑒
∫

𝜔

0
𝑎2𝑖(𝜉)𝑑𝜉 − 1

,

𝛽
𝑖
:= max

0≤𝑡≤𝑠≤𝜔

𝐺𝑖
(𝑡, 𝑠)

 =
𝑒
∫

𝜔

0
𝑎2𝑖(𝜉)𝑑𝜉

𝑒
∫

𝜔

0
𝑎1𝑖(𝜉)𝑑𝜉 − 1

,

𝛼 = min
1≤𝑖≤𝑛

𝛼
𝑖
, 𝛽 = max

1≤𝑖≤𝑛

𝛽
𝑖
, 𝜎 =

𝛼

𝛽
∈ (0, 1) ,

𝐵
𝑖
(𝑡) = max {𝑏1𝑖 (𝑡)

 ,
𝑏2𝑖 (𝑡)

} ,

𝐵


𝑖
(𝑡) = min {𝑏1𝑖 (𝑡)

 ,
𝑏2𝑖 (𝑡)

} ,

𝐵 (𝑡) = max
1≤𝑖≤𝑛

{𝐵
𝑖
(𝑡)} , 𝐵



(𝑡) = min
1≤𝑖≤𝑛

{𝐵


𝑖
(𝑡)} .

(6)

Let 𝑋 = {𝑦 = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑃𝐶(𝑅, 𝑅
𝑛

) |

𝑦(𝑡 + 𝜔) = 𝑦(𝑡)} with the norm ‖𝑦‖ = ∑
𝑛

𝑖=1
|𝑦

𝑖
|
0
, |𝑦

𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑦
𝑖
(𝑡)|. It is easy to verify that (𝑋, ‖ ⋅ ‖) is a Banach

space. Define 𝐸 as a cone in𝑋 by

𝐸 = {𝑦 = (𝑦
1
(𝑡) , 𝑦

2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑋 : 𝑦
𝑖
(𝑡) ≥ 𝜎

𝑦𝑖
0,

𝑡 ∈ [0, 𝜔]} .

(7)

We easily verify that 𝐸 is a cone in 𝑋. We define an operator
𝑇 : 𝑋 → 𝑋 as follows:

(𝑇𝑦) (𝑡) = ((𝑇
1
𝑦) (𝑡) , (𝑇

2
𝑦) (𝑡) , . . . , (𝑇

𝑛
𝑦) (𝑡))

𝑇

, (8)

where

(𝑇
𝑖
𝑦) (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) .

(9)

The proofs of the main results in this paper are based on an
application ofKrasnoselskii’s fixed point theorem in cones. To
make use of the fixed point theorem in cone, firstly, we need
to introduce some definitions and lemmas.

Definition 3 (see [1]). A function 𝑦 : 𝑅 → (0, +∞) is said
to be a positive solution of (1) if the following conditions are
satisfied:

(a) 𝑦(𝑡) is absolutely continuous on each (𝑡
𝑘
, 𝑡

𝑘+1
);

(b) for each 𝑘 ∈ 𝑍
+
, 𝑦(𝑡+

𝑘
) and 𝑦(𝑡−

𝑘
) exist, and 𝑦(𝑡−

𝑘
) =

𝑦(𝑡
𝑘
);

(c) 𝑦(𝑡) satisfies the first equation of (1) for almost every-
where in 𝑅 and 𝑦(𝑡

𝑘
) satisfies the second equation of

(1) at impulsive point 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
.

Definition 4 (see [22]). Let 𝑋 be a real Banach space; 𝐸 is a
cone of 𝑋. The semiorder induced by the cone 𝐸 is denoted
by “≤”.That is, 𝑥 ≤ 𝑦 if and only if 𝑦−𝑥 ∈ 𝑃 for any 𝑥, 𝑦 ∈ 𝐸.

Lemma5 (see [27]). Assume that𝑓(𝑡) and𝑔(𝑡) are continuous
nonnegative functions defined on the interval [𝛼, 𝛽]; then there
exists 𝜉 ∈ [𝛼, 𝛽] such that

∫

𝛽

𝛼

𝑓 (𝑡) 𝑔 (𝑡) 𝑑𝑡 = 𝑓 (𝜉) ∫

𝛽

𝛼

𝑔 (𝑡) 𝑑𝑡. (10)

Lemma 6. Assume that (𝐻
1
)–(𝐻

4
) hold. The existence of

positive 𝜔-periodic solution of (1) is equivalent to that of
nonzero fixed point of 𝑇 in 𝐸.

Proof. Assume that 𝑦 = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑋 is a
periodic solution of (1). Then, we have

[𝑦
𝑖
(𝑡) 𝑒

∫

𝑡

0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠]



= 𝜆𝑒
∫

𝑡

0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠𝑏

𝑖
(𝑡, 𝑦 (𝑡)) 𝑓

𝑖
(𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛.

(11)

Integrating the above equation over [𝑡, 𝑡 + 𝜔], we can have

𝑦
𝑖
(V) 𝑒∫

V
0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠



𝑡𝑚1
+𝑛𝜔

𝑡

+ 𝑦
𝑖
(V) 𝑒∫

V
0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠



𝑡𝑚2
+𝑛𝜔

𝑡𝑚1
+𝑛𝜔

+ ⋅ ⋅ ⋅ + 𝑦
𝑖
(V) 𝑒∫

V
0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠



𝑡+𝜔

𝑡𝑚𝑞
+𝑛𝜔

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
∫

V
0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠𝑏

𝑖
(V, 𝑥 (V)) 𝑓

𝑖
(V, 𝑢 (V)) 𝑑V,

(12)

where 𝑡
𝑚𝑘
+ 𝑛𝜔 ∈ (𝑡, 𝑡 + 𝜔),𝑚

𝑘
∈ {1, 2, . . . , 𝑞}, 𝑘 = 1, 2, . . . , 𝑞,

𝑛 ∈ 𝑍
+
.

Therefore,

𝑦
𝑖
(𝑡) 𝑒

∫

𝑡

0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠 [𝑒

∫

𝑡+𝜔

𝑡
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠 − 1]

− ∑

𝑡≤𝑡𝑘<𝑡+𝜔

Δ𝑦
𝑖
(𝑡

𝑚𝑘
) 𝑒

∫

𝑡𝑚𝑘
+𝑛𝜔

0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
∫

V
0
𝑎𝑖(𝑠,𝑦(𝑠))𝑑𝑠𝑏

𝑖
(V, 𝑦 (V)) 𝑓

𝑖
(V, 𝑢 (V)) 𝑑V,

(13)

which can be transformed into

𝑦
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

= (𝑇
𝑖
𝑦) (𝑡) .

(14)

Thus, 𝑦
𝑖
is a periodic solution for (9).
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If 𝑦 = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑋 and 𝑇𝑦 = (𝑇
1
𝑦,

𝑇
2
𝑦, . . . , 𝑇

𝑛
𝑦)

𝑇

= 𝑦 with 𝑦 ̸= 0, then for any 𝑡 = 𝑡
𝑘
, derivative

the two sides of (9) about 𝑡,

(𝑇
𝑖
𝑦)



(𝑡)

=
𝑑

𝑑𝑡
[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠]

= 𝜆 [𝐺
𝑖
(𝑡, 𝑡 + 𝜔) 𝑏

𝑖
(𝑡 + 𝜔, 𝑦 (𝑡 + 𝜔)) 𝑓

𝑖
(𝑡 + 𝜔, 𝑢 (𝑡 + 𝜔))

− 𝐺
𝑖
(𝑡, 𝑡) 𝑏

𝑖
(𝑡, 𝑦 (𝑡)) 𝑓

𝑖
(𝑡, 𝑢 (𝑡))]

− 𝑎
𝑖
(𝑡, 𝑦 (𝑡)) 𝑦

𝑖
(𝑡)

= −𝑎
𝑖
(𝑡, 𝑦 (𝑡)) 𝑦

𝑖
(𝑡) + 𝜆𝑏

𝑖
(𝑡, 𝑦 (𝑡)) 𝑓

𝑖
(𝑡, 𝑢 (𝑡))

= 𝑦


𝑖
(𝑡) .

(15)

For any 𝑡 = 𝑡
𝑗
, 𝑗 ∈ 𝑍

+
, we have from (9) that

𝑦
𝑖
(𝑡

+

𝑗
) − 𝑦

𝑖
(𝑡

𝑗
) = 𝜆∫

𝑡𝑗+𝜔

𝑡𝑗

[𝐺
𝑖
(𝑡

+

𝑗
, 𝑠) − 𝐺

𝑖
(𝑡

𝑗
, 𝑠)]

× 𝑏
𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 ∑

𝑡
+

𝑗
≤𝑡𝑘<𝑡𝑗+𝜔

𝐺
𝑖
(𝑡

+

𝑗
, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

− 𝜇 ∑

𝑡𝑗≤𝑡𝑘<𝑡𝑗+𝜔

𝐺
𝑖
(𝑡

𝑗
, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

= 𝜇𝐼
𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) .

(16)

Hence 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑋 is a positive
𝜔-periodic solution of (1). Thus we complete the proof of
Lemma 6.

Lemma 7. Assume that (𝐻
1
)–(𝐻

4
) hold. Then 𝑇 : 𝐸 → 𝐸 is

well defined.

Proof. From (9), it is easy to verify that (𝑇𝑦)(𝑡) is continuous
in (𝑡

𝑘
, 𝑡

𝑘+1
), (𝑇𝑦)(𝑡+

𝑘
) and (𝑇𝑦)(𝑡

−

𝑘
) exist, and (𝑇𝑦)(𝑡

−

𝑘
) =

(𝑇𝑦)(𝑡
𝑘
) for each 𝑘 ∈ 𝑍

+
. Moreover, for any 𝑦 ∈ 𝐸

(𝑇𝑦) (𝑡 + 𝜔)

= 𝜆∫

𝑡+2𝜔

𝑡+𝜔

𝐺 (𝑡 + 𝜔, 𝑠) 𝑏 (𝑠, 𝑦 (𝑠)) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 ∑

𝑡+𝜔≤𝑡𝑘<𝑡+2𝜔

𝐺 (𝑡 + 𝜔, 𝑡
𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡 + 𝜔, V + 𝜔) 𝑏 (V + 𝜔, 𝑦 (V + 𝜔))

× 𝐹 (V + 𝜔, 𝑢 (V + 𝜔)) 𝑑V

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠, 𝑦 (𝑠)) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

= (𝑇𝑦) (𝑡) .

(17)

Therefore, (𝑇𝑦) ∈ 𝑋. From (9), we have

𝑇𝑖
𝑦
0 ≤ 𝛽𝑖

[𝜆∫

𝜔

0

𝑏𝑖 (𝑠, 𝑦 (𝑠)) 𝑓𝑖 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼
𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))] .

(18)

On the other hand, we obtain

(𝑇
𝑖
𝑦) (𝑡) ≥ 𝛼

𝑖
[𝜆∫

𝜔

0

𝑏𝑖 (𝑠, 𝑦 (𝑠)) 𝑓𝑖 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼
𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))]

≥
𝛼
𝑖

𝛽
𝑖

𝑇𝑖
𝑦
0

≥ 𝜎
𝑇𝑖
𝑦
0.

(19)

Therefore,𝑇𝑦 ∈ 𝐸.This completes the proof of Lemma 7.

Lemma 8. Assume that (𝐻
1
)–(𝐻

4
) hold. Then 𝑇 : 𝐸 → 𝐸 is

completely continuous.

Proof. We first show that 𝑇 is continuous. By (𝐻
3
)-(𝐻

4
), 𝑓

and 𝐻
𝑘
are continuous in 𝑦; it follows that for any 𝜖 > 0,

let 𝛿 > 0 be small enough to satisfy that if 𝑦, 𝑦∗

∈ 𝐸, with
|𝑦 − 𝑦

∗

| < 𝛿,

𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, 𝑢
∗

(𝑠))
 <

𝜖

2𝐵𝜆𝛽𝜔
, 𝑠 ∈ 𝑅,

𝐻𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) − 𝐼

𝑘
(𝑡

𝑘
, 𝑦

∗

(𝑡
𝑘
))
 <

𝜖

2𝛽𝜇𝑞
, 𝑘 ∈ 𝑍

+
.

(20)
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Therefore,
(𝑇𝑦) (𝑡) − (𝑇𝑦

∗

) (𝑡)


=

𝑛

∑

𝑖=1

𝑇𝑖
𝑦 − 𝑇

𝑖
𝑦
∗0

≤ 𝛽

𝑛

∑

𝑖=1

𝜆∫

𝑡+𝜔

𝑡

𝑏𝑖 (𝑠, 𝑦 (𝑠)) 𝑓𝑖 (𝑠, 𝑢 (𝑠))

−𝑏
𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢

∗

(𝑠))
 𝑑𝑠

+ 𝛽𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑖𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))

−ℎ
𝑖𝑘
(𝑡

𝑘
, 𝑦

∗

(𝑡
𝑘
))


< 𝛽𝜆𝐵𝜔
𝜖

2𝐵𝜆𝛽𝜔
+ 𝛽𝜇𝑞

𝜖

2𝛽𝜇𝑞

= 𝜖,

(21)

which implies that 𝑇 is continuous on 𝐸.
Next we show that 𝑇maps a bounded set into a bounded

set. Indeed, let 𝐶 ∈ 𝐸 be a bounded set. For any 𝑡 ∈ 𝑅 and
𝑥 ∈ 𝐶, by (9), we have

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

≤ 𝛽[𝜆

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝑏𝑖 (𝑠, 𝑦 (𝑠)) 𝑓𝑖 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

+𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑖𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

= 𝛽[∫

𝜔

0

𝑏
2𝑖
(𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
] .

(22)

Since 𝐶 is bounded, in view of the continuity of 𝑇, it follows
from (21) that 𝑇𝑦 is bounded and {𝑇𝑦 : 𝑦 ∈ 𝐶} is uniformly
bounded. Finally, we show that the family of functions {𝑇𝑦 :
𝑦 ∈ 𝐶} is equicontinuous on [0, 𝜔]. Let 𝜃

1
, 𝜃

2
∈ [0, 𝜔] with

𝜃
1
< 𝜃

2
. From (9), for any 𝑦 ∈ 𝐶, we have
(𝑇𝑦) (𝜃2) − (𝑇𝑦) (𝜃1)



≤ 𝜆

𝑛

∑

𝑖=1

[∫

𝜃2

𝜃1

(𝐺
𝑖
(𝜃

2
, 𝑠) − 𝐺

𝑖
(𝜃

1
, 𝑠))

× 𝑏
𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝜃1+𝜔

𝜃2

(𝐺
𝑖
(𝜃

2
, 𝑠) − 𝐺

𝑖
(𝜃

1
, 𝑠))

× 𝑏
𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

𝜃1≤𝑡𝑘<𝜃2

(𝐺
𝑖
(𝜃

2
, 𝑡

𝑘
) − 𝐺

𝑖
(𝜃

1
, 𝑡

𝑘
))

×
𝐼𝑖𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))



+ ∑

𝜃2≤𝑡𝑘<𝜃1+𝜔

(𝐺
𝑖
(𝜃

2
, 𝑡

𝑘
) − 𝐺

𝑖
(𝜃

1
, 𝑡

𝑘
))

×
𝐼𝑖𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))

] .

(23)

Since for 𝑦 ∈ 𝐶, 𝑡 ∈ [0, 𝜔], 0 ≤ 𝑘 ≤ 𝑞, 𝑏
𝑖
(𝑡, 𝑦(𝑡)), 𝑓

𝑖
(𝑡, 𝑢(𝑡)),

and 𝐼
𝑖𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) are uniformly bounded in𝑋, in view of (23),

it is easy to see that when 𝜃
2
− 𝜃

1
tends to zero, |(𝑇𝑦)(𝜃

2
) −

(𝑇𝑦)(𝜃
1
)| tends uniformly to zero in𝑋. Hence, {𝑇𝑦 : 𝑦 ∈ 𝐶} is

a family of uniformly bounded and equicontinuous functions
on [0, 𝜔]. By Arzela-Ascoli theorem, the operator 𝑇 is com-
pletely continuous. The proof of Lemma 8 is complete.

Our main results of this paper are as follows.

Theorem 9. Assume that (𝐻
1
)–(𝐻

4
) and

(𝐻
5
) there exists a 𝑅 > 0 such that 𝐹(𝑡, 𝑢) ≥ (𝑅/

(2𝛼𝜎𝐵


(𝜉)𝜆𝜔)), ∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼
𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) ≥ (𝑅/(2𝛼𝜎𝜇)),

for ‖𝑢‖ ≤ ‖𝑦‖ ∈ [𝜎𝑅, 𝑅];

(𝐻
6
) 𝐹

0

= 𝐼
0

= 𝐹
∞

= 𝐼
∞

= 0

hold. Then, (1) has two positive 𝜔-periodic solutions.

Proof. First, we define Ω
𝑅
= {𝑦 ∈ 𝑋 : ‖𝑦‖ < 𝑅}; then Ω

𝑅

is an open subset of 𝑋. Then, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

𝑦(𝑡) ≥ 𝜎𝑅. Consequently,

𝑢
𝑗
(𝑡) = 𝑦 (𝑐

𝑗
(𝑡)) ≥ 𝜎

𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

𝑢
𝑛
(𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉 ≥ 𝜎
𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ;

(24)

then

‖𝑢 (𝑡)‖ = max
1≤𝑗≤𝑛−1

{𝑦 (𝑐
𝑗
(𝑡)) , ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉} ≥ 𝜎𝑅,

(25)

and from the definition of 𝑢(𝑡), we know ‖𝑢(𝑡)‖ ≤ ‖𝑦(𝑡)‖.
From (9), (𝐻

5
), and Lemma 5, we get

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))
]
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≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

≥ 𝛼𝜎(𝜆𝐵


(𝜉) 𝜔
𝑅

2𝛼𝜎𝐵 (𝜉) 𝜆𝜔
+

𝑅𝜇

2𝛼𝜎𝜇
) = 𝑅

>
𝑦
 .

(26)

This yields

𝑇𝑦
 >

𝑦
 , for any𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅
. (27)

On the other hand, if 𝐹0

= 𝐼
0

= 0 holds, then we can
choose 0 < 𝑅

1
< 𝑅, so that ∫𝜔

0

|𝑓(𝑡, 𝑢(𝑡))|𝑑𝑡 ≤ 𝜖‖𝑢‖; from
the definition of 𝑢(𝑡), we know ‖𝑢‖ ≤ ‖𝑦‖. Thus, we have
∫
𝜔

0

|𝑓(𝑡, 𝑢(𝑡))|𝑑𝑡 ≤ 𝜖‖𝑦‖, ∑
𝑡≤𝑡𝑘<𝑡+𝜔

|𝐼
𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
))| ≤ 𝜖‖𝑦‖ for

𝑦 ∈ [0, 𝑅
1
], 𝑡 ∈ [0, 𝜔], 1 ≤ 𝑘 < 𝑞, where constant 𝜖 > 0

satisfies 𝜖𝛽(𝜆𝐵(𝜉)+𝜇) ≤ 1. By (9) and Lemma 5,we can obtain

(𝑇𝑦) (𝑡)

=

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑦)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

≤ 𝜖𝛽 (𝜆𝐵 (𝜉) + 𝜇)
𝑦


≤
𝑦
 .

(28)

This yields

(𝑇𝑦) (𝑡)
 ≤

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅1
. (29)

In view of (27) and (29), by Lemma 5, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑅
\ Ω

𝑅1
) with 𝑅

1
< ‖𝑦

∗

‖ < 𝑅, which
is a positive 𝜔-periodic solution of (1).

Likewise, in view of 𝐹∞

= 𝐼
∞

= 0, for any 0 < 𝜖 <

(1/(4𝛽𝐵(𝜉)𝜆𝜔)), there is𝑁 > 0 such that

𝐹 (𝑡, 𝑢 (𝑡)) ≤ 𝜖 ‖𝑢‖ , for ‖𝑢‖ > 𝑁. (30)

LetΩ
𝑅2
= {𝑦 ∈ 𝑋 : ‖𝑦‖ < 𝑅

2
}, where

𝑅
2
≥ 4𝑁 + 4𝐵 (𝜉) 𝜆𝜔 max

𝑡∈[0,𝜔],‖𝑢‖≤𝑁

𝐹 (𝑡, 𝑢 (𝑡))

+2𝛽𝜇 ∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
 .

(31)

Then for any 𝑦 ∈ 𝐸⋂𝜕Ω
𝑅2
, from (9), (30), and (31), we have

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))
]

≤ 𝛽𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝑡+𝜔

𝑡

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

= 𝛽{𝜆𝐵 (𝜉) [∫
𝐼1

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+ ∫
𝐼2

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠]

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
}

≤
𝑅

2

4
+

𝑦


4
+
𝑅

2

2

=
𝑦
 ,

(32)
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where 𝐼
1
= {𝑠 ∈ [0, 𝜔], ‖𝑢(𝑠)‖ ≤ 𝑁}, 𝐼

2
= {𝑠 ∈ [0, 𝜔], ‖𝑢(𝑠)‖ >

𝑁}. This yields
𝑇𝑦

 <
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅2
. (33)

In view of (27) and (33), by Lemma 5, it follows that 𝑇 has a
fixed point 𝑦 ∈ 𝐸 ∩ (Ω

𝑅2
\ Ω

𝑅
) with 𝑅 < ‖𝑦‖ < 𝑅

2
, which

is a positive 𝜔-periodic solution of (1). Therefore (1) has at
least two positive periodic solutions; that is, 𝑅

1
< ‖𝑦

∗

‖ < 𝑅 <

‖𝑦‖ < 𝑅
2
. This proves Theorem 9.

Corollary 10. Assume that (𝐻
1
)–(𝐻

4
) and

(𝐻
5
) There exists a 𝑅 > 0 such that 𝐹(𝑡, 𝑢) ≥ (𝑅/

2𝛼𝜎𝐵


(𝜉)𝜆𝜔), ∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼
𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) ≥ (𝑅/2𝛼𝜎𝜇), for

‖𝑢‖ ≤ ‖𝑦‖ ∈ [𝜎𝑅, 𝑅];

(𝐻
7
) 𝐹

0

= 𝐼
0

= 0, or 𝐹∞

= 𝐼
∞

= 0

hold. Then, (1) has a positive 𝜔-periodic solution.

Theorem 11. Assume that (𝐻
1
)–(𝐻

4
) and

(𝐻
8
) there exists a 𝑟 > 0 such that 𝐹(𝑡, 𝑢) ≤ (𝑟/2𝛽𝐵(𝜉)𝜆𝜔),
∑

𝑡≤𝑡𝑘<𝑡+𝜔
𝐼
𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) ≤ (𝑟/2𝛽𝜇), for ‖𝑢‖ ≤ ‖𝑦‖ ≤ 𝑟;

(𝐻
9
) 𝐹

0
= 𝐼

0
= 𝐹

∞
= 𝐼

∞
= ∞

hold. Then, (1) has two positive 𝜔-periodic solutions.

Proof. We define Ω
𝑟
= {𝑦 ∈ 𝑋 : ‖ 𝑦 ‖< 𝑟}, where R satisfied

(𝐻
8
); thenΩ

𝑟
is an open subset of𝑋 and 0 ∈ Ω

𝑟
. For any 𝑦 ∈

𝐸 ∩ 𝜕Ω
𝑟
, by the definition of 𝑢(𝑡), we get ‖𝑢(𝑡)‖ ≤ ‖𝑦(𝑡)‖ = 𝑟.

Furthermore, by (9), (𝐻
8
), and Lemma 5, we have

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))



+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))
]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

≤ 𝛽(𝜆𝐵 (𝜉) 𝜔
𝑟

2𝛽𝐵 (𝜉) 𝜆𝜔
+

𝑟

2𝛽𝜇
) ≤ 𝑟 =

𝑦
 .

(34)

This implies for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟

𝑇𝑦
 ≤

𝑦
 . (35)

On the one hand, since 𝐹
0
= 𝐼

0
= ∞, then for any 𝑀

1
>

1/(2𝛼𝐵


(𝜉)𝜎𝜆𝜔) there exists 0 < 𝑟
1
< 𝑟 such that

𝐹 (𝑡, 𝑢 (𝑡)) ≥ 𝑀
1
‖𝑢‖ , for ‖𝑢‖ < 𝑟

1
,

𝑢
𝑗
≥ 𝜎 ‖𝑢‖ , 𝑗 = 1, 2, . . . , 𝑛.

(36)

Letting Ω
𝑟1

= {𝑦 ∈ 𝑋 : ‖𝑦‖ < 𝑟
1
}, then for any 𝑦 ∈

𝐸⋂𝜕Ω
𝑟1
, one has ‖𝑦(𝑡)‖ = 𝑟

1
, ∑

𝑡≤𝑡𝑘<𝑡+𝜔
|𝐻

𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
))| ≥

(1/(2𝛼𝜇))‖𝑦(𝑡)‖ = (𝑟
1
/(2𝛼𝜇)), 𝑦(𝑡) ≥ 𝜎‖𝑦(𝑡)‖ = 𝜎𝑟

1
.

Consequently,

𝑢
𝑗
(𝑡) = 𝑦 (𝑐

𝑗
(𝑡)) ≥ 𝜎

𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

𝑢
𝑛
(𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉 ≥ 𝜎
𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

𝜎𝑟
1
≤ ‖𝑢 (𝑡)‖

= max
1≤𝑗≤𝑛−1

{𝑦 (𝑐
𝑗
(𝑡)) , ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉}

≤
𝑦 (𝑡)

 = 𝑟1,

(37)

where, together with (42) and Lemma 5, we have

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))
]

≥ 𝛼𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛼 [𝜆𝐵


(𝜉) ∫

𝑡+𝜔

𝑡

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

≥ 𝛼𝜆𝐵


(𝜉)𝑀
1
𝜎
𝑦 (𝑡)

 𝜔 +

𝑦 (𝑡)


2

=
𝑦
 .

(38)

This implies for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟1

𝑇𝑦
 ≥

𝑦
 . (39)
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In view of (35) and (39), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑅
\ Ω

𝑟1
) with 𝑟

1
< ‖𝑦

∗

‖ < 𝑟, which
is a positive 𝜔-periodic solution of (1). On the other hand, if
𝐹
∞

= 𝐼
∞

= ∞, then for any 𝑀
2
> (1/2𝛼𝐵



(𝜉)𝜎𝜆𝜔) there
exists 𝑟

2
> 𝑟 such that

𝐹 (𝑡, 𝑢 (𝑡)) ≥ 𝑀
2
‖𝑢‖ , for ‖𝑢‖ > 𝑟

2
,

𝑢
𝑗
≥ 𝜎 ‖𝑢‖ , 𝑗 = 1, 2, . . . , 𝑛.

(40)

Letting Ω
𝑟2

= {𝑦 ∈ 𝑋 : ‖𝑦‖ < 𝑟
2
}, then for any 𝑦 ∈

𝐸 ∩ 𝜕Ω
𝑟2
, one has ‖𝑦(𝑡)‖ = 𝑟

2
, ∑

𝑡≤𝑡𝑘<𝑡+𝜔
|𝐼

𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
))| ≥

(1/2𝛼𝜇)‖𝑦(𝑡)‖ = (𝑟
2
/2𝛼𝜇), 𝑦(𝑡) ≥ 𝜎‖𝑦(𝑡)‖ = 𝜎𝑟

2
.

Consequently,

𝑢
𝑗
(𝑡) = 𝑦 (𝑐

𝑗
(𝑡)) ≥ 𝜎

𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

𝑢
𝑛
(𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉 ≥ 𝜎
𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

‖𝑢 (𝑡)‖ = max
1≤𝑗≤𝑛−1

{𝑦 (𝑐
𝑗
(𝑡)) , ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉}

≥ 𝜎
𝑦 (𝑡)

 = 𝜎𝑟2,

(41)

where, together with (41) and Lemma 5, we have

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))
]

≥ 𝛼𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛼 [𝜆𝐵


(𝜉) ∫

𝑡+𝜔

𝑡

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

≥ 𝛼𝜆𝐵


(𝜉)𝑀
2
𝜎𝑟

2
𝜔 +

𝑦 (𝑡)


2

≥
𝑦
 .

(42)

This yields
(𝑇𝑦) (𝑡)

 ≥
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟2
. (43)

In view of (35) and (43), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦 ∈ 𝐸 ∩ (Ω

𝑟2
\ Ω

𝑟
) with 𝑟 < ‖𝑦‖ < 𝑟

2
, which is a

positive 𝜔-periodic solution of (1). Therefore, (1) has at least
two positive periodic solutions; that is 𝑟

1
< ‖𝑦

∗

‖ < 𝑟 < ‖𝑦‖ <

𝑟
2
. This proves Theorem 11.

Corollary 12. Assume that (𝐻
1
)–(𝐻

4
) and

(𝐻
8
) there exists a 𝑟 > 0 such that 𝐹(𝑡, 𝑢) ≤ (𝑟/2𝛽𝐵(𝜉)𝜆𝜔),
∑

𝑡≤𝑡𝑘<𝑡+𝜔
𝐻

𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) ≤ (𝑟/2𝛽𝜇), for ‖𝑢‖ ≤ ‖𝑦‖ ≤ 𝑟;

(𝐻
10
) 𝐹

0
= 𝐼

0
= ∞, or 𝐹

∞
= 𝐼

∞
= ∞;

hold. Then, (1) has a positive 𝜔-periodic solution.

Theorem 13. Assume that (𝐻
1
)–(𝐻

5
), and (𝐻

8
) hold. Then,

(1) has a positive 𝜔-periodic solution y with ‖𝑦‖ lying between
R and r, which are defined in (𝐻

5
) and (𝐻

8
), respectively.

Proof. Without loss of generality, we may assume that 𝑟 < 𝑅;
then for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
, by the definition of 𝑢(𝑡), we get

‖𝑢(𝑡)‖ ≤ ‖𝑦(𝑡)‖ = 𝑟. Furthermore, by (9), (𝐻
8
), and Lemma 5,

we have

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))



+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))
]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

≤ 𝛽(𝜆𝐵 (𝜉) 𝜔
𝑟

2𝛽𝐵 (𝜉) 𝜆𝜔
+

𝑟

2𝛽𝜇
)

≤ 𝑟 =
𝑦
 .

(44)

This implies for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟

𝑇𝑦
 ≤

𝑦
 . (45)
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Now, we let Ω
𝑅
= {𝑦 ∈ 𝑋 : ‖𝑦‖ < 𝑅}; then Ω

𝑅
is an open

subset of 𝑋. Then, for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑅
, we have 𝑦(𝑡) ≥ 𝜎𝑅.

Consequently,

𝑢
𝑗
(𝑡) = 𝑦 (𝑐

𝑗
(𝑡)) ≥ 𝜎

𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

𝑢
𝑛
(𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉 ≥ 𝜎
𝑦
 ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

‖𝑢 (𝑡)‖ = max
1≤𝑗≤𝑛−1

{𝑦 (𝑐
𝑗
(𝑡)) , ∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉}

≥ 𝜎𝑅,

(46)

and from the definition of 𝑢(𝑡), we know ‖𝑢(𝑡)‖ ≤ ‖𝑦(𝑡)‖.
From (9), (𝐻

5
), and Lemma 5, we get

(𝑇𝑦) (𝑡)
 =

𝑛

∑

𝑖=1

𝑇𝑖
𝑦
0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))
]

≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡

𝐺𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑢 (𝑠))

 𝑑𝑠

+ 𝜇

𝑛

∑

𝑖=1

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))


= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡𝑘, 𝑦 (𝑡𝑘))
]

≥ 𝛼𝜎(𝜆𝐵


(𝜉) 𝜔
𝑅

2𝛼𝜎𝐵 (𝜉) 𝜆𝜔
+

𝑅𝜇

2𝛼𝜎𝜇
) = 𝑅

>
𝑦
 .

(47)

This yields
𝑇𝑦

 >
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅
. (48)

In view of (45) and (48), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑅
\ Ω

𝑟
) with 𝑟 < ‖𝑦

∗

‖ < 𝑅, which is
a positive 𝜔-periodic solution of (1). This provesTheorem 13.

Theorem 14. In addition to (𝐻
1
)–(𝐻

4
), suppose the following

conditions hold:

(𝐻
11
) 0 < 𝐹

0

≤ (1/2𝛽𝜆𝐵(𝜉)𝜔), 0 < 𝐼0 ≤ (1/2𝛽𝜇);
(𝐻

12
) 𝐹

∞
≥ (1/2𝛼𝜎𝜆𝐵



(𝜉)𝜔), 𝐼
∞
≥ (1/2𝛼𝜎𝜇);

then, (1) has a positive 𝜔-periodic solution.

Proof. In view of 0 < 𝐹0

≤ (1/2𝛽𝜆𝐵(𝜉)𝜔), 0 < 𝐼0 ≤ 1/(2𝛽𝜇),
there exists a sufficiently small 𝑟 > 0 such that

∫
𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

‖𝑢‖
≤

1

2𝛽𝜆𝐵 (𝜉) 𝜔
, for any ‖𝑢 (𝑡)‖ ≤ 𝑟,

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


≤
1

2𝛽𝜇
, for any 𝑦 (𝑡)

 ≤ 𝑟,

(49)

which yields

∫

𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡 ≤
1

2𝛽𝜆𝐵 (𝜉) 𝜔
‖𝑢‖

≤
𝑟

2𝛽𝜆𝐵 (𝜉) 𝜔
, for any ‖𝑢 (𝑡)‖ ≤ 𝑟,

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)
 ≤

1

2𝛽𝜇

𝑦


≤
𝑟

2𝛽𝜇
, for any 𝑦 (𝑡)

 ≤ 𝑟.

(50)

Therefore, condition (𝐻
8
) is satisfied. On the other hand,

since 𝐹
∞
≥ (1/2𝛼𝜎𝜆𝐵



(𝜉)𝜔), 𝐼
∞
≥ (1/2𝛼𝜎𝜇), there exists a

sufficiently large 𝑅 > 0 (𝑅 > 𝑟) such that

∫
𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

‖𝑢‖

≥
1

2𝛼𝜎𝜆𝐵 (𝜉) 𝜔
, for any ‖𝑢 (𝑡)‖ ∈ [𝜎𝑅, 𝑅] ,

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


≥
1

2𝛼𝜎𝜇
, for any 𝑦 (𝑡)

 ∈ [𝜎𝑅, 𝑅] ,

(51)

which yields

∫

𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

≥
1

2𝛼𝜎𝜆𝐵 (𝜉) 𝜔
‖𝑢‖

≥
𝑅

2𝛼𝜎𝜆𝐵 (𝜉) 𝜔
, for any ‖𝑢 (𝑡)‖ ∈ [𝜎𝑅, 𝑅] ,

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)
 ≥

1

2𝛼𝜎𝜇

𝑦


≥
𝑅

2𝛼𝜎𝜇
, for any 𝑦 (𝑡)

 ∈ [𝜎𝑅, 𝑅] .

(52)

Thus, condition (𝐻
5
) is satisfied. ByTheorem 13, we complete

the proof.
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Theorem 15. Assume that (𝐻
1
)–(𝐻

4
) and

(𝐻
13
) 𝐹

0
> (1/2𝛼𝜎𝜆𝐵



(𝜉)𝜔), 𝐼
0
> 1/2𝛼𝜎𝜇;

(𝐻
14
) 0 < 𝐹

∞

≤ (1/2𝛽𝜆𝐵(𝜉)𝜔), 0 < 𝐼∞ ≤ (1/(2𝛽𝜎𝜇))

hold. Then, (1) has a positive 𝜔-periodic solution.

Proof. In view of 𝐹
0
> (1/2𝛼𝜎𝜆𝐵



(𝜉)𝜔), 𝐼
0
> (1/2𝛼𝜎𝜇), for

𝜖 = min{𝐹
0
− (1/2𝛼𝜎𝜆𝐵



(𝜉)𝜔), 𝐼
0
− (1/2𝛼𝜎𝜇)}, there exists a

sufficiently small 𝑟 > 0 such that

∫
𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

‖𝑢‖
≥ 𝐹

0
− 𝜖 ≥

1

2𝛼𝜎𝜆𝐵 (𝜉) 𝜔
,

for any 0 ≤ ‖𝑢 (𝑡)‖ ≤ 𝑟,

𝑢
𝑗
(𝑡) ≥ 𝜎 ‖𝑢 (𝑡)‖ ,

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


≥ 𝐼
0
− 𝜖 ≥

1

2𝛼𝜎𝜇
,

for any 𝑦 (𝑡)
 ∈ [𝜎𝑟, 𝑟] ,

(53)

which yields

∫

𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

≥
1

2𝛼𝜎𝜆𝐵 (𝜉) 𝜔
‖𝑢‖

≥
𝑟

2𝛼𝜎𝜆𝐵 (𝜉) 𝜔
, for any ‖𝑢 (𝑡)‖ ∈ [𝜎𝑟, 𝑟] ,

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)
 ≥

1

2𝛼𝜎𝜇

𝑦


≥
𝑟

2𝛼𝜎𝜇
, for any 𝑦 (𝑡)

 ∈ [𝜎𝑟, 𝑟] .

(54)

Therefore, condition (𝐻
5
) is satisfied. On the other hand,

since 0 < 𝐹
∞

≤ (1/2𝛽𝜆𝐵(𝜉)𝜔), 0 < 𝐼
∞

≤ (1/2𝛽𝜎𝜇), for
𝜖 = max{(1/2𝛽𝜆𝐵(𝜉)𝜔) − 𝐹∞

, (1/2𝛽𝜎𝜇) − 𝐼
∞

}, there exists a
sufficiently large 𝑅 (𝑅 > 𝑟) such that

∫
𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

‖𝑢‖
≤ 𝐹

∞

+ 𝜖 ≤
1

2𝛽𝜆𝐵 (𝜉) 𝜔
,

for any ‖𝑢 (𝑡)‖ ≥ 𝑅,

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


≤ 𝐼
∞

+ 𝜖 ≤
1

2𝛽𝜇
,

for any 𝑦 (𝑡)
 ≥ 𝑅.

(55)

In the following, we consider two cases to prove (𝐻
8
) to be

satisfied: ∫𝜔

0

|𝐹(𝑡, 𝑢(𝑡))|𝑑𝑡, ∑
𝑡≤𝑡𝑘<𝑡+𝜔

|𝐼
𝑘
(𝑡, 𝑦)| are bounded or

unbounded. The bounded case is clear. If ∫𝜔

0

|𝐹(𝑡, 𝑢(𝑡))|𝑑𝑡,
and ∑

𝑡≤𝑡𝑘<𝑡+𝜔
|𝐼

𝑘
(𝑡, 𝑦)| are unbounded, then there exist

𝑢
∗

, 𝑦
∗

∈ 𝑅
𝑛

+
, 𝑅

1
= ‖𝑦

∗

‖ ≥ ‖𝑢
∗

‖ ≥ 𝑅 and 𝑡
0
∈ [0, 𝜔] such

that

∫

𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡 ≤ ∫

𝜔

0

𝐹 (𝑡, 𝑢
∗

(𝑡))
 𝑑𝑡,

for any ‖𝑢 (𝑡)‖ ≤
𝑢

∗ ≤ 𝑅1
,

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)
 ≤ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦
∗

)
 ,

for any 𝑦 (𝑡)
 ≤

𝑦
∗ + 𝑅1

.

(56)

Since 𝑅
1
= ‖𝑦

∗

‖ ≥ ‖𝑢
∗

‖ ≥ 𝑅, then we get

∫

𝜔

0

|𝐹 (𝑡, 𝑢 (𝑡))| 𝑑𝑡

≤ ∫

𝜔

0

𝐹 (𝑡, 𝑢
∗

(𝑡))
 𝑑𝑡 ≤

𝑢
∗

2𝛽𝜆𝐵 (𝜉) 𝜔

≤

𝑦
∗

2𝛽𝜆𝐵 (𝜉) 𝜔
=

𝑅
1

2𝛽𝜆𝐵 (𝜉) 𝜔
,

for any ‖𝑢 (𝑡)‖ ≤
𝑢

∗ ≤ 𝑅1
,

∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


≤ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦
∗

)
 ≤

𝑦
∗

2𝛽𝜇
=

𝑅
1

2𝛽𝜇
,

for any 𝑦 (𝑡)
 ≤

𝑦
∗ + 𝑅1

.

(57)

Thus, condition (𝐻
8
) is satisfied. ByTheorem 14, we complete

the proof.

Theorem 16. Assume that (𝐻
1
)–(𝐻

5
), (𝐻

11
), and (𝐻

14
) hold.

Then, (1) has at least two positive 𝜔-periodic solutions 𝑦∗, 𝑦
satisfying 0 < ‖𝑦∗

‖ < 𝑅 < ‖𝑦‖, where R is defined in (𝐻
5
).

Proof. From (𝐻
5
) and the proof of Theorem 9, we know that

there exists a sufficiently large 𝑅 > 0 such that
𝑇𝑦

 >
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅
. (58)

On the one hand, from (𝐻
11
) and the proof ofTheorem 14, we

know that there exists a sufficiently small 𝑟 > 0 (𝑟 < 𝑅) such
that

𝑇𝑦
 <

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
. (59)

In view of (58) and (59), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑅
\ Ω

𝑟
) with 𝑟 < ‖𝑦∗

‖ < 𝑅, which is a
positive 𝜔-periodic solution of (1).

On the other hand, from (𝐻
14
) and the proof of

Theorem 15, we know that there exists a sufficiently large𝑅
1
>

0 (𝑅
1
> 𝑅) such that

𝑇𝑦
 <

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅1
. (60)

In view of (58) and (60), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦 ∈ 𝐸 ∩ (Ω

𝑅1
\ Ω

𝑅
) with 𝑅 < ‖𝑦‖ < 𝑅

1
, which is
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a positive 𝜔-periodic solution of (1). Thus, (1) has at least two
positive 𝜔-periodic solutions 𝑦∗, 𝑦 satisfying 𝑟 < ‖𝑦∗

‖ < 𝑅 <

‖𝑦‖ < 𝑅
1
. The proof is completed.

Corollary 17. In addition to (𝐻
1
)–(𝐻

5
), suppose (𝐻

11
) or

(𝐻
14
) holds. Then, (1) has at least one positive 𝜔-periodic

solution.

Theorem 18. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

8
), (𝐻

12
), and (𝐻

13
)

hold.Then, (1) has at least two positive𝜔-periodic solutions 𝑦∗,
𝑦 satisfying 0 < ‖𝑦∗

‖ < 𝑟 < ‖𝑦‖, where r is defined in (𝐻
8
).

Proof. From (𝐻
8
) and the proof of Theorem 9, we know that

there exists a sufficiently small 𝑟 > 0 such that
𝑇𝑦

 <
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
. (61)

On the one hand, from (𝐻
12
) and the proof of Theorem 14,

we know that there exists a sufficiently large 𝑟
1
> 0 (𝑟

1
> 𝑟)

such that
𝑇𝑦

 >
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟1
. (62)

In view of (61) and (62), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑟1
\ Ω

𝑟
) with 𝑟 < ‖𝑦∗

‖ < 𝑟
1
, which is

a positive 𝜔-periodic solution of (1).
On the other hand, from (𝐻

13
) and the proof of

Theorem 15, we know that there exists a sufficiently small
𝑟
∗

> 0 (𝑟
∗

< 𝑟) such that
𝑇𝑦

 >
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω∗

𝑟
. (63)

In view of (61) and (63), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑟
\ Ω

𝑟
∗) with 𝑟∗ < ‖𝑦∗

‖ < 𝑟, which is
a positive 𝜔-periodic solution of (1). Thus, (1) has at least two
positive𝜔-periodic solutions𝑦∗,𝑦 satisfying 𝑟∗ < ‖𝑦∗

‖ < 𝑟 <

‖𝑦‖ < 𝑟
1
. The proof is completed.

Corollary 19. In addition to (𝐻
1
)–(𝐻

4
), and (𝐻

8
), suppose

(𝐻
12
) or (𝐻

13
) holds. Then, (1) has at least one positive 𝜔-

periodic solution.

Theorem20. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

6
), (𝐻

12
) hold.Then,

(1) has at least two positive𝜔-periodic solutions𝑦∗,𝑦 satisfying
0 < ‖𝑦

∗

‖ < ‖𝑦‖.

Proof. From (𝐻
6
) and the proof ofTheorem 9, if 𝐹0

= 𝐼
0

= 0,
we know that there exists a sufficiently small 𝑟 > 0 such that

𝑇𝑦
 <

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
. (64)

In view of 𝐹∞

= 𝐼
∞

= 0, we know that there exists a
sufficiently large 𝑅 > 0 (𝑅 > 𝑟) such that

𝑇𝑦
 <

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅
. (65)

On the one hand, from (𝐻
12
) and the proof ofTheorem 14, we

know that there exists a sufficiently large 𝑟
1
> 0 (𝑅 > 𝑟

1
> 𝑟)

such that
𝑇𝑦

 >
𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟1
. (66)

In view of (64) and (66), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑟1
\ Ω

𝑟
) with 𝑟 < ‖𝑦

∗

‖ < 𝑟
1
, which

is a positive 𝜔-periodic solution of (1). In view of (65) and
(66), by Lemma 2, it follows that 𝑇 has a fixed point 𝑦 ∈ 𝐸 ∩
(Ω

𝑅
\ Ω

𝑟1
) with 𝑟

1
< ‖𝑦‖ < 𝑅, which is a positive 𝜔-periodic

solution of (1). Thus, (1) has at least two positive 𝜔-periodic
solutions 𝑦∗, 𝑦 satisfying 𝑟 < ‖𝑦∗

‖ < 𝑟
1
< ‖𝑦‖ < 𝑅. The proof

is completed.

Corollary 21. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

7
), and (𝐻

12
) hold.

Then, (1) has at least one positive 𝜔-periodic solution.

Theorem 22. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

6
), and (𝐻

13
) hold.

Then, (1) has at least two positive 𝜔-periodic solutions 𝑦∗, 𝑦
satisfying 0 < ‖𝑦∗

‖ < ‖𝑦‖.

Proof. From (𝐻
13
) and the proof ofTheorem 15, we know that

there exists a sufficiently small 𝑟 > 0 such that

𝑇𝑦
 >

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
. (67)

From (𝐻
6
) and the proof of Theorem 9, on the one hand, if

𝐹
0

= 𝐼
0

= 0, we know that there exists a sufficiently small
𝑟
∗

> 0 (𝑟
∗

< 𝑟) such that

𝑇𝑦
 <

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟
∗ . (68)

In view of (67) and (68), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦∗

∈ 𝐸 ∩ (Ω
𝑟
\ Ω

𝑟
∗) with 𝑟∗ < ‖𝑦∗

‖ < 𝑟, which is
a positive 𝜔-periodic solution of (1).

On the other hand, if 𝐹∞

= 𝐼
∞

= 0, we know that there
exists a sufficiently large 𝑅 > 0 (𝑅 > 𝑟) such that

𝑇𝑦
 <

𝑦
 , for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑅
. (69)

In view of (67) and (69), by Lemma 2, it follows that 𝑇 has a
fixed point 𝑦 ∈ 𝐸 ∩ (Ω

𝑅
\ Ω

𝑟
) with 𝑟 < ‖𝑦‖ < 𝑅, which is a

positive 𝜔-periodic solution of (1). Thus, (1) has at least two
positive𝜔-periodic solutions𝑦∗,𝑦 satisfying 𝑟∗ < ‖𝑦∗

‖ < 𝑟 <

‖𝑦‖ < 𝑅. The proof is completed.

Corollary 23. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

7
), and (𝐻

13
) hold.

Then, (1) has at least one positive 𝜔-periodic solution.
Similarly, one can prove the following theorems and corol-

laries.

Theorem 24. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

9
), and (𝐻

11
) hold.

Then, (1) has at least two positive 𝜔-periodic solutions 𝑦∗, 𝑦
satisfying 0 < ‖𝑦∗

‖ < ‖𝑦‖.

Corollary 25. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

10
), and (𝐻

11
) hold.

Then, (1) has at least one positive 𝜔-periodic solution.

Theorem 26. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

9
), and (𝐻

14
) hold.

Then, (1) has at least two positive 𝜔-periodic solutions 𝑦∗, 𝑦
satisfying 0 < ‖𝑦∗

‖ < ‖𝑦‖.

Corollary 27. Assume that (𝐻
1
)–(𝐻

4
), (𝐻

10
), and (𝐻

14
) hold.

Then, (1) has at least one positive 𝜔-periodic solution.



12 Journal of Applied Mathematics

3. Existence of Periodic Solution of (2)
Now, we are in a position to attack the existence of positive
periodic solutions of (2). By carrying out similar arguments
as in Section 2, it is not difficult to establish sufficient criteria
for the existence of positive periodic solutions of (2). For
simplicity, we prefer to list below the corresponding criteria
for (2)without proof, since the proofs are very similar to those
in Section 2.

For (𝑡, 𝑠) ∈ 𝑅2, 1 ≤ 𝑖 ≤ 𝑛, we define

𝐺
∗

𝑖
(𝑡, 𝑠) =

𝑒
−∫

𝑠

𝑡
𝑎𝑖(𝜉,𝑦(𝜉))𝑑𝜉

1 − 𝑒
−∫

𝜔

0
𝑎𝑖(𝜉,𝑦(𝜉))𝑑𝜉

=
𝑒
∫

𝑡+𝜔

𝑠
𝑎𝑖(𝜉,𝑦(𝜉))𝑑𝜉

𝑒
∫

𝜔

0
𝑎𝑖(𝜉,𝑦(𝜉))𝑑𝜉 − 1

,

𝐺
∗

(𝑡, 𝑠) = diag [𝐺∗

1
(𝑡, 𝑠) , 𝐺

∗

2
(𝑡, 𝑠) , . . . , 𝐺

∗

𝑛
(𝑡, 𝑠)] .

(70)

It is clear that 𝐺∗

𝑖
(𝑡, 𝑡) ≥ 𝐺

∗

𝑖
(𝑡, 𝑠) ≥ 𝐺

∗

(𝑡, 𝑡 + 𝜔),
𝜕𝐺

∗

𝑖
(𝑡, 𝑠)/(𝜕𝑡) = 𝑎

𝑖
(𝑡, 𝑦(𝑡))𝐺

∗

𝑖
(𝑡, 𝑠), 𝐺∗

𝑖
(𝑡, 𝑡) − 𝐺

∗

𝑖
(𝑡, 𝑡 + 𝜔) = 1.

In view of (𝐻
1
), we also define for 1 ≤ 𝑖 ≤ 𝑛

𝛼
∗

𝑖
:= min

0≤𝑡≤𝑠≤𝜔

𝐺
∗

𝑖
(𝑡, 𝑠)

 =
1

𝑒
∫

𝜔

0
𝑎2𝑖(𝜉)𝑑𝜉 − 1

= 𝛼
𝑖
,

𝛽
∗

𝑖
:= max

0≤𝑡≤𝑠≤𝜔

𝐺
∗

𝑖
(𝑡, 𝑠)

 =
𝑒
∫

𝜔

0
𝑎2𝑖(𝜉)𝑑𝜉

𝑒
∫

𝜔

0
𝑎1𝑖(𝜉)𝑑𝜉 − 1

= 𝛽
𝑖
,

𝛼
∗

= min
1≤𝑖≤𝑛

𝛼
∗

𝑖
= 𝛼, 𝛽

∗

= max
1≤𝑖≤𝑛

𝛽
∗

𝑖
= 𝛽,

𝛿 =
𝛼
∗

𝛽∗
∈ (0, 1) = 𝜎,

𝐵
𝑖
(𝑡) = max {𝑏1𝑖 (𝑡)

 ,
𝑏2𝑖 (𝑡)

} ,

𝐵


𝑖
(𝑡) = min {𝑏1𝑖 (𝑡)

 ,
𝑏2𝑖 (𝑡)

} ,

𝐵 (𝑡) = max
1≤𝑖≤𝑛

{𝐵
𝑖
(𝑡)} ,

𝐵


(𝑡) = min
1≤𝑖≤𝑛

{𝐵


𝑖
(𝑡)} .

(71)

Let 𝑋 = {𝑦 = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑃𝐶(𝑅, 𝑅
𝑛

) |

𝑦(𝑡 + 𝜔) = 𝑦(𝑡)} with the norm ‖𝑦‖ = ∑
𝑛

𝑖=1
|𝑦

𝑖
|
0
, |𝑦

𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑦
𝑖
(𝑡)|. It is easy to verify that (𝑋, ‖ ⋅ ‖) is a Banach

space. Define 𝑃 as a cone in𝑋 by

𝑃 = {𝑦 = (𝑦
1
(𝑡) , 𝑦

2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ 𝑋 : 𝑦
𝑖
(𝑡)

≥ 𝛿
𝑦𝑖
0, 𝑡 ∈ [0, 𝜔]} .

(72)

We easily verify that 𝑃 is a cone in 𝑋. We define an operator
𝜙 : 𝑋 → 𝑋 as follows:

(𝜙𝑦) (𝑡) = ((𝜙
1
𝑦) (𝑡) , (𝜙

2
𝑦) (𝑡) , . . . , (𝜙

𝑛
𝑦) (𝑡))

𝑇

, (73)

where

(𝜙
𝑖
𝑦) (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
∗

𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺
∗

𝑖
(𝑡, 𝑡

𝑘
) 𝐼

𝑖𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) .

(74)

The proof of the following lemmas, theorems, and corollaries
is similar to those in Section 2; we omit all the details here.

Lemma 28. Assume that (𝐻
1
)–(𝐻

4
) hold. The existence of

positive 𝜔-periodic solution of (2) is equivalent to that of
nonzero fixed point of 𝜙 in 𝑃.

Lemma 29. Assume that (𝐻
1
)–(𝐻

4
) hold. Then 𝜙 : 𝑃 → 𝑃 is

well defined.

Lemma 30. Assume that (𝐻
1
)–(𝐻

4
) hold. Then 𝜙 : 𝑃 → 𝑃 is

completely continuous.

Theorem 31. Assume (𝐻
1
)–(𝐻

4
) and (𝐻

5
) hold. Moreover, if

one of the following conditions holds:

(𝐻
6
) ; (𝐻

11
) , (𝐻

14
) , (75)

then, (2) has two positive 𝜔-periodic solutions 𝑦∗ and 𝑦

satisfying 0 < ‖𝑦∗

‖ < 𝑅 < ‖𝑦‖, where R is defined in (𝐻
5
).

Theorem 32. Assume (𝐻
1
)–(𝐻

4
) and (𝐻

8
) hold. Moreover, if

one of the following conditions holds:

(𝐻
9
) ; (𝐻

12
) , (𝐻

13
) , (76)

then, (2) has two positive 𝜔-periodic solutions 𝑦∗ and 𝑦

satisfying 0 < ‖𝑦∗

‖ < 𝑟 < ‖𝑦‖, where r is defined in (𝐻
8
).

Theorem 33. Assume (𝐻
1
)–(𝐻

4
) hold. Moreover, if one of the

following conditions holds:

(𝐻
6
) , (𝐻

12
) ; (𝐻

6
) , (𝐻

13
) ;

(𝐻
9
) , (𝐻

11
) ; (𝐻

9
) , (𝐻

14
) ,

(77)

then, (2) has two positive 𝜔-periodic solutions 𝑦∗ and 𝑦

satisfying 0 < ‖𝑦∗

‖ < ‖𝑦‖.

Theorem 34. Assume (𝐻
1
)–(𝐻

5
) hold. Moreover, if one of the

following conditions holds:

(𝐻
7
) ; (𝐻

8
) ; (𝐻

11
) ; (𝐻

14
) , (78)

then, (2) has at least one positive 𝜔-periodic solution.

Theorem 35. Assume (𝐻
1
)–(𝐻

4
) and (𝐻

8
) hold. Moreover, if

one of the following conditions holds:

(𝐻
10
) ; (𝐻

12
) ; (𝐻

13
) , (79)

then, (2) has at least one positive 𝜔-periodic solution.
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Theorem 36. Assume (𝐻
1
)–(𝐻

4
) hold. Moreover, if one of the

following conditions holds:

(𝐻
7
) , (𝐻

10
) ; (𝐻

7
) , (𝐻

12
) ;

(𝐻
7
) , (𝐻

13
) ; (𝐻

10
) , (𝐻

11
) ;

(𝐻
10
) , (𝐻

14
) ; (𝐻

11
) , (𝐻

12
) ;

(𝐻
13
) , (𝐻

14
) ,

(80)

then, (2) has at least one positive 𝜔-periodic solution.

4. Applications

In this section, as some applications of our main results, we
will consider some special cases of systems (1) and (2), which
have been investigated extensively in the literature.

Application 1. Consider the following equations:

𝑦


(𝑡) = − 𝐴 (𝑡, 𝑦 (𝑡)) 𝑦 (𝑡)

+ 𝜆𝐵 (𝑡, 𝑦 (𝑡)) 𝐹 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝑅,

(81)

𝑦


(𝑡) = 𝐴 (𝑡, 𝑦 (𝑡)) 𝑦 (𝑡)

− 𝜆𝐵 (𝑡, 𝑦 (𝑡)) 𝐹 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝑅,

(82)

where 𝑢(𝑡) = (𝑦(𝑐
1
(𝑡)), . . . , 𝑦(𝑐

𝑛−1
(𝑡)), ∫

𝑡

−∞

𝑘(𝑡 − 𝜉)𝑦(𝜉)𝑑𝜉),
which are special cases of systems (1) and (2) without impulse,
respectively. First, we list several assumptions:

(𝑃
1
) = (𝐻

1
);

(𝑃
2
) = (𝐻

2
);

(𝑃
3
) = (𝐻

3
);

(𝑃
4
) there exists a 𝑅 > 0 such that 𝐹(𝑡, 𝑢) ≥

(𝑅/(𝛼𝜎𝐵


(𝜉)𝜆𝜔)) for ‖𝑢‖ ≤ ‖𝑦‖ ∈ [𝜎𝑅, 𝑅];
(𝑃

5
) there exists a 𝑟 > 0 such that𝐹(𝑡, 𝑢) ≤ (𝑟/(2𝛽𝐵(𝜉)𝜆𝜔))
for ‖𝑢‖ ≤ ‖𝑦‖ ≤ 𝑟;

(𝑃
6
) 𝐹

0

= 0;
(𝑃

7
) 𝐹

∞

= 0;
(𝑃

8
) 𝐹

0
= ∞;

(𝑃
9
) 𝐹

∞
= ∞;

(𝑃
10
) 𝐹

0

= 𝜂
1
∈ (0, 1/𝛽𝜆𝐵(𝜉)𝜔);

(𝑃
11
) 𝐹

∞

= 𝜃
1
∈ (0, 1/𝛽𝜆𝐵(𝜉)𝜔);

(𝑃
12
) 𝐹

0
= 𝜂

2
∈ (1/𝛼𝜎𝜆𝐵



(𝜉)𝜔,∞);
(𝑃

13
) 𝐹

∞
= 𝜃

2
∈ (1/𝛼𝜎𝜆𝐵



(𝜉)𝜔,∞).

By applying theorems in Sections 2 and 3 and to systems (81)
and (82), respectively, we obtain the following theorems.

Theorem 37. Assume (𝑃
1
)–(𝑃

4
) hold. Moreover, if one of the

following conditions holds:

(𝑃
6
) , (𝑃

7
) ; (𝑃

10
) , (𝑃

11
) , (83)

then, (81) and (82) have at least two positive 𝜔-periodic
solutions.

Theorem 38. Assume (𝑃
1
)–(𝑃

3
) and (𝑃

5
) hold. Moreover, if

one of the following conditions holds:

(𝑃
8
) , (𝑃

9
) ; (𝑃

12
) , (𝑃

13
) , (84)

then, (81) and (82) have at least two positive 𝜔-periodic
solutions.

Theorem 39. Assume (𝑃
1
)–(𝑃

3
) hold. Moreover, if one of the

following conditions holds:

(𝑃
6
) , (𝑃

7
) , (𝑃

12
) ; (𝑃

6
) , (𝑃

7
) , (𝑃

13
) ;

(𝑃
8
) , (𝑃

9
) , (𝑃

10
) ; (𝑃

8
) , (𝑃

9
) , (𝑃

11
) ,

(85)

then, (81) and (82) have at least two positive 𝜔-periodic
solutions.

Theorem 40. Assume (𝑃
1
)–(𝑃

4
) hold. Moreover, if one of the

following conditions holds:

(𝑃
5
) ; (𝑃

8
) ; (𝑃

9
) ; (𝑃

10
) ; (𝑃

11
) , (86)

then, (81) and (82) have at least one positive 𝜔-periodic
solution.

Theorem41. Assume (𝑃
1
)–(𝑃

3
) and (𝑃

5
)hold.Moreover, if one

of the following conditions holds:

(𝑃
6
) ; (𝑃

7
) ; (𝑃

12
) ; (𝑃

13
) , (87)

then (81) and (82) have at least one positive𝜔-periodic solution.

Theorem 42. Assume (𝑃
1
)–(𝑃

3
), hold. Moreover, if one of the

following conditions holds:

(𝑃
6
) , (𝑃

9
) ; (𝑃

6
) , (𝑃

13
) ;

(𝑃
7
) , (𝑃

8
) ; (𝑃

7
) , (𝑃

12
) ;

(𝑃
8
) , (𝑃

11
) ; (𝑃

9
) , (𝑃

10
) ;

(𝑃
10
) , (𝑃

13
) ; (𝑃

11
) , (𝑃

12
) ,

(88)

then, (81) and (82) have at least one positive 𝜔-periodic
solution.

Application 2. Consider the following equations:

𝑦


(𝑡) = −𝑎 (𝑡) 𝑦 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 ∈ 𝑍

+
,

(89)

𝑦


(𝑡) = 𝑎 (𝑡) 𝑦 (𝑡) − 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 ∈ 𝑍

+
,

(90)

where

𝑢 (𝑡) = (𝑦 (𝑔
1
(𝑡)) , . . . , 𝑦 (𝑔

𝑛−1
(𝑡)) ,

∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉) ,

(91)
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which are special cases of systems (1) and (2), respectively. For
convenience in the following discussion, on the one hand, we
introduce the following notations:

𝑓
𝑎

= lim sup
𝑢∈𝐸,‖𝑢‖→𝑎

max
𝑡∈[0,𝜔]

∫
𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

‖𝑢‖
,

𝑓
𝑎
= lim inf

𝑢∈𝐸,‖𝑢‖→𝑎

min
𝑡∈[0,𝜔]

∫
𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

‖𝑢‖
,

𝐼
𝑎

= lim sup
𝑦∈𝐸,‖𝑦‖→𝑎

max
𝑡∈[0,𝜔]

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


,

𝐼
𝑎
= lim inf

𝑦∈𝐸,‖𝑦‖→𝑎

min
𝑡∈[0,𝜔]

∑
𝑡≤𝑡𝑘<𝑡+𝜔

𝐼𝑘 (𝑡, 𝑦)


𝑦


,

(92)

where 𝑎 denotes either 0 or∞, ‖𝑢‖ = max{|𝑢
1
|, |𝑢

2
|, . . . , |𝑢

𝑛
|}.

On the other hand, we list several assumptions:

(𝐴
1
) = (𝐻

1
);

(𝐴
2
) = (𝐻

2
);

(𝐴
3
) = (𝐻

3
);

(𝐴
4
) = (𝐻

4
);

(𝐴
5
) there exists a 𝑅 > 0 such that 𝑓(𝑡, 𝑢) ≥ (𝑅/2𝛼𝜎𝜆𝜔),
∑

𝑡≤𝑡𝑘<𝑡+𝜔
𝐻

𝑘
(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) ≥ (𝑅/2𝛼𝜎𝜇), for ‖𝑢‖ ≤ ‖𝑦‖ ∈

[𝜎𝑅, 𝑅];
(𝐴

6
) there exists a 𝑟 > 0 such that 𝑓(𝑡, 𝑢) ≤ (𝑟/2𝛽𝜆𝜔),
∑

𝑡≤𝑡𝑘<𝑡+𝜔
𝐼(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) ≤ (𝑟/2𝛽𝜇), for ‖ 𝑢 ‖≤‖ 𝑦 ‖≤ 𝑟;

(𝐴
7
) 𝑓

0

= 𝐼
0

= 0;
(𝐴

8
) 𝑓

∞

= 𝐼
∞

= 0;
(𝐴

9
) 𝑓

0
= 𝐼

0
= ∞;

(𝐴
10
) 𝑓

∞
= 𝐼

∞
= ∞;

(𝐴
11
) 𝑓

0

= 𝜌
1
∈ (0, 1/2𝛽𝜆𝜔), 𝐼0 = 𝜉

1
∈ (0, 1/2𝛽𝜇);

(𝐴
12
) 𝑓

∞

= 
1
∈ (0, 1/2𝛽𝜆𝜔), 𝐼∞ = 𝜍

1
∈ (0, 1/2𝛽𝜇);

(𝐴
13
) 𝑓

0
= 𝜌

2
∈ (1/2𝛼𝜎𝜆𝜔,∞), 𝐼

0
= 𝜉

2
∈ (1/2𝛼𝜎𝜇,∞);

(𝐴
14
) 𝑓

∞
= 

2
∈ (1/2𝛼𝜎𝜆𝜔,∞), 𝐼

∞
= 𝜍

2
∈ (1/2𝛼𝜎𝜇,∞).

By applying theorems in Sections 2 and 3 and to systems (89)
and (90), respectively, we obtain the following theorems.

Theorem 43. Assume (𝐴
1
)–(𝐴

5
) hold. Moreover, if one of the

following conditions holds:

(𝐴
7
) , (𝐴

8
) ; (𝐴

11
) , (𝐴

12
) , (93)

then, (89) and (90) have at least two positive 𝜔-periodic
solutions.

Theorem 44. Assume (𝐴
1
)–(𝐴

4
) and (𝐴

6
) hold. Moreover, if

one of the following conditions holds:

(𝐴
9
) , (𝐴

10
) ; (𝐴

13
) , (𝐴

14
) , (94)

then, (89) and (90) have at least two positive 𝜔-periodic
solutions.

Theorem 45. Assume (𝐴
1
)–(𝐴

4
) hold. Moreover, if one of the

following conditions holds:

(𝐴
7
) , (𝐴

8
) , (𝐴

13
) ; (𝐴

7
) , (𝐴

8
) , (𝐴

14
) ;

(𝐴
9
) , (𝐴

10
) , (𝐴

11
) ; (𝐴

9
) , (𝐴

10
) , (𝐴

12
) ,

(95)

then, (89) and (90) have at least two positive 𝜔-periodic
solutions.

Theorem 46. Assume (𝐴
1
)–(𝐴

5
) hold. Moreover, if one of the

following conditions holds:

(𝐴
5
) ; (𝐴

9
) ; (𝐴

10
) ; (𝐴

11
) ; (𝐴

12
) , (96)

then, (89) and (90) have at least one positive 𝜔-periodic
solution.

Theorem 47. Assume (𝐴
1
)–(𝐴

4
) and (𝐴

6
) hold. Moreover, if

one of the following conditions holds:

(𝐴
7
) ; (𝐴

8
) ; (𝐴

13
) ; (𝐴

14
) , (97)

then, (89) and (90) have at least one positive 𝜔-periodic
solution.

Theorem 48. Assume (𝐴
1
)–(𝐴

4
) hold. Moreover, if one of the

following conditions holds:

(𝐴
7
) , (𝐴

10
) ; (𝐴

7
) , (𝐴

14
) ;

(𝐴
8
) , (𝐴

9
) ; (𝐴

8
) , (𝐴

13
) ;

(𝐴
9
) , (𝐴

12
) ; (𝐴

10
) , (𝐴

11
) ;

(𝐴
11
) , (𝐴

14
) ; (𝐴

12
) , (𝐴

13
) ,

(98)

then, (89) and (90) have at least one positive 𝜔-periodic
solution.

Application 3. Consider the following equations:

𝑦


(𝑡) = −𝑎 (𝑡) 𝑦 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝑅, (99)

𝑦


(𝑡) = 𝑎 (𝑡) 𝑦 (𝑡) − 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝑅, (100)

where

𝑢 (𝑡) = (𝑦 (𝑐
1
(𝑡)) , . . . , 𝑦 (𝑐

𝑛−1
(𝑡)) ,

∫

𝑡

−∞

𝑘 (𝑡 − 𝜉) 𝑦 (𝜉) 𝑑𝜉) ,

(101)

which are special cases of systems (89) and (90) without
impulse, respectively, that is, 𝐼(𝑡

𝑘
, 𝑦(𝑡

𝑘
)) = 0. For convenience

in the following discussion, we list several assumptions:

(𝐴
∗

1
) = (𝐻

1
);

(𝐴
∗

2
) = (𝐻

2
);

(𝐴
∗

3
) = (𝐻

3
);



Journal of Applied Mathematics 15

(𝐴
∗

4
) there exists a 𝑅 > 0 such that 𝑓(𝑡, 𝑢) ≥ (𝑅/2𝛼𝜎𝜆𝜔),
for ‖𝑢‖ ≤ ‖𝑦‖ ∈ [𝜎𝑅, 𝑅];

(𝐴
∗

5
) there exists a 𝑟 > 0 such that 𝑓(𝑡, 𝑢) ≤ (𝑟/2𝛽𝜆𝜔), for
‖𝑢‖ ≤ ‖𝑦‖ ≤ 𝑟;

(𝐴
∗

6
) 𝑓

0

= 0; (𝐴∗

7
) 𝑓

∞

= 0;

(𝐴
∗

8
) 𝑓

0
= ∞; (𝐴∗

9
) 𝑓

∞
= ∞;

(𝐴
∗

10
) 𝑓

0

= 𝜌
1
∈ (0, 1/(2𝛽𝜆𝜔));

(𝐴
∗

11
) 𝑓

∞

= 
1
∈ (0, 1/(2𝛽𝜆𝜔));

(𝐴
∗

12
) 𝑓

0
= 𝜌

2
∈ (1/(2𝛼𝜎𝜆𝜔,∞));

(𝐴
∗

13
) 𝑓

∞
= 

2
∈ (1/(2𝛼𝜎𝜆𝜔,∞)).

We obtain the following theorems.

Corollary 49. Assume (𝐴∗

1
)–(𝐴∗

4
) hold.Moreover, if one of the

following conditions holds:

(𝐴
∗

6
) , (𝐴

∗

7
) ; (𝐴

∗

10
) , (𝐴

∗

11
) , (102)

then, (99) and (100) have at least two positive 𝜔-periodic
solutions.

Corollary 50. Assume (𝐴∗

1
)–(𝐴∗

3
) and (𝐴∗

5
) hold. Moreover, if

one of the following conditions holds:

(𝐴
∗

8
) , (𝐴

∗

9
) ; (𝐴

∗

12
) , (𝐴

∗

13
) , (103)

then, (99) and (100) have at least two positive 𝜔-periodic
solutions.

Corollary 51. Assume (𝐴∗

1
)–(𝐴∗

3
) hold. Moreover, if one of the

following conditions holds:

(𝐴
∗

6
) , (𝐴

∗

7
) , (𝐴

∗

12
) ; (𝐴

∗

6
) , (𝐴

∗

7
) , (𝐴

∗

13
) ;

(𝐴
∗

8
) , (𝐴

∗

9
) , (𝐴

∗

10
) ; (𝐴

∗

8
) , (𝐴

∗

9
) , (𝐴

∗

11
) ,

(104)

then, (99) and (100) have at least two positive 𝜔-periodic
solutions.

Corollary 52. Assume (𝐴∗

1
)–(𝐴∗

4
) hold.Moreover, if one of the

following conditions holds:

(𝐴
∗

5
) ; (𝐴

∗

8
) ; (𝐴

∗

9
) ; (𝐴

∗

10
) ; (𝐴

∗

11
) , (105)

then, (99) and (100) have at least one positive 𝜔-periodic
solution.

Corollary 53. Assume (𝐴∗

1
)–(𝐴∗

3
), (𝐴∗

5
) hold.Moreover, if one

of the following conditions holds:

(𝐴
∗

6
) ; (𝐴

∗

7
) ; (𝐴

∗

12
) ; (𝐴

∗

13
) , (106)

then, (99) and (100) have at least one positive 𝜔-periodic
solution.

Corollary 54. Assume (𝐴∗

1
)–(𝐴∗

3
) hold.Moreover, if one of the

following conditions holds:

(𝐴
∗

6
) , (𝐴

∗

9
) ; (𝐴

∗

6
) , (𝐴

∗

13
) ;

(𝐴
∗

7
) , (𝐴

∗

8
) ; (𝐴

∗

7
) , (𝐴

∗

12
) ;

(𝐴
∗

8
) , (𝐴

∗

11
) ; (𝐴

∗

9
) , (𝐴

∗

10
) ;

(𝐴
∗

10
) , (𝐴

∗

13
) ; (𝐴

∗

11
) , (𝐴

∗

12
) ,

(107)

then, (99) and (100) have at least one positive 𝜔-periodic
solution.

Hence, our results generalize and improve the correspond-
ing results of [16].

Application 4. Consider the generalized logistic model of
single species [16, 21] with impulse and two parameters:

𝑦


(𝑡) = 𝑦 (𝑡) 𝑎 (𝑡)

− 𝜆𝑦 (𝑡) [

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

+ 𝑐 (𝑡) ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) 𝑦 (𝑠) 𝑑𝑠] ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 ∈ 𝑍

+
,

(108)

where 𝑎(𝑡), 𝑏
𝑖
(𝑡), 𝜏

𝑖
(𝑡), 𝑐(𝑡) ∈ 𝐶(𝑅, 𝑅+) are 𝜔-periodic, 𝜆 > 0,

𝜇 > 0 are two parameters, and 𝑘 : 𝑅
+
→ 𝑅

+
is integrable

such that ∫𝜔

0

𝑘(𝑡)𝑑𝑡 = 1.

Theorem 55. Assume that 𝐼
𝑘
∈ 𝐶(𝑅, 𝑅

−
) and the following

conditions hold:

(1) 𝐼0 = 0, 𝐼
∞
= ∞;

(2) ∑𝑛

𝑖=1
𝑏
𝐿

𝑖
+ 𝑐

𝐿

> 0;

then, (108) has at least one positive 𝜔-periodic solution, where

𝛼 =
1

𝑒
∫

𝜔

0
𝑎(𝑡)𝑑𝑡

− 1

, 𝛽 =
𝑒
∫

𝜔

0
𝑎(𝑡)𝑑𝑡

𝑒
∫

𝜔

0
𝑎(𝑡)𝑑𝑡

− 1

,

𝜎 =
𝛼

𝛽
, 𝑔

𝑀

= max
𝑡∈[0,𝜔]

𝑔 (𝑡) , 𝑔
𝐿

= min
𝑡∈[0,𝜔]

𝑔 (𝑡) .

(109)

Proof. We let

𝑓 (𝑡, 𝑢 (𝑡)) = 𝑢
0
[

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑢

𝑖
(𝑡) + 𝑐 (𝑡) 𝑢

𝑛+1
] ,

𝑢 = (𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
, 𝑢

𝑛+1
) ∈ 𝑅

𝑛+2

.

(110)
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Then, (108) can be seen as a special form of (2) satisfying
(𝐻

1
)–(𝐻

4
). We can construct the same Banach space 𝑋 and

cones E as in Section 2. Then for any 𝑦 ∈ 𝐸,

∫

𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

= ∫

𝜔

0



𝑢
0
[

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑢

𝑖
+ 𝑐 (𝑡) 𝑢

𝑛+1
]



𝑑𝑡

≥ 𝜎‖𝑢‖
2

[

𝑛

∑

𝑖=1

𝑏
𝐿

𝑖
+ 𝑐

𝐿

]𝜔,

(111)

so we have
∫
𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

‖𝑢‖
→ ∞, ‖𝑢‖ → ∞; (112)

that is, 𝑓
∞
= ∞. On the other hand,

∫

𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

= ∫

𝜔

0



𝑢
0
[

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑢

𝑖
+ 𝑐 (𝑡) 𝑢

𝑛+1
]



𝑑𝑡

≤ ‖𝑢‖
2

[

𝑛

∑

𝑖=1

𝑏
𝑀

𝑖
+ 𝑐

𝑀

]𝜔,

(113)

which can lead to
∫
𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

‖𝑢‖
→ 0, ‖𝑢‖ → 0; (114)

that is, 𝑓0

= 0. Then in view of (2), (112), and (114), we can
obtain that (108) has at least one positive𝜔-periodic solution.
The proof is complete.

Application 5. Consider the generalized so-called Nicholson’s
Blowflies model [19, 20] with impulse and two parameters:

𝑦


(𝑡) = −𝑦 (𝑡) 𝑎 (𝑡)

+ 𝜆𝑏 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡)) 𝑒
−𝑐(𝑡)𝑦(𝑡−𝜏(𝑡))

,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜇𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 ∈ 𝑍

+
,

(115)

where 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡)𝜏(𝑡) ∈ 𝐶(𝑅, 𝑅+) are 𝜔-periodic and 𝜆 >

0, 𝜇 > 0 are two parameters.

Theorem 56. Assume that 𝐼
𝑘
∈ 𝐶(𝑅, 𝑅

−
) and the following

conditions hold:

(3) 𝐼0 = ∞, 𝐼
∞
= 0;

then, (115) has at least one positive 𝜔-periodic solution, where

𝜂 =
1

𝑒
∫

𝜔

0
𝑎(𝑡)𝑑𝑡

− 1

, 𝜃 =
𝑒
∫

𝜔

0
𝑎(𝑡)𝑑𝑡

𝑒
∫

𝜔

0
𝑎(𝑡)𝑑𝑡

− 1

,

𝛿 =
𝜂

𝜃
, 𝑔

𝑀

= max
𝑡∈[0,𝜔]

𝑔 (𝑡) , 𝑔
𝐿

= min
𝑡∈[0,𝜔]

𝑔 (𝑡) .

(116)

Proof. We let 𝑓(𝑡, 𝑢(𝑡)) = 𝑏(𝑡)𝑢(𝑡)𝑒
−𝑐(𝑡)𝑢(𝑡). Then, (115) can

be seen as a special form of (1) satisfying (𝐻
1
)–(𝐻

4
). We

can construct the same Banach space 𝑋 and cones 𝑃 as in
Section 2. Then for any 𝑦 ∈ 𝑃,

∫

𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

= ∫

𝜔

0


𝑏 (𝑡) 𝑢 (𝑡) 𝑒

−𝑐(𝑡)𝑢(𝑡)

𝑑𝑡

≥ ‖𝑢‖
𝑏
𝐿

𝑒𝑐
𝑀
‖𝑢‖

𝜔.

(117)

So we have

∫
𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

‖𝑢‖
→ 0, ‖𝑢‖ → ∞; (118)

that is, 𝑓
∞
= 0. On the other hand,

∫

𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡 ∫

𝜔

0


𝑏 (𝑡) 𝑢 (𝑡) 𝑒

−𝑐(𝑡)𝑢(𝑡)

𝑑𝑡

≤ ‖𝑢‖
𝑏
𝑀

𝑒𝑐
𝐿
‖𝑢‖

𝜔,

(119)

which can lead to

∫
𝜔

0

𝑓 (𝑡, 𝑢 (𝑡))
 𝑑𝑡

‖𝑢‖
→ ∞, ‖𝑢‖ → 0; (120)

that is, 𝑓0

= ∞. Then in view of (1), (93), and (120), we can
obtain that (115) has at least one positive 𝜔-periodic solution.
The proof is complete.
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