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Much of the previous work in D-optimal design for regression models with correlated errors focused on polynomial models
with a single predictor variable, in large part because of the intractability of an analytic solution. In this paper, we present a
modified, improved simulated annealing algorithm, providing practical approaches to specifications of the annealing cooling
parameters, thresholds, and search neighborhoods for the perturbation scheme, which finds approximate D-optimal designs for
2-way and 3-way polynomial regression for a variety of specific correlation structures with a given correlation coefficient. Results
in each correlated-errors case are compared with traditional simulated annealing algorithm, that is, the SA algorithm without our
improvement. Our improved simulated annealing results had generally higher D-efficiency than traditional simulated annealing
algorithm, especially when the correlation parameter was well away from 0.

1. Introduction

D-optimality is a popular criterion for optimal experimental
design. The model for polynomial regression can be written
as in Zhu et al. [1]:

𝑦
𝑖
= 𝑓
𝑖(𝑥)

𝛽 + 𝜖
𝑖
, (1)

where 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛, 𝛽 is a 𝑘-vector of parameters, and
𝑓
𝑖
(𝑥) = (𝑓

1𝑖
(𝑥), 𝑓
2𝑖
(𝑥), . . . , 𝑓

𝑘𝑖
(𝑥)) is a 𝑘 vector of polynomial

functions of 𝑥, and 𝑛 is the number of observations. Our
purpose is to estimate the coefficient vector 𝛽 or part of the
vector 𝛽 of primary interest.

In some experimental settings, the observations may be
correlated according to various structures or patterns. The
motivation of the research in optimal designs with correlated
observations can be found in Dette et al. [2]. Muller [3]
introduced optimal design with correlated observations in
detail.

The simulated annealing algorithm is a probabilistic “hill
climbing” algorithm for optimization in the absence of an

analytical solution. The application of simulated annealing
algorithm for optimal design problem was first proposed
by Haines [4]. Lejeune [5] proposed a simulated annealing
algorithm for D-optimal design with uncorrelated observa-
tions. The simulated annealing algorithm with a reheating
process is introduced inDimitris andOmid [6] andAbdullah
et al. [7]. In Zhu [8], Zhu solved the 1-way D-optimal design
for polynomial regression with correlated observations using
a simulated annealing algorithm. Cheng [9] produced D-
optimal designs with block effects, which can be considered
as a special case of the D-optimal design problem with corre-
lated observations, since the block effects can be incorporated
into the correlation structure.

Most previous work only considered the simplest case,
that is, optimal design for 1-way polynomial regression.
However, in real world problems, the response variable is
usually influenced by multiple effects and their interactions.
This kind of problem is more complicated and cannot get
satisfactory result by existing algorithms or their generaliza-
tions.
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In this paper, we propose amodified, improved simulated
annealing algorithm to approximately solve for D-optimal
design for 2-way and 3-way polynomial regression with
correlated observations. This algorithm is applicable to any
number of observations, not necessarily a multiple of the
dimension of the parameter vector. It conquers the shortcom-
ing of previous work, which mainly concentrated on the case
that 𝑛 (the number of observations) is a multiple of 𝑘 (the
number of the coefficients to be estimated or, equivalently, the
dimension of the parameter 𝛽). We also provide a reinforced
version of our simulated annealing algorithmwith a reheating
process.

2. Model and Correlation Structures

2.1. Model. The full model for second-order 2-way and 3-
way polynomial regression is presented by Boon [10] and
Pukelsheim [11]. The model for the second-order 2-way
polynomial regression is

𝑦
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= 𝛽
0
+ 𝛽
1
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1𝑖
+ 𝛽
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,

(2)

where 𝑖 = 1, 2 ⋅ ⋅ ⋅ 𝑛, and each of the 𝑥
1𝑖
and 𝑥

2𝑖
are in [−1, 1],

where 𝜖
𝑖
has mean 0 and variance 𝜎

2 but are not necessarily
independent.

The design matrix is 𝑋 = (𝑥
𝑖𝑗
)
𝑛×6

. The first column is
all 1’s, and the other 5 columns correspond to the values
of 𝑋
1
, 𝑋
2
, 𝑋
2

1
, 𝑋
2

2
, 𝑋
1
𝑋
2
, respectively. That is, each column

of 𝑋 corresponds to one design variable (or their square or
interaction effect) in the model.

Themodel for the second-order 3-way polynomial regres-
sion is
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(3)

where 𝑖 = 1, 2 ⋅ ⋅ ⋅ 𝑛.
The design matrix is 𝑋 = (𝑥

𝑖𝑗
)
𝑛×10

, and the definition is
similar with 2-way polynomial regression.

D-optimality aims to maximize of the determinant of the
information matrix, where the information matrix for these
models is

𝑀 = 𝑋

𝑉
−1
𝑋, (4)

where

𝑉 = cov (𝑌) = 𝜎
2
(𝜌
𝑖𝑗
)
𝑛×𝑛

(5)

is the variance covariancematrix of the errors. Some common
correlation structures for 𝑉 are introduced below.

2.2. Correlation Structures. We define commonly used corre-
lation structures below for a single correlation parameter 𝜌.

(i) Circulant correlation: see Zhu et al. [1]:

cov (𝑦
𝑖
, 𝑦
𝑗
) =

{{

{{

{

𝜎
2

𝑖 = 𝑗

𝜌𝜎
2 𝑖 − 𝑗

 = 1 or 𝑖 − 𝑗
 = 𝑛 − 1

0 otherwise.
(6)

(ii) Nearest neighbor correlation: see Zhu [12]:

cov (𝑦
𝑖
, 𝑦
𝑗
) =

{{

{{

{

𝜎
2

𝑖 = 𝑗

𝜌𝜎
2 𝑖 − 𝑗

 = 1

0 otherwise.
(7)

(iii) Autoregressive correlation: see Dette et al. [2]:

cov (𝑦
𝑖
, 𝑦
𝑗
) = 𝜎
2
𝜌
|𝑖−𝑗|

, (8)

where 𝑖, 𝑗 = 1, 2 ⋅ ⋅ ⋅ 𝑛.
(iv) Completely symmetric block structure: see Cadima

et al. [13]:

(

(

𝑅 𝑅12 ⋅ ⋅ ⋅ 𝑅1𝑏

𝑅21 𝑅 ⋅ ⋅ ⋅ 𝑅2𝑏

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝑅

)

)

. (9)

Here 𝑅 is a 𝑘 × 𝑘 matrix with the elements on the main
diagonal =1, and all other elements =𝜌, (𝑘 is the common
block size).𝜌 is the correlation coefficient for the observations
in the same block.𝑅𝑖𝑗 is a 𝑘×𝑘 block with all elements =𝜌

𝑖𝑗
. In

this paper we take all of the 𝜌
𝑖𝑗
equal to the same coefficient

𝜌
.
Note that one commonly used block correlation structure

is proposed by Atkins and Cheng [14]:

cov (𝑌) = 𝜎
2
(𝐼
𝑏
⊗ 𝑉) (10)

with𝑉 = (1−𝜌)I
𝑘
+𝜌J
𝑘
. Here J

𝑘
is the 𝑘×𝑘matrix with all

of the elements =1. This is a special case of (iv) with 𝑅𝑖𝑗 = 0.

3. Improved Simulated Annealing
Algorithm for 2-way and 3-way
Second-Order Polynomial Regression
with Correlated Observations

3.1. The Principle of Simulated Annealing. The simulated
annealing (SA) algorithm belongs to a class of heuristic prob-
abilistic hill-climbing algorithms; seeZhu [8] andLejeune [5].
The SA algorithm attempts to globally maximize an energy
function 𝐸(𝑋) for 𝑋 in a specified state space (a design
region for our D-optimality problem), by moving about the
state space according to a transition mechanism defined by
random perturbations of the current solution, 𝑋

𝑐
, to a new

candidate solution,𝑋
𝑛
. Letting 𝑑𝐸 = 𝐸(𝑋

𝑛
) − 𝐸(𝑋

𝑐
), if 𝑑𝐸 >

0, accept 𝑋
𝑛
as the current solution. Otherwise, accept 𝑋

𝑛

as the current solution with probability exp(𝑑𝐸/𝑇
𝑐
), where
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𝑇
𝑐
is the current value of a temperature control parameter,

𝑇. Thus, there is positive probability that the algorithm will
move to a poorer design, which is the key feature of the SA
search algorithm, as it provides for the possibility that the
algorithm will escape a local maximum. As the algorithm
proceeds, the temperature decreases, making it less likely
that designs with lower energy will be accepted. Convergence
of the SA algorithm to a highly efficient design (a globally
optimal solution is never guaranteed to be found) depends on
the convergence to a stationary distribution of the underlying
Markov chain, which typically requires a large number of
iterations as well as a suitably chosen transition scheme over
the state space.

3.2. Simulated Annealing Algorithm for D-Optimal Design for
2-Way and 3-Way Polynomial Regression. For 2-way polyno-
mial regression, the 𝑛 × 6 design matrix is fully determined
by the values of𝑋

1
and𝑋

2
, each in [−1, 1]. Therefore, at each

iteration of our simulated annealing algorithm, a new design
matrix is obtained by perturbing the current values of𝑋

1
and

𝑋
2
. We denote the current values of 𝑋

1
and 𝑋

2
by 𝑋
1𝑐
and

𝑋
2𝑐
and new values by𝑋

1𝑛
and𝑋

2𝑛
, respectively.

Inmany applications of simulated annealing, the values of
only one current design point are perturbed (by some random
mechanism) at each iteration, and typically a systematic pass
is made through all design points in this manner, and the
process repeated until “convergence” is achieved according
to a specified stopping condition. Alternatively, all design
points are perturbed simultaneously. However, both of these
traditional methods were found to be inefficient for our
D-optimal design with correlated errors. Thus, we used a
modification that improved convergence and solution quality.
Our modification was to divide the design points into three
parts, of equal or nearly equal size, and perturb all points in
each part in an “inner” loop, while systematically doing this
for each of the three parts. This represented a middle ground
for the perturbation scheme between the two traditional
perturbation methods, one at each extreme, as described
above.

Our modified simulated annealing algorithm was as
follows.

Step 1. Initialize starting temperature 𝑇
0
, finishing temper-

ature 𝑇
𝑓
, temperature reduction coefficient 𝑟, perturbation

neighborhood control parameter𝑔
0
, and initial designmatrix

𝑋
0
. Control parameter 𝑔

𝑐
is chosen from [0, 1] and is used to

adjust the size of the perturbations as the algorithm proceeds.
Calculate the energy function of the current design: 𝐸(𝑋

𝑐
) =

Det(𝑋𝑉−1𝑋).

Divide the 𝑛 design points (rows of𝑋) into three parts. If
𝑛 = 3𝑘, for some positive integer 𝑘, then each part has = 𝑛/3

design points. If 𝑛 = 3𝑘 + 1, the first two parts have 𝑘 design
points and the third part has 𝑘 + 1. Similarly, if 𝑛 = 3𝑘 + 2,
the first part has 𝑘 points, and the other two have 𝑘+1 design
points.

Step 2. Outer loop: cycle through each of the 3 parts of X
systematically, repeating the following inner loop.

Inner loop:

(i) let 𝑍
1
and 𝑍

2
be 𝑛 × 1 vectors with each element

of 𝑍
𝑖
(𝑖 = 1, 2) sampled at random from [−1, 1] for

those design points belonging to the current part of
𝑋 under consideration; all remaining elements of 𝑍

𝑖

are set equal to 0;
(ii) generate new candidate design points 𝑋

1𝑛
= 𝑋
1𝑐

+

𝑔
𝑐
𝑍
1
and 𝑋

2𝑛
= 𝑋
2𝑐

+ 𝑔
𝑐
𝑍
2
; if any element of 𝑋

1𝑛

or𝑋
2𝑛
falls outside [−1, 1], set the value to the closest

boundary value of the design region;
(iii) determine 𝐸(𝑋

𝑛
);

(iv) if 𝑑𝐸 = 𝐸(𝑋
𝑛
) − 𝐸(𝑋

𝑐
) > 0, accept the new design

by setting 𝑋
𝑐
= 𝑋
𝑛
; otherwise, compare exp(𝑑𝐸/𝑇)

with a random number chosen uniformly from [0, 1]

multiplied by a coefficient 1.01
𝑐; if exp(𝑑𝐸/𝑇) is

greater than this number, we set𝑋
𝑐
= 𝑋
𝑛
; if not, keep

the𝑋
𝑐
unchanged.

Step 3. If 𝑇
𝑐
< 𝑇
𝑓
, stop. Otherwise, increase the counter 𝑐 to

𝑐+1, set𝑇
𝑐
= 𝑟𝑇
𝑐−1

, 𝑔
𝑐
= 𝑟𝑔
𝑐−1

, 𝑐 = 𝑐+1, and return to Step 2.

Reduction Control Parameter 𝑟. This tuning parameter is
chosen by the user but is often set about 0.98-0.99 for
geometric rate of reduction in the temperature.

Perturbation Control Parameter 𝑔. Typically, 𝑔
0
is set close

to 1, allowing large perturbations in design points at early
iterations. As solution quality improves and the temperature
decreases, 𝑔

𝑐
also decreases, localizing perturbations to a

smaller neighborhood of the current design which is more
likely to be close to a global optimum when iteration counter
𝑐 is large.

Reheating. The annealing algorithm can be reinforced by
using “reheating.” Specifically, after the usual stopping con-
dition based on the temperature is reached in Step 3, the
process is repeated, often several times, by reheating to the
original starting temperature, and continuing at Step 2. Since
the reheating process is much more time consuming than
nonreheating process, so we have to weigh and balance
between the computing time and effect of computation. In
this paper, we mainly run the improved simulated annealing
algorithm without reheating process. In Table 6, we present
results of the algorithm for 𝑛 = 12 and three correlation
structures without and with reheating.

For 3-way polynomial regression, the only difference of
the algorithm is in the inner circulation; we do all of the
operation on 3 vectors:𝑋

1
,𝑋
2
, and𝑋

3
.

3.3. Improvements from This Algorithm Compared with the
Traditional Simulated Annealing Algorithm. (1) There are 2
vectors, 𝑋

1𝑐
and 𝑋

2𝑐
, to be changed (for 3-way polynomial

regression, there are 3 vectors to be changed). In this case,
the traditional simulated annealing algorithm, which treats
the perturbation vector 𝑍 as a whole, does not produce
satisfactory results. In our modified algorithm, we divide the
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𝑍 (and consequently the perturbation process) into 3 parts
and make perturbations part by part. This method ensures
that we do not miss any corner of the design region and is
more precise than the usual annealing method. Additionally,
this part-by-part perturbation scheme allows the number of
observations to be any number, not necessarily to be multiple
of the number of coefficients. This makes our algorithm
more flexible since it can be applied to experiments with any
number of observations.

(2) We shrink the search neighborhood and increase the
threshold for accepting a perturbation each timewe lower the
temperature.That is, when the temperature is high, we search
in a wide neighborhood and are more likely to jump out of
the local optimum. At each time we lower the temperature,
we make the perturbation neighborhood smaller and make
the acceptance threshold higher so it becomes harder to
leave a local optimum. We implement this approach by
multiplying the scale number 𝑔 by the reduction coefficient
𝑟 and multiplying the random number to be compared with
𝑑𝐸 by a coefficient, 1.01

𝑐, at each time we decrease the
temperature. Here 𝑐 initially is 0 and will increase by 1 each
time we decrease the temperature.

This approach is in accordance with the idea of simulated
annealing; that is, when the temperature becomes lower,
the “molecules” are less active and tend to an equilibrium
stabilization. This modification resulted in improved relative
efficiency of the final design.

(3) In each part of Step 3, we repeat the iterations until
the improvement is less than a small threshold value multiple
times. This guarantees we go to the next step only when
the improvement is negligible and none in the current step.
In other words, we do not miss any valuable improvement.
We take the threshold as 0.02× determinant of the current
information matrix as the threshold value.

4. Results and Comparison with Traditional
Simulated Annealing Algorithm

In this part, we compare the results from our improved
simulated annealing algorithm with that of traditional sim-
ulated annealing algorithm, that is, the SA algorithm without
our improvement. Since the most often used correlation
parameters are 0.1 and 0.4, in Tables 1, 2, 3, 4, 5, 6, and 7, we
mainly use these 2 parameters in the computation and
comparison. The result of other correlation parameters can
be gotten by the same algorithm by a simple adjustment of
the parameters.

In Table 1 through Table 4, we present the comparisons of
our improved simulated annealing results and the traditional
simulated annealing algorithm when observations number 𝑛
is a multiple of 6 using each of the autoregressive, circulant,
nearest neighbor, and block correlation structures. We also
get the ratio of the results of the two algorithms,whichwill tell
us howmuch our improved simulated annealing algorithm is
better than the traditional simulated annealing algorithm.

Tables 1–3 present the comparison of the results of the two
SA algorithms for the autoregressive, circulant, and nearest
neighbor structure for designs of sizes 6, 12, and 18 and

correlation parameters of 0.1 and 0.4, and Table 4 presents
the comparison of the results of the two SA algorithms for
the block structure for designs of size 12 and correlation
parameters of 0.1 and 0.4.

From these tables, we see that under all of the cases, the
determinants obtained by our improved simulated annealing
algorithm are much higher than that of the traditional
simulated annealing algorithm. When 𝜌 changes from 0.1 to
0.4, and when 𝑛 (the number of observations) gets larger,
the ratio of the determinants of our improved simulated
annealing algorithm and that of the traditional simulated
annealing algorithm increase rapidly. So the D-efficiency of
our improved simulated annealing algorithm is much better
than that of the traditional simulated annealing algorithm,
especially when 𝜌 and 𝑛 get even larger.

For the case that the observations number 𝑛 is not
a multiple of the dimension of the parameter vector, the
traditional simulated annealing algorithm does not work.
However, our improved simulated annealing algorithm is a
powerful algorithm to get the determinant for any number
of 𝑛. We list the results of our improved simulated annealing
algorithm with various 𝜌 and 𝑛 for circulant correlation
structure in Table 5.

Table 6 provides the comparison of the result of our
algorithm without and with reheating process. From this
table, we can see that, with the addition of the reheating
process, the results are much better than the nonreheating
process. However, the reheating process is much more time
consuming than nonreheating process.

Table 7 provides the comparison of our improved simu-
lated annealing results with the traditional simulated anneal-
ing algorithm results for 3-way polynomial regression with
𝑛 = 10.

From Table 7, we can see that the results of our improved
simulated annealing algorithm are much higher than that
of the traditional simulated annealing algorithm for all of
the 3 correlation structures for 3-way polynomial regression.
When 𝜌 gets larger, the ratio of the determinants of our
improved simulated annealing and that of the traditional
simulated annealing algorithm increase rapidly. All of the
tables point out that our improved simulated annealing is
much more powerful than traditional simulated annealing
algorithm.

5. Discussions

This paper demonstrates that an improved simulated anneal-
ing algorithm can successfully determine highly efficient D-
optimal designs for second-order polynomial regression on
[−1, 1]

2 and third order polynomial regression on [−1, 1]
3

for a variety of correlated error structures and with the
design size, 𝑛, not limited to a multiple of the number of
regression parameters. The combination of (i) a “part-by-
part” perturbation scheme, (ii) the use of a parameter that
controls the size of the neighborhood for the perturbations,
and (iii) increase of the threshold for accepting a perturbation
each time we lower the temperature lead to designs that—
while not likely globally optimal—are better than those
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Table 1: 2-way polynomial regression with autoregressive correlation.

𝑛 𝜌
Traditional annealing

determinant
Improved annealing

determinant Ratio

6 0.1 231.4 281.2 1.2152
6 0.4 578.2 751.8 1.3002
12 0.1 13582 17769 1.3083
12 0.4 31721 45108 1.4220
18 0.1 195260 272620 1.3962
18 0.4 416720 889690 2.1350

Table 2: 2-way polynomial regression with circulant correlation.

𝑛 𝜌
Traditional annealing

determinant
Improved annealing

determinant Ratio

6 0.1 218.4 279 1.2775
6 0.4 712.5 1047 1.4695
12 0.1 12492 17815 1.4261
12 0.4 43962 65894 1.4989
18 0.1 143620 206010 1.4344
18 0.4 623820 1091400 1.7495

Table 3: 2-way polynomial regression with nearest neighbor correlation.

𝑛 𝜌
Traditional annealing

determinant
Improved annealing

determinant Ratio

6 0.1 212.4 279.1 1.3140
6 0.4 534.2 742.5 1.3899
12 0.1 23982 32901 1.3719
12 0.4 45842 74276 1.6203
18 0.1 136922 206010 1.5046
18 0.4 639520 1175800 1.8386

Table 4: 2-way polynomial regression with block correlation.

𝑛 𝜌
Traditional annealing

determinant
Improved annealing

determinant Ratio

12 0.1 18204 25088 1.3782
12 0.4 22912 39870 1.7401

Table 5: Circulant correlation structure with various 𝜌 and 𝑛.

𝜌
𝑛

7 8 9 10 11
0.1 517.3 2523.2 4417.6 6738.3 16975
0.2 1261.1 3666.9 7672.5 16211 21788
0.3 1958.1 5540 16406 31880 42016
0.4 4046.7 13514 52982 61529 64205

Table 6: 2-way polynomial regression with 𝑛 = 12; compare reheated simulated annealing with nonreheated simulated annealing.

Correlation structure 𝜌
Nonreheated
determinant Reheated determinant Ratio

Nearest neighbor 0.4 74276 97284 1.3098
Circular 0.4 65894 87291 1.3247
Autoregress 0.4 45234 68548 1.5154
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Table 7: 3-way polynomial regression with 𝑛 = 10.

Correlation structure 𝜌
Traditional annealing

determinant
Improved annealing

determinant Ratio

Nearest neighbor 0.1 1.8342 × 10
6

2.4030 × 10
6 1.3101

Nearest neighbor 0.4 1.1529 × 10
7

2.1257 × 10
7 1.8438

Circular 0.1 1.6215 × 10
6

2.2202 × 10
6 1.3692

Circular 0.4 1.4284 × 10
7

2.3343 × 10
7 1.6342

Autoregress 0.1 1.8128 × 10
6

2.3423 × 10
6 1.2921

Autoregress 0.4 6.2563 × 10
6

1.08510 × 10
7 1.7342

obtained by traditional simulated annealing algorithm. In
particular, when the true correlation parameter is well away
from 0, our improved simulated annealing algorithm has
much greater relative efficiency than the traditional simulated
annealing algorithm.

The SA algorithm needs only a well-defined energy
function to maximize here the determinant of the infor-
mation matrix. Thus, the same algorithm may be used for
other design optimality criteria, for example, A- and E-
optimality. In the absence of exact analytic optimal designs
when errors are correlated, the SA algorithm is an attractive,
easily implemented method to find highly efficient designs.
Extensions to higher degree polynomial regression models
are immediate, except for the likely need for longer run times
and slower reduction of the temperature to allow for more
effective searching over a larger design region.
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