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An impulsive Lotka-Volterra type predator-prey model with prey dispersal in two-patch environments and time delays is
investigated, where we assume the model of patches with a barrier only as far as the prey population is concerned, whereas the
predator population has no barriers between patches. By applying the continuation theorem of coincidence degree theory and by
means of a suitable Lyapunov functional, a set of easily verifiable sufficient conditions are obtained to guarantee the existence,
uniqueness, and global stability of positive periodic solutions of the system. Some known results subject to the underlying systems
without impulses are improved and generalized. As an application, we also give two examples to illustrate the feasibility of our main

results.

1. Introduction

The aim of this paper is to investigate the existence and
uniqueness of the positive periodic solution of the following
impulsive Lotka-Volterra type predator-prey model with prey
dispersal in two-patch environments and time delays:

Xy (£) = 5, (1) [y (8) = @y, (8) %, (1) = a3 () ;3 (1)]
+ Dy (t) (x, (t) — x, (1)),
x5 (£) = x5 (£) [y () = agy () 2, (£) — a3 (£) x5 ()]
+D, (1) (x, (1) = x, (1)),
x5 (8) = x5 (8) [=15 () + azy (1) 2, (¢ — 7, (1)) + a5, () x,
x(t—1,(t) —as () x5 (t — 1, (1))],
t#t,
Ax; (t) = x; (t7) = x; (t) = cux; (t)
i=1,2,3,

k=1,2,..., tztk,

@

with the following initial conditions:

x; (0) =y; (),
¥ (0)>0, y;€C([-7,0),R"), (2

7=max {r; (t),7, ()}, i=123,
te[0,w]

0 ¢ [-1,0],

where x;(t) represents the prey population in the ith patch
(i = 1,2) and x5(t) represents the predator population for
both patches. ;(t) is the intrinsic growth rate of the prey in
the ith patch (i = 1,2) and a;;(t) (i = 1,2) are the density-
dependent coefficients of the prey at the ith patch. a;5(f)
and a,;(t) are the capturing rates of the predator in patches
1 and 2, respectively, and a;,(t)/a,5(t) and as,(t)/a,;(t) are
the conversion rates of nutrients into the reproduction of
the predator. r;(t) is the death rate of the predator and
D;(t) denotes the dispersal rate of the prey in the ith patch
(i = 1,2). 7,(t) is the delay due to gestation; that is,
mature adult predators can only contribute to the production
of predator biomass. In addition, we have included the
term as;(f)x;(t — 7,(t)) in the dynamics of the predator
to incorporate the negative feedback of predator crowding,
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where ¢;.x;(t,) (i = 1,2,3) represent the population x;(t) at
t; regular harvest pulse.

As was pointed out by Xu and Chen [1], dispersal between
patches often occurs in ecological environments, and more
realistic models should include the dispersal process. During
the last decade, many scholars had done excellent works on
the predator-prey system with dispersal; see [2-16] and the
references cited therein. In [5], Cui proposed the following
two species predator-prey system with prey dispersal:

X1 () = x, (ay () = by (£) %, —c(t) y) + D (t) (%, — x,),
x; () = x, (“2 () —b (1) xz) +D(t) (xl - x2) >

YO =y®)(-d®) +e®)x,-qt)y-8®) y(t-1)),
(3)

where x, (t) and y(t) represent the population density of prey
species x and predator species y in patch 1 and x,(¢) is the
density of prey species x in patch 2. Predator species y is
confined to patch 1, while the prey species x can diffuse
between two patches. D(t) is strictly positive functions that
can be viewed as the dispersal rate or inverse barrier strength.
By giving a thoroughly analysis on the right hand side of the
system (3), Cui obtained a sufficient and necessary condition
to guarantee the predator and prey species to be permanent.
It is unlike system (3), where the predator species is
confined on patch 1. In [10], the authors proposed a model
of patches with a barrier only as far as the prey population is
concerned, whereas the predator population has no barriers
between patches; that is, they considered the following
predator-prey system in two-patch environment:

x; =x191 (%) = ypy () +e(x, - x,),

xé = %39, (%) = ypy (x,) + (%) — x3),

(4)
Y =y @ [-s(y) +py (1) + 6, ()],

x(0)>0, y(0)>0, i=1,2

where x;(t) represents the prey population in the ith patch, i =
1,2,attimet > 0. y(¢) stands for the total predator population
for both patches. The predator population is assumed to have
no barriers between patches. g;(x;) is the specific growth
rate for the prey population in the absence of predation
when it is restricted to the ith patch. p;(x;) is the predator
functional response of the predator population on the prey
in the ith patch. € is a positive constant that can be viewed
as the dispersal rate or inverse barrier strength. s(y) is the
density-dependent death rate of the predator in the absence
of prey. ¢; > 0 is the conversion ratio of prey into predator.
Conditions have been established in [10] for the existence,
uniform persistence, and local and global stability of positive
steady states of system (4).

The model (4), however, as was pointed out by Yang [11],
is not perfect. Therefore, Xu et al. [12] had considered the
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following delayed periodic Lotka-Volterra type predator-prey
system with prey dispersal in two-patch environments:

xy (1) = x, (6) [ry (1) — @y, (6) X, (£) = a5 (£) y (8)]
+Dy (1) (x, (1) — %, (1)),
Xy (8) = 23 (£) [ry (8) = 6y (8) X, () — a3 () y (8)]
+D, () (x, (1) —x, (), (5)
Y )=y ) [-r;(t) + a5, () x, (t - 17)
ta, ) x,(t-1)-as ) y(t-1,)],
x(0)>0, y(0)>0, i=1,2
with initial conditions:
x; (0) = ¢; (0), y©) =y (),
0e[-1,0], ¢;(0)>0, w(0)>0,

$pv € C([-1,0),R"),

T=max{r,5,}, i=12,
by using Gaines and Mawhins continuation theorem of coin-
cidence degree theory and by means of a suitable Lyapunov
functional, they obtained a set of easily verifiable suffi-
cient conditions to guarantee the existence, uniqueness, and
global stability of positive periodic solutions of the system
(5).

On the other hand, impulsive differential equations [17-
19] arise frequently in the modeling of many physical sys-
tems whose states are subjects to sudden change at certain
moments, for example, in population biology, the diffusion of
chemicals, the spread of heat, the radiation of electromagnetic
waves, the maintenance of a species through instantaneous
stocking, and harvesting. There has been an increasing
interest in the investigation for such equations during the
past few years. There are many researchers who introduced
impulsive differential equations in population dynamics [20-
28]. However, to the best of the authors’ knowledge, to this
day, no scholars had done works on the existence, uniqueness,
and global stability of positive periodic solution of (1). Based
on the idea of [10-15], we propose and study the system (1) in
this paper.

For the sake of generality and convenience, we always
make the following fundamental assumptions:

(Al) ai]’(t)’ ri(t) (1)] = 1) 2) 3)) D] (t)) T] (t)a Tz(t)> and Dz(t)
are all positive periodic continuous functions with
period w > 0, and Til(t) <1(=12);

(A,) {ti)pen satisfies 0 < ¢, < t, < --- < £ < --- and
lim, _, t, = 400, ¢ (i = 1,2) are constants with
1 + ¢ > 0 and there exists a positive integer g > 0
such that tj, . = f; + @, Giq) = Cix- Without loss of
generality, we can assume that t, # 0 and [0, w]N{t;} =
tity ..oty theng =m.

In what follows, we will use the notation.
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Throughout this paper, we make the following notation
and assumptions.
Let w > 0 be a constant and

C, = {x | x € C(R,R), x(t + w) = x(t)}, with the
norm defined by | x|, = max,¢(q,;|x(®)[;

Cl = {x | x € C'(R,R), x(t + w) = x(t)}, with the
norm defined by [x| = max;o ) {1xlo lx' o}

PC = {x | x : R > R, lim,_,x(s) = x(t), if
t 1, limt_ﬁx(t) = x(t), limt_ﬁ;x(t) exists, k €
yART

PC'={x|x:R - R", x' e PC};

PC, = {x | x € PC, x(t + w) = x(t)}, with the norm
defined by | x|, = max,¢ g, |x()l;

PC‘L = {x | x € PC, x(t + w) = x(t)}, with the norm

defined by [|lx|| = max,¢ (g ,{lx]p> " [

Then those spaces are all Banach spaces. We also denote

z_1 ¢ L .
Fgl fon e gngo.

Mz

M = max f(1), ¢ =

t€[0.0] In (1 + Cjk)s j=123.

k

]
—_

7)

The aim of this paper is to obtain a set of easily verifiable
sufficient conditions to guarantee the existence, uniqueness,
and global stability of positive periodic solutions of the
system (1) by further developing the analysis technique of
[10-15]. The organization of this paper is as follows. In the
next section, first, the necessary knowledge and lemmas are
provided. Second, by using continuation theorem developed
by Gaines and Mawhin [29], we establish the existence of
at least one periodic solution of system (1). In Section 3,
the uniqueness and global attractivity of periodic solution
of system (1) are presented. Finally, we give two examples to
show our results.

2. Existence of Positive Periodic Solutions

In this section, by using the continuation theorem which was
proposed in [29] by Gaines and Mawhin, we will establish the
existence conditions of at least one positive periodic solution
to system (1). In doing so, we will introduce the following
definitions and lemmas.

Let X, Z be a real Banach space,let L: DomLc X — Z
be a linear mapping, and let N : X — Z be a continuous
mapping. The mapping L will be called a Fredholm mapping
of index zero if dimKer L = condimImL < +co and Im L
is closed in Z. If L is a Fredholm mapping of index zero and
there exist continuous projectors P : X — XandQ:Z —
Z such that ImP = KerL, KerQ = ImL = Im(I - Q), it
follows that Ll pakerp : (I — P)X — Im L is invertible; we
denote the inverse of that map by K. If Q is an open bounded

subset of X, the mapping N will be called L-compact on Q if

QN(Q) is bounded and KP(I -Q)N : Q — X is compact.
Since Im Q is isomorphic to Ker L, there exist isomorphisms
J : ImQ — KerL. Let PC,, denote the space of w-periodic
functions ¥ : ] — R which are continuous for ¢ # ¢, are
continuous from the left for t+ € R, and have discontinuities
of the first kind at point ¢ = t,. We also denote PC, = {¥ €
PC,:V¥' e PC,}.

Definition 1 (see [18]). The set F € PC, is said to be
quasiequicontinuous in [0, w] if for any € > 0 there exists
8 > Osuch thatifx € F,k € N, t,t, € (t;_1,t) N [0, ],
and [t; — t,] < &, then |x(t;) — x(t,)| < €.

Lemma 2 (Gaines and Mawhin [29]). Let X and Z be two
Banach spaces and let L : DomL ¢ X — Z be a Fredholm
operator with index zero. Q0 C X is an open bounded set, and
N:Q — Zis L-compact on Q. Suppose

(a) for each A € (0, 1), every solution x of Lx = ANx is
such that x ¢ 0Q;

(b) QNx #0 for each x € 0Q N ker L;

(c) deg{JQN,Q nKerL,0}+0.

Then, the equation Lx = Nx has at least one solution lying in
DomLnQ.

Lemma 3 (see [30]). Assume that f(t), g(t) are continuous
nonnegative functions defined on the interval [, B]. Then there

exists & € [a, B] such that .[f f)gt)dt = (&) Lf g(t)dt.

Lemma 4 (see [20, 27, 28]). Assume that ® € PCi), [0, w] N
{ti} = t1, 15, ..., t,. Then the following inequality holds:

sup @ (s) — inf @ (s)
s€[0,0] s€[0,w]
(8)

1
S_
2

w q
J |CD'(s)|)ds+Z|A<D(tk)| )
0 k=1

Lemma 5. The region Ri = {(xy, %5, x3) : %,(0) > 0, x,(0) >
0, x5(0) > 0} is the positive invariable region of the system (1).

Proof. In view of biological population, we obtain x; > 0,
x, > 0,x5 > 0. By the system (1), we have

x, ()

= x,(0) eJOt[n (8)=ay1 ()%, (8)=ay3(5)x3 (5)+ D (5) (x5 (s) /%, (5)-1)Ids

te[0,t,],



4
x; (t)
= x, (tk) e_[;[Tl(5)*“11(S)xl(s)fﬂls(s)x3(5)+D1(S)(xz(s)/%(s)*l)]ds)
t € (toteal
x; () =(1+cy)x () >0, keN;
x, (1)
= x, (0) e_[(;[fz(S)*ﬂzz(s)xz(s)ﬂlzs(5)x3(5)+Dz(S)(X1(S)/Xz(s)*l)]ds
te[0,t],
x, (1)
= x, (tk) ej.ot[rz(s)—azz(s)xz(s)—u23(s)x3(s)+D2(s)(xl(s)/xz(s)—l)]ds)
t € (totenal
()= (1+a)n () >0, keN;
x5 ()
= x5 (0)
x efg[—r3(s)+u31(s)xl (s=11 (1) +as, (s)x, (s—7, (£))—as3(s)x3 (s—7,(¢)) ds
telo,t],
x5 (1)
= x5 (1)
X ej(:[_73($)+931(5)x1(5_71(f))“‘asz(s)xz(s_fl(f))_“33(5)x3(S_Tz(f))]ds
t e (totea]
x5 (8)) = (L+c) x5 (t) >0, keN.
)
Therefore, the conclusion is true. O

Lemma 6 (see [27, 28, 31]). Suppose o € C(lu and o' (t) < 1,
t € [0, w]. Then the function t — o(t) has a unique inverse p(t)
satisfying u € C(R,R) with y(a + w) = u(a) + w, Va € R. If
g€ PC,, 7'(t) < 1, t € [0, w]; then g(u(t)) € PC,,.

Proof. Since d'(t) < 1,t € [0,w] and t — o(t) is continuous
on R, it follows that ¢ — o(¢) has a unique inverse function
u(t) € C(R, R) on R. Hence, it suffices to show that pu(a+w) =
p(a) + w, Ya € R. For any a € R, by the condition a(t) < 1,
one can find that, for the equation t —o(t) = a, exists a unique
solution t,, and, for the equation t—o(t) = a+w, exists a unique
solution ¢; thatis t, — o(t;) = aand t; — o(t;) = a + w, that
is, u(a) =ty = o(ty) + aand p(a + w) = t,. As

atw+o(ty)-ola+w+o(ty))=a+w+ao(ty)
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—o(a+ao(ty))
=a+w+o(ty) —ol(ty)

=a+w,
(10)

it follows that t, = a+w + o (t,). Since p(a + w) = t,, thus, we
have p(a+w) =t, = a+w+0o(ty) and pla+w) = t, = u(a)+w.
We can easily obtain thatif g € PC,, T'(t) < 1,t € [0, w], then
glu(t + w)) = g(u(t) + w) = g(u(t)), t € R, where u(t) is the
unique inverse function of t — 7(t), which together with y €
C(R, R) implies that g(u(t)) € PC,,. The proof of Lemma 6 is
completed. O

We denote by y;(t) the inverse of t — 7;(t),i = 1, 2.

Theorem 7. In addition to (A,)-(A,), assume the following
conditions hold:

(A3) (r, = Dy) —aMi(BY + BYYA/ 55 + ¢ Jw > 0,

(A a%iBL((rl -D))w + ¢) + a{\fBé((rz -D))w + ¢) -
ay) Ay, (13w + ¢3) > 0.

Then, system (1) has at least one positive w-periodic solution,
where

L > L
an ayn

M M
A:max{(rl_Dl) +Div[ (r, - D;) +D§4}

(11)
as, (p (1))

as, (p ()
> B =
ey 20

Proof. We carry out the change of variable u;(t) = In x;(t),
i =1,2,3;then (1) can be transformed to

u; ) =r,@t)-D, 1) —ay (t) S
—ay; ()P + D, (1) =0,
) (t) = 1, (t) = D, (t) — ay, (t) €2
—ay, (1) €4 + D, () e,
uy (t) = =15 (t) + as, (t) e (= (®)

(12)

+as, (t) euz(t—fl(f))

— a5, (t) eus(t—fz(t))’ t+ tk’
Auy (t) = In(1+¢y),
Au, (1) = In (1 +cy),

Auy(t) = In(L+¢y), =4t
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It is easy to see that if system (12) has one w-periodic
solution (u (£), w5 (t), w3 (£))", then (x (), x}(t), x;(t))" =
(1@, 620 )T s 3 positive w-periodic solution of sys-
tem (1). Therefore, it suffices to prove system (12) has a w-
periodic solution. Let

X = {x = (upupu;) | u; € PC,, i= 1,2,3},

5
where || - || is the Euclidean norm of R*". Then X and
Z are Banach spaces.

Let

13) DomL = {u = (ul,uz,u3)T |u; € PCL, i = 1,2,3},
Z=XxR",
and define L:DomLcX —Z, Lu= (u',Au (t1) 5., Au (l‘m)) )
3 , (15)
lully = Z sup |u; (1)), u=(upuyuy) €X,
i—1tel0,0] (14)
Izllz = lulx + v, (w,v) € Z, and N: X — Z with
r (t) = Dy (t) — ayy (£) €Y — aps (1) e + D (1) 270
Nu = 7y (t) = Dy (t) — ay, (t) €2 — a5 () 4 + D, (t) e @70
_7-3 (t) + 031 (t) eul(t*Tl(t)) + 032 (t) euz(t*Tl(t)) _ 033 (t) eus(t*"’z(t)) (16)

In(1+c¢,)
In(1+¢,)

[m0+qgl{m0+qﬁ

It is not difficult to show that

KerL:{uGXIu:w€R3},
ImL = {z:(y/,cl,...,cm) €Z|J y(s)ds+ ZCkZO]”
0 k=1
17)

and dimKer L = 3 = codimIm L. So, Im L is closed in Z and
L is a Fredholm mapping of index zero. Take

1 w
Pu = —J u(t)dt, uelX;
w Jo

QZ=Q(1//,C1,...,Cm) (18)

1 e N
= <5 |:J W(S)ds+kglck:| ;(O)Oa‘-')0)3xm>'

0
It is trivial to show that P, Q are continuous projectors such
thatIm P = Ker L, Ker Q = Im L = Im(I — Q), and hence,the

In(1+c,)
In(1+¢,)

In(1+¢,,)
:|,...,!1n(l+gm):| , ueX.

In(1+g,)

generalized inverse K, exists. In the following, we first devote
ourselves to deriving the explicit expression of Kp : InL —
Ker PN Dom L. Taking z = (y, ¢y, .. .,¢,,) € Im L, then exists
anu € Dom L C X such that

W )=y (t), t#t,
(19)
Au(t)=g¢, t=t, k=12,...,m.
Then direct integration produces
t
u(t):j y(s)ds+ ) g +u(0) (20)

0 >t

that u(t) € Ker P; that is _[(;U u(s)ds = 0, which, together with
(20), implies

r r v (s)dsdt + jw Yot +au(0)=0. (1)

0 Jo 0 >t
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Then, that is

Kpz = th//(S)d$+ ch 1 Jw th(s)dsdt

t 1 w ot 0 i>t, 0 0
u(t):J v(s)ds+ ch——J j y(s)dsdt (23)
0 >t 0 Jo m 1o
(22) - ch + —Zthk.
=1 Y

m 1 m
- ZCk + —Zthk;
k=1 Wi Thus, foru € X

1 w
;JO [7’1 (t) - Dl (t) —ap (t) e”‘(t) —dp; (t) e“s(t)

m
+Dy (£) euz(t)ful(t)] dt + lz In (1 + Clk)
Wil

1 (@
;JO [1’2 (t) - DZ (t) —dy (t) e“Z(t) —dy (t) eus(t)
QNu: 1 m ,0,...,0 N (24)
+D, (f) eul(t)fuzm] dt + ;Z In (1 + Czk)

k=1

1@ } _
_J (=75 (8) + g, (1) 4050 1 g, (1) 050
wlo

1 m
—a55 (t) eu3(t—Tz(t))] dr + _Z In (1 + c3k)
Wia

t
Jo [7'1 (s) =D, (s) —ay, () eh® _ as (s) A0
+D, (s) e”z(s)_“l(s)] ds + Z In(1+c¢y)

>t
t
JO [7'2 (S) - D2 (5) —dy (5) euZ(s) —ay (S) e”a(s)
+D, () €0 ds + Y In (1 + ¢y

£t

t
jo [—7’3 (S) +ay, (S) eu1(s—‘rl(s)) +as, (S) 6”2(5_71(5))

—as; () 6”3(5712(5))] ds + Z In(1+cy)

t>t;

Ky(I-Q)Nu=

1 (@t
;JO jo [1’1 () =Dy (s) —ay, (s) eul(s) —a; (s) e“s(s)

m
+D, (s) euz(s)*ul(s)] dsdt + Z ln(l + Clk)
k=1

li
== In(1+cy)t,
w0

1 e
;JO j-o [r2 (8) =Dy (s) —ax () e _ ay; (8) et

+D, (s) 6”‘(5)_“2(5)] dsdt + Z In (1 +cy)
k=1

1 m
__Z In (1+cy) ti
w ot s
1
_J J [_r3 (s) +az, (s) etsm(9) | as, (5) RACIO)
wJoJo

m
—ay; (s) eua(s—rz(s))] dsdf + Z In (1 + C3k)
k=1

)
—=) In(1+cp)
Wia
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t 1
w 2

<_ - _) J: [rl () =Dy (s) —ay (s) e - a; (s) e

t 1
w 2

+D (s) e”z(s)‘”l(s)] ds + <£ - %) k;ln (1+¢y)
<_ - _> JO [rz (s) = D, (5) — ay, (5) € — ay, (s)

+D, (s) e”l(s)"”z(s)] ds + <i - %) Z In(1+cy)
w k=1

t 1\ (¢ _ -
(_ _ _> j (=75 (5) + () €461 4 g (5) 1)
w 2 0
t 1\ v
—as;5 (8) 6”3(5"72(5))] ds + <— - 5) Z In(1+cy)
w k=1
(25)
Clearlyy, QN and Kp(I - Q)N are continuous. By Jw [”2 (t) - D, (1) - ay, (t) g _ a5 (1) )
applying Ascoli-Arzela theorem, one can easily show 0
that QN(Q), Kp(I — QIN(Q) are relatively compact for any
open bounded set O ¢ X. Moreover, QN(Q) is obviously +D, (1) eul(t)—uz(t)] dt = —¢,
bounded. Thus, N is L-compact on Q for any open bounded
set O C X. Now, we reach the position to search for an
appropriate open bounded set QO ¢ X for the application J “r uy (-7, (1)) Uy (t-1, (1))
of Lemma 2. Considering the operate equation Lu = ANu, 0 [ rs (D) +as (e tap(te
A € (0, 1), we have
—ay; (t) 6”3“_72(0)] dt = —¢;.
(27)
! u Uu
uy (1) = A[ry (1) = Dy (t) — ayy (0 €Y — a3 (1) ™
+D, (1) euz(i)—ul(t)]
, w0 Hence, we have
Uy (8) = A[r, () = D, (t) - ay, (t)
—ay (1) e° + D, (1) 170
/ U, (-7, (£)) @ @
uy (£) = A5 (£) + a5, (1) 24D J [a (e +ay (1) e ] dt + J D, (t)dt
0 0
+as, (t) euz(t’fl(t)) —as (t) eus(t’fz(t))] ,
_[" 0 (0)-1, (1) ¢
Au; () =Aln(1+¢;), i=123, keN. —L D, (t)e> dt+L ri () dt +c,
(26)
L (025 ()€ + ayy (1) ) dit + JO D, () dt
Since u(t) = (uy(t), uz(t),u3(t))T are w-periodic functions, (28)
we need only to prove the result in the interval [0,w]. (¢ ) ()=, (£) ©
Integrating (26) over the interval [0, w] leads to o D, (®)e di + e Bdt+ o,

L [r1 (t)—-D;(t) —ay () e® a; (1) s

+D, (1) e”Z(t)_”l(t)] dt = —¢,

w
L (a3, (8) D 4 g, (1) O]

w
_ I a5 (1) €Ot L Fw + e,
0



It follows from (26)-(28) that

J |ui (t)| dt < J [”1 (t)+ D, (t) e”z(t)*”l(t)] dt
0 0
+ JO [all (t) eM}(t) + a13 (t) eu3(t)
+D, (t) ] dt

w
=2 J ay, (t) e dr
0

w
+2 J ap; (1) e°dt + 2D w - ¢,
0

u < 1, ) £,
J |u (1) it J [, (t) + D, (1) 7] dt
0 0

w
+ J [azz ) e + ays (1) e ®
0

+D, (1) | dt

-2 J ay, (t) e Vdt
0
+2 J ay; (t) €W dt + 2Dw — ¢,
0
w w
J |y (1) it < J ry (t) dt
0 0

w
N J (a5, (1) EAGAD)
0

+as, (t) euz(f—fl(t))

+as; (t) eu3(t_Tz(t))] dt

=2 Jw a, () e gy
0

w
+2 J as, (1) e Dy 4 ¢
0
w
<2 J az, (1) e gy
0
w
+2 J as, (t) e tn® gy,
0
(29)

Uy (t)

Multiplying the first equation of (26) by e
over [0, w] we have

and integrating

m w
_ chkelﬁ(tk) + J ay, () ezul(t)dl’
k=1 0
(30)

w w
<(r,-D)" J et + pM J- eV,
0 0
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Since -1 < ¢ < 0, we obtain

w w w
J a (t) Wy < (r, - DI)M J e Ot + DJIVI J ey,

0 0 0
(31)

which yields

w w w
afl J &g < (r, - DI)MJ e Odr 4 Dlle e O gt
0 0 0
(32)

Similarly, multiplying the second equation of (26) by e**®

and integrating over [0, w] gives
w (@ ®
ar, L e Vdt < (r, - D)) Jo e®dt + DY Jo et
(33)

By using the inequalities
® 2 w
<J e”"(t)dt> < wj 2 Odt, i=1,2, (34)
0 0

it follows from (32)-(34) that
L © 2u1(l‘)dt ? -D M ¢ ul(t)d
an ], € < w(r, - Dy) ,€ t

w
+ wD]lVI J Mgy,
0
(35)

w 2 w
a2L2<J0 ezuz(t)dt> <w(r, - DZ)M L e gy

w

+ wDéVI J Wy,
0

If Iow e ®dr < fow e2®dt, then it follows from the second
equation of (35) that

w 2 w
asz<J0 ezuz(t)dt> <w(r, - DZ)M L e gy

(36)
w
+ wDéVI J Wy,
0
which implies
M M
@ w w(r, — D + wD
J M Odr < J e Wgr < (r 2)L . 3
0 0 ay
If Igo e Wdt < f:’ "1 dt, similarly, we obtain
M M
w w w(r; =D + wD
J eVt < J Wy < (r I)L L. (3
0 0 an
Set
M M M M
r—D +D r, — D + D
A:max{(l 11 1,(2 21 2}. (39)
an a4y
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Then it follows from (37)-(39) that
J Dt <wA, i=1,2. (40)
0

Note that u(t) = (u;(t),u,(t),ust)) € X; then there exists
&1 € [0,w] (i =1,2,3) such that

u; (&)= inf w,(t), u;(n;)= supu;(t), i=1,23.
te[0.w] te[0,0]
(41)
Then it follows from (40) and (41), that
u; (§) <ln4d, i=12. (42)

Since Ti'(t) < 1,wecanlets =t — 7,(¢), thatis, t = y(s) (i =
1,2); then

Jw as; () et Mgy = Jle(“’) Meul(s)ds.
0 o 1=7(p (5))
(43)
According to Lemma6, we know (as(y(s))/(1 -
(i (5))))e“' € C,. Thus,
r) " M@”l“)ds = r) M(eul(s)d&
—no 1- 7 (Ml (S)) o 1— T (#1 (S))
(44)
Similarly, we have
Jw a32 (t) euz(l‘*‘fl(t))dt — J‘w M ds)
0 o 1-71(; (S))
(45)
Jw az, (1) e gt = Jw M(e%(s) ds.
0 0 1-7 (4 (5))

On the other hand, by Lemma 6, we can see that y,(w) =
¢(0) + w, so we can derive

w@ ay (1) (1-7', (1)
1- Tl ()

[ etan [
k

as, (t) dt = a5 w,
0

Jw as, (1 (9)) J’"l(“’ a3 (t) 1 -7 (t))dt

([’41 (5)) .‘41(0 Tl (t) (46)

w
J as, (t) dt = a5 w,
0

Jw ay; (¢ (5)) J”‘2(‘” 33 (t) 1 -7 (t))dt
0 =26 e L-1 (1)

J as; (t) dt = a5;w;

0

therefore, we can derive from (27) and (46) that

a—“weus(is) < eu3(£3) Jw 933 ([’42 (S)) ds
0 1-7 (1 ()

<Jw as; (s (5)) ¥) 4
“ o

1-175 (4 (S))

w
< J s, (1) €020 gy
0

w
= L as (t) et tn M) gy

w
+ j as, (t) e tn®) gy T30+ ¢
0

_ J’w as; (‘”1 (S)) ul(s)ds (47)
0

1= (1 (9)°

@ ‘132(.“1 (5)) 1y (
g = (1, ()
@ as (#1 (5))
<), 1= (1 9)

@ as (/’ll (S)) U, (s)
e e T

Vs — Fw + ¢

e”1 (S)ds

= Lw B, (s)e"Ods + J: B, (s)eYds
< (B + B)") Aw,
which implies
ae ™ < (BY + BY') A; (48)
that is

M, pM
us (&) <In M (49)

as3

It follows from (29), (42), and (49) that

BM + BM) A
1 2

w
J |u; (t)| dt < 2a Aw + Zafgl
0 33

+2Djw—¢ = A,

(311‘4 + B§4) A (50)

w
J |u; (t)| dt < 2a3) Aw + Za%
0 33

+2D,w ¢, := A,,

[ de < 2 (B + B) A = A,
0
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From (42), (50), and Lemma 4, it follows that, for ¢ € [0, w],
1
w; () < u; (&) + 5 (A;+a])

slnA+%(A,.—c,.), i=12,

1 (51)
uy (1) <uy (&) + > (A5 +g))
B +BM)A
Slng +1(A3—C3).
as3 2
It follows from (28) and (48) that
w w
eatm J ay, (t)dt > J ay, (1) e Pdt
0 0
w
>(r, - D))w - J ay; (1) e Vdt + ¢,
0
aly (BY' + BY') Aw
> (r - Dy)w - — +ta,
as3
(52)
which deduces
(r,—D;)-aly (levr + BQ/I) Al + ¢ /w
uy () 2 1In —
an (53)
=InC,.

This, together with (53) and Lemma 4, leads to
1 1
up (8) 2wy () - 5 (A;-¢)2InC, - 5 (A -c). (54

Let R, := max{|ln A|+(1/2)(A, —¢)|,InC, |+ (1/2)(A; —¢)}-
It follows from (51) and (54) that

sup |u, ()| < R;. (55)
te[0,w]

From (28), (41) and (48) we have
apwe ™ > (r, = Dy)w + sze”‘(zl)_”mz)

w
- J ay; (1) e dt + ¢,
0

o (56)
> (r, - D,)w + Dywe ™ . 720

a% (BJIVI + Béw) Aw

J— + Q)
as3

which deduces

Vo2 + 4a=D.e-R
euz(ﬂz) y &+ \a” +4ay,D,e™™ -c, (57)

ay

where a = (r, - D,) — a%(B]lV[ + Bé"I)A/a_33 + ¢, /w, implies

u, (1,) > InC,. (58)
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This, together with (41) and Lemma 4, leads to
1 1
uy () 2 uy (1) - 5 (A;-6)2InC, - 5 (Ay-q). (39)
Set

1 1
R, := maX{|1nA| + 7 (Ay—¢),|InG,| + 3 (A, - 02)}

(60)
It follows from (51) and (59) that
sup |u2 (t)| <R,. (61)
te[0,w]
Noting that
—_ w w
(r-D)w+¢ <a| ePdt+alt J e“Wat,
(62)

w

— w
(ry—Dy)w+¢ < aég J Wy 4 %J\g j Mg,
0

0

it follows from (28) and (46) that

a—y’wem(’?s) > eus(fs) Jw M
0 1-7; (4 (5))

S r’ ass (i, (5))

15(s)
> —= ="V s
0o 1-13 (i (9)

= Jw as; (t) gm0 gy
0
w

= j ag, (t) et gy
0

w
+ J as, (t) et gy [ RA
0

Jw asy (Ml (S)) eul(s)ds
0 1-7 (1 (5))
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e ds - 30+ ¢

“ as (!"1 (S))
+J o (i )

w
- I B, (s) e
0
w
+ L B, (s)e"ds - Hw+¢

L (r—D)w+¢ —ays j e ® gy

1 M
an

>B

(ry - Dy)w+ ¢, —ays _[ e Odt

L
+ B
2 M
ayn
— T30+ G
(1 = D))w + ¢ — aMwes ™)
> B! L

a1
M, us(n3)
N BL(”z - D,)w + ¢, - ayswe™™”
2 M
22

— T30 =G,
(63)

which yields

et (azz ((”1 D)w‘"Cl)
+apy By ((r - Dy)w+6,) - alfay, (Fo+c))

M M— BL
><(["116’22“33‘”’136‘223 +"11“23 ] )

= C;.
(64)

This, together with (41) and Lemma 4, leads to

us () 2 ug (1) - % (As-c)2InC; - % (As—c). (65)

Set
a +a) Aw
R; = max{ ln% +1(A3—c3),
az, 2
(66)
1
InCs| + 5 (A5 -c) } .
It follows from (51) and (65) that
sup |u3 (t)| <R;. (67)

te[0,w]

1

Thus, we obtain

[ O <R i=1,23. (68)

Clearly, R; (i = 1,2,3) are independent of A.
In order to use the invariance property of homotopy, we
need to consider the following algebraic equations:

0 T~ —
1 —_u —_Uu U,—U
= +(r, — Dy) —a;e" +y(—a13e *+Dje 1) =0,

2+ (ry = Dy) e + (e + D" ) = 0, (69)

c
L1 L) U3 3 —
as el +ase’ —ase +‘u(w +r3> =0,

for (uy,u,, u3)T € R? where y € [0, 1]. Carrying out similar
arguments as above, one can easily show that any solution
(uy,u5,uy) of (69) with u € [0, 1] also satisfies

] ®) <R, i=1,2,3. (70)
Choose R* > Z?:I R, and define Q = {u(t) =
(1), (0, us())" € X ¢ ful < R, u(t)) € Q. k =
1,2,...,m}; it is clear that Q satisfies the condition (a) of
Lemma 2. Let u € 9Q N Ker L = 9Q N R?; then u is a constant

vector in R® with ||u] = R*. Then
QNu
a LU 4 ) phe
L 4 (r, - D)) —ay e —ae™ + Dje
w
— ) ——l =Ll ) LU
= ot (ry — D,) — aye™ —ayze™ + Dye ,

% — 75 + 03" +a5,e" —age™

m

0
0 #0.
0 k=1

That is, the condition (b) of Lemma 2 holds. Finally, for the
convenience of computing the Brouwer degree, we consider
a homotopy

(71)

B, ((“1’”2’”3)T) = uQN ((”1»”2>“3)T)

+(1 —y)¢((u1,u2,u3)T), (72)

u€[0,1],
where
C S
2L+ (r, - D)) —aje"
N8
¢ ((”p”z’“s) ) = o +(r,—Dy) —ape |- (73)
ay€" + a5, — age”
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By (69) and (70), it follows that B#((ul, U,, u3)T) +0foru €
0QNnKerL, u € [0, 1]. In addition, it is clear that the algebraic
equation ¢((u1,u2,u3)T) = 0 has a unique solution in R’.
Choose the isomorphism ] to be the identity mapping; by a
direct computation and the invariance property of homotopy,
one has

deg {JQNu, Ker L N 0Q), 0} = deg {QNu, Ker L N 0L, 0}
= deg {¢, Ker L N 0Q, 0}

= -1#0.
(74)

By now we have proved that all the requirements in Lemma 2
are satisfied. Hence system (12) has at least one w-periodic
solution, say (uf,u;,u;“)T. Set x;(t) = e, x5t =
e ®, x5 () = e ®; then (o7 (1), x5 (£), x5 ()T has at least
one positive w-periodic solution of system (1). The proof of
Theorem 7 is complete. O

Remark 8. If ¢, = 0 (i = 1,2,3,k = 1,2,...,m), then (1) is
translated to (5). In this case, the conditions (A;), (A,) are
the same as (H,), (H,) of Theorem 2.1 in [12], but we see that
(H,) of Theorem 2.1 in [12] is not needed here. Hence our

result improves and generalizes the corresponding result of
[12].

Remark 9. If 7;(t) = 0 (i = 1,2,3), then (1) is translated to
(1.2) in [14]. In this case, the conditions (A;)-(A,) are the
same as (C,)-(C,) in [14]. Hence our result generalizes the
corresponding result of [14].

3. Uniqueness and Global Stability

We now proceed to the discussion on the uniqueness
and global stability of the w-periodic solution x™(¢) in
Theorem 14. It is immediate that if x* (¢) is globally asymptoti-
cally stable then x* (¢) is unique in fact. Under the hypotheses
(A,), (A,), we consider the nonimpulsive delay differential
equation

YL @©) =y () [r ()= Ay (0) y, () = Az (1) s ()]
+Dy (1) (B (1) y, (1) = y1 (1)),
Y (8) = 3, () [1 () = Ay (£) 3, () = A (£) 35 (1)]
+D, () (B, (1) 3 () = 3, (1), (75)
3 (8) = y3 () [ (6) + Ay (8) 3, (=7, (1))
AL )y, (-1 1)
- Ay M)y (-1 1)),
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with the initial conditions

i) =¢;0), y;&)=¢(O), ¢0)>0, ¢(0)>0,
¢ ¢ € C([-1,0],R,), 6¢€[-7,0],
7= max n®, 0} i=12
(76)

where

Ay =a; (1) [T O+q) (=1,2),

0<ty<t

A ) =a; () H (1+c5),

0<ty<t
Aps (£) = ay (1) H (1+cx),

0<ty<t
Az (£) = az (B) H (1+cw),

0<t <t—1,(t)

(77)

Asy (t) = as, (1) H (1+cy),

0<t <t—1,(t)
Az (t) = as; (1) H (1+0cx),

0<t) <t—7,(t)

B, (1) = H (1+ Clk)_l (1+cx),

0<t <t

B, (1) = 1_[ (1+ ‘;zk)_1 (1+cy)-

0<tp<t

The following lemmas will be used in the proofs of our results.
The proof of the first lemma is similar to that of Theorem 1 in
[23].

Lemma 10. Suppose that (A,), (A,) hold; then

() if y(t) = (3, (8), y, (), 3T is a solution of (75)
on [-7,+00), then x;(t) = [loe (1 + )y, () (i =
1,2,3) is a solution of (1) on [-T,+00);

(i) if x(t) = (xl(t),xz(t),x3(t))T is a solution of (1) on

[~7,+00), then y,(t) = [loer (1 + ) ' 2;(t) (i =
1,2,3) is a solution of (75) on I[—T, +00).
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Proof. (i) It is easy to see that x;(t) = []oe, (1 + i) y;(t) is
absolutely continuous on every interval (f;,t;,,]; t #t;, k =
1,2,..,

Xy (8) = x, (1) [ry () = ayy (8) x, () — ays (£) x5 (8)]
+D, () (x, () — x; (1))

= H (1+Clk)y{ (t)

0<t, <t

-] Q+e)m®

0<ty<t

X |:7’1 (t) —ay () H (1+cu) yi ()

0<ty<t

— a3 (f) H (1+6) 3 (t):|

o<t <t

+D, (t)< [T 0+e)yn®

0<ty<t

T Qe <t>>

0<t<t

= H (1+c)

0<t,<t
{91 &)=y ()
X [ry () = Ay (8) 31 () = A3 () y3 ()]

=D, (t) (B, (t) y, (t) = y, (1)) } =0.

(78)
On the other hand, forany t = t;, k= 1,2,...,
x () = lim H (L+cp) yy (1)
= 0<t;<t
= H (1+ )y (8) » (79)
0<t;<ty
x; (t) = H (1+ ) 7 () -
0<t;<t;
Thus
Axy () = (1+cp) 1 (), (80)

which implies that x,(t) is a solution of (1); similarly, we
can prove that x,(t), x5(t) are also solutions of (i). Therefore,
x;(t) (i = 1,2, 3) are solutions of (1) on [T, +00).

13

(i) Since x;(t) [Toct (1 + ci)yi(t) is absolutely
continuous on every interval (f;, t;,]; t #t;, k = 1,2,...,and
in view of (79), it follows that, for any k = 1,2,.. .,

H (1+ Clk)_lxl (t)

0<t;<ty

H (1+ Clk)_lxl (t) = »1 ()

0<t;<t;

v (t) = H (1 +C1k)71x1 (t)

0<t <t

= H (1+ Clk)_lxl (t) = n ()

0<t;<t;

N1 (t,:) =

(81)

which implies that y, (¢) is continuous on [-T, +00). It is easy
to prove that y, (¢) is absolutely continuous on [-7, +00). Sim-
ilarly, we can prove that y,(t), y5(t) are absolutely continuous
on [-7,+00). Similar to the proof of (i), we can check that
y;(t) = H0<tk<t(l + cik)_lxi(t) (i = 1,2,3) are solutions of
(75) on [T, +00). The proof of Lemma 10 is completed. [

Lemma 11. Let y(t) = (y,(t), yz(t),y3(t))T denote any pos-
itive solution of system (75) with initial conditions (76). Then
there exists a T, > 0 such that 0 < y;(t) < M; (i = 1,2,3), for
t > T,, where

. M+ DM My DM
M, =M, >M" =max ,

Al A%
(AY 4+ AY) M, A+ AnIMT (82)
3= >
A%

Di(t) = B,(t) Dy(t),  D,(t) = By(t) D,(¢).

Proof. Let V| (t) = max{y,(t), y,(t)}. Calculating the upper-

right derivative of V; (t) along the positive solution of system
(75), we have the following:

(C,)) if y,(t) = y,(t) in some intervals, then
D'Vy(t) = y; (t)

=y () [ry (1) = Ay (0) 3, (8) = Ays (1) y5 (1)]

+ Dy (1) (B, (£) y, (1) = y, (1) (83)

<y @[ - ALy ©]+ D0y, ®

<y @) [0+ D) - ALy )],
(C,) if y,(t) > y,(t) in other intervals, similarly, we have
D'V, (t) = y, (t)

<y O [ -ALy, O] +D, My, (1) (84)

<y [ +Dy - ALy, 0]



14

It follows from (C,) and (C,) that
D'Vi(t) <y, () [rM + DM - ALy, 0], i=1,2. (85)

By (85) we can derive the following.

(A) If max{y,(0), y,(0)} < M,, then max{y, (t), y,(t)} <
M,,t>0.

(B) If max{y, (0), y,(0)} > M, let -8 = max{M, (" +
DM~ ALM)), i =1,2} (8 > 0 by the condition (82)).

11
We consider the following two cases:

() V1(0) = y,(0) > M; (,(0) > »,(0));
(b) V1(0) = 3,(0) > M, (y,(0) < y,(0)).

If (a) holds, then there exists € > 0 such that if ¢ € [0, €), then
Vi(t) = y,(t) > M,, and we have

D'V,(t) = y| (t) < =8 < 0. (86)

If (b) holds, then there exists € > 0 such that if ¢ € [0, €), then
Vi(t) = y,(t) > M, and we also have

D'Vy(t) = ) (t) < =8 < 0. (87)

From what has been discussed above, we can conclude that if
V(0) > M,, then V(¢) is strictly monotone decreasing with
speed at least 8. Therefore there exists a T; > 0 such that if
t > T,, then

Vi () = max {y,(t), y,()} < M,. (88)

From the third equation of system (75) and (88) we can
deduce that, fort > T} + 7,

¥y (1) <y () [(ASL + AS) M, — Ay, (-7, (1))]
<y (0 [ (AN + A%) M, (89)
- Al My, @) ]
A standard comparison argument shows that

(AM + AY) M A ARIMT

linj Supy; (1) < i = M,. (90)
Thus, there exists a T, > T} + 7 such that

y3 (1) < M;, fort>T,. (91)

The proof of Lemma 11 is completed. O

Lemma 12. Let y(t) = (yl(t),yz(t),y3(t))T denote any
positive solution of system (75) with initial conditions (76).
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Then there exists a T > 0 such that y;(t) > m; (i = 1,2,3),
fort > T, where

L M M
ry — Dy — A7 M,

M
All

>

O<m1=m2<m;‘=min{

L M M
ry —D; - AyM; }

M
A22

(AI§1 + AI§2) m, i

L 4L M_ M
Aj +AR)my -y A Ms]T
M bl
A33

0<my<my, =
(92)
and M, are defined in Lemma 11.

Proof. Let V,(t) = min{y,(¢), y,(¢)}. Calculating the lower-
right derivative of V,(t) along the positive solution of system
(75), similar to the discussion for inequality (85), for any t >
T,, where T} is defined in Lemma 11, we easily obtain:

(Cy) if y,(t) < y,(t), in some intervals, then

DV, (t) = y; (t) 2 y, (t) [ry - D} = AT\M; - Ay, ()]
(93)

(Cy) if y,(t) < y,(t), in other intervals, similarly, we have

DV, (t) = y,(t) 2 y, (t) [ry - D3 = AZM; - A%y, (8)].
(94)

From (C;) and (C,), we can reduce the following.

O If Vz(Tz) = min{)ﬁ(Tz),)’z(Tz)} 2
min{y,(t), y,(t)} = my, t > T,.

(D) If V,(T,) = min{y,(T3), y,(T,)} < m,, and let 0 =
min{y, (T))(ry - Dy" = AYim; — AY;My), y(T,)(r -
DY — AN, — AN M;)}. There are three cases:

(c) Vi(Ty) = yi(T3) < my (y1(T3) < y5(T5))s
(d) Vz(Tz) = }’z(Tz) <nmy ()/z(Tz) < yl(Tz))§
(e) Va(T) = ni(T5) = »,(T5) < my.

If (c) holds, then there exists € > 0 such thatift € [T}, T, +¢€),
we have V,(t) = y,(t) and D, V,(¢t) = y{ (t) >0 >0.

If (d) holds, similar to (c), there exists [T,, T, + €) such
thatift € [T, T, + €), we have V,(t) = y,(t) and D, V,(¢t) =
yé(t) >0 >0.

If (e) holds, in the same way also there exists [T}, T, +
€) such that if t € [T,,T, + €), we have V,(t) = y;(t) and
D, V,(t) = y/(t) >0 > 0,i=1,2.

From (c)-(e), we know that if V,(T,) < my, V(t)
will strictly monotonically increase with speed o. So there
exists T; > T, such that if t > T, we have V,(t) =
min{y, (t), y,(t)} > m;.

From the third equation of system (75), for any t > T; +,
we know that

¥, (t) = y5 (t)

my, then

X [_rév[ + (Agl + Agz) my — Alsvg)% (t-1, (t))]
(95)
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and using the fact that

AL+ AL ymy M- AV M)

y3(t=1, (1) < el ¥ (1),

(96)
fort >,

therefore, for t > T; + 7, we get
JAGESNG)

X [ (Agl + Agz) m (97)

_Azge—[(Agl+A§2)m1—r§‘—Ag§M3]rzy3 (t) ] )
A standard comparison argument shows that

L L
liminfy; (t) > —<A31 ! Asz) ™ LA+ my 3 =AMy e
t— +00

A%
= ms.
(98)
Thus, there exists a T > T, + 7 such that
vy (t) =my, fort>T. (99)
The proof of Lemma 12 is completed. O

Lemma 13 (see Barbélat’s Lemma [32]). Let f(t) be a nonneg-
ative function defined on [0, +00) such that f(t) is integrable
and uniformly continuous on [0, +00); thenlim, _, . f(t) = 0.

We now formulate the uniqueness and global stability
of the positive w-periodic solution x*(¢) of system (1). It is
immediate that if x™ (¢) is globally asymptotically stable then
x*(t) is in fact unique.

Theorem 14. In addition to (A,) and (A,), assume further
that

(As) lim, _,,intC;(t) > 0, then, system (1) has
a unique positive w-periodic solution x*(t) =

15

(o7 (£), x5 (1), x5 ()T which is globally asymptotically
stable, where

BM M
C,t=A, (t)- =2
m

2
1

- WA’H (t +7 (f))

1
- mf\sl (t+1, (1)

t+7) (t)+7,(t)
X J‘ Ay (s)ds;
t

+7,(t)

YD 1

my 1-1 (1, (1))
1t
1-17 (4 (1))

t+1, (£)+7,(t)

Az (s)ds;

C,(t)=A, (1) -

X Ay (E+1, (1) -

X Ay, (£+ 1, () J

t+1, (t)
Cy(t)=As5(t)—A (1) - Ay ()
—[rs @) + A5, () M, + Ay, (1) M, + Ay (£) My

1

t+7,(t)
X Ay (s)ds— ———
L ? 11 (4, (1)

1427, (t)

X Ay (t+71, (t))J A (s)ds.

141, (t)

(100)

Proof. Let x*(t) = (x;(t), (), x;(t))T be a positive w-
periodic solution of (1); then y*(t) = (y;(t), y; (t), y:(®))",
;@) = Tlocr (1 + )" x} (1)) is the positive w-periodic
solution of system (75), and let y;(t) = (y,(t), y,(t), y3(t))T be
any positive solution of system (75) with the initial conditions

(76). It follows from Lemmas 11 and 12 that there exist positive
constants T', M;, and m;, such that, for all t > T,

m; <y () <M, m; <y (t)<M,;, i=12,3 (101)

We define

Vi) = |ln ¥y, () —Iny, (t)| + |ln ¥, (t)—1ny, (t)| . (102)
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Calculating the upper right derivative of V; (t) along solutions
of (75), it follows that

2 .k .
+ _ Vi (t) _ yt_(t)
PV =) (y:‘ GG

i=1

<sgn(y, (t) =y, (1))

) sgn (y; () - y; (1))

X { AL @) () ()= (1)

—A ) (ys ) -y (1)

Y, (8 y, () )}
yi) y(@

+sgn (y; (t) = y, (1))

+B, (1) D, (1 (

X { —Ayn @) (y, ()=, 1)

N OIS GESNG))

n® »n (t)>}
¥ @)y, (1)

<-A )|y @)=y O]+ (A () + Ay (1)
X|ys (6) = y; ()] = Ay (1) |y; () = y, (1)

+D, (t) + D, (t),

+B, (1) D, (1 (

(103)
where
D, (#)
AO_RO)
[mon, O(25-25) Hio>no,
t S (t .
50D, 0 (20 - 20 00,
D, (1)
' n® n®\ .
) B 0D, (2B - ). 505 0.
H_yn®) .
B0, 0 (L5 - 2R, i 0200,

(104)

We estimate D, (t) under the following two cases:

(i) if ;' () > y,(t), then

D, (t) < yll* (tl) (y; ) =y, (1) < lmll ly; @) -y, ®)];

(105)
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(ii) if y; () < y, (1), then

BMpM M M
D, (1)< ——— (M) -y 1) < ———|y;, () -y, ().
1 (1) (2 y, (1) m, l)’z V2 |
(106)

Combining the conclusions in (i)-(ii), we obtain

— BMpM |
Dy (1) < = [y, (0) = »(0)]. (107)
1

A similar argument as in the discussion above shows that

M M

_ BMD
D, (t) < =2—2 |y (t) — y,(1)]. (108)
m,
It follows from (103), (107), and (108) that
. By'DY' ] .
D'Vi(t) < - | A, () - lyr (®) = 3, ()]
my,
MpM (109)

B;"D
—[Az(t)— lml ]|y§ ®) =y, (®)]

1
+ (A () +A, )|y () -y @)].

We define V,, (t) = [In y; (t) —In y;(t)|. Calculating the upper
right derivative of V,, (¢) along solutions of (75), it follows that

ok t . t .
;1—8 - ﬁ—gti) sgn(y; (1) = y; (1)
3

D'V, (t) = (
= sgn (y; (t) - y3 (1))
X {=As (1) ()’; (t=1,1) -y, (t - 12(1)))
+ A3 () (y) (t—1,(0) =y, (t = 1,(1)))
+A5 (1) (y, (F—-1(0) =y, (=7, (1))}

=sgn(y; (1) — y; (1))
X { - Az (1) (J’; ()= ys (t))

+ A O () -1 () - (E-11))
+ A @) (y; -1, (1) - p (-1, (1))

t

ran® [ G- 5w) du}

t=7,(t)
<-Aj(t) |)’3* () = s (t)| + Az (1)

x|y (t=1 ) =y (t =7, )]

+An @) |y (t-1 @) -y, (t -1, )

+ A5 ()

t
[ 05 gy du
t=7,(t)
(10)
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By substituting (75) into (110), we obtain

D'V (t) = =Ass (t) |5 (1) = y3 (1)]
+ Ay () |y (-1 (1) =y (E -7, )]
+ A, |y, -1 @) =y (-1, )|

J [( -3 (1)
t=1,(t)

+Asy (W) y, (u—1, (1))
+ Asy () y (u—1, (1))
~Ass (u) y3 (u—1,(1)))

x (y; (1) = y3 ()

+ A5 (1)

+ Ay (W) 3 (u)
x(yy (-1, (1))
1 (u=-1 (1))
+Asy () yy ()
x (y; (-1 (1))
~y, (u-1. (1))
— Ay (W) y; ()

x (y; (u-1,(1))
~y; (-1, (1)))] du

< =As (1) |y; (8) = y5 ()]
+ Ay @) |y (-1, ) -y, (-7, (1))]

+An O]y (-1, ®) =y, (-1, @)

t

+As;5 (1) J [(r3 (W) + A3y (u) M,

—
+As, (W) M, + Ay (1) M;)
X |y5 () = 3 )] + Ay () M,
[y; (u=1,®)=y (u-7,0)
+ As, (u) M,
x |y; (-1 (1))
—, (-7, (1))
+ Ay (u) M,
x|y3 (u=-1,(0)

—y3 (=1, (1))|] du.
(111)
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Define

Vi, (t)

' 1
B J-t—-rl(t) mAal (s+7, (1)

x|y () =y (s)| ds

' 1
' Jt—rl(t) mAsz (s+1, (1)

X |y; (s) =y, (s)|ds

t+1,(t) ot
+ J J Az (s)
t s—T,(t)

x {(r3 () + Asy () M,

+A5, (u) M, + Ayy () M)
X |y5 (u) = y3 ()] + Agy () M,
|y (u=7,®) =y (u—7,0)|
+ As, (u) My
|y; (u=1®) =y, (u-7,0)|
+ Ay (u) My
x|y; (u-1, (1))

—y3 (u—1,(1))|} duds.
(112)

It follows from (111) and (112) that, for any t > T + 1,

D" (Vy, (8) + Voo (1) < —As3 (1) [ys (8) — y5 (8)]
1

+ mAsl (t+7,(1))

1
1-1{ (1 (1))
X Ay (t+1, (1)) l)’z* t) = » (t)l

x|y @) =y (0] +

41, (t)
+ J Ay (s)ds
t

X [(r3 () + Agy () My + Ag, (1) M,

+A55 (6) M3) |y; () = y; (1)
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+ Az () M,
|yy (=71, ) =y (-7, ()]
+ Az () M, |J’2* (t-7,(1))
=2 (t -0 (t))|
+ Ass () Ms |J’3* (t-7,(1)
-y (t-1 (t))l ].
(113)
We also define
t u+t, (£)+7,(t)
VZS(t) - M3 Jt—‘rl(t) Ju+rl(t) |:A33 (S)

1
1= (1 )

X Ay (u+1 (1)

x|y; W) =y, (w)
_
1 -1 (1 ()
X Ay (u+1 (1)

+ A (s)

X |y; (W) =y, (W)| | dsdu

t w2, (1) 1
My Jt—Tz(t) sz(t) Az () 1-175 (4, (W)
x Ay (u+1, (1))
x|y; (W) - y; (w)| dsdu,

V,(t) = Vo () + Vi (£) + Vis(t) .
(114)

It follows from (112)-(114) that, forany t > T + 1,,

+ ; 1
DVa®) £ =A5 Oy ) = O+ e

X Ay (t+1, (1)) |y7 (1) =y, (1)
1

+ mAsz (t+1 (1))

x|y (6) = 3, ()]

t+7,(t)
+ {L Ay (s)ds[rs () + Ay () M,
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+As, () My + Ass () M;)

X |ys (1) = y; (1)
1
+ WAal (t+1, () M,

4T, (1) +7,(t) .

X J Asy ()ds|yy (1) =y, (1)
t+7y(t)

AL G+n )M
o (@) 2 T

t+1, (£)+1,(t)
< A s (0= 2, 0)
t

+7(t)
1

+ WA33 (t+1, (1) M,

427, (t) .
XL Az (s)ds |y (1) - ys (t)|}.

+1,(t
(115)
We now define a Lyapunov functional V(t) as
V(t) =Vi(t) + V(). (116)

Then it follows from (109), (115), and (116) that, for any ¢t >
T +1,,

3
D'V(t) < =) C®) |y (&) -y ()], (117)

i=1
where C;(t) (i = 1,2,3) are defined in (100). By hypothesis,

there exist positive constants o;, i = 1,2,3and T* > T+ 7
such thatift > T~

B(t)>a >0, i=1,2,3. (118)
Integrating both sides of (117) on interval [T, t], we have

t
T

3
YOEDY I GO -y @|ds<V(TT).  119)
i=1

It follows from (118) and (119) that

3 ot
V() + ociz J |y’ (s) =y (s)|ds <V(T"), fort>T".
i=1 41"
(120)
Therefore, V(t) is bounded on [T™, +00) and also J; Ly (s)—

¥i(s)lds < +oo (i = 1,2,3). Since y/ (¢) and y,(t) (i = 1,2,3)
are bounded for t > T, therefore, |y, (s) — y;(s)| (i = 1,2,3)
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are uniformly continuous on [T*, +00). By Lemma 13, we
have

A b 96 =tkf£x,[ [T0+a)

0<tp<t
X |xf (s) = x; (5)] ] =0,

i=1,2,3.
(121)

Therefore
tEl}loo |x/ (s) = x;(s)| =0, i=1,2,3. 122)

By Theorems 7.4 and 8.2 in [33], we know that the periodic
positive solution x™(¢) = (x7 (£), x5 (t), x5 7 is uniformly
asymptotically stable. The proof of Theorem 14 is completed.

O

4. Some Examples

The following illustrative examples will demonstrate the
effectiveness of our results.

Example 1. We consider the following delayed periodic
Lotka-Volterra predator-prey system with prey dispersal and
impulse:

X () = x, () [7 +sint — 8x; (£) — 2x; ()]
+(2+sint) (x, ) —x, @),
x5 (t) = x, (£) [5 = cost — 3x, (t) — 4x; (t)]

+(3—cost)(x; () — x, (1)),

! : i t
x5 (1) = x5 (t) [—2 +sint + 3x; (t - %) (123)

int t
+3x, <t - ﬂ) —6x5 <t— ﬂ)] ,
5 10

t#t,
Ax; () = x; (t7) = x; (8) = cux; (1),

i=1,23 k=12,..., t=t.

We fix the parameters ¢ = e /> = 1,i = 1,2,3, t;,, = t; +
2m, [0,27] N {t; } = {t;,t,}. It is easy to see that (r; - D))w =
107, (r, — Dy)w = 4m, 1w = 4m,a,, = 8, a3 = 2,ay, = 3,

19
Gy; = 4,43 = a3, = 3,033 = 6, DM =3, D) = 4,¢ = -1,
i=1,2,3, A = 2. Thus we have
M{ M, M
— [a13 (a31 + “32) A] w
(r = Dy)w - i3 +q
a33
=2n-1>0,
(124)

aé\ga; ((”1 - D))o+ Cl) + “ﬁ[“;z ((r2 - D))o+ Q)

—aMla) (Fw +¢;) =9 (10w - 1) > 0.

According to Theorem 7, we see that system (123) has at least
one positive 277-periodic solution.

Example 2. We consider another delayed periodic Lotka-
Volterra diffusive predator-prey model with impulse:

X1 (t) = x, (£) [9 — cost — (7 + 2sint) x, (t)
— (2 - cost) x5 (1)]
+(1—=cost)(x, (t) — x; (1)),
x5 (t) = x, (t) [6 + sint — (4 — cost) x, (t)
— (3 +sint) x5 ()]

+ (1 +sint) (x; (t) — x, (),

t
x; (t) = x5 (t) | -5 —cost + (2 +sint) x; (t - %)
(125)

+(5—-cost)x (t COSt)
. 10

sint
(10-smpy (- 00Y],
( sint) x; 100

t#t,

Ax; () = x; (t7) = x; () = e, (1),

i=1,23 k=12,..., t=t.

We fix the parameters ¢; = e ™ = 1,i = 1,2,3, t;,, = t; +
2m,[0, 2] N {t,} = {t;,t,}. It is easy to see that (r, — D))w =
167, (r, - D,)w = 107, 70 = 107, @l = 9,ak, = 5,a4 = 3,

L M L M L M _ I
a3 =1lay =5a, =3,ay; =4,ay; = 2,05 =3,a5 =1,
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ay =6,a%, = 4,am = 11,a,, =9,DM =2,D) =2,¢, = -3n,
i=1,2,3, A = 2. Thus we have

mw ~ [afg (aé\f + aé\g) A] W

+c
az, '
:16n_3*(3+6)*2*2n
9
-3n=m>0,

a%a; ((7’1 -D))w + Cl) + ai\faaLz (("2 -D,)w + Cz)
- aya, (Fw+¢)
=5x% 1% (161 — 37)

+9 % 4% (10m —3m) — 9 * 5 * (10 — 3m) = 27 > 0.
(126)

According to Theorem 7, we see that model (125) has at least
one positive 277-periodic solution.
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