
Research Article
Asian Option Pricing with Transaction Costs and Dividends
under the Fractional Brownian Motion Model

Yan Zhang, Di Pan, Sheng-Wu Zhou, and Miao Han

College of Sciences, China University of Mining and Technology, Jiangsu, Xuzhou 221116, China

Correspondence should be addressed to Sheng-Wu Zhou; zswcumt@163.com

Received 25 December 2013; Accepted 12 February 2014; Published 26 March 2014

Academic Editor: Nazim I. Mahmudov

Copyright © 2014 Yan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The pricing problem of geometric average Asian option under fractional Brownian motion is studied in this paper. The partial
differential equation satisfied by the option’s value is presented on the basis of no-arbitrage principle and fractional formula.Then by
solving the partial differential equation, the pricing formula and call-put parity of the geometric average Asian optionwith dividend
payment and transaction costs are obtained. At last, the influences of Hurst index and maturity on option value are discussed by
numerical examples.

1. Introduction

Option pricing theory has been an unprecedented develop-
ment since the classic Black-Scholes option pricing model [1]
was proposed. Asian options are a kind of common strong
path-dependent options, whose value depends on the average
price of the underlying asset during the life of the option.
Fusai and Meucci [2] have discretely studied Asian option
pricing problem under the Levy process. Vecer [3] has got
the unified algorithm of the Asian option value based on the
basic theory of stochastic analysis. Večeř and Xu [4] extended
the method of removing path correlation to the case in a
semimartingale model and obtained the partial differential
equation of the option value under the standard Brownian
motion.

However, the empirical analysis shows that there is a long-
term correlation between the underlying asset prices, so that
the geometric Brownian motion is not considered as an ideal
tool to describe the process of asset price. Since fractional
Brownian motion has the properties of self-similarity, thick
tail, and long-term correlation, that fractional Brownian
motion has become a good tool to depict the process of
underlying asset price. According to the standard Brownian
motion, Mandelbrot and Van Ness [5] obtained a stochastic
integral form of fractional Brownian motion. Based on the
wick product, Duncan et al. [6] introduced fractional Itô
integral. Elliott and van der Hoek and others [7] have studied

fractional Brownian motion with Hurst parameter belonging
to the interval (1/2, 1), and they obtained fractional Girsanov
theorem and fractional Itô formula by using wick product.
Because an Itô formula for generalized functionals of a
fractional Brownian motion with arbitrary Hurst parameter
[8] was obtained by Christian Bender, it brought great
convenience to option pricing.

In the reality of the securities market, investors were
faced with considerable and nonignorable transaction costs
and Leland [8] firstly examined the problems of option
pricing and hedging with transaction costs. Due to infinite
variation of geometric Brownian motion, transaction costs
would become infinite in the continuous time completely
hedging strategy. So Leland suggested that no-arbitrage
assumption is replaced by Delta hedging strategy under
the condition of discrete time occasions and transaction
costs. The model was then extended by Hoggard et al. and
others [9]. Guasoni [10] studied the standard option with
transaction costs under the fractional Brownian motion, but
he did not obtain option pricing formula. Then Liu and
Chang and others [11] extended the option pricing with
transaction costs under fractional Brownian motion and
provide an approximate solution of the nonlinear Hoggard-
Whalley-Wilmott equation. Wang et al. and others [12–16]
have systematically discussed the European option pricing
problems with transaction costs and long-range dependence.
But these studies are usually aimed at European standard
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options. To the authors’ knowledge, there does not exist
systematic research about Asian options under time-varying
fractional Brownian motion.

In this paper, Asian option pricing problemswith transac-
tion costs and dividends under fractional Brownian motion
are studied. Firstly, the partial differential equation satisfied
by geometric average Asian option value is obtained on the
basis of no-arbitrage principle. Then the analytic expressions
of option value and parity formula are presented by solving
the partial differential equation. At last, the influences of
Hurst exponent and maturity on option value are discussed
by numerical examples.

2. Geometric Average Asian Options Pricing
Model under Fractional Brownian Motion

Definition 1 (see [17]). Let (Ω, 𝐹, 𝑃) be a complete probability
space on which a standard fractional Brownian motion with
Hurst exponent 𝐻 (0 < 𝐻 < 1) is continuous, centered
Gaussian processes {𝐵

𝐻
(𝑡), 𝑡 ≥ 0} with covariance functions

Cov(𝐵

𝐻
(𝑡), 𝐵

𝐻
(𝑠)) = (1/2)(|𝑡|

2𝐻
+ |𝑠|

2𝐻
− |𝑡 − 𝑠|

2𝐻
), 𝑠, 𝑡 > 0.

In 2003, Bender has obtained an Itô formula for gen-
eralized functionals of a fractional Brownian motion with
arbitrary Hurst parameter [18]. The following lemma is
obtained by using the integral Itô formula.

Lemma 2. Suppose that stochastic process 𝑆

𝑡
satisfied the

following equation:

𝑑𝑆

𝑡
= 𝜇

𝑡
𝑆

𝑡
𝑑𝑡 + 𝜎

𝑡
𝑆

𝑡
𝑑𝐵

𝐻 (𝑡) , (1)

where 𝜇

𝑡
and 𝜎

𝑡
are, respectively, drift coefficient and diffusion

coefficient. Suppose that stochastic process 𝑓 = 𝑓(𝑡, 𝐽

𝑡
, 𝑆

𝑡
);

then, for any 𝑡 ∈ [0, 𝑇], one has

𝑑𝑓 = (

𝜕𝑓

𝜕𝑡

+ 𝜇

𝑡
𝑆

𝑡

𝜕𝑓

𝜕𝑆

𝑡

+

𝜕𝑓

𝜕𝐽

𝑡

𝑑𝐽

𝑡

𝑑𝑡

+ 𝐻(𝜎

𝑡
𝑆

𝑡
)

2
𝑡

2𝐻−1 𝜕
2
𝑓

𝜕𝑆

2

𝑡

) 𝑑𝑡

+ 𝜎

𝑡
𝑆

𝑡

𝜕𝑓

𝜕𝑆

𝑡

𝑑𝐵

𝐻 (𝑡) ,

(2)

where 𝐽

𝑡
= 𝑒

(1/𝑡) ∫
𝑡

0
ln 𝑆
𝜏
𝑑𝜏 is geometric average of 𝑆

𝑡
between the

time period of [0, 𝑡].

In this paper, the following basic assumptions were
needed.

(i) Underlying asset price, 𝑆

𝑡
, satisfied the stochastic

differential equations

𝑑𝑆

𝑡
= (𝜇

𝑡
− 𝑞

𝑡
) 𝑆

𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝐵

𝐻 (𝑡) , (3)

where 𝜇

𝑡
is the expected return, 𝑞

𝑡
denotes dividend

yield,𝜎 is volatility, and𝐵

𝐻
(𝑡) is a fractional Brownian

motion.
(ii) Risk-free interest rate 𝑟

𝑡
is a certain function of time

𝑡.

(iii) Transaction costs are proportional to the value of
the transaction in the underlying. Let 𝑘 denote the
transaction cost per unit dollar of transaction, where
𝑘 is a constant. To buy or sell ]

𝑡
shares of the

underlying asset need pay proportional transaction
costs (𝑘|]

𝑡
|𝑆

𝑡
); note that ]

𝑡
> 0 denotes buying the

underlying asset and ]
𝑡

< 0 denotes selling.
(iv) The expected return of the hedge portfolio equals the

risk-free rate 𝑟

𝑡
.

Let 𝑉 = 𝑉(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) denote the value of the geometric

average Asian call at time 𝑡, where 𝐽

𝑡
= 𝑒

(1/𝑡) ∫
𝑡

0
ln 𝑆
𝜏
𝑑𝜏 is

geometric average of underlying asset in [0, 𝑡]. Construct a
portfolioΠ: long one position of the geometric average Asian
call, and sell Δ shares of the underlying asset. Then the value
of the portfolio at time 𝑡 is

Π

𝑡
= 𝑉

𝑡
− Δ

𝑡
𝑆

𝑡
. (4)

After the time interval 𝛿𝑡, the change in the value of the
portfolio Π is as follows:

𝛿Π

𝑡
= 𝛿𝑉

𝑡
− Δ

𝑡
𝛿𝑆

𝑡
− Δ

𝑡
𝑞

𝑡
𝑆

𝑡
𝛿𝑡 − 𝑘

󵄨

󵄨

󵄨

󵄨

]
𝑡

󵄨

󵄨

󵄨

󵄨

𝑆

𝑡+𝛿𝑡

= (

𝜕𝑉

𝜕𝑡

+ 𝐻𝜎

2
𝑆

2

𝑡
𝑡

2𝐻−1 𝜕
2
𝑉

𝜕𝑆

2

𝑡

− Δ

𝑡
𝑞

𝑡
𝑆

𝑡
) 𝛿𝑡

+ (

𝜕𝑉

𝜕𝑆

𝑡

− Δ

𝑡
) 𝛿𝑆

𝑡
+

𝜕𝑉

𝜕𝐽

𝑡

𝛿𝐽

𝑡
− 𝑘

󵄨

󵄨

󵄨

󵄨

]
𝑡

󵄨

󵄨

󵄨

󵄨

𝑆

𝑡+𝛿𝑡
,

(5)

where 𝛿𝑆

𝑡
denotes the change in the underlying asset price

and ]
𝑡

= Δ

𝑡+𝛿𝑡
−Δ

𝑡
is the change of the underlying asset share

in [𝑡, 𝑡 + 𝛿𝑡]. Choose Δ

𝑡
= 𝜕𝑉/𝜕𝑆

𝑡
; then, (5) becomes

𝛿Π

𝑡
= (

𝜕𝑉

𝜕𝑡

+ 𝐻𝜎

2
𝑆

2

𝑡
𝑡

2𝐻−1 𝜕
2
𝑉

𝜕𝑆

2

𝑡

−

𝜕𝑉

𝜕𝑆

𝑡

𝑞

𝑡
𝑆

𝑡
) 𝛿𝑡

+

𝜕𝑉

𝜕𝐽

𝑡

𝛿𝐽

𝑡
− 𝑘

󵄨

󵄨

󵄨

󵄨

]
𝑡

󵄨

󵄨

󵄨

󵄨

𝑆

𝑡+𝛿𝑡
,

(6)

where

]
𝑡

= Δ

𝑡+𝛿𝑡
− Δ

𝑡
=

𝜕𝑉

𝜕𝑆

𝑡+𝛿𝑡

−

𝜕𝑉

𝜕𝑆

𝑡

=

𝜕

2
𝑉

𝜕𝑆

2

𝑡

𝛿𝑆

𝑡
+

𝜕

2
𝑉

𝜕𝑆

𝑡
𝜕𝐽

𝑡

𝛿𝐽

𝑡
+ 𝑂 (𝛿𝑡)

=

𝜕

2
𝑉

𝜕𝑆

2

𝑡

𝜎𝑆

𝑡
𝛿𝐵

𝐻 (𝑡) + 𝑂 (𝛿𝑡) .

(7)

Themathematical expectation of transaction costs is obtained
in the following form:

𝐸 (𝑘

󵄨

󵄨

󵄨

󵄨

]
𝑡

󵄨

󵄨

󵄨

󵄨

𝑆

𝑡+𝛿𝑡
) = 𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

2
𝑉

𝜕𝑆

2

𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜎𝑆

𝑡
𝐸 (

󵄨

󵄨

󵄨

󵄨

𝛿𝐵

𝐻 (𝑡)

󵄨

󵄨

󵄨

󵄨

𝑆

𝑡+𝛿𝑑
) + 𝑂 (𝛿𝑡)

=
√

2

𝜋

𝑘𝜎𝑆

2

𝑡
(𝛿𝑡)

𝐻

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

2
𝑉

𝜕𝑆

2

𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝑂 (𝛿𝑡) .

(8)
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By assumption (iv), the following relation holds:

𝐸 (𝛿Π

𝑡
) = 𝑟

𝑡
Π

𝑡
𝛿𝑡. (9)

By (6) and (8), one has

𝐸 (𝛿Π

𝑡
) = (

𝜕𝑉

𝜕𝑡

+ 𝐻𝜎

2
𝑆

2

𝑡
𝑡

2𝐻−1 𝜕
2
𝑉

𝜕𝑆

2

𝑡

−

𝜕𝑉

𝜕𝑆

𝑡

𝑞

𝑡
𝑆

𝑡
) 𝛿𝑡

+

𝜕𝑉

𝜕𝐽

𝑡

𝛿𝐽

𝑡
−

√

2

𝜋

𝑘𝜎𝑆

2

𝑡
(𝛿𝑡)

𝐻

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

2
𝑉

𝜕𝑆

2

𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝑂 (𝛿𝑡) .

(10)

Substituting (10) into (9), the following partial differential
equation is obtained:

𝜕𝑉

𝜕𝑡

+ 𝐻𝜎

2
𝑆

2

𝑡
𝑡

2𝐻−1 𝜕
2
𝑉

𝜕𝑆

2

𝑡

+ (𝑟

𝑡
− 𝑞

𝑡
) 𝑆

𝑡

𝜕𝑉

𝜕𝑆

𝑡

+

𝜕𝑉

𝜕𝐽

𝑡

𝑑𝐽

𝑡

𝑑𝑡

−
√

2

𝜋

𝑘𝜎𝑆

2

𝑡
(𝛿𝑡)

𝐻−1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

2
𝑉

𝜕𝑆

2

𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

− 𝑟

𝑡
𝑉 = 0.

(11)

Substituting 𝐽

𝑡
= 𝑒

(1/𝑡) ∫
𝑡

0
ln 𝑆
𝜏
𝑑𝜏 and 𝑑𝐽

𝑡
/𝑑𝑡 = 𝐽

𝑡
ln(𝑆

𝑡
/𝐽

𝑡
)/𝑡 into

(11), the following equation is obtained:

𝜕𝑉

𝜕𝑡

+ 𝐻𝜎

2
𝑆

2

𝑡
𝑡

2𝐻−1 𝜕
2
𝑉

𝜕𝑆

2

𝑡

+ (𝑟

𝑡
− 𝑞

𝑡
) 𝑆

𝑡

𝜕𝑉

𝜕𝑆

𝑡

+

𝜕𝑉

𝜕𝐽

𝑡

𝐽

𝑡
ln (𝑆

𝑡
/𝐽

𝑡
)

𝑡

−
√

2

𝜋

𝑘𝜎𝑆

2

𝑡
(𝛿𝑡)

𝐻−1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

2
𝑉

𝜕𝑆

2

𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

− 𝑟

𝑡
𝑉 = 0,

(12)

denoting

𝜎̃

2
= 2𝜎

2
(𝐻𝑡

2𝐻−1
−

√

2

𝜋

𝑘

𝜎

(𝛿𝑡)

𝐻−1 sign (𝑉

𝑆𝑆
)) . (13)

Substituting (13) into (12), the following result is obtained.

Theorem3. Suppose that the underlying asset price 𝑆

𝑡
satisfied

(3); then, the value of the geometric average Asian call at time
𝑡 (0 ≤ 𝑡 ≤ 𝑇), 𝑉(𝑡, 𝐽

𝑡
, 𝑆

𝑡
), satisfies the following mathematical

model:

𝜕𝑉

𝜕𝑡

+

1

2

𝜎̃

2
𝑆

2

𝑡

𝜕

2
𝑉

𝜕𝑆

2

𝑡

+ (𝑟

𝑡
− 𝑞

𝑡
) 𝑆

𝑡

𝜕𝑉

𝜕𝑆

𝑡

+

𝜕𝑉

𝜕𝐽

𝑡

𝐽

𝑡
ln (𝑆

𝑡
/𝐽

𝑡
)

𝑡

− 𝑟

𝑡
𝑉 = 0.

(14)

Remark 4. Theorem 3 is obtained for the long position of the
option. If the short position of option is considered, similarly,
we can also get the mathematical model (14) and only the
corresponding modified volatility is given by the following
form:

𝜎̃

2
= 2𝜎

2
(𝐻𝑡

2𝐻−1
+

√

2

𝜋

𝑘

𝜎

(𝛿𝑡)

𝐻−1 sign (𝑉

𝑆𝑆
)) . (15)

Let Le(𝐻) =
√

2/𝜋(𝑘/𝜎)(𝛿𝑡)

𝐻−1, which is called fractional
Leland number [8].

Remark 5. For the long position of a single European Asian
option, its final payoff is (𝐽

𝑇
− 𝐾)

+ or (𝐾 − 𝐽

𝑇
)

+ and they
are both convex function, so 𝑉

𝐽𝐽
> 0, and noticing 𝐽

𝑡
=

𝑒

(1/𝑡) ∫
𝑡

0
ln 𝑆
𝜏
𝑑𝜏, thus 𝑉

𝑆𝑆
> 0. However, for the short position

of a single European Asian option, its final payoff at maturity
is −(𝐽

𝑇
− 𝐾)

+ or −(𝐾 − 𝐽

𝑇
)

+ and they are both concave
function, so that 𝑉

𝐽𝐽
< 0, 𝑉

𝑆𝑆
< 0. So for a single European

Asian option, (13) and (15) can be represented as

𝜎̃

2
= 2𝜎

2
(𝐻𝑡

2𝐻−1
−

√

2

𝜋

𝑘

𝜎

(𝛿𝑡)

𝐻−1
) . (16)

3. Option Pricing Formula

Theorem6. Suppose that the underlying asset price 𝑆

𝑡
satisfied

(3); then, the value, 𝑉(𝑡, 𝐽

𝑡
, 𝑆

𝑡
), of the geometric average Asian

call with strike price 𝐾, maturity 𝑇, and transaction fee rate 𝑘

at time 𝑡 is

𝑉 (𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = (𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁 (𝑑

1
)

− 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

𝑁 (𝑑

2
) ,

(17)

where

𝑑

1
=

ln [(𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

/𝐾] + 𝑟

∗
(𝑇 − 𝑡) + 𝜎

∗2
(𝑇

2𝐻
− 𝑡

2𝐻
)

𝜎

∗
√

𝑇

2𝐻
− 𝑡

2𝐻
,

𝑑

2
= 𝑑

1
− 𝜎

∗
√

𝑇

2𝐻
− 𝑡

2𝐻
,

𝑟

∗
=

∫

𝑇

𝑡
(𝑟

𝜃
− 𝑞

𝜃
) ((𝑇 − 𝜃) /𝑇) 𝑑𝜃

𝑇 − 𝑡

−

𝜎

2
(𝑇

2𝐻
− 𝑡

2𝐻
)

2 (𝑇 − 𝑡)

+

𝐻𝜎

2
(𝑇

2𝐻+1
− 𝑡

2𝐻+1
)

𝑇 (2𝐻 + 1) (𝑇 − 𝑡)

+

1

2

Le (𝐻) 𝜎

2𝑇 − 𝑡

𝑇

,

𝜎

∗
= 𝜎 × (1 −

4𝐻 (𝑇

2𝐻+1
− 𝑡

2𝐻+1
)

𝑇 (2𝐻 + 1) (𝑇

2𝐻
− 𝑡

2𝐻
)

+

𝐻 (𝑇

2𝐻+2
− 𝑡

2𝐻+2
)

𝑇

2
(𝐻 + 1) (𝑇

2𝐻
− 𝑡

2𝐻
)

−2 Le (𝐻)

(𝑇 − 𝑡)

3

3𝑇

2
(𝑇

2𝐻
− 𝑡

2𝐻
)

)

1/2

,

𝑁 (𝑥) = ∫

𝑥

−∞

1

√
2𝜋

𝑒

−𝑡
2
/2

𝑑𝑡.

(18)
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Proof. By Theorem 3, the value, 𝑉(𝑡, 𝐽

𝑡
, 𝑆

𝑡
), of the geometric

average Asian call satisfies the following model:

𝜕𝑉

𝜕𝑡

+

1

2

𝜎̃

2
𝑆

2

𝑡

𝜕

2
𝑉

𝜕𝑆

2

𝑡

+ (𝑟

𝑡
− 𝑞

𝑡
) 𝑆

𝑡

𝜕𝑉

𝜕𝑆

𝑡

+

𝜕𝑉

𝜕𝐽

𝑡

𝐽

𝑡
ln (𝑆

𝑡
/𝐽

𝑡
)

𝑡

− 𝑟

𝑡
𝑉 = 0,

𝑉 (𝑇, 𝐽

𝑇
, 𝑆

𝑇
) = (𝐽

𝑇
− 𝐾)

+
.

(19)

Let 𝜉

𝑡
= (1/𝑇)[𝑡 ln 𝐽

𝑡
+ (𝑇 − 𝑡) ln 𝑆

𝑡
], 𝑉(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = 𝑈(𝑡, 𝜉

𝑡
);

then

𝜕𝑉

𝜕𝑡

=

ln (𝐽

𝑡
/𝑆

𝑡
)

𝑇

𝜕𝑈

𝜕𝜉

𝑡

+

𝜕𝑈

𝜕𝑡

,

𝜕𝑉

𝜕𝑆

𝑡

=

𝑇 − 𝑡

𝑇𝑆

𝑡

𝜕𝑈

𝜕𝜉

𝑡

,

𝜕

2
𝑉

𝜕𝑆

2

𝑡

= (

𝑇 − 𝑡

𝑇𝑆

𝑡

)

2
𝜕

2
𝑈

𝜕𝜉

2

𝑡

−

𝑇 − 𝑡

𝑇𝑆

2

𝑡

𝜕𝑈

𝜕𝜉

𝑡

,

𝜕𝑉

𝜕𝐽

𝑡

=

𝑡

𝑇𝐽

𝑡

𝜕𝑈

𝜕𝜉

𝑡

.

(20)

Combined with the boundary conditions of the call option,
𝑉(𝑇, 𝐽

𝑇
, 𝑆

𝑇
) = (𝐽

𝑇
− 𝐾)

+, the model (19) can be converted to

𝜕𝑈

𝜕𝑡

+ (𝑟

𝑡
− 𝑞

𝑡
−

𝜎̃

2

2

)

𝑇 − 𝑡

𝑇

𝜕𝑈

𝜕𝜉

𝑡

+

𝜎̃

2

2

(

𝑇 − 𝑡

𝑇

)

2
𝜕

2
𝑈

𝜕𝜉

2

𝑡

− 𝑟

𝑡
𝑈 = 0,

𝑈 (𝜉

𝑇
, 𝑇) = (𝑒

𝜉
𝑇

− 𝐾)

+

.

(21)

Let 𝜏 = 𝛾(𝑡), 𝜂

𝜏
= 𝜉

𝑡
+ 𝛼(𝑡), 𝑊(𝜏, 𝜂

𝜏
) = 𝑈(𝑡, 𝜉

𝑡
)𝑒

𝛽(𝑡) which
satisfied the conditions

𝛼 (𝑇) = 𝛽 (𝑇) = 𝛾 (𝑇) = 0, (22)

and then we have

𝜕𝑈

𝜕𝑡

= 𝑒

−𝛽(𝑡)
(

𝜕𝑊

𝜕𝜏

𝛾

󸀠
(𝑡) − 𝛽

󸀠
(𝑡) 𝑊 +

𝜕𝑊

𝜕𝜂

𝜏

𝛼

󸀠
(𝑡)) ,

𝜕𝑈

𝜕𝜉

𝑡

= 𝑒

−𝛽(𝑡) 𝜕𝑊

𝜕𝜂

𝜏

,

𝜕

2
𝑈

𝜕𝜉

2

𝑡

= 𝑒

−𝛽(𝑡) 𝜕
2
𝑊

𝜕𝜂

2

𝜏

.

(23)

Substituting (23) into (21), we can get

𝛾

󸀠
(𝑡)

𝜕𝑊

𝜕𝜏

+

𝜎̃

2

2

(

𝑇 − 𝑡

𝑇

)

2
𝜕

2
𝑊

𝜕𝜂

2

𝜏

+ [(𝑟

𝑡
− 𝑞

𝑡
−

𝜎̃

2

2

)

𝑇 − 𝑡

𝑇

+ 𝛼

󸀠
(𝑡)]

𝜕𝑊

𝜕𝜂

𝜏

− (𝑟

𝑡
+ 𝛽

󸀠
(𝑡)) 𝑊 = 0.

(24)

Set

(𝑟

𝑡
− 𝑞

𝑡
−

𝜎̃

2

2

)

𝑇 − 𝑡

𝑇

+ 𝛼

󸀠
(𝑡) = 0, 𝑟

𝑡
+ 𝛽

󸀠
(𝑡) = 0,

𝛾

󸀠
(𝑡) = −

𝜎̃

2

2

(

𝑇 − 𝑡

𝑇

)

2

.

(25)

Combining with the terminal conditions 𝛼(𝑇) = 𝛽(𝑇) =

𝛾(𝑇) = 0, we have

𝛼 (𝑡) = ∫

𝑇

𝑡

(𝑟

𝜃
− 𝑞

𝜃
)

𝑇 − 𝜃

𝑇

𝑑𝜃 − ∫

𝑇

𝑡

1

2

𝜎̃

2
(

𝑇 − 𝜃

𝑇

) 𝑑𝜃

= 𝑟 ∗ (𝑇 − 𝑡) ,

𝛽 (𝑡) = ∫

𝑇

𝑡

𝑟

𝜃
𝑑𝜃,

𝛾 (𝑡) = ∫

𝑇

𝑡

1

2

𝜎̃

2
(

𝑇 − 𝜃

𝑇

)

2

𝑑𝜃 =

𝜎

∗2

2

(𝑇

2𝐻
− 𝑡

2𝐻
) ,

(26)

where

𝑟

∗
=

∫

𝑇

𝑡

(𝑟

𝜃
− 𝑞

𝜃
) ((𝑇 − 𝜃) /𝑇) 𝑑𝜃

𝑇 − 𝑡

−

𝜎

2
(𝑇

2𝐻
− 𝑡

2𝐻
)

2 (𝑇 − 𝑡)

+

𝐻𝜎

2
(𝑇

2𝐻+1
− 𝑡

2𝐻+1
)

𝑇 (2𝐻 + 1) (𝑇 − 𝑡)

+

1

2

Le (𝐻) 𝜎

2𝑇 − 𝑡

𝑇

,

𝜎

∗
= 𝜎 × (1 −

4𝐻 (𝑇

2𝐻+1
− 𝑡

2𝐻+1
)

𝑇 (2𝐻 + 1) (𝑇

2𝐻
− 𝑡

2𝐻
)

+

𝐻 (𝑇

2𝐻+2
− 𝑡

2𝐻+2
)

𝑇

2
(𝐻 + 1) (𝑇

2𝐻
− 𝑡

2𝐻
)

−2Le (𝐻)

(𝑇 − 𝑡)

3

3𝑇

2
(𝑇

2𝐻
− 𝑡

2𝐻
)

)

1/2

.

(27)

Thus themodel (21) is converted into the classic heat conduc-
tion equation

𝜕𝑊

𝜕𝜏

=

𝜕

2
𝑊

𝜕𝜂

2

𝜏

,

𝑊 (𝜂

0
, 0) = (𝑒

𝜂
0

− 𝐾)

+
.

(28)

Its solution is

𝑊 (𝜂

𝜏
, 𝜏) =

1

2√𝜋𝜏

∫

+∞

−∞

(𝑒

𝑦
− 𝐾)

+
𝑒

−(𝑦−𝜂
𝜏
)
2
/4𝜏

𝑑𝑦

=

1

2√𝜋𝜏

∫

+∞

ln𝐾
(𝑒

𝑦
− 𝐾) 𝑒

−(𝑦−𝜂
𝜏
)
2
/4𝜏

𝑑𝑦

= 𝑒

𝜂
𝜏
+𝜏

𝑁 (

2𝜏 + 𝜂

𝜏
− ln𝐾

√
2𝜏

) − 𝐾𝑁 (

𝜂

𝜏
− ln𝐾

√
2𝜏

) .

(29)

After variable reduction, we have

𝑊 (𝜂

𝜏
, 𝜏) = (𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

𝑟
∗
(𝑇−𝑡)+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁 (𝑑

1
)

− 𝐾𝑁 (𝑑

2
) ,

(30)
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where

2𝜏 + 𝜂

𝜏
− ln𝐾

√
2𝜏

= (ln[

[

(𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝐾

]

]

+ 𝑟

∗
(𝑇 − 𝑡)

+ 𝜎

∗2
(𝑇

2𝐻
− 𝑡

2𝐻
) )

× (𝜎

∗
(𝑇

2𝐻
− 𝑡

2𝐻
)

1/2

)

−1

≜ 𝑑

1
,

𝜂

𝜏
− ln𝐾

√
2𝜏

=

ln [(𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

/𝐾] + 𝑟

∗
(𝑇 − 𝑡)

𝜎

∗
√

𝑇

2𝐻
− 𝑡

2𝐻

= 𝑑

1
− 𝜎

∗
√

𝑇

2𝐻
− 𝑡

2𝐻
≜ 𝑑

2
.

(31)

So the value of geometric average Asian call option at time 𝑡

is obtained

𝑉 (𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = 𝑈 (𝜉

𝑡
, 𝑡) = 𝑊 (𝜂

𝜏
, 𝜏) 𝑒

−𝛽(𝑡)

= (𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁 (𝑑

1
)

− 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

𝑁 (𝑑

2
) .

(32)

Theorem 7. Suppose the underlying asset price 𝑆

𝑡
satisfies

(3); then the relationship between 𝑉

𝐶
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
), the value of

geometric average Asian call option, and 𝑉

𝑃
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
), the value

of put option with strike price 𝐾, maturity 𝑇, and transaction
fee rate 𝑘 at time 𝑡, is

𝑉

𝐶
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) − 𝑉

𝑃
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
)

= 𝑒

𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝐽

𝑡/𝑇

𝑡
𝑆

(𝑇−𝑡)/𝑇

𝑡

− 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

,

(33)

where 𝑟

∗
, 𝜎

∗ are the same as above.

Proof. Let

𝑊 (𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = 𝑉

𝐶
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) − 𝑉

𝑃
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) . (34)

Then𝑊 is suitable for the following terminal question in {0 ≤

𝑆 < ∞, 0 ≤ 𝐽 < ∞, 0 ≤ 𝑡 ≤ 𝑇}:

𝜕𝑊

𝜕𝑡

+ (𝑟

𝑡
− 𝑞

𝑡
) 𝑆

𝑡

𝜕𝑊

𝜕𝑆

𝑡

+

𝜎̃

2

2

𝑆

2

𝑡

𝜕

2
𝑊

𝜕𝑆

2

𝑡

+

𝜕𝑊

𝜕𝐽

𝑡

𝐽

𝑡

ln 𝑆

𝑡
− ln 𝐽

𝑡

𝑡

− 𝑟

𝑡
𝑊 = 0,

𝑊|𝑡=𝑇
= (𝐽

𝑇
− 𝐾)

+
− (𝐾 − 𝐽

𝑇
)

+
= 𝐽

𝑇
− 𝐾.

(35)

We let 𝜉

𝑡
= (1/𝑇)[𝑡 ln 𝐽

𝑡
+ (𝑇 − 𝑡) ln 𝑆

𝑡
]; then 𝑊 is suitable for

the following in {𝜉

𝑡
∈ 𝑅, 0 ≤ 𝑡 ≤ 𝑇}:

𝜕𝑊

𝜕𝑡

+ (𝑟

𝑡
− 𝑞

𝑡
−

𝜎̃

2

2

)

𝑇 − 𝑡

𝑇

𝜕𝑊

𝜕𝜉

𝑡

+

𝜎̃

2

2

(

𝑇 − 𝑡

𝑇

)

2
𝜕

2
𝑊

𝜕𝜉

2

𝑡

− 𝑟𝑊 = 0,

𝑊|𝑡=𝑇
= 𝑒

𝜉
𝑇

− 𝐾.

(36)

Set the form solution of problem of (36) is

𝑊 (𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = 𝑎 (𝑡) 𝑒

𝜉
𝑡
+ 𝑏 (𝑡) .

(37)

Substituting (37) into (36) and comparing coefficients, one
has

(𝑟

𝑡
− 𝑞

𝑡
−

𝜎̃

2

2

)

𝑇 − 𝑡

𝑇

𝑎 (𝑡) +

𝜎̃

2

2

(

𝑇 − 𝑡

𝑇

)

2

𝑎 (𝑡)

+ 𝑎

󸀠
(𝑡) − 𝑟

𝑡
𝑎 (𝑡) = 0,

𝑏

󸀠
(𝑡) − 𝑟

𝑡
𝑏 (𝑡) = 0.

(38)

Taking 𝑎(𝑇) = 1, 𝑏(𝑇) = −𝐾, the solutions of (38) are

𝑎 (𝑡) = 𝑒

𝛼(𝑡)−∫
𝑇

𝑡
𝑟
𝜏
𝑑𝜏+𝛾(𝑡)

= 𝑒

𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜏
𝑑𝜏+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
,

𝑏 (𝑡) = − 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑
𝜃
.

(39)

Thus

𝑊 = 𝑎 (𝑡) 𝑒

𝜉
𝑡
+ 𝑏 (𝑡)

= 𝑒

𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝐽

𝑡/𝑇
𝑆

(𝑇−𝑡)/𝑇

− 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

.

(40)

The parity formula between call option and put option is

𝑉

𝐶
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) − 𝑉

𝑃
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
)

= 𝑒

𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝐽

𝑡/𝑇

𝑡
𝑆

(𝑇−𝑡)/𝑇

𝑡

− 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

.

(41)

Pricing formula of the geometric average Asian put
options can be obtained byTheorems 6 and 7.

Theorem 8. Suppose 𝑆

𝑡
satisfies (3); then the value, 𝑉

𝑃
(𝑡, 𝐽

𝑡
,

𝑆

𝑡
), of the geometric average Asian put option with strike price

𝐾, maturity 𝑇, and transaction fee rate 𝑘 at time 𝑡 is

𝑉

𝑃
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = −(𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)

× 𝑁 (−𝑑

1
) + 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

𝑁 (−𝑑

2
) .

(42)
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In particular, if 𝐻 = 1/2, 𝑘 = 0, 𝑟, 𝑞, 𝜎 are all constant and
price formula (17) is reduced to the following formula [19]:

𝑉 (𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = (𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

(𝑟
∗
+𝜎
∗2
/2−𝑟)(𝑇−𝑡)

𝑁 (𝑑

1
)

− 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁 (𝑑

2
) ,

(43)

where

𝑑

1
=

ln [(𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

/𝐾] + (𝑟

∗
+ 𝜎

∗2
) (𝑇 − 𝑡)

𝜎

∗
√

𝑇 − 𝑡

,

𝑑

2
= 𝑑

1
− 𝜎

∗
√

𝑇 − 𝑡,

𝑟

∗
= (𝑟 − 𝑞 −

𝜎

2

2

)

𝑇 − 𝑡

2𝑇

, 𝜎

∗
= 𝜎

(𝑇 − 𝑡)

√
3𝑇

.

(44)

The following results are consequences of the above theorems.

Corollary 9. If risk-free interest rate 𝑟, dividend yield 𝑞, and
volatility𝜎 are all constant, then the price formulas of geometric
average Asian call and put option with strike price 𝐾, maturity
𝑇, and transaction fee rate 𝑘 under fractional Brownianmotion
at time 𝑡 are, respectively,

𝑉

𝐶
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = (𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

(𝑟
∗
−𝑟)(𝑇−𝑡)+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁 (𝑑

1
)

− 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁 (𝑑

2
) ,

𝑉

𝑃
(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = − (𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

(𝑟
∗
−𝑟)(𝑇−𝑡)+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)

× 𝑁 (−𝑑

1
) + 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁 (−𝑑

2
) ,

(45)

where

𝑟

∗
=

(𝑟 − 𝑞)

2𝑇

(𝑇 − 𝑡) −

𝜎

2
(𝑇

2𝐻
− 𝑡

2𝐻
)

2 (𝑇 − 𝑡)

+

𝐻𝜎

2
(𝑇

2𝐻+1
− 𝑡

2𝐻+1
)

𝑇 (2𝐻 + 1) (𝑇 − 𝑡)

+

1

2

𝐿𝑒 (𝐻) 𝜎

2𝑇 − 𝑡

𝑇

.

(46)

The rest of symbols are the same as Theorem 6.

Noticing that if 𝐻 = 1/2, 𝐵

𝐻
(𝑡) is standard Brownian

motion𝐵(𝑡), the corresponding underlying asset price follows
geometric Brownian motion, one has the following results.

Corollary 10. If risk-free interest rate 𝑟

𝑡
and dividend yield

𝑞

𝑡
are the functions of time 𝑡 and volatility 𝜎 is constant,

then the price formula 𝑉(𝑡, 𝐽

𝑡
, 𝑆

𝑡
) with respect to geometric

average Asian call option with strike price 𝐾, maturity 𝑇, and
transaction fee rate 𝑘 under standard Brownianmotion at time
𝑡 is

𝑉 (𝑡, 𝐽

𝑡
, 𝑆

𝑡
) = (𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

𝑒

(𝑟
∗
+𝜎
∗2
/2)(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃

𝑁 (𝑑

1
)

− 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

𝑁 (𝑑

2
) ,

(47)

where

𝑑

1
=

ln [(𝐽

𝑡

𝑡
𝑆

𝑇−𝑡

𝑡
)

1/𝑇

/𝐾] + (𝑟

∗
+ 𝜎

∗2
) (𝑇 − 𝑡)

𝜎

∗
√

𝑇 − 𝑡

,

𝑑

2
= 𝑑

1
− 𝜎

∗
√

𝑇 − 𝑡,

𝐿𝑒 (

1

2

) =
√

2

𝜋

𝑘

𝜎

(𝛿𝑡)

−1/2
,

𝑟

∗
=

∫

𝑇

𝑡

(𝑟

𝜃
− 𝑞

𝜃
) ((𝑇 − 𝜃) /𝑇) 𝑑𝜃

𝑇 − 𝑡

−

𝜎

2
(𝑇 − 𝑡)

4𝑇

+

1

2

𝐿𝑒 (

1

2

) 𝜎

2𝑇 − 𝑡

𝑇

,

𝜎

∗
= 𝜎

(𝑇 − 𝑡)

√
3𝑇

√
1 − 2𝐿𝑒 (

1

2

).

(48)

4. Numerical Example

Wediscuss the impact ofHurst index and transaction rates on
the Asian option value by numerical examples. Assume that
the parameter selection is as follows:

𝑆

𝑡
= 80, 𝑡 = 0, 𝑇 = 1,

𝑟 = 0.05, 𝑞 = 0.01, 𝜎 = 0.4,

𝐾 = 80, 𝑘 = 0.003, 𝛿𝑡 = 0.02.

(49)

We calculate the value of the option by using the price
formula of (45). The relationships between the value of call
option or put option and the underlying asset price with
differentHurst index are given in Figures 1 and 2, respectively.
From Figures 1 and 2, the relationship between Hurst index
and Asian option value is negative. Furthermore, the impact
on the call option value decreases with the increase of the
underlying asset price, but the impact on the put option value
decreases with the decrease of the underlying asset price.

By Figures 3 and 4, we can get the change trend of
the value of Asian call and put options with the change of
maturity and Hurst index at the same time. The option value
increases with the maturity increases, but the value of the call
option increases faster than the value of a put option increase.

5. Conclusions

Asian options are popular financial derivatives that play an
essential role in financial market. Pricing them efficiently and
accurately is very important both in theory and practice. We
have investigated geometric average Asian option valuation
problems with transaction costs under the fractional Brow-
nian motion. By no-arbitrage principle and fractional Itô’s
formula, this paper has deduced PDE satisfied by the option’s
value. Meanwhile, the pricing formula and call-put parity of
the geometric average Asian option with transaction costs
are derived by solving PDE. At last, the influences of Hurst
exponent andmaturity on option value are discussed through
numerical examples.
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Figure 1: The values of the call option with different 𝐻.
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Figure 2: The values of the put option with different 𝐻.
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