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The nonlinear tumor equation in spherical coordinates assuming that both the diffusivity and the killing rate are functions of
concentration of tumor cell is studied.A complete classificationwith regard to the diffusivity andnet killing rate is obtained using Lie
symmetry analysis. The reduction of the nonlinear governing equation is carried out in some interesting cases and exact solutions
are obtained.

1. Introduction

The tumor growth has been usually modeled as a reaction-
diffusion process in the literature. Jones et al. [1] have given
a simple tumor model based upon this idea. A model de-
scribing the growth of the tumor in brain taking into account
diffusion or motility as well as proliferation of tumor cells has
been developed in a series of papers [2, 3]. In continuation of
this approach, Tracqui et al. [4] suggest a model which takes
into account treatment and thus killing rate of tumor cells
along with the above factors. The governing equation in this
case is

𝑢
𝑡
= 𝐷∇

2
𝑢 + 𝑃𝑢 − 𝑘𝑢, (1)

where 𝑢 is the concentration of tumor cells,𝐷 is the diffusion
coefficient, 𝑃 is the proliferation rate, and 𝑘 is the killing rate.
Assuming complete radial summery, Moyo and Leach [3]
have studied this model with 𝐾(𝑥, 𝑡) = 𝑃 − 𝑘 being variable.
The resulting governing equation reduces to the simple form

𝑢
𝑡
= 𝑢
𝑥𝑥
− 𝐾𝑢, (2)

where 𝑢(𝑥, 𝑡) = 𝑟𝑢(𝑟, 𝑡). They have performed Lie symmetry
analysis and presented some exact solutions based upon
this approach. Consequently, Bokhari et al. [5] used Lie
symmetry analysis to obtain a number of invariant reductions
and exact solutions in the case of killing rate 𝐾(𝑢) being
function of 𝑢. The present study is based upon the fact
that the diffusivity is not necessarily a constant and may

depend upon the concentration of tumor cells. Moreover,
the net killing rate 𝐾 is also taken to be 𝑢-dependent. This
introduces nonlinearity in the governing equation. Keeping
these assumptions in mind (1) becomes

𝑢
𝑡
= ∇ ⋅ (𝐷 (𝑢) ∇𝑢) − 𝐾 (𝑢) 𝑢, (3)

which in spherical coordinates and with radial symmetry
assumption becomes

1

𝑥
2

𝜕

𝜕𝑥

(𝑥
2
𝐷 (𝑢) 𝑢

𝑥
) − 𝐾 (𝑢) 𝑢 = 𝑢

𝑡
, (4)

where 𝐷(𝑢) is the diffusivity of the medium and 𝐾(𝑢) is the
net killing rate. We present a classification of the functions
𝐷(𝑢) and 𝐾(𝑢) using Lie symmetry analysis. The Lie sym-
metry approach, first proposed by Lie [6], has been used
to classify nonlinear differential equations, find appropriate
similarity transformations, and find exact solutions. Onemay
refer to [7–10] for a good account of thismethod. Some recent
studies in nonlinear diffusion equations using this approach
can be found in [1, 6].

2. Symmetry Analysis of the Tumor Equation

In this section, we perform the symmetry analysis of (4). To
this end, we use the Lie symmetrymethod [10] which is based
upon finding Lie point symmetries of the PDEs that leave
them invariant. In order to find the Lie symmetry generators
of (4) and obtain closed-form solutions for all 𝐾(𝑢), we
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consider the one-parameter Lie point transformation that
leaves (4) invariant. These transformation formulae [7, 9] are
given as follows:

𝑥
𝑖
= 𝑥
𝑖
+ 𝜖𝜉
𝑖
(𝑥, 𝑦, 𝑡, 𝑢) + 𝑂 (𝜖

2
) , 𝑖 = 1, . . . , 4, (5)

where 𝜉𝑖 = (𝜕𝑥
𝑖
/𝜕𝜖)|
𝜖=0

defines the symmetry generator [9]
associated with (2) given by

𝑉 = 𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

+ 𝜏

𝜕

𝜕𝑡

+ 𝜙

𝜕

𝜕𝑢

. (6)

Requiring invariance of (4) with respect to the prolonged
symmetry generator,

V(2) = 𝑉 +
2

∑

𝐼=0

𝜙
𝐽 𝜕

𝜕𝑢
𝐽

+

3

∑

𝐼,𝐽=0

𝜙
𝐼𝐽 𝜕

𝜕𝑢
𝐼𝐽

, 𝐼, 𝐽 = 0, 1, (7)

with 0 representing 𝑡 and 1 representing 𝑥,

𝜉 (𝐷 (𝑢) 𝑢
𝑥𝑥
+ 𝐷
𝑢
𝑢
2

𝑥
− 𝑘 (𝑢) 𝑢 − 𝑢

𝑡
)

+ 𝜙 (𝑥𝐷
𝑢
𝑢
𝑥𝑥
+ 𝑥𝐷
𝑢𝑢
𝑢
2

𝑥
+ 2𝐷
𝑢
𝑢
𝑥
− 𝑥𝑘 (𝑢) − 𝑥𝑢𝑘

𝑢
)

+ 𝜙
𝑥
(2𝑥𝐷
𝑢
𝑢
𝑥
+ 2𝐷 (𝑢)) − 𝑥𝜙

𝑡
+ 𝑥𝐷 (𝑢) 𝜙

𝑥𝑥
= 0,

(8)

and the coefficients 𝜙𝐽 and𝜙𝐽𝐾, of the derivativeswith respect
to dependent variables in (8) are to be evaluated using the
expressions:

𝜙
𝐽
= 𝐷
𝑖
(𝜙 − 𝜉

𝑗
𝑢
𝑗𝑖
) + 𝜉
𝑗
𝑢
𝑗,𝑖
,

𝜙
𝐽𝐾
= 𝐷
𝑖
𝐷
𝑗
(𝜙 − 𝜉

𝑗
𝑢
𝑗𝑖
) + 𝜉
𝑘
𝑢
𝑘,𝑖𝑗
.

(9)

Using (9) into (8) and comparing terms involving derivatives
of the dependent variable 𝑢, we obtain the following system
of differential equations:

𝜉
𝑢
= 0 = 𝜏

𝑥
= 𝜏
𝑢
= 𝜙
𝑢𝑢
, (10)

𝐷
𝑢
𝜙 − 2𝐷𝜉

𝑥
+ 𝐷𝜏
𝑡
= 0, (11)

− 𝑥𝐾𝜙 − 𝑥𝑢𝐾
𝑢
𝜙 + 2𝐷𝜙

𝑥
− 𝑥𝜙
𝑡
+ 𝑥𝑢𝐾𝜙

𝑢

− 𝑥𝑢𝐾𝜏
𝑡
+ 𝑥𝐷𝜙

𝑥𝑥
= 0,

(12)

− 2𝐷𝜉 + 2𝑥𝐷
𝑢
𝜙 − 2𝑥𝐷𝜉

𝑥
+ 2𝑥𝐷𝜏

𝑡
+ 𝑥
2
𝜉
𝑡

+2𝐷𝑥
2
𝜙
𝑥𝑢
− 𝐷𝑥
2
𝜉
𝑥𝑥
= 0.

(13)

To determine the unknown functions 𝜉, 𝜏, and 𝜙 , we solve
the above coupled system of differential equations by first
considering (11). Differentiating this equation twice with
respect to 𝑢 leads to the following expression:

𝜙
𝑢𝑢
= (

𝐷

𝐷
𝑢

)

𝑢𝑢

(2𝜉
𝑥
− 𝜏
𝑡
) . (14)

Using (10) into (14) reduces to

(

𝐷

𝐷
𝑢

)

𝑢𝑢

(2𝜉
𝑥
− 𝜏
𝑡
) = 0. (15)

We proceed from the above equation to obtain a complete
classification of both𝐷 and𝐾 as shown in the next section.

3. Classification

In order to perform a complete classification of solution of
(4), we notice that the following three cases arise from (15)

(I) 2𝜉
𝑥
− 𝜏
𝑡
= 0,

(II) (𝐷/𝐷
𝑢
)
𝑢𝑢
= 0,

(III) 2𝜉
𝑥
− 𝜏
𝑡
= 0 = (𝐷/𝐷

𝑢
)
𝑢𝑢
.

For obtaining a complete classification, we consider all the
three cases one by one. Since procedure of classification in
all the three cases is similar, we present a complete analysis
in the first case and briefly state the results in the remaining
cases. To begin the classification, we proceed as follows.

3.1. Case I (2𝜉
𝑥
−𝜏
𝑡
=0). In this case the system of determining

equations given by (10)–(13) becomes

𝜉
𝑢
= 0 = 𝜏

𝑥
= 𝜏
𝑢
= 𝜙, (16)

2𝜉
𝑥
= 𝜏
𝑡
, (17)

−𝑥𝑢𝐾𝜏
𝑡
= 0, (18)

−2𝐷𝜉 + 𝑥𝐷𝜏
𝑡
+ 𝑥
2
𝜉
𝑡
= 0. (19)

From (18), three subcases arise:

(a) 𝜏
𝑡
= 0,

(b) 𝐾(𝑢) = 0,
(c) 𝜏
𝑡
= 0 = 𝐾(𝑢).

We first consider (a).

3.1.1. Subcase (a) (𝜏
𝑡
=0). Using these conditions arising in

this case, we deduce that

𝜉
𝑥
= 0 󳨐⇒ 𝜉 = 𝜉 (𝑡) , (20)

and (19) becomes

−2𝐷𝜉 + 𝑥
2
𝜉
𝑡
= 0. (21)

Note that (21) is a separable DE and can be easily solved to
find 𝜉 given by 𝜉 = 𝑐

2
exp(−2𝐷𝑥−2𝑡).

But 𝜉 depend only on 𝑡, so that two possibilities arise from
expression of 𝜉:

(a.1) 𝑐
2
= 0 and𝐷 ̸= 0,

(a.2) 𝐷 = 0 and 𝑐
2
̸= 0.

Subsubcase (a.1).This subcase leads to the fact that 𝐷(𝑢) and
𝐾(𝑢) are arbitrary and the infinitesimals are

𝜉 = 0, 𝜏 = 𝑐
1
, 𝜙 = 0. (22)

Only one symmetry generator is associated with above infin-
itesimals which is X = (𝜕/𝜕𝑡).

Subsubcase (a.2). As a result of this subcase, 𝐷(𝑢) = 0 and
𝐾(𝑢) are arbitrary and the infinitesimals are

𝜉 = 𝑐
2
, 𝜏 = 𝑐

1
, 𝜙 = 0. (23)
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Table 1: Commutator table of the tumor equation.

[Xi,Xj] X1 X2

X1 0 −2X2

X2 2X2 0

In this subcase, we have two generators which are

X1 =
𝜕

𝜕𝑥

, X2 =
𝜕

𝜕𝑡

. (24)

3.1.2. Subcase (b) (𝐾(𝑢)=0). Using these conditions arising in
this case into (13), it becomes

−2𝐷𝜉 + 2𝑥𝐷𝜉
𝑥
+ 𝑥
2
𝜉
𝑡
+ 3𝐷𝑥

2
𝜉
𝑥𝑥
= 0. (25)

Differentiating (25) with respect to 𝑢, we get

3𝑥
2
𝜉
𝑥𝑥
+ 2𝑥𝜉

𝑥
− 2𝜉 = 0. (26)

The above equation is a Cauchy Euler differential equation,
its solution given by

𝜉 = 𝐴 (𝑡) 𝑥 + 𝐵 (𝑡) 𝑥
−(2/3)

. (27)

To require consistency of 𝜉 found above, we use (27) into
(25). This suggests that (25) is satisfied when the following
differential constraint is met:

𝐴
𝑡
𝑥
3
+ 𝐵
𝑡
𝑥
4/3

= 0. (28)

Differentiating (28) four times with respect to 𝑥, we get𝐵(𝑡) =
𝑐
2
and hence 𝐴(𝑡) = 𝑐

1
. Therefore,

𝜉 = 𝑐
1
𝑥 + 𝑐
2
𝑥
−(2/3)

. (29)

Using (29) into (17), we conclude that

𝜏 = 2𝑐
1
𝑡 −

4

3

𝑐
2
𝑥
−(5/3)

+ 𝑐
3
. (30)

From (16) and (30), we infer that 𝑐
2
= 0 and consequently the

general expressions of 𝜉, 𝜏, 𝜙,𝐷, and𝐾 are

𝜉 = 𝑐
1
𝑥, 𝜏 = 2𝑐

1
𝑡 + 𝑐
3
, 𝜙 = 0.

𝐾 (𝑢) = 0, 𝐷 (𝑢) is arbitrary.
(31)

The two symmetry generators associatedwith above infinites-
imals are given by

𝑋
1
= 𝑥

𝜕

𝜕𝑥

+ 2𝑡

𝜕

𝜕𝑡

, 𝑋
2
=

𝜕

𝜕𝑡

. (32)

The commutation relation for each of the above symmetry
generators is listed in Table 1.

3.1.3. Subcase (c) (𝜏
𝑡
=0=𝐾(𝑢)). Following the procedure

adopted in earlier cases, we obtain the same symmetry gen-
erators in cases (a) and (b).

3.2. Case II ((𝐷/𝐷
𝑢
)
𝑢𝑢
=0). Solving equation (𝐷/𝐷

𝑢
)
𝑢𝑢
= 0

for𝐷(𝑢) instantly yields

𝐷 (𝑢) = (𝑏𝑢)
1/𝑏
, (33)

where 𝑏 is a constant. Using (33) into (11), we obtain

𝜙 = (𝑏𝑢) (2𝜉
𝑥
− 𝜏
𝑡
) . (34)

Using (34) and (33) into (13), we obtain a differential relation
in the 𝜉 given by

− 2(𝑏𝑢)
1/𝑏
𝜉 + 2𝑥(𝑏𝑢)

1/𝑏
𝜉
𝑥
+ 𝑥
2
𝜉
𝑡

+ 𝑥
2
(4𝑏 − 1) (𝑏𝑢)

1/𝑏
𝜉
𝑥𝑥
= 0.

(35)

Differentiating (35) with respect to 𝑢, we obtain

−2𝜉 + 2𝑥𝜉
𝑥
+ 𝑥
2
(4𝑏 − 1) 𝜉

𝑥𝑥
= 0. (36)

From (36) two cases arise:

(a) 𝑏 ̸= 1/4,
(b) 𝑏 = 1/4.

3.2.1. Subcase (a) (𝑏 ̸= 1/4). This subcase gives that

𝜉 = 𝐴 (𝑡) 𝑥 + 𝐵 (𝑡) 𝑥
−2/𝑚

1
, where 𝑚

1
= 4𝑏 − 1. (37)

Using (37) into (35) yields

𝐴
𝑡
𝑥
3
+ 𝐵
𝑡
𝑥
−(2/𝑚

1
)+2

= 0. (38)

Differentiating (38) with respect to 𝑥 4 times, we conclude
that 𝐵(𝑡) = 𝑐

2
and hence 𝐴(𝑡) = 𝑐

1
. Therefore,

𝜉 = 𝑐
1
𝑥 + 𝑐
2
𝑥
−2/𝑚

1
, where 𝑚

1
= 4𝑏 − 1. (39)

As a result of (39), we obtain

𝜙 = 𝑏𝑢(2𝑐
1
−

4

𝑚
1

𝑐
2
𝑥
−(2/𝑚

1
)−𝜏
𝑡
) . (40)

Using (39) and (40) into (12), we obtain

− 𝑏𝑢
2
𝐾
𝑢
(2𝑐
1
−

4

𝑚
1

𝑐
2
𝑥
−(2/𝑚

1
)−1

− 𝜏
𝑡
) + 𝑏𝑢𝜏

𝑡𝑡
− 𝑢𝐾𝜏

𝑡

−

8

𝑚
1

𝑐
2
(𝑏𝑢)
(1/𝑏)+1

(−

2

𝑚
1

− 1)𝑥
−(2/𝑚

1
)−3

−

4

𝑚
1

𝑐
2
(𝑏𝑢)
(1/𝑏)+1

(−

2

𝑚
1
− 1

)(−

2

𝑚
1
− 2

)𝑥
−(2/𝑚

1
)−3

= 0.

(41)

Differentiating (41) with respect to 𝑥 yields

− 𝑏𝑢
2
𝐾
𝑢

4

𝑚
1

(

−2

𝑚
1

− 1) 𝑐
2
𝑥
(−2/𝑚

1
)−2

−

8

𝑚
1

𝑐
2
(𝑏𝑢)
(1/𝑏)+1

× (−

2

𝑚
1

− 1)(−

2

𝑚
1

− 3)𝑥
−(2/𝑚

1
)−4

−

4

𝑚
1

𝑐
2
(𝑏𝑢)
(1/𝑏)+1

× (−

2

𝑚
1

− 1)(−

2

𝑚
1

− 1)(−

2

𝑚
1

− 3)𝑥
−(2/𝑚

1
)−4

= 0.

(42)
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The above equation holds if 𝑐
2
= 0, and substituting this value

into (41) gives

−𝑏𝑢𝐾
𝑢
(2𝑐
1
− 𝜏
𝑡
) + 𝑏𝜏

𝑡𝑡
− 𝐾𝜏
𝑡
= 0. (43)

Differentiating (43) with respect to 𝑡

−𝑏𝑢𝐾
𝑢
− 𝐾 =

−𝑏𝜏
𝑡𝑡𝑡

𝜏
𝑡𝑡

. (44)

The equality in (44) holds if

−𝑏𝑢𝐾
𝑢
− 𝐾 =

−𝑏𝜏
𝑡𝑡𝑡

𝜏
𝑡𝑡

= 𝛾, (45)

where 𝛾 is 𝑎 constant.
In accordance with (45), we conclude that

𝜏 (𝑡) =

𝑐
3
𝑏
2

𝛾
2

exp(
𝛾

𝑏

𝑡) + 𝑐
4
𝑡 + 𝑐
5
,

𝐾 (𝑢) = 𝛾 + 𝜆𝑢
1/𝑏
.

(46)

Using (46) into (43) yields

−2𝑐
1
𝜆𝑢
1/𝑏
− 𝛾𝑐
4
= 0. (47)

Differentiating (47) with respect to 𝑢 leads to

−2𝑐
1

1

𝑏

𝜆𝑢
(1/𝑏)−1

= 0. (48)

From (48) three cases arise, namely,

(a.1) 𝑐
1
= 0, and 𝜆 ̸= 0,

(a.2) 𝑐
1
̸= 0 and 𝜆 = 0,

(a.3) 𝑐
1
= 0 and 𝜆 = 0.

Subsubcase (a.1) (𝐷(𝑢) = (𝑏𝑢)1/𝑏 and𝐾(𝑢) = 𝛾+𝜆𝑢1/𝑏).Using
these conditions arising in this case into (47), we obtain 𝑐

4
= 0

and hence the infinitesimals are determined

𝜉 = 0, 𝜏 =

𝑐
3
𝑏

𝛾

exp(
𝛾

𝑏

𝑡) + 𝑐
5
,

𝜙 = −𝑐
3
𝑏𝑢 exp(

𝛾

𝑏

𝑡) .

(49)

The two symmetry generators associated with the above in-
finitesimals are given by

X1 =
𝑏

𝛾

exp (
𝛾

𝑏

𝑡)

𝜕

𝜕𝑡

− 𝑏𝑢 exp(
𝛾

𝑏

𝑡)

𝜕

𝜕𝑢

,

X2 =
𝜕

𝜕𝑡

.

(50)

The commutation relation for these generators is given in
Table 2.

Table 2: Commutator table of the tumor equation.

[Xi,Xj] X1 X2

X1 0 −

𝛾

𝑏

X1

X2
𝛾

𝑏

X1 0

Table 3: Commutator table of the tumor equation.

[Xi,Xj] X1 X2 X3

X1 0 0 −

𝛾

𝑏

X1

𝑋
2

0 0 0

𝑋
3

𝛾

𝑏

X1 0 0

Subsubcase (a.2) (𝐷(𝑢) = (𝑏𝑢)
1/𝑏 and 𝐾(𝑢) = 𝛾). Similarly,

using these conditions arising in this case into (47), we obtain
𝑐
4
= 0 and hence the infinitesimals are determined

𝜉 = 𝑐
1
𝑥, 𝜏 =

𝑐
3
𝑏

𝛾

exp (
𝛾

𝑏

𝑡) + 𝑐
5
,

𝜙 = 𝑏𝑢 (2𝑐
1
− 𝑐
3
exp(

𝛾

𝑏

𝑡)) .

(51)

The three symmetry generators associated with the above
infinitesimals are given by

X1 =
𝑏

𝛾

exp(
𝛾

𝑏

𝑡)

𝜕

𝜕𝑡

− 𝑏𝑢 exp (
𝛾

𝑏

𝑡)

𝜕

𝜕𝑢

,

X2 = 𝑥
𝜕

𝜕𝑥

+ 2𝑏𝑢

𝜕

𝜕𝑢

, X3 =
𝜕

𝜕𝑡

.

(52)

The commutation relation for these generators is given in
Table 3.

Subsubcase (a.3) (𝐷(𝑢) = (𝑏𝑢)1/𝑏 and 𝐾(𝑢) = 𝛾). using these
conditions arising in this case into (47), we obtain 𝑐

4
= 0 and

hence the infinitesimals are

𝜉 = 0, 𝜏 =

𝑐
3
𝑏

𝛾

exp(
𝛾

𝑏

𝑡) + 𝑐
5
,

𝜙 = −𝑐
3
𝑏𝑢 exp(

𝛾

𝑏

𝑡) .

(53)

The two symmetry generators associated with the above in-
finitesimals are given by

X1 =
𝑏

𝛾

exp(
𝛾

𝑏

𝑡)

𝜕

𝜕𝑡

− 𝑏𝑢 exp (
𝛾

𝑏

𝑡)

𝜕

𝜕𝑢

, X2 =
𝜕

𝜕𝑡

.

(54)

The commutation relation for these generators is given in
Table 4.

3.2.2. Subcase (b) (𝑏=1/4). In accordance with this subcase,
(35) becomes

2𝑥𝜉
𝑥
− 2𝜉 = 0; then 𝜉 = 𝑥𝛽 (𝑡) . (55)
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Table 4: Commutator table of the tumor equation.

[Xi,Xj] X1 X2

X1 0 −

𝛾

𝑏

X1

X2
𝛾

𝑏

X1 0

Using (33) into (35) gives 𝛽 = 𝑐
1
and hence

𝜉 = 𝑐
1
𝑥, 𝜙 =

1

4

𝑢 (2𝑐
1
− 𝜏
𝑡
) . (56)

Using (56) into (12) yields

−

1

4

𝑢𝐾
𝑢
(2𝑐
1
− 𝜏
𝑡
) +

1

4

𝜏
𝑡𝑡
− 𝐾𝜏
𝑡
= 0. (57)

Differentiating (57) with respect to 𝑡

−

1

4

𝑢𝐾
𝑢
− 𝐾 =

− (1/4) 𝜏
𝑡𝑡𝑡

𝜏
𝑡𝑡

. (58)

The equality in (58) holds if

−𝑏𝑢𝐾
𝑢
− 𝐾 =

− (1/4) 𝜏
𝑡𝑡𝑡

𝜏
𝑡𝑡

= 𝛾, where 𝛾 is a constant.

(59)

In accordance with (59), we have

𝜏 (𝑡) =

𝑐
3

16𝛾
2
exp (4𝛾𝑡) + 𝑐

4
𝑡 + 𝑐
5
, 𝐾 (𝑢) = 𝛾 + 𝜆𝑢

4
. (60)

Using (60) into (57) yields

−2𝑐
1
𝜆𝑢
4
− 𝛾𝑐
4
= 0. (61)

Differentiating (61) with respect to 𝑢 leads to

−8𝑐
1
𝜆𝑢
3
= 0. (62)

From (62) three cases arise:

(b.1) 𝑐
1
= 0, and 𝜆 ̸= 0,

(b.2) 𝑐
1
̸= 0 and 𝜆 = 0,

(b.3) 𝑐
1
= 0 and 𝜆 = 0.

Subsubcase (b.1) (𝐷(𝑢) = ((1/4)𝑢)4 and 𝐾(𝑢) = 𝛾 + 𝜆𝑢4). In
accordance with this subsubcase and (61), we obtain 𝑐

4
= 0

and hence the infinitesimals are determined as

𝜉 = 0, 𝜏 =

𝑐
3

4𝛾

exp (4𝛾𝑡) + 𝑐
5
,

𝜙 = −

1

4

𝑐
3
𝑢 exp (4𝛾𝑡) .

(63)

The generators associated with this subsubcase are

X
1
=

1

4𝛾

exp (4𝛾𝑡) 𝜕
𝜕𝑡

−

1

4

𝑢 exp (4𝛾𝑡) 𝜕
𝜕𝑢

,

X2 =
𝜕

𝜕𝑡

.

(64)

Table 5: Commutator table of the tumor equation.

[Xi,Xj] X1 X2

X1 0 −4𝛾X1

X2 4𝛾X1 0

Table 6: Commutator table of the tumor equation.

[Xi,Xj] X1 X2 X3

X1 0 0 −4𝛾X1

𝑋
2

0 0 0

𝑋
3

4𝛾X1 0 0

The commutation relation for these generators is given in
Table 5.

Subsubcase (b.2) (𝐷(𝑢) = ((1/4)𝑢)
4 and 𝐾(𝑢) = 𝛾). This

subsubcase with (61) yields to 𝑐
4
= 0 and hence the infin-

itesimals are

𝜉 = 𝑐
1
𝑥, 𝜏 =

𝑐
3

4𝛾

exp (4𝛾𝑡) + 𝑐
5
,

𝜙 =

1

4

𝑢 (2𝑐
1
− 𝑐
3
exp (4𝛾𝑡)) .

(65)

The generators associated with this subsubcase are

X1 =
1

4𝛾

exp (4𝛾𝑡) 𝜕
𝜕𝑡

−

1

4

𝑢 exp (4𝛾𝑡) 𝜕
𝜕𝑢

,

X2 = 𝑥
𝜕

𝜕𝑥

+

1

2

𝑢

𝜕

𝜕𝑢

, X3 =
𝜕

𝜕𝑡

.

(66)

The commutation relation for these generators is given in
Table 6.

Subsubcase (b.3) (𝐷(𝑢) = ((1/4)𝑢)
4 and 𝐾(𝑢) = 𝛾). In ac-

cordance with this subsubcase and (61), we obtain 𝑐
4
= 0 and

hence the infinitesimals are

𝜉 = 0, 𝜏 =

𝑐
3

4𝛾

exp (4𝛾𝑡) + 𝑐
5
,

𝜙 = −

1

4

𝑐
3
𝑢 exp (4𝛾𝑡) .

(67)

The generators corresponding to this subsubcase are

X1 =
1

4𝛾

exp (4𝛾𝑡) 𝜕
𝜕𝑡

−

1

4

𝑢 exp (4𝛾𝑡) 𝜕
𝜕𝑢

,

X2 =
𝜕

𝜕𝑡

.

(68)

Remark 1. Case (III) represents the particular case of (I)
and (II). So by similar manipulation as in the previous cases,
we obtain the same symmetry generators.

4. Some Reduction

In this section, we present solutions of (4) via reductions.
These reductions are obtained by the similarity variables
obtained through symmetry generators.
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Figure 1: Plot of solution (74) with 𝑐
1
= 1, 𝑐
2
= 0.

Case 1 (𝐾(𝑢) and 𝐷(𝑢) are arbitrary). In this case, we have
only one generator; that is, X = 𝜕/𝜕𝑡. Thus, the characteristic
equation corresponding to this generator is

𝑑𝑥

0

=

𝑑𝑡

1

=

𝑑𝑢

0

. (69)

Solving the above equation it is straightforward [11] to find
that it yields the similarity variables 𝑟 = 𝑥 and 𝑤 = 𝑢.
Replacing 𝑢 in (4) in terms of new variables it becomes

𝑟𝐷 (𝑤)𝑤
𝑟𝑟
+ 𝑟𝐷
𝑤
𝑤
2

𝑟
+ 2𝐷 (𝑤)𝑤

𝑟
− 𝑟𝐾 (𝑤)𝑤 = 0. (70)

Case 2 (𝐾(𝑢) = 0 and 𝐷(𝑢) are arbitrary). We consider the
generator X

1
= 𝑥(𝜕/𝜕𝑥) + 2𝑡(𝜕/𝜕𝑡). Thus, the characteristic

equation associated with this generator is
𝑑𝑥

𝑥

=

𝑑𝑡

2𝑡

=

𝑑𝑢

0

. (71)

The similarity variables corresponding to the above equation
become 𝑟 = 𝑥𝑡

−(1/2) and 𝑤 = 𝑢. These new variables reduce
(4) to a ODE of the form

𝑟
2
𝐷(𝑤)𝑤

𝑟𝑟
+ 𝑟
2
𝐷
𝑤
𝑤
2

𝑟
+ 2𝑟𝐷 (𝑤)𝑤

𝑟
+

1

2

𝑟
3
𝑤
𝑟
= 0. (72)

Choosing 𝐷(𝑤) = 1 in the above equation, then the solution
of the resulting equation is

𝑤 (𝑟) = 𝑐
2
+ 𝑐
1
(−

1

𝑟

exp(−𝑟
2

4

) −

1

2

√ΠErf( 𝑟
2

)) . (73)

Recasting the above equation in its original coordinates, the
exact solution of (4) becomes

𝑢 (𝑥, 𝑡) = 𝑐
2
+ 𝑐
1
(−

√𝑡

𝑥

exp(−𝑥
2

4𝑡

) −

1

2

√ΠErf( 𝑥

2√𝑡

)) .

(74)

The graph of this solution is plotted in Figure 1.

Case 3 (𝐾(𝑢) = 𝛾 + 𝜆𝑢1/𝑏 and 𝐷(𝑢) = 𝑎(𝑏𝑢)1/𝑏). We take the
generator

X1 =
𝑏

𝛾

exp(
𝛾

𝑏

𝑡)

𝜕

𝜕𝑡

− 𝑏𝑢 exp(
𝛾

𝑏

𝑡)

𝜕

𝜕𝑢

(75)

Figure 2: Plot of solution (79) with 𝑐
1
= 0, 𝛾 = 𝑐

2
= 1.

and its characteristic equation

𝑑𝑥

0

=

𝛾

𝑏

exp (
−𝛾

𝑏

𝑡) 𝑑𝑡 = exp(
−𝛾

𝑏

𝑡)

𝑑𝑢

−𝑏𝑢

(76)

gives the similarity variables 𝑟 = 𝑥 and 𝑤 = exp(𝛾𝑡)𝑢. In
accordance of these similarities, (4) is transformed to the
ODE in the form

𝑟𝑤
𝑟𝑟
+

𝑟

𝑏

1

𝑤

𝑤
2

𝑟
+ 2𝑤
𝑟
− 𝑟𝜆𝑏
−(1/𝑏)

𝑤 = 0. (77)

Choosing 𝑏 = 𝜆 = 𝛾 = 1 in the above equation, then its
solution becomes

𝑤 (𝑟) =

𝑐
2

√𝑟

√cosh (√2𝑟 + 𝑖𝑐
1
). (78)

Recasting the above equation in its original coordinates, the
exact solution of (4) becomes

𝑢 (𝑥, 𝑡) = exp (−𝑡)
𝑐
2

√𝑥

√cosh (√2𝑥 + 𝑖𝑐
1
). (79)

The graph of this solution is plotted in Figure 2.

Case 4 (𝐾(𝑢) = 𝛾 and 𝐷(𝑢) = 𝑎(𝑏𝑢)
1/𝑏). In this case, we

consider the generator

X1 =
𝑏

𝛾

exp(
𝛾

𝑏

𝑡)

𝜕

𝜕𝑡

− 𝑏𝑢 exp (
𝛾

𝑏

𝑡)

𝜕

𝜕𝑢

. (80)

The characteristic equation corresponding to this generator
is

𝑑𝑥

0

=

𝛾

𝑏

exp(
−𝛾

𝑏

𝑡) 𝑑𝑡 = exp(
−𝛾

𝑏

𝑡)

𝑑𝑢

−𝑏𝑢

; (81)

solving the above characteristic equation gives 𝑟 = 𝑥 with
𝑤 = exp(𝛾𝑡)𝑢. These variables can be used to recast (4) to an
ODE,

𝑟𝑤
𝑟𝑟
+

𝑟

𝑏

1

𝑤

𝑤
2

𝑟
+ 2𝑤
𝑟
= 0. (82)
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Figure 3: Plot of solution (84) with 𝑏 = 1/4, 𝛾 = 𝑐
1
= 𝑐
2
= 1.

Choosing 𝑏 = (1/4) in (82), then its solution becomes

𝑤 (𝑟) = (

−𝑟

5(𝑐
1
− 𝑐
2
𝑟)

)

−1/5

. (83)

Recasting the above equation in its original coordinates, the
exact solution of (4) becomes

𝑢 (𝑥, 𝑡) = exp (−𝛾𝑡) ( −𝑥

5(𝑐
1
− 𝑐
2
𝑥)

)

−1/5

. (84)

The graph of this solution is plotted in Figure 3.
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