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By using a fixed point theorem of strict-set-contraction, which is different from Gaines and Mawhin’s continuation theorem
and abstract continuation theory for 𝑘-set contraction, we established some new criteria for the existence of positive periodic
solution of the following generalized neutral delay functional differential equation with impulse: 𝑥(𝑡) = 𝑥(𝑡)[𝑎(𝑡) − 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 −

𝜏
1
(𝑡, 𝑥(𝑡))), . . . , 𝑥(𝑡 − 𝜏

𝑛
(𝑡, 𝑥(𝑡))), 𝑥


(𝑡 − 𝛾

1
(𝑡, 𝑥(𝑡))), . . . , 𝑥


(𝑡 − 𝛾

𝑚
(𝑡, 𝑥(𝑡))))], 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
; 𝑥(𝑡
+

𝑘
) = 𝑥(𝑡

−

𝑘
) + 𝜃
𝑘
(𝑥(𝑡
𝑘
)), 𝑘 ∈ 𝑍

+
. As

applications of our results, we also give some applications to several Lotka-Volterra models and new results are obtained.

1. Introduction

Many systems in physics, chemistry, biology, and information
science have impulsive dynamical behavior due to abrupt
jumps at certain instants during the evolving processes. This
complex dynamical behavior can be modeled by impulsive
differential equations. Impulsive differential equations have
become more important in recent years in some mathe-
matical models of real processes and phenomena studied in
physics, chemical technology, population dynamics, biotech-
nology, and economics; see [1–8].There has been a significant
development in impulse theory, in recent years, especially
in the area of impulsive differential equations with fixed
moments; see the monographs [9–11].

In this paper, we consider more general neutral delay
functional differential equation with impulse:

𝑥


(𝑡) = 𝑥 (𝑡) [𝑎 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))] ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
,

𝑥 (𝑡
+

𝑘
) = 𝑥 (𝑡

−

𝑘
) + 𝜃
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 ∈ 𝑍

+
,

(1)

where 𝑎 ∈ 𝐶(𝑅, 𝑅
+
), 𝜏
𝑖
(𝑡), 𝛾
𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅) (𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑚) are 𝜔-periodic functions and 𝑓 ∈ 𝐶(𝑅
2+𝑛+𝑚

, 𝑅)

is 𝜔-periodic function with respect to its first argument.
Moreover, 𝑥(𝑡+

𝑘
), 𝑥(𝑡−
𝑘
) represents the right, left limit of 𝑥(𝑡) at

the point 𝑡
𝑘
, respectively. In this paper, it is assumed that 𝑥 is

left continuous at 𝑡
𝑘
; that is, 𝑥 changes decreasingly suddenly

at times 𝑡
𝑘
. 𝜃
𝑘

∈ 𝐶(𝑅
+
, 𝑅
+
), 𝜔 > 0 is a constant, 𝑅 =

(−∞, +∞), and 𝑅
+
= [0, +∞), 𝑍

+
= {1, 2, 3, . . .}. We assume

that there exists an integer 𝑞 > 0 such that 𝑡
𝑘+𝑞

= 𝑡
𝑘
+ 𝜔,

𝜃
𝑘+𝑞

= 𝜃
𝑘
, where 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑞
< 𝜔. For the ecological

justification of (1) and the similar types refer to [8, 12–17].
In 1993, Kuang in [12] proposed an open problem (open

problem 9.2) to obtain sufficient conditions for the existence
of a positive periodic solution of the following equation:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [𝑎 (𝑡) − 𝛽 (𝑡)𝑁 (𝑡) − 𝑏 (𝑡)𝑁 (𝑡 − 𝜏 (𝑡))

− 𝑐 (𝑡)𝑁


(𝑡 − 𝜏 (𝑡))] .

(2)

In [13], Fang and Li studied model (2) and gave an answer
to the open problem 9.2 of [12]. But paper [13] required that
𝑏(𝑡) ≥ 0, 𝑐(𝑡) ≥ 0 and 𝑐



0
(𝑡) > 𝑏(𝑡), 𝛽(𝑡) ≥ 0 or 𝑐

0
(𝑡) ≤ 𝑏(𝑡),

𝛽(𝑡) ≤ 0 for 𝑡 ∈ [0, 𝜔], where 𝑐
0
(𝑡) = 𝑐(𝑡)/(1 − 𝜏


(𝑡)). In [14],
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Yang andCao studied a general neutral delaymodel of single-
species population growth:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [𝑎 (𝑡) − 𝛽 (𝑡)𝑁 (𝑡) −

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)𝑁 (𝑡 − 𝜏

𝑖
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑡)𝑁

(𝑡 − 𝛾
𝑖
(𝑡))] .

(3)

They applied the theory of coincidence degree to obtain
verifiable sufficient conditions of the existence of positive
periodic solutions of system (3). In [15], Lu considered the
following neutral functional differential equation:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [

[

𝑎 (𝑡) − 𝛽 (𝑡)𝑁 (𝑡) −

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)𝑁 (𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)𝑁

(𝑡 − 𝛾

𝑗
(𝑡))]

]

.

(4)

He obtained some sufficient conditions for the existence of
positive periodic solutions of model (4) by using the theory
of abstract continuous theorem of 𝑘-set contractive operator
and some analysis techniques. In [16], Yang and Cao used the
theory of coincidence degree to investigate a complex neutral
equation with several state-dependent delays as follows:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [𝑎 (𝑡) − 𝛽 (𝑡)𝑁 (𝑡) −

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)𝑁 (𝑡 − 𝜏

𝑖
(𝑡,𝑁 (𝑡)))

−

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑡)𝑁

(𝑡 − 𝛾
𝑖
(𝑡))] .

(5)

They also got some verifiable sufficient conditions of the
existence of positive periodic solutions of system (5). In
[17], Li and Kuang considered the periodic Lotka-Volterra
equation with state-dependent delays:

𝑑𝑥

𝑑𝑡
= 𝑥 (𝑡) [

[

𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡, 𝑥 (𝑡)))

−

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡) 𝑥

(𝑡 − 𝛾

𝑗
(𝑡, 𝑥 (𝑡)))]

]

.

(6)

They used the continuation theorem of coincidence degree
theory to obtain some sufficient and realistic conditions for
the existence of positive periodic solutions of system (6). In

[8],Wang andDai investigated the following periodic neutral
population model with delays and impulse:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [

[

𝑎 (𝑡) − 𝑒 (𝑡)𝑁 (𝑡) −

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡)𝑁 (𝑡 − 𝜎

𝑗
(𝑡))

−

𝑚

∑

𝑖=1

𝑐
𝑖
(𝑡)𝑁

(𝑡 − 𝜏
𝑖
(𝑡)) ]

]

, 𝑡 ̸= 𝑡
𝑘
,

𝑁 (𝑡
+
) = (1 + 𝜃

𝑘
)𝑁 (𝑡

𝑘
) , 𝑘 = 1, 2, . . . .

(7)

They obtained some sufficient conditions for the existence of
positive periodic solutions of model (7) by using the theory
of abstract continuous theorem of 𝑘-set contractive operator
and some analysis techniques.

Themain purpose of this paper is to establish new criteria
to guarantee the existence of positive periodic solutions of
the system (1) by using a fixed point theorem of strict-set-
contraction [18–20].

For convenience, we introduce the notation

ℎ
𝑀

= max
𝑡∈[0,𝜔]

{ℎ (𝑡)} , ℎ
𝐿
= min
𝑡∈[0,𝜔]

{ℎ (𝑡)} ,

𝛿 = lim
𝑢→0

sup ∑

𝑡≤𝑡𝑘≤𝑡+𝜔

𝜃
𝑘
(𝑢)

𝑢
, 𝜎 = 𝑒

−∫
𝜔

0
𝑎(𝑡)𝑑𝑡

,

𝐵
1
= ∫

𝜔

0

[

[

𝜎𝛽 (𝑡) + 𝜎

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) −

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)]

]

𝑑𝑡,

𝐵
2
= ∫

𝜔

0

[

[

𝛽 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)]

]

𝑑𝑡,

(8)

where ℎ(𝑡) is a continuous 𝜔-periodic function.
Throughout this paper, we assume the following.

(𝐴
1
) 𝑎, 𝜏
𝑖
, 𝛾
𝑗
∈ 𝐶(𝑅, 𝑅) are 𝜔-periodic functions. In addi-

tion, 𝑎(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜔], and 𝜎 = 𝑒
−∫
𝜔

0
𝑎(𝜉)𝑑𝜉

< 1.
(𝐴
2
) 𝑓 ∈ 𝐶(𝑅

2+𝑛+𝑚
, 𝑅) is 𝜔-periodic function with 𝑓(𝑡 +

𝜔, ⋅) = 𝑓(𝑡, ⋅), 𝑓(𝑡, 0, . . . , 0) = 0.
(𝐴
3
) There exist 𝜔-periodic functions 𝛽(𝑡), 𝑏

𝑖
(𝑡) ∈ 𝐶(𝑅,

𝑅
+
), 𝑐
𝑗
(𝑡) ∈ 𝐶

1
(𝑅, 𝑅
+
), such that

𝜎𝛽 (𝑡) + 𝜎

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) −

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡) > 0,

𝑓 (𝑡, 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
, 𝑦
1
, . . . , 𝑦

𝑚
)

−𝑓 (𝑡, 𝑥
∗

0
, 𝑥
∗

1
, . . . , 𝑥

∗

𝑛
, 𝑦
∗

1
, . . . , 𝑦

∗

𝑚
)


≤ 𝛽 (𝑡)
𝑥0 − 𝑥

∗

0



+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)

𝑥𝑖 − 𝑥
∗

𝑖

 +

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)


𝑦
𝑗
− 𝑦
∗

𝑗


,
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𝑓 (𝑡, 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
, 𝑦
1
, . . . , 𝑦

𝑚
)

≥ 𝛽 (𝑡) 𝑥
0
+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑥
𝑖
−

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡) 𝑦
𝑗
,

(9)

where 𝑡 ∈ [0, 𝜔], 𝜎|𝑦
𝑗
| ≤ 𝑥
𝑖
, 𝜎|𝑦∗
𝑗
| ≤ 𝑥
∗

𝑖
, and 𝑖 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚.

(𝐴
4
) We assume that (1 + 𝑎

𝐿
)𝜎
2
𝐵
1
/(1 − 𝜎) ≥

max
𝑡∈[0,𝜔]

{𝛽(𝑡) + ∑
𝑛

𝑖=1
𝑏
𝑖
(𝑡) + ∑

𝑚

𝑗=1
𝑐
𝑗
(𝑡)}.

(𝐴
5
) We assume that (𝑎

𝑀
− 1)𝐵

2
/𝜎(1 − 𝜎) ≤

min
𝑡∈[0,𝜔]

{𝜎𝛽(𝑡) + 𝜎∑
𝑛

𝑖=1
𝑏
𝑖
(𝑡) − ∑

𝑚

𝑗=1
𝑐
𝑗
(𝑡)}.

(𝐴
6
) We assume that ((1 − 𝜎)/𝜎

2
𝐵
1
) ∑
𝑚

𝑗=1
𝑐
𝑀

𝑗
< 1.

The paper is organized as follows. In the next section,
we give some definitions and lemmas to prove the main
results of this paper. In Section 3, we established some criteria
to guarantee the existence of at least one positive periodic
solution of system (1) by using a fixed point theorem of strict-
set-contraction. As applications in Section 4, we study some
particular cases of system (1) which have been investigated
extensively in the references mentioned previously.

2. Preliminaries

In order to obtain the existence of a periodic solution of
system (1), we first introduce some definitions and lemmas.

Definition 1 (see [17]). A function 𝑥 : 𝑅 → (0, +∞) is said
to be a positive solution of (1), if the following conditions are
satisfied:

(a) 𝑥(𝑡) is absolutely continuous on each (𝑡
𝑘
, 𝑡
𝑘+1

);
(b) for each 𝑘 ∈ 𝑍

+
, 𝑥(𝑡+
𝑘
) and 𝑥(𝑡

−

𝑘
) exist, and 𝑥(𝑡

−

𝑘
) =

𝑥(𝑡
𝑘
);

(c) 𝑥(𝑡) satisfies the first equation of (1) for almost every-
where in 𝑅 and 𝑥(𝑡

𝑘
) satisfies the second equation of

(1) at impulsive point 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
.

Definition 2 (see [18]). Let 𝑋 be a real Banach space and 𝐸 a
closed, nonempty subset of𝑋. 𝐸 is a cone provided that

(i) 𝛼𝑥 + 𝛽𝑦 ∈ 𝐸 for all 𝑥, 𝑦 ∈ 𝐸 and all 𝛼, 𝛽 ≥ 0;
(ii) 𝑥, −𝑥 ∈ 𝐸 imply 𝑥 = 0.

Definition 3 (see [18]). Let 𝐴 be a bounded subset in 𝑋.
Define 𝛼

𝑋
(𝐴) = inf{𝛿 > 0: there is a finite number of

subsets 𝐴
𝑖
⊂ 𝐴 such that 𝐴 = ⋃

𝑖
𝐴
𝑖
and diam(𝐴

𝑖
) ≤ 𝛿},

where diam(𝐴
𝑖
) denotes the diameter of the set𝐴

𝑖
; obviously,

0 ≤ 𝛼
𝑋
(𝐴) < ∞. So 𝛼

𝑋
(𝐴) is called the Kuratowski measure

of noncompactness of𝑋.

Definition 4 (see [18]). Let 𝑋, 𝑌 be two Banach spaces and
𝐷 ⊂ 𝑋; a continuous and bounded map 𝑇 : 𝐷 → 𝑌 is called
𝑘-set contractive if for any bounded set 𝑆 ⊂ 𝐷 we have

𝛼
𝑌
(𝑇 (𝑆)) ≤ 𝑘𝛼

𝑋
(𝑆) . (10)

𝑇 is called strict-set-contractive if it is 𝑘-set contractive for
some 0 ≤ 𝑘 < 1.

Definition 5 (see [19]). The set 𝐹 ∈ 𝑃𝐶
𝜔
is said to be quasieq-

uicontinuous in [0, 𝜔], if for any 𝜖 > 0, there exists 𝛿 > 0 such
that if𝑥 ∈ 𝐹, 𝑘 ∈ 𝑁

+, 𝑡
1
, 𝑡
2
∈ (𝑡
𝑘−1

, 𝑡
𝑘
)∩[0, 𝜔], and |𝑡

1
−𝑡
2
| < 𝛿,

then |𝑥(𝑡
1
) − 𝑥(𝑡

2
)| < 𝜖.

Lemma 6 (see [19]). The set 𝐹 ⊂ 𝑃𝐶
𝜔
is relatively compact if

and only if

(1) 𝐹 is bounded, that is, ‖𝑥‖ ≤ 𝑀, for each 𝑥 ∈ 𝐹, and
some𝑀 > 0;

(2) 𝐹 is quasiequicontinuous in [0, 𝜔].

Lemma 7. 𝑥(𝑡) is an 𝜔-periodic solution of (1) is equivalent to
𝑥(𝑡) is an 𝜔-periodic solution of the following equation:

𝑥 (𝑡) = ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠) 𝑓 (𝑡, 𝑥 (𝑠) ,

𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
)) ,

(11)

where

𝐺 (𝑡, 𝑠) =
𝑒
−∫
𝑠

𝑡
𝑎(𝜉)𝑑𝜉

1 − 𝑒
−∫
𝜔

0
𝑎(𝜉)𝑑𝜉

, 𝑠 ∈ [𝑡, 𝑡 + 𝜔] . (12)

Proof. Assume that 𝑥(𝑡) ∈ 𝑋 is a periodic solution of (1).
Then, we have

𝑑

𝑑𝑡
[𝑥 (𝑡) 𝑒

−∫
𝑡

0
𝑎(𝜉)𝑑𝜉

]

= 𝑒
−∫
𝑡

0
𝑎(𝜉)𝑑𝜉

𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡)))) , 𝑡 ̸= 𝑡

𝑘
.

(13)

Integrating the above equation over [𝑡, 𝑡 + 𝜔], we can have

𝑥 (𝑠) 𝑒
−∫
𝑠

0
𝑎(𝜉)𝑑𝜉



𝑡𝑚1
+𝑛𝜔

𝑡

+ 𝑥 (𝑠) 𝑒
−∫
𝑠

0
𝑎(𝜉)𝑑𝜉



𝑡𝑚2
+𝑛𝜔

𝑡𝑚1
+𝑛𝑤

+ ⋅ ⋅ ⋅ + 𝑥 (𝑠) 𝑒
−∫
𝑠

0
𝑎(𝜉)𝑑𝜉



𝑡+𝜔

𝑡𝑚𝑞
+𝑛𝜔
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= ∫

𝑡+𝜔

𝑡

[𝑥 (𝑠) 𝑒
−∫
𝑠

0
𝑎(𝜉)𝑑𝜉

× 𝑓(𝑡, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠,

(14)
where 𝑡

𝑚𝑘
+ 𝑛𝜔 ∈ (𝑡, 𝑡 + 𝜔),𝑚

𝑘
∈ {1, 2, . . . , 𝑞}, 𝑘 = 1, 2, . . . , 𝑞,

𝑛 ∈ 𝑍
+
. Therefore,

𝑥 (𝑡) 𝑒
−∫
𝑡

0
𝑎(𝜉)𝑑𝜉

[1 − 𝑒
−∫
𝑡+𝜔

𝑡
𝑎(𝜉)𝑑𝜉

]

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

Δ𝑥 (𝑡
𝑚𝑘
) 𝑒
−∫

𝑡𝑚𝑘
+𝑛𝜔

0
𝑎(𝜉)𝑑𝜉

= ∫

𝑡+𝜔

𝑡

[𝑥 (𝑠) 𝑒
−∫
𝑠

0
𝑎(𝜉)𝑑𝜉

× 𝑓(𝑡, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠,

(15)

which can be transformed into

𝑥 (𝑡) = ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓 (𝑡, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))))] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
)) .

(16)

Thus, 𝑥 is a periodic solution for (11).
If 𝑥(𝑡) ∈ 𝐸 is a periodic solution of (11), for any 𝑡 = 𝑡

𝑘
,

from (11) we have

𝑥


(𝑡) =
𝑑

𝑑𝑡
{∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓 (𝑡, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))))] 𝑑𝑠}

= [𝐺 (𝑡, 𝑡 + 𝜔) 𝑥 (𝑡 + 𝜔)

× 𝑓 (𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔) ,

𝑥 (𝑡 + 𝜔 − 𝜏
1
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))) , . . . ,

𝑥 (𝑡 + 𝜔 − 𝜏
𝑛
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))) ,

𝑥

(𝑡 + 𝜔 − 𝛾

1
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))) , . . . ,

𝑥

(𝑡 + 𝜔 − 𝛾

𝑚
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))))

− 𝐺 (𝑡, 𝑡) 𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))] + 𝑎 (𝑡) 𝑥 (𝑡)

= 𝑥 (𝑡) [𝑎 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))] .

(17)

For any 𝑡 = 𝑡
𝑗
, 𝑗 ∈ 𝑍

+
, we have from (11) that

𝑥 (𝑡
+

𝑗
) − 𝑥 (𝑡

𝑗
) = ∫

𝑡𝑗+𝜔

𝑡𝑗

[𝐺 (𝑡
+

𝑗
, 𝑠) − 𝐺 (𝑡

𝑗
, 𝑠)] 𝑥 (𝑠)

× 𝑓 (𝑡, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠)))) 𝑑𝑠

+ ∑

𝑡
+

𝑗
≤𝑡𝑘<𝑡𝑗+𝜔

𝐺(𝑡
+

𝑗
, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))

− ∑

𝑡𝑗≤𝑡𝑘<𝑡𝑗+𝜔

𝐺(𝑡
𝑗
, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))

= 𝜃
𝑘
(𝑥 (𝑡
𝑘
)) .

(18)

Hence 𝑥(𝑡) is a positive 𝜔-periodic solution of (1). Thus we
complete the proof of Lemma 7.

Lemma 8 (see [18–20]). Let 𝐸 be a cone of the real Banach
space 𝑋 and 𝐸

𝑟,𝑅
= {𝑥 ∈ 𝐸 : 𝑟 ≤ ‖𝑥‖ ≤ 𝑅} with 0 < 𝑟 < 𝑅.

Assume that 𝐴 : 𝐸
𝑟,𝑅

→ 𝐸 is strict-set-contractive such that
one of the following two conditions is satisfied:

(a) 𝐴𝑥 ≰ 𝑥, ∀𝑥 ∈ 𝐸, ‖𝑥‖ = 𝑟 and 𝐴𝑥 ̸≥ 𝑥, ∀𝑥 ∈ 𝐸,
‖𝑥‖ = 𝑅;
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(b) 𝐴𝑥 ̸≥ 𝑥, ∀𝑥 ∈ 𝐸, ‖𝑥‖ = 𝑟 and 𝐴𝑥 ≰ 𝑥, ∀𝑥 ∈ 𝐸, ‖𝑥‖ =

𝑅.

Then 𝐴 has at least one fixed point in 𝐸
𝑟,𝑅
.

In order to apply Lemma 8 to system (1), we set

𝑃𝐶 (𝑅) = {𝑥 : 𝑅 → 𝑅 | 𝑥 ∈ 𝐶 ((𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑅) ,

∃𝑥 (𝑡
−

𝑘
) = 𝑥 (𝑡

𝑘
) , 𝑥 (𝑡

+

𝑘
) , 𝑘 ∈ 𝑍

+
, 𝑡 ∈ 𝑅} ,

𝑃𝐶
1

(𝑅) = {𝑥 : 𝑅 → 𝑅 | 𝑥 ∈ 𝐶
1
((𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑅) ,

∃𝑥

(𝑡
−

𝑘
) = 𝑥

(𝑡
𝑘
) , 𝑥 (𝑡

+

𝑘
) , 𝑘 ∈ 𝑍

+
, 𝑡 ∈ 𝑅} .

(19)

Define

𝑋 = {𝑥 : 𝑥 ∈ 𝑃𝐶 (𝑅) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡)} (20)

with the norm defined by ‖𝑥‖ = max
𝑡∈[0,𝜔]

{|𝑥(𝑡)|} and

𝑌 = {𝑥 : 𝑥 ∈ 𝑃𝐶
1

(𝑅) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡) , 𝑡 ∈ 𝑅} (21)

with the norm defined by ‖𝑥‖
1
= max{‖𝑥‖, ‖𝑥‖}.Then𝑋 and

𝑌 are both Banach spaces. Define the cone 𝐸 in 𝑌 by

𝐸 = {𝑥 : 𝑥 ∈ 𝑃𝐶
1

(𝑅) | 𝑥 (𝑡) ≥ 𝜎‖𝑥‖
1
, 𝑡 ∈ [0, 𝜔]} . (22)

Let the map 𝜙 be defined by

(𝜙𝑥) (𝑡) = ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠)))) ] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
)) ,

(23)

where 𝑥 ∈ 𝐸, 𝑡 ∈ 𝑅, and𝐺(𝑡, 𝑠) is defined by (12). It is obvious
to see that 𝐺(𝑡 + 𝜔, 𝑠 + 𝜔) = 𝐺(𝑡, 𝑠), 𝜕𝐺(𝑡, 𝑠)/𝜕𝑡 = 𝑎(𝑡)𝐺(𝑡, 𝑠),
𝐺(𝑡, 𝑡 + 𝜔) − 𝐺(𝑡, 𝑡) = −1, and

𝜎

1 − 𝜎
≤ 𝐺 (𝑡, 𝑠) ≤

1

1 − 𝜎
, 𝑠 ∈ [𝑡, 𝑡 + 𝜔] . (24)

In what follows, we will give some lemmas concerning 𝐸 and
𝜙 defined by (22) and (23), respectively.

Lemma 9. Assume that (𝐴
1
)–(𝐴
4
) hold.

(i) If 𝑎𝑀 ≤ 1, then 𝜙 : 𝐸 → 𝐸 is well defined.
(ii) If (𝐴

5
) holds and 𝑎

𝑀
> 1, then 𝜙 : 𝐸 → 𝐸 is well

defined.

Proof. For any 𝑥 ∈ 𝐸, it is clear that 𝜙𝑥 ∈ 𝑃𝐶
1
(𝑅). From (23),

for 𝑡 ∈ [0, 𝜔], we have

(𝜙𝑥) (𝑡 + 𝜔)

= ∫

𝑡+2𝜔

𝑡+𝜔

[𝐺 (𝑡 + 𝜔, 𝑠) 𝑥 (𝑠)

× 𝑓(𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡+𝜔≤𝑡𝑘<𝑡+2𝜔

𝐺 (𝑡 + 𝜔, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))

= ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡 + 𝜔, 𝑢 + 𝜔) 𝑥 (𝑢 + 𝜔)

× 𝑓(𝑢 + 𝜔, 𝑥 (𝑢 + 𝜔) ,

𝑥 (𝑢 + 𝜔 − 𝜏
1
(𝑢 + 𝜔, 𝑥 (𝑢 + 𝜔))) , . . . ,

𝑥 (𝑢 + 𝜔 − 𝜏
𝑛
(𝑢 + 𝜔, 𝑥 (𝑢 + 𝜔))) ,

𝑥

(𝑢 + 𝜔 − 𝛾

1
(𝑢 + 𝜔, 𝑥 (𝑢 + 𝜔))) , . . . ,

𝑥

(𝑢 + 𝜔 − 𝛾

𝑚
(𝑢 + 𝜔, 𝑥 (𝑢 + 𝜔))) )] 𝑑𝑢

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))

= ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓(𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
)) = (𝜙𝑥) (𝑡) .

(25)

That is, (𝜙𝑥)(𝑡 + 𝜔) = (𝜙𝑥)(𝑡), 𝑡 ∈ [0, 𝜔]. So 𝜙𝑥 ∈ 𝑌. In view
of (𝐴
3
), for 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜔], we have

𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) , 𝑥


(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))
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≥ 𝛽 (𝑡) 𝑥 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡, 𝑥 (𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑡) 𝑥

(𝑡 − 𝛾

𝑗
(𝑡, 𝑥 (𝑡)))

≥ 𝜎𝛽 (𝑡)

𝑥

+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝜎


𝑥

−

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑡)


𝑥


=

𝑥

[

[

𝜎𝛽 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝜎 −

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑡)]

]

> 0,

(26)

𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) , 𝑥


(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))

≤


𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏

1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))) ) − 𝑓 (𝑡, 0, . . . , 0)



≤ 𝛽 (𝑡) 𝑥 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡, 𝑥 (𝑡)))

+

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑡) 𝑥

(𝑡 − 𝛾

𝑗
(𝑡, 𝑥 (𝑡))) .

(27)

Therefore, for 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜔], we find

𝜙𝑥
 = max
𝑡∈[0,𝜔]

{
𝜙𝑥 (𝑡)

}

= max
𝑡∈[0,𝜔]

{∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓(𝑠, 𝑥 (𝑠) ,

𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))}

≤
1

1 − 𝜎
{∫

𝜔

0

[𝑥 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) ,

𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝜃
𝑘
(𝑥 (𝑡
𝑘
))} .

(28)

Furthermore, for 𝑥 ∈ 𝐸, 𝑡 ∈ [0, 𝜔], we have

(𝜙𝑥) (𝑡)

≥
𝜎

1 − 𝜎
{∫

𝑡+𝜔

𝑡

[𝑥 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) ,

𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝜃
𝑘
(𝑥 (𝑡
𝑘
))}

=
𝜎

1 − 𝜎
{∫

𝜔

0

[𝑥 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) ,

𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝜃
𝑘
(𝑥 (𝑡
𝑘
))} ≥ 𝜎

𝜙𝑥
 .

(29)

Now, we show that (𝜙𝑥)(𝑡) ≥ 𝜎‖𝜙𝑥‖, 𝑡 ∈ [0, 𝜔].
On the other hand, from (23), we obtain

(𝜙𝑥)


(𝑡) = 𝐺 (𝑡, 𝑡 + 𝜔) 𝑥 (𝑡 + 𝜔)

× 𝑓(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔) ,

𝑥 (𝑡 + 𝜔 − 𝜏
1
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))) , . . . ,

𝑥 (𝑡 + 𝜔 − 𝜏
𝑛
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))) ,
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𝑥

(𝑡 + 𝜔 − 𝛾

1
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))) , . . . ,

𝑥

(𝑡 + 𝜔 − 𝛾

𝑚
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))) )

− 𝐺 (𝑡, 𝑡) 𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))) )

+ 𝑎 (𝑡) (𝜙𝑥) (𝑡)

= 𝑎 (𝑡) (𝜙𝑥) (𝑡)

− 𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) ,

𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))) ) .

(30)

It follows from (29) and (30) that if (𝜙𝑥)(𝑡) ≥ 0, then

(𝜙𝑥)


(𝑡) ≤ 𝑎 (𝑡) (𝜙𝑥) (𝑡) ≤ 𝑎
𝑀
(𝜙𝑥) (𝑡) ≤ (𝜙𝑥) (𝑡) . (31)

On the other hand, from (30) and (𝐴
4
), if (𝜙𝑥)(𝑡) < 0, then

−(𝜙𝑥)


(𝑡) = − 𝑎 (𝑡) (𝜙𝑥) (𝑡)

+ 𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) ,

𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))) )

≤ ‖𝑥‖
2

1

[

[

𝛽 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑡)]

]

− 𝑎
𝐿
(𝜙𝑥) (𝑡)

≤ (1 + 𝑎
𝐿
)

𝜎
2

1 − 𝜎
‖𝑥‖
2

1

× ∫

𝑡+𝜔

𝑡

[

[

𝛽 (𝑠) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠) −

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑠)]

]

𝑑𝑠

− 𝑎
𝐿
(𝜙𝑥) (𝑡)

= (1 + 𝑎
𝐿
)∫

𝑡+𝜔

𝑡

𝜎

1 − 𝜎
𝜎‖𝑥‖
1

× [

[

𝛽 (𝑠) ‖𝑥‖
1
+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠) ‖𝑥‖

1

−

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑠) ‖𝑥‖

1
]

]

𝑑𝑠

− 𝑎
𝐿
(𝜙𝑥) (𝑡)

≤ (1 + 𝑎
𝐿
)∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× [𝛽 (𝑡) 𝑥 (𝑠) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

−

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑡) 𝑥

(𝑠 − 𝛾

𝑗
(𝑠))]

]

𝑑𝑠

− 𝑎
𝐿
(𝜙𝑥) (𝑡)

= (1 + 𝑎
𝐿
)∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠)))) 𝑑𝑠

− 𝑎
𝐿
(𝜙𝑥) (𝑡)

= (1 + 𝑎
𝐿
) (𝜙𝑥) (𝑡) − 𝑎

𝐿
(𝜙𝑥) (𝑡) = (𝜙𝑥) (𝑡) .

(32)

It follows from (31) and (32) that ‖(𝜙𝑥)‖ ≤ ‖𝜙𝑥‖. So ‖𝜙𝑥‖
1
=

‖𝜙𝑥‖
0
. By (29) we have (𝜙𝑥)(𝑡) ≥ 𝜎‖𝜙𝑥‖

1
. Hence, 𝜙𝑥 ∈ 𝐸.

This completes the proof of (i).
(ii) In view of the proof of (i), we only need to prove that

(𝜙𝑥)

(𝑡) ≥ 0 implies (𝜙𝑥)(𝑡) ≤ (𝜙𝑥)(𝑡). From (23), (26), (A

3
),

and (A
5
), we have

(𝜙𝑥)


(𝑡) = 𝑎 (𝑡) (𝜙𝑥) (𝑡) − 𝑥 (𝑡)

× 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))

≤ 𝑎 (𝑡) (𝜙𝑥) (𝑡) − 𝜎‖𝑥‖
1
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× 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))

≤ 𝑎
𝑀
(𝜙𝑥) (𝑡) − 𝜎‖𝑥‖

2

1

× [

[

𝜎𝛽 (𝑡) + 𝜎

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑡)]

]

≤ 𝑎
𝑀
(𝜙𝑥) (𝑡) − 𝜎‖𝑥‖

2

1

𝑎
𝑀

− 1

𝜎 (1 − 𝜎)

× ∫

𝜔

0

[

[

𝛽 (𝑠) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑠)]

]

𝑑𝑠

= 𝑎
𝑀
(𝜙𝑥) (𝑡) − (𝑎

𝑀
− 1)

× ∫

𝑡+𝜔

𝑡

1

1 − 𝜎
‖𝑥‖
1
[

[

𝛽 (𝑠) ‖𝑥‖
1
+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠) ‖𝑥‖

1

+

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑠) ‖𝑥‖

1
]

]

𝑑𝑠

≤ 𝑎
𝑀
(𝜙𝑥) (𝑡) − (𝑎

𝑀
− 1)

× ∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× [

[

𝛽 (𝑠) 𝑥 (𝑠) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠) 𝑥 (𝑠 − 𝜏

𝑖
(𝑠, 𝑥 (𝑠)))

+

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑠) 𝑥 (𝑠 − 𝛾

𝑗
(𝑠, 𝑥 (𝑠)))]

]

𝑑𝑠

≤ 𝑎
𝑀
(𝜙𝑥) (𝑡) − (𝑎

𝑀
− 1)

× {∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠)))) 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))}

= 𝑎
𝑀
(𝜙𝑥) (𝑡) − (𝑎

𝑀
− 1) (𝜙𝑥) (𝑡) = (𝜙𝑥) (𝑡) .

(33)

The proof of (ii) is complete. Thus we complete the proof of
Lemma 9.

Lemma 10. Assume that (𝐴
1
)–(𝐴
4
) hold and 𝑅∑

𝑛

𝑗=1
𝑐
𝑀

𝑗
< 1.

(i) If 𝑎𝑀 ≤ 1, then 𝜙 : 𝐸⋂Ω
𝑅

→ 𝐸 is strict-set-con-
tractive.

(ii) If (𝐴
5
) holds and 𝑎

𝑀
> 1, then 𝜙 : 𝐸⋂Ω

𝑅
→ 𝐸 is

strict-set-contractive,

whereΩ
𝑅
= {𝑥 ∈ 𝑌 : |𝑥|

1
< 𝑅}.

Proof. We only need to prove (i), since the proof of (ii) is
similar. It is easy to see that 𝜙 is continuous and bounded.
Now we prove that a 𝛼

𝑌
(𝜙(𝑆)) ≤ 𝑅∑

𝑛

𝑗=1
𝑐
𝑀

𝑗
𝛼
𝑌
(𝑆) for any

bounded set 𝑆 ∈ Ω
𝑅
. Let 𝜂 = 𝛼

𝑌
(𝑆); then, for any positive

number 𝜖 < 𝑅∑
𝑛

𝑗=1
𝑐
𝑀

𝑗
𝜂, there is a finite family of subsets {𝑆

𝑖
}

satisfying 𝑆 = ⋃
𝑖
𝑆
𝑖
with diam(𝑆

𝑖
) ≤ 𝜂 + 𝜖. Therefore,

𝑥 − 𝑦
1 ≤ 𝜂 + 𝜖, for any 𝑥, 𝑦 ∈ 𝑆

𝑖
. (34)

As 𝑆 and 𝑆
𝑖
are precompact in𝑋, it follows that there is a finite

family of subsets {𝑆
𝑖𝑗
} of 𝑆
𝑖
such that 𝑆

𝑖
= ⋃
𝑗
𝑆
𝑖𝑗
and

𝑥 − 𝑦
0 ≤ 𝜖, for any 𝑥, 𝑦 ∈ 𝑆

𝑖𝑗
. (35)

In addition, for any 𝑥 ∈ 𝑆 and 𝑡 ∈ [0, 𝜔], we have

(𝜙𝑥) (𝑡) = ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓(𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))

≤
𝑅
2

1 − 𝜎
∫

𝜔

0

[

[

𝛽 (𝑠) +

𝑛

∑

𝑗=1

𝑏
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑐
𝑗
(𝑠)]

]

𝑑𝑠

+
1

1 − 𝜎
∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝜃
𝑘
(𝑥 (𝑡
𝑘
)) := Δ,

(36)
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(𝜙𝑥)


(𝑡)

=


𝑎 (𝑡) (𝜙𝑥) (𝑡) − 𝑥 (𝑡)

× 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))))



≤ 𝑎
𝑀
Δ + 𝑅

2
(𝛽
𝑀

+

𝑛

∑

𝑖=1

𝑏
𝑀

𝑖
+

𝑚

∑

𝑗=1

𝑐
𝑀

𝑗
) .

(37)

Hence,

(𝜙𝑥)
 ≤ Δ,


(𝜙𝑥)


≤ 𝑎
𝑀
Δ + 𝑅

2
(𝛽
𝑀

+

𝑛

∑

𝑖=1

𝑏
𝑀

𝑖
+

𝑚

∑

𝑗=1

𝑐
𝑀

𝑗
) .

(38)

Applying the Arzela-Ascoli theorem, we know that 𝜙(𝑆) is
precompact in𝑋.Then, there is a finite family of subsets {𝑆

𝑖𝑗𝑘
}

of 𝑆
𝑖𝑗
such that 𝑆

𝑖𝑗
= ⋃
𝑘
𝑆
𝑖𝑗𝑘

and

𝜙𝑥 − 𝜙𝑦
0 ≤ 𝜖, for any 𝑥, 𝑦 ∈ 𝑆

𝑖𝑗𝑘
. (39)

From (34)–(39) and (𝐴
3
), for any 𝑥, 𝑦 ∈ 𝑆

𝑖𝑗𝑘
, we have


(𝜙𝑥)


− (𝜙𝑦)


= max
𝑡∈[0,𝜔]

{


𝑎 (𝑡) (𝜙𝑥) (𝑡) − 𝑎 (𝑡) (𝜙𝑦) (𝑡) − 𝑥 (𝑡)

× 𝑓(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))) )

+ 𝑦 (𝑡) 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏
1
(𝑡, 𝑦 (𝑡))) , . . . ,

𝑦 (𝑡 − 𝜏
𝑛
(𝑡, 𝑦 (𝑡))) ,

𝑦

(𝑡 − 𝛾
1
(𝑡, 𝑦 (𝑡))) , . . . ,

𝑦

(𝑡 − 𝛾
𝑚
(𝑡, 𝑦 (𝑡))) )


}

≤ max
𝑡∈[0,𝜔]

{
𝑎 (𝑡) ((𝜙𝑥) (𝑡) − (𝜙𝑦) (𝑡))

}

+ max
𝑡∈[0,𝜔]

{


𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏

1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))) )

− 𝑦 (𝑡) 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏
1
(𝑡, 𝑦 (𝑡))) , . . . ,

𝑦 (𝑡 − 𝜏
𝑛
(𝑡, 𝑦 (𝑡))) ,

𝑦

(𝑡 − 𝛾
1
(𝑡, 𝑦 (𝑡, 𝑦 (𝑡)))) , . . . ,

𝑦

(𝑡 − 𝛾
𝑚
(𝑡, 𝑦 (𝑡))) )


}

≤ 𝑎
𝑀 (𝜙𝑥) − (𝜙𝑦)



+ max
𝑡∈[0,𝜔]

{


𝑥 (𝑡) [𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏

1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥 (𝑡 − 𝜏
𝑛
(𝑡, 𝑥 (𝑡))) ,

𝑥

(𝑡 − 𝛾
1
(𝑡, 𝑥 (𝑡))) , . . . ,

𝑥

(𝑡 − 𝛾
𝑚
(𝑡, 𝑥 (𝑡))) )

− 𝑓(𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏
1
(𝑡, 𝑦 (𝑡))) , . . . ,

𝑦 (𝑡 − 𝜏
𝑛
(𝑡, 𝑦 (𝑡))) ,

𝑦

(𝑡 − 𝛾
1
(𝑡, 𝑦 (𝑡, 𝑦 (𝑡)))) , . . . ,

𝑦

(𝑡 − 𝛾
𝑚
(𝑡, 𝑦 (𝑡))) )]


}

+ max
𝑡∈[0,𝜔]

{


[𝑥 (𝑡) − 𝑦 (𝑡)]

× 𝑓(𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏
1
(𝑡, 𝑦 (𝑡))) , . . . ,

𝑦 (𝑡 − 𝜏
𝑛
(𝑡, 𝑦 (𝑡))) ,

𝑦

(𝑡 − 𝛾
1
(𝑡, 𝑦 (𝑡, 𝑦 (𝑡)))) , . . . ,

𝑦

(𝑡 − 𝛾
𝑚
(𝑡, 𝑦 (𝑡))) )]


}

≤ 𝑎
𝑀 (𝜙𝑥) − (𝜙𝑦)



+ 𝑅max
𝑡∈[0,𝜔]

{𝛾 (𝑡)
𝑥 (𝑡) − 𝑦 (𝑡)



+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)


𝑥 (𝑡 − 𝜏

𝑖
(𝑡, 𝑥 (𝑡)))

−𝑦 (𝑡 − 𝜏
𝑖
(𝑡, 𝑦 (𝑡)))
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+

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)


𝑥

(𝑡 − 𝛾

𝑗
(𝑡, 𝑥 (𝑡)))

−𝑦

(𝑡 − 𝛾

𝑗
(𝑡, 𝑦 (𝑡)))


}

𝜖max
𝑡∈[0,𝜔]

{{

{{

{

𝛽 (𝑡) 𝑦 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡, 𝑦 (𝑡)))

+

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)


𝑦

(𝑡 − 𝛾

𝑗
(𝑡, 𝑦 (𝑡)))



}}

}}

}

≤ 𝑎
𝑀
𝜖 + 𝑅𝜖(𝛽

𝑀
+

𝑛

∑

𝑖=1

𝑏
𝑀

𝑖
) + 𝑅

𝑚

∑

𝑗=1

𝑐
𝑀

𝑗
(𝜖 + 𝜂)

+ 𝑅𝜖∑(𝛽
𝑀

+

𝑛

∑

𝑖=1

𝑏
𝑀

𝑖
+

𝑚

∑

𝑗=1

𝑐
𝑀

𝑗
)

= 𝜂(

𝑚

∑

𝑗=1

𝑐
𝑀

𝑗
𝑅) + Γ𝜖,

(40)

where

Γ := 𝑎
𝑀

+ 2𝑅(𝛽
𝑀

+

𝑛

∑

𝑖=1

𝑏
𝑀

𝑖
+

𝑚

∑

𝑗=1

𝑐
𝑀

𝑗
) . (41)

From (40) we obtain

𝜙𝑥 − 𝜙𝑦
1 ≤ 𝜂(

𝑚

∑

𝑗=1

𝑐
𝑀

𝑗
𝑅) + Γ𝜖, for any 𝑥, 𝑦 ∈ 𝑆

𝑖𝑗𝑘
.

(42)

As 𝜖 is arbitrary small, it follows that

𝛼
𝑌
(𝜙 (𝑆)) ≤ (𝑅

𝑛

∑

𝑗=1

𝑐
𝑀

𝑗
)𝛼
𝑌
(𝑆) . (43)

Therefore, 𝜙 is strict-set-contractive. The proof of Lemma 10
is complete.

Lemma 11. Assume that (𝐴
1
)–(𝐴
4
) hold.

(i) If 𝑎𝑀 ≤ 1, then 𝑥 is a positive 𝜔-periodic solution
of model (1), where 𝑥 is a nonzero fixed point of the
operator 𝜙 on 𝐸.

(ii) If (𝐴
5
) holds and𝑎𝑀 > 1, then𝑥 is a positive𝜔-periodic

solution of model (1), where 𝑥 is a nonzero fixed point
of the operator 𝜙 on 𝐸.

3. Main Results

In this section, we will study the existence of positive 𝜔-
periodic solutions of system (1).

Theorem 12. Assume that (𝐴
1
)–(𝐴
4
), and (𝐴

6
) hold.

(i) If 𝑎𝑀 ≤ 1, then system (1) has at least one positive 𝜔-
periodic solution.

(ii) If (𝐴
5
) holds and 𝑎

𝑀
> 1, then system (1) has at least

one positive 𝜔-periodic solution.

Proof. We only need to prove (i), since the proof of (ii) is
similar. Let

𝑅 =
1 − 𝜎

𝜎2𝐵
1

, 0 < 𝑟 <
𝜎 (1 − 𝜎) − 𝜉

𝐵
2

. (44)

Then it is easy to see that 0 < 𝑟 < 𝑅. From Lemmas 9 and 10,
we know that 𝜙 is strict-set-contractive on𝐸

𝑟,𝑅
. By Lemma 11,

we see that if there exists 𝑥∗ ∈ 𝐸 such that 𝜙𝑥∗ = 𝑥
∗, then 𝑥

∗

is one positive𝜔-periodic solution of system (1). Now, we will
prove that condition (b) of Lemma 8 holds.

First, we prove that 𝑇𝑥 ̸≥ 𝑥, ∀𝑥 ∈ 𝐸, ‖𝑥‖
1
< 𝑟. Otherwise,

there exist 𝑥 ∈ 𝐸, ‖𝑥‖
1
< 𝑟, such that 𝑇𝑥 ≥ 𝑥. So ‖𝑥‖ > 0 and

𝜙𝑥 − 𝑥 ≥ 0, which implies that

(𝜙𝑥) (𝑡) − 𝑥 (𝑡) ≥ 𝜎
𝜙𝑥 − 𝑥

1 ≥ 0, for any 𝑡 ∈ [0, 𝜔] .

(45)

Moreover, for 𝑡 ∈ [0, 𝜔], we have

(𝜙𝑥) (𝑡) = ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))))] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))

≤
𝑟

1 − 𝜎
‖𝑥‖

×
{

{

{

∫

𝜔

0

[

[

𝛽 (𝑠) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠) +

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑠)]

]

𝑑𝑠 + 𝜉
}

}

}

≤
𝐵
2
𝑟 + 𝜉

1 − 𝜎
‖𝑥‖ ≤ 𝜎 ‖𝑥‖ .

(46)

In view of (45) and (46), we obtain

‖𝑥‖ ≤
𝜙𝑥

 ≤ 𝜎 ‖𝑥‖ < ‖𝑥‖ , (47)

which is a contradiction.
Finally, we prove that 𝜙𝑥 ≰ 𝑥, ∀𝑥 ∈ 𝐸, ‖𝑥‖

1
= 𝑅. For this

case, for the sake of contradiction, suppose that there exist
𝑥 ∈ 𝐸, ‖𝑥‖

1
= 𝑅 such that 𝜙𝑥 ≤ 𝑥. Furthermore, for any

𝑡 ∈ [0, 𝜔], we have

𝑥 (𝑡) − 𝜙𝑥 (𝑡) ≥ 𝜎
𝑥 − 𝜙𝑥

 ≥ 0, for any 𝑡 ∈ [0, 𝜔] . (48)
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In addition, for any 𝑡 ∈ [0, 𝜔], we find

(𝜙𝑥) (𝑡) = ∫

𝑡+𝜔

𝑡

[𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

× 𝑓(𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥 (𝑠 − 𝜏
𝑛
(𝑠, 𝑥 (𝑠))) ,

𝑥

(𝑠 − 𝛾
1
(𝑠, 𝑥 (𝑠))) , . . . ,

𝑥

(𝑠 − 𝛾
𝑚
(𝑠, 𝑥 (𝑠))) )] 𝑑𝑠

+ ∑

𝑡≤𝑡𝑘<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝜃
𝑘
(𝑥 (𝑡
𝑘
))

>
𝜎
2

1 − 𝜎
‖𝑥‖
2

× ∫

𝜔

0

[

[

𝜎𝛽 (𝑠) + 𝜎

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠) −

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑠)]

]

𝑑𝑠

=
𝜎
2

1 − 𝜎
𝐵
1
𝑅
2
= 𝑅,

(49)

which is a contradiction.Therefore, condition (b) of Lemma 8
holds. By Lemma 8, we see that 𝜙 has at least one nonzero
fixed point in 𝐸. Thus, the system (11) has at least one positive
𝜔-periodic solution.Therefore, it follows from Lemma 7 that
system (1) has a positive 𝜔-periodic solution. The proof of
Theorem 12 is complete.

4. Applications

In this section, we apply the result obtained in the previous
section to some periodic population models with impulses
which are mentioned in the first section.

First, we consider a general neutral delay model of single-
species population growth with impulse:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [𝑎 (𝑡) − 𝛽 (𝑡)𝑁 (𝑡) −

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)𝑁 (𝑡 − 𝜏

𝑖
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑡)𝑁

(𝑡 − 𝛾
𝑖
(𝑡))] , 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
,

𝑁 (𝑡
+

𝑘
) = 𝑁 (𝑡

−

𝑘
) + 𝜃
𝑘
(𝑁 (𝑡
𝑘
)) , 𝑘 ∈ 𝑍

+
,

(50)

and we investigate a complex neutral equation with several
state-dependent delays and impulse:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [𝑎 (𝑡) − 𝛽 (𝑡)𝑁 (𝑡)

−

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)𝑁 (𝑡 − 𝜏

𝑖
(𝑡,𝑁 (𝑡)))

−

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑡)𝑁

(𝑡 − 𝛾
𝑖
(𝑡,𝑁 (𝑡)))] ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
,

𝑁 (𝑡
+

𝑘
) = 𝑁 (𝑡

−

𝑘
) + 𝜃
𝑘
(𝑁 (𝑡
𝑘
)) , 𝑘 ∈ 𝑍

+
.

(51)

For convenience, we list several assumptions:
(𝐴
∗

1
), (𝐴∗
2
), (𝐴∗
3
), and (𝐴

∗

4
) are the same as (𝐴

1
), (𝐴
4
),

(𝐴
5
), and (𝐴

6
), respectively;

(𝐴
∗

5
) 𝛽(𝑡), 𝑏

𝑖
(𝑡), 𝑐
𝑖
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) (𝑖 = 1, 2, . . . , 𝑛) are

𝜔-periodic functions and

𝜎𝛽 (𝑡) + 𝜎

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) −

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑡) > 0, 𝑡 ∈ [0, 𝜔] . (52)

Theorem 13. Assume (𝐴∗
1
)–(𝐴∗
3
), (𝐴
∗

5
) hold.

(i) If 𝑎𝑀 ≤ 1, then systems (50) and (51) have at least one
positive 𝜔-periodic solution.

(ii) If (𝐴∗
5
) holds and 𝑎

𝑀
> 1, then systems (50) and (51)

have at least one positive 𝜔-periodic solution.

Proof. The proof is similar to that ofTheorem 12; we omit the
details here.

Second, we consider a general neutral delay model of
single-species population growth with impulse:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [

[

𝑎 (𝑡) − 𝛽 (𝑡)𝑁 (𝑡)

−

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)𝑁 (𝑡 − 𝜏

𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)𝑁

(𝑡 − 𝛾

𝑗
(𝑡))]

]

,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
,

𝑁 (𝑡
+

𝑘
) = 𝑁 (𝑡

−

𝑘
) + 𝜃
𝑘
(𝑁 (𝑡
𝑘
)) , 𝑘 ∈ 𝑍

+
,

(53)

and we investigate a periodic Lotka-Volterra equation with
state-dependent delays and impulse:

𝑑𝑁

𝑑𝑡
= 𝑁 (𝑡) [

[

𝑟 (𝑡) − 𝑎 (𝑡)𝑁 (𝑡)

−

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)𝑁 (𝑡 − 𝜏

𝑖
(𝑡,𝑁 (𝑡)))

−

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡)𝑁

(𝑡 − 𝛾

𝑗
(𝑡,𝑁 (𝑡)))]

]

,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
,

𝑁 (𝑡
+

𝑘
) = 𝑁 (𝑡

−

𝑘
) + 𝜃
𝑘
(𝑁 (𝑡
𝑘
)) , 𝑘 ∈ 𝑍

+
.

(54)
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For convenience, we list several assumptions:

(𝐻
1
), (𝐻
2
), (𝐻
3
), and (𝐻

4
) are the same as (𝐴

1
), (𝐴
4
),

(𝐴
5
), and (𝐴

6
), respectively;

(𝐻
5
) 𝛽(𝑡), 𝑏

𝑖
(𝑡), 𝑐
𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) (𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑚) are 𝜔-periodic functions and

𝜎𝛽 (𝑡) + 𝜎

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) −

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡) > 0, 𝑡 ∈ [0, 𝜔] . (55)

Then we can obtain the following theorem.

Theorem 14. Assume (𝐻
1
)–(𝐻
4
) hold.

(i) If 𝑎𝑀 ≤ 1, then systems (53) and (54) have at least one
positive 𝜔-periodic solution.

(ii) If (𝐻
5
) holds and 𝑎

𝑀
> 1, then systems (53) and (54)

have at least one positive 𝜔-periodic solution.

Proof. The proof is similar to that ofTheorem 12; we omit the
details here.

Remark 15. Weapply themain result obtained in the previous
section to study some examples which have some biological
implications. A very basic and important ecological problem
associated with the study of population is that of the existence
of a positive periodic solution which plays the role played
by the equilibrium of the autonomous models and means
that the species is in an equilibrium state. From Theorems
13 and 14, we see that, under the appropriate conditions,
the impulsive perturbations do not affect the existence of
periodic solution of systems.Therefore, our result generalizes
and improves the corresponding results in [12–17].
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