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A linearized Crank-Nicolson difference scheme is constructed to solve a type of variable coefficient delay partial differential
equations. The difference scheme is proved to be unconditionally stable and convergent, where the convergence order is two in
both space and time. A numerical test is provided to illustrate the theoretical results.

1. Introduction

In the past few years, many scholars pay their attention to
the theory of delay differential equations (DDEs) [1, 2].
There aremany research results on delay ordinary differential
equations [3, 4]; however, only few scholars focus on studies
of delay partial differential equations. As we know, since,
in most cases, DDEs’ exact solutions cannot be computed
analytically, efficient numerical methods are needed to solve
such equations.

In this paper, the numerical solutions of the following
variable coefficient delay partial differential equations are
considered:

𝑟 (𝑥, 𝑡) 𝑢
𝑡
− 𝑑𝑢
𝑥𝑥
= 𝑓 (𝑢 (𝑥, 𝑡 − 𝑠)) , (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇] ,

(1)

𝑢 (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] , 𝑡 ∈ [−𝑠, 0] , (2)

𝑢 (0, 𝑡) = 𝛼 (𝑡) , 𝑢 (1, 𝑡) = 𝛽 (𝑡) , 𝑡 ∈ (0, 𝑇] , (3)

where 𝑑 > 0 is the constant diffusion coefficient, 𝑠 > 0 is the
delay term, Ω = [0, 1] × [−𝑠, 𝑇], 𝑟(𝑥, 𝑡) ∈ 𝐶((0, 1) × (0, 𝑇]),
and 𝑟(𝑥, 𝑡) ≥ 𝑐

0
> 0. In the case of 𝑟(𝑥, 𝑡) = 1, numerical

solutions of (1)–(3) have been considered in [5–7]. A Crank-
Nicolson scheme and a linearized compact difference scheme
have been proposed by Zhang and Sun in [5] and [6],

respectively. Q. F. Zhang and C. J. Zhang considered a new
linearized compact multisplitting scheme in [7]. We will
construct a Crank-Nicolson scheme for solving (1)–(3). The
unconditional stability and convergence will be shown in this
paper, where the convergence order is two in both space and
time. To testify the theoretical results, a numerical test is
provided.

The paper is organized as follows. In Section 2, a linear-
ized Crank-Nicolson scheme is constructed to solve (1)–(3).
Section 3 considers the solvability, stability, and convergence
of the Crank-Nicolson scheme. In Section 4, a numerical test
is provided to illustrate the theoretical results. Section 5 gives
a brief discussion of this paper.

2. Construction of the Linearized
Crank-Nicolson Scheme

In this subsection, a linearized Crank-Nicolson scheme for
solving (1)–(3) is constructed. In this paper, we make the
following assumptions:

(H1) assume that (1)–(3) had a unique solution 𝑢 ∈

𝐶
4,3
(Ω), 𝑢, and its partial derivatives are bounded by

a constant 𝑐
1
;
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(H2) 𝑓(𝑢(𝑥, 𝑡 − 𝑠)) has second derivatives, and we denote

𝑐
2
= max
|𝜀1|≤𝜀0 ,|𝜀2|≤𝜀0 ,|𝜀3|≤𝜀0

{




𝑓 (𝑢 (𝑥, 𝑡 − 𝑠) + 𝜀

1
)




,






𝑓

(𝑢 (𝑥, 𝑡 − 𝑠) + 𝜀

2
)






,






𝑓

(𝑢 (𝑥, 𝑡 − 𝑠) + 𝜀

3
)






} ,

(4)

where 𝜀
0
> 0, and 𝑐

2
are constants.

Two positive integers 𝑀 and 𝑗 are taken; then let ℎ =

1/𝑀, 𝜏 = 𝑠/𝑗, 𝑥
𝑖
= 𝑖ℎ, 𝑡

𝑘
= 𝑘𝜏 and 𝑡

𝑘+1/2
= (𝑡
𝑘
+ 𝑡
𝑘+1
)/2.

Define Ω
ℎ𝜏
= Ω
ℎ
× Ω
𝜏
, where Ω

ℎ
= {𝑥
𝑖
| 0 ≤ 𝑖 ≤ 𝑀} and

Ω
𝜏
= {𝑡
𝑘
| −𝑗 ≤ 𝑘 ≤ 𝑁}, 𝑁 = [𝑇/𝜏]. Denote 𝑈𝑘

𝑖
= 𝑢(𝑥

𝑖
, 𝑡
𝑘
),

0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁. Let

W = {V𝑘
𝑖
| 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁} (5)

be the grid function space defined on Ω
ℎ𝜏
. Introduce the

following notations:

V𝑘+1/2
𝑖

=

V𝑘
𝑖
+ V𝑘+1
𝑖

2

, 𝛿
𝑡
V𝑘+1/2
𝑖

=

V𝑘+1
𝑖
− V𝑘
𝑖

𝜏

,

𝛿
𝑥
V𝑘
𝑖+1/2

=

V𝑘
𝑖+1
− V𝑘
𝑖

ℎ

, 𝛿
2

𝑥
V𝑘
𝑖
=

V𝑘
𝑖+1
− 2V𝑘
𝑖
+ V𝑘
𝑖−1

ℎ
2

.

(6)

Considering (1) at the point (𝑥
𝑖
, 𝑡
𝑘+1/2

), we have

𝑟 (𝑥
𝑖
, 𝑡
𝑘+1/2

)

𝜕𝑢

𝜕𝑡

(𝑥
𝑖
, 𝑡
𝑘+1/2

) − 𝑑

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+1/2

)

= 𝑓 (𝑢 (𝑥
𝑖
, 𝑡
𝑘+(1/2)−𝑗

)) , 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1.

(7)

From Taylor expansion,

𝜕𝑢

𝜕𝑡

(𝑥
𝑖
, 𝑡
𝑘+1/2

) = 𝛿
𝑡
𝑈
𝑘+1/2

𝑖
−

𝜏
2

24

𝜕
3
𝑢

𝜕𝑡
3
(𝑥
𝑖
, 𝜂
𝑘

𝑖
) ,

𝜂
𝑘

𝑖
∈ (𝑡
𝑘
, 𝑡
𝑘+1
) ,

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+1/2

)

=

1

2

[

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘
) +

𝜕
2
𝑢

𝜕𝑥
2
(𝑥
𝑖
, 𝑡
𝑘+1
)]

−

𝜏
2

8

𝜕
4
𝑢

𝜕𝑥
2
𝜕𝑡
2
(𝑥
𝑖
, 𝛾
𝑘

𝑖
)

=

1

2

(𝛿
2

𝑥
𝑈
𝑘

𝑖
+ 𝛿
2

𝑥
𝑈
𝑘+1

𝑖
)

−

ℎ
2

24

[

𝜕
4
𝑢

𝜕𝑥
4
(𝜉
𝑘

𝑖
, 𝑡
𝑘
) +

𝜕
4
𝑢

𝜕𝑥
4
(𝜉
𝑘+1

𝑖
, 𝑡
𝑘+1
)]

−

𝜏
2

8

𝜕
4
𝑢

𝜕𝑥
2
𝜕𝑡
2
(𝑥
𝑖
, 𝛾
𝑘

𝑖
) ,

𝜉
𝑘

𝑖
, 𝜉
𝑘+1

𝑖
∈ (𝑥
𝑖−1
, 𝑥
𝑖+1
) , 𝛾

𝑘

𝑖
∈ (𝑡
𝑘
, 𝑡
𝑘+1
) ,

𝑓 (𝑢 (𝑥
𝑖
, 𝑡
𝑘+(1/2)−𝑗

))

= 𝑓 (𝑢 (𝑥
𝑖
, 𝑡
𝑘−𝑗
))

+

𝜏

2

𝑓

(𝑢 (𝑥
𝑖
, 𝑡
𝑘−𝑗
)) 𝑢


𝑡
(𝑥
𝑖
, 𝑡
𝑘−𝑗
) + 𝜁
𝑘−𝑗

𝑖

= 𝑓 (𝑈
𝑘−𝑗

𝑖
) +

𝜏

2

𝑓

(𝑈
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑈
𝑘+(1/2)−𝑗

𝑖

+ 𝜁
𝑘−𝑗

𝑖
, 𝜁
𝑘−𝑗

𝑖
∈ (𝑡
𝑘−𝑗
, 𝑡
𝑘+1−𝑗

) ,

(8)

where |𝜁𝑘−𝑗
𝑖
| ≤ 𝑐
3
𝜏
2. Substituting (8) into (7) and denoting

𝑟
𝑘+1/2

𝑖
= 𝑟(𝑥
𝑖
, 𝑡
𝑘+1/2

), we obtain

𝑟
𝑘+1/2

𝑖
𝛿
𝑡
𝑈
𝑘+1/2

𝑖
− 𝑑𝛿
2

𝑥
𝑈
𝑘+1/2

𝑖

= 𝑓 (𝑈
𝑘−𝑗

𝑖
) +

𝜏

2

𝑓

(𝑈
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑈
𝑘+(1/2)−𝑗

𝑖
+ 𝑅
𝑘

𝑖
,

(9)

where





𝑅
𝑘

𝑖






≤ 𝑐
4
(𝜏
2
+ ℎ
2
) , 1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1. (10)

Discretizing the initial and boundary conditions of (2) and
(3), we obtain

𝑈
𝑘

𝑖
= 𝜙 (𝑥

𝑖
, 𝑡
𝑘
) , 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0, (11)

𝑈
𝑘

0
= 𝛼 (𝑡

𝑘
) , 𝑈

𝑘

𝑀
= 𝛽 (𝑡

𝑘
) , 1 ≤ 𝑘 ≤ 𝑁. (12)

Replacing 𝑈𝑘
𝑖
by 𝑢𝑘
𝑖
and omitting 𝑅𝑘

𝑖
, we obtain the following

Crank-Nicolson scheme:

𝑟
𝑘+1/2

𝑖
𝛿
𝑡
𝑢
𝑘+1/2

𝑖
− 𝑑𝛿
2

𝑥
𝑢
𝑘+1/2

𝑖

= 𝑓 (𝑢
𝑘−𝑗

𝑖
) +

𝜏

2

𝑓

(𝑢
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑢
𝑘+(1/2)−𝑗

𝑖
,

𝑢
𝑘

𝑖
= 𝜙 (𝑥

𝑖
, 𝑡
𝑘
) , 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0,

𝑢
𝑘

0
= 𝛼 (𝑡

𝑘
) , 𝑢

𝑘

𝑀
= 𝛽 (𝑡

𝑘
) , 1 ≤ 𝑘 ≤ 𝑁.

(13)

3. The Solvability, Convergence, and Stability
of the Crank-Nicolson Scheme

Define the following grid function space onΩ
ℎ
:

𝑉 = V | V = (V
0
, V
1
, . . . , V

𝑀
) , V

0
= V
𝑀
= 0. (14)

If V ∈ 𝑉, introducing the following notations:

‖V‖ = √ℎ
𝑀−1

∑

𝑖=1

(V
𝑖
)
2

, |V|
1
= √ℎ

𝑀

∑

𝑖=1

(

V
𝑖
− V
𝑖−1

ℎ

)

2

,

‖V‖
∞
= max
0≤𝑖≤𝑀





V
𝑖





.

(15)

The following two inequalities are satisfied [8]:

‖V‖
∞
≤

1

2

|V|
1
, (16)

‖V‖ ≤
1

√6

|V|
1
. (17)
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For the analysis of the difference scheme, the following Lem-
ma is needed.

Lemma 1 (see [8]). Let {𝐹𝑘 | 𝑘 ≥ 0} be nonnegative sequence
and satisfy

𝐹
𝑘+1
≤ 𝐴 + 𝐵𝜏

𝑘

∑

𝑖=1

𝐹
𝑙
, 𝑘 = 0, 1, . . . ; (18)

then

𝐹
𝑘+1
≤ 𝐴 exp (𝐵𝐾𝜏) , 𝑘 = 0, 1, 2, . . . , (19)

where 𝐴 and 𝐵 are nonnegative constants.

Theorem 2. The difference scheme (13) has a unique solution,
under the condition that ℎ and 𝜏 are small enough.

Proof. From the positive definiteness of the coefficientmatrix
of the scheme (13), we can easily obtain the results of
Theorem 2 by the mathematical induction method.

Denoting 𝑒𝑘
𝑖
= 𝑈
𝑘

𝑖
− 𝑢
𝑘

𝑖
, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁,

subtracting (13) from (9), (11), and (12), respectively, we obtain
the following error equations:

𝑟
𝑘+1/2

𝑖
𝛿
𝑡
𝑒
𝑘+1/2

𝑖
− 𝑑𝛿
2

𝑥
𝑒
𝑘+1/2

𝑖

= 𝑓 (𝑈
𝑘−𝑗

𝑖
) − 𝑓 (𝑢

𝑘−𝑗

𝑖
)

+

𝜏

2

[𝑓

(𝑈
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑈
𝑘+(1/2)−𝑗

𝑖

−𝑓

(𝑢
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑢
𝑘+(1/2)−𝑗

𝑖
] + 𝑅
𝑘

𝑖
,

(20)

𝑒
𝑘

𝑖
= 0, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0, (21)

𝑒
𝑘

0
= 0, 𝑒

𝑘

𝑀
= 0, 1 ≤ 𝑘 ≤ 𝑁. (22)

Theorem 3. Letting ℎ and 𝜏 be small enough, one has





𝑒
𝑘


∞

≤ 𝐶 (𝜏
2
+ ℎ
2
) , 0 ≤ 𝑘 ≤ 𝑁, (23)

where 𝐶 > 0 is independent of ℎ and 𝜏.

Proof. Multiplying (20) by ℎ𝛿
𝑡
𝑒
𝑘+1/2

𝑖
and summing up for 𝑖

from 1 to𝑀− 1, we obtain

ℎ

𝑀−1

∑

𝑖=1

𝑟
𝑘+1/2

𝑖
(𝛿
𝑡
𝑒
𝑘+1/2

𝑖
)

2

− 𝑑ℎ

𝑀−1

∑

𝑖=1

𝛿
2

𝑥
𝑒
𝑘+1/2

𝑖
𝛿
𝑡
𝑒
𝑘+1/2

𝑖
= 𝐼
1
+ 𝐼
2
,

(24)
where

𝐼
1
= ℎ

𝑀−1

∑

𝑖=1

{𝑓 (𝑈
𝑘−𝑗

𝑖
) − 𝑓 (𝑢

𝑘−𝑗

𝑖
)

+

𝜏

2

[𝑓

(𝑈
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑈
𝑘+(1/2)−𝑗

𝑖

−𝑓

(𝑢
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑢
𝑘+(1/2)−𝑗

𝑖
]} 𝛿
𝑡
𝑒
𝑘+1/2

𝑖
,

𝐼
2
= ℎ

𝑀−1

∑

𝑖=1

𝑅
𝑘

𝑖
𝛿
𝑡
𝑒
𝑘+1/2

𝑖
.

(25)

Themathematical inductionmethodwill be used to prove
Theorem 3. From (21), we have ‖𝑒𝑘‖

∞
= 0, for −𝑗 ≤ 𝑘 ≤ 0.

Suppose that (23) is true for 0 < 𝑘 ≤ 𝑙, we will prove that (23)
is also valid for 𝑘 = 𝑙 + 1.

From the inductive assumption, we have






𝑒
𝑘


∞

≤ 𝐶 (𝜏
2
+ ℎ
2
) , 0 ≤ 𝑘 ≤ 𝑙. (26)

In the following, each term of (24) will be estimated.
Consider

ℎ

𝑀−1

∑

𝑖=1

𝑟
𝑘+1/2

𝑖
(𝛿
𝑡
𝑒
𝑘+1/2

𝑖
)

2

≥ 𝑐
0






𝛿
𝑡
𝑒
𝑘+1/2





2

,

−𝑑ℎ

𝑀−1

∑

𝑖=1

𝛿
2

𝑥
𝑒
𝑘+1/2

𝑖
𝛿
𝑡
𝑒
𝑘+1/2

𝑖
=

𝑑

2𝜏

(






𝑒
𝑘+1




2

1
−






𝑒
𝑘




2

1
) .

(27)

From (H1) and (H2), we have

𝑓 (𝑈
𝑘−𝑗

𝑖
) − 𝑓 (𝑢

𝑘−𝑗

𝑖
) +

𝜏

2

[𝑓

(𝑈
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑈
𝑘+(1/2)−𝑗

𝑖

−𝑓

(𝑢
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑢
𝑘+(1/2)−𝑗

𝑖
]

≤ 𝑐
2








𝑒
𝑘−𝑗

𝑖








+

𝜏

2

[𝑓

(𝑈
𝑘−𝑗

𝑖
) 𝛿
𝑡
𝑒
𝑘+(1/2)−𝑗

𝑖

+ (𝑓

(𝑈
𝑘−𝑗

𝑖
) − 𝑓

(𝑢
𝑘−𝑗

𝑖
))

× (𝛿
𝑡
𝑈
𝑘+(1/2)−𝑗

𝑖
− 𝛿
𝑡
𝑒
𝑘+(1/2)−𝑗

𝑖
)]

≤ 𝐶 (








𝑒
𝑘−𝑗

𝑖








+








𝑒
𝑘+1−𝑗

𝑖








) .

(28)

Using the above inequality, we have

𝐼
1
≤ 𝐶ℎ

𝑀−1

∑

𝑖=1

(








𝑒
𝑘−𝑗

𝑖








+








𝑒
𝑘+1−𝑗

𝑖








)






𝛿
𝑡
𝑒
𝑘+1/2

𝑖







≤ 𝜀ℎ

𝑀−1

∑

𝑖=1

(𝛿
𝑡
𝑒
𝑘+1/2

𝑖
)

2

+ 𝐶ℎ(

𝑀−1

∑

𝑖=1

(𝑒
𝑘−𝑗

𝑖
)

2

+

𝑀−1

∑

𝑖=1

(𝑒
𝑘+1−𝑗

𝑖
)

2

)

= 𝜀






𝛿
𝑡
𝑒
𝑘+1/2





2

+ 𝐶(






𝑒
𝑘−𝑗




2

+






𝑒
𝑘+1−𝑗





2

) ,

𝐼
2
≤ 𝜀ℎ

𝑀−1

∑

𝑖=1

(𝛿
𝑡
𝑒
𝑘+1/2

𝑖
)

2

+ 𝐶ℎ

𝑀−1

∑

𝑖=1

(𝑅
𝑘

𝑖
)

2

≤ 𝜀






𝛿
𝑡
𝑒
𝑘+1/2





2

+ 𝐶(𝜏
2
+ ℎ
2
)

2

.

(29)

Inserting (27)–(29) into (24), we obtain

𝑐
0






𝛿
𝑡
𝑒
𝑘+1/2





2

+

𝑑

2𝜏

(






𝑒
𝑘+1




2

1
−






𝑒
𝑘




2

1
)

≤ 2𝜀






𝛿
𝑡
𝑒
𝑘+1/2





2

+ 𝐶(






𝑒
𝑘−𝑗




2

+






𝑒
𝑘+1−𝑗





2

)

+ 𝐶(𝜏
2
+ ℎ
2
)

2

, 0 ≤ 𝑘 ≤ 𝑙.

(30)
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Taking 𝜀 = 𝑐
0
/2, we have

𝑑

2𝜏

(






𝑒
𝑘+1




2

1
−






𝑒
𝑘




2

1
) ≤ 𝐶 (






𝑒
𝑘−𝑗




2

+






𝑒
𝑘+1−𝑗





2

)

+ 𝐶(𝜏
2
+ ℎ
2
)

2

, 0 ≤ 𝑘 ≤ 𝑙.

(31)

The above inequality has the following form:






𝑒
𝑘+1




2

1
≤






𝑒
𝑘




2

1
+ 𝐶𝜏 (






𝑒
𝑘−𝑗




2

+






𝑒
𝑘+1−𝑗





2

)

+ 𝐶𝜏(𝜏
2
+ ℎ
2
)

2

, 0 ≤ 𝑘 ≤ 𝑙.

(32)

Summing up (32) for 𝑘, noticing (21), and exploiting (17), we
have






𝑒
𝑘+1




2

1
≤






𝑒
0




2

1
+ 𝐶𝜏

𝑘

∑

𝑚=0

(






𝑒
𝑚−𝑗




2

+






𝑒
𝑚+1−𝑗





2

)

+ 𝐶𝜏

𝑙

∑

𝑘=0

(𝜏
2
+ ℎ
2
)

2

≤ 𝐶𝜏

𝑘+1−𝑗

∑

𝑚=1





𝑒
𝑚




2

+ 𝐶(𝜏
2
+ ℎ
2
)

2

≤ 𝐶𝜏

𝑘

∑

𝑚=1





𝑒
𝑚




2

1
+ 𝐶(𝜏

2
+ ℎ
2
)

2

, 0 ≤ 𝑘 ≤ 𝑙.

(33)

By Lemma 1, we have






𝑒
𝑙+1




2

1
≤ 𝐶(𝜏

2
+ ℎ
2
)

2

, (34)

where 𝐶 is a constant which depends on 𝑐
0
, 𝑐
1
, 𝑐
2
, 𝑑, and 𝑇.

From (16), we obtain






𝑒
𝑙+1


∞

≤ 𝐶 (𝜏
2
+ ℎ
2
) . (35)

By the inductive principle, this completes the proof.

Remark 4. Theorem 3 shows that the convergence order of
the variable coefficient delay partial differential equations (1)
is 𝑜(𝑡2+ℎ2). However, for the constant coefficient delay partial
differential equations (𝑟(𝑥, 𝑡) = 1 in (1)), a Crank-Nicolson
scheme with 𝑜(𝑡2 + ℎ2) convergence is constructed in [5],
and a new difference scheme with 𝑜(𝑡2 + ℎ4) convergence is
constructed in [9].

To discuss the stability of the difference scheme (13), we
consider the following problem:

𝑟 (𝑥, 𝑡) V
𝑡
− 𝑑V
𝑥𝑥
= 𝑓 (V (𝑥, 𝑡 − 𝑠)) , (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇] ,

V (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) + 𝜓 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] , 𝑡 ∈ [−𝑠, 0] ,

V (0, 𝑡) = 𝛼 (𝑡) , V (1, 𝑡) = 𝛽 (𝑡) , 𝑡 ∈ (0, 𝑇] .

(36)

The following difference scheme solving for (36) can be
obtained:

𝑟
𝑘+1/2

𝑖
𝛿
𝑡
V𝑘+1/2
𝑖

− 𝑑𝛿
2

𝑥
V𝑘+1/2
𝑖

= 𝑓 (V𝑘−𝑗
𝑖
) +

𝜏

2

𝑓

(V𝑘−𝑗
𝑖
) 𝛿
𝑡
V𝑘+(1/2)−𝑗
𝑖

,

V𝑘
𝑖
= 𝜙 (𝑥

𝑖
, 𝑡
𝑘
) + 𝜓
𝑘

𝑖
, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 0,

V𝑘
0
= 𝛼 (𝑡

𝑘
) , V𝑘

𝑀
= 𝛽 (𝑡

𝑘
) , 1 ≤ 𝑘 ≤ 𝑁,

(37)

where 𝜓𝑘
𝑖
is a perturbation of 𝜙(𝑥

𝑖
, 𝑡
𝑘
).

Similar to the proof of Theorem 3, the following stability
result can be obtained.

Theorem 5. Denote

𝜂
𝑘

𝑖
= V𝑘
𝑖
− 𝑢
𝑘

𝑖
, 0 ≤ 𝑖 ≤ 𝑀, −𝑗 ≤ 𝑘 ≤ 𝑁. (38)

Then, there exist constants 𝑐
5
and 𝑐
6
such that






𝜂
𝑘


∞

≤ 𝑐
5
√𝜏ℎ

0

∑

𝑚=−𝑗

𝑀−1

∑

𝑖=1

(𝜓
𝑘

𝑖
)

2 (39)

under the condition that ℎ and 𝜏 are small enough and
max
−𝑗≤𝑘≤0,0≤𝑖≤𝑀

|𝜓
𝑘

𝑖
| ≤ 𝑐
6
.

Remark 6. Under the condition of assumptions (H1) and
(H2) and max

−𝑗≤𝑘≤0,0≤𝑖≤𝑀
|𝜓
𝑘

𝑖
| ≤ 𝑐
6
, for small ℎ and 𝜏, we can

get the stability results ofTheorem 5 (which can be referred to
in [8, 10, 11]), where the difficulty is that 𝑟𝑘+1/2

𝑖
̸= 1; the proof

can be referred to in the proof of Theorem 3.

4. Numerical Test

In this section, a numerical example is considered to validate
the algorithm provided in this paper, and the numerical
solutions 𝑢𝑘

𝑖
of the example are obtained by exploiting scheme

(13). Define

𝐸
∞
(ℎ, 𝜏) = max

0≤𝑖≤𝑀,0≤𝑘≤𝑁






𝑢 (𝑥
𝑖
, 𝑡
𝑘
) − 𝑢
𝑘

𝑖






. (40)

Consider the following problem:

𝑟 (𝑥, 𝑡) 𝑢
𝑡
− 𝑢
𝑥𝑥
= 𝑢 (𝑥, 𝑡 − 0.1) , 𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 1] ,

𝑢 (𝑥, 𝑡) = 𝑒
−𝑥
(1 + 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 ∈ [−0.1, 0] ,

𝑢 (0, 𝑡) = 1 + 𝑡, 𝑢 (1, 𝑡) = 𝑒
−1
(1 + 𝑡) , 𝑡 ∈ (0, 1] ,

(41)

where 𝑟(𝑥, 𝑡) = 2(𝑡 + 0.95). The exact solution of (41) is
𝑢(𝑥, 𝑡) = 𝑒

−𝑥
(1 + 𝑡).

Table 1 provides some numerical results of difference
scheme (13) solving for (41) with step size ℎ = 𝜏 = 0.01.
Table 2 gives the maximum absolute errors between numer-
ical solutions and exact solutions with different step sizes.
From Table 2, we can see that when both the space step
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Table 1: Numerical results of (41) when ℎ = 𝜏 = 1/100.

(𝑥, 𝑡) Numerical solution Exact solution |𝑢(𝑥
𝑖
, 𝑡
𝑘
) − 𝑢
𝑘

𝑖
|

(0.5, 0.1) 0.667184 0.667184 2.501𝑒 − 007

(0.5, 0.2) 0.727837 0.727837 4.324𝑒 − 007

(0.5, 0.3) 0.788490 0.788490 5.702𝑒 − 007

(0.5, 0.4) 0.849144 0.849143 6.812𝑒 − 007

(0.5, 0.5) 0.909797 0.909796 7.753𝑒 − 007

(0.5, 0.6) 0.970450 0.970449 8.586𝑒 − 007

(0.5, 0.7) 1.031103 1.031102 9.347𝑒 − 007

(0.5, 0.8) 1.091756 1.091755 1.006𝑒 − 006

(0.5, 0.9) 1.152409 1.152408 1.074𝑒 − 006

(0.5, 1.0) 1.213062 1.213061 1.140𝑒 − 006

Table 2: Maximum norm errors of (41) with different step sizes.

ℎ 𝜏 𝐸
∞
(ℎ, 𝜏) 𝐸

∞
(ℎ, 𝜏)/𝐸

∞
(ℎ/2, 𝜏/2)

1/10 1/10 1.138𝑒 − 004 ∗

1/20 1/20 2.872𝑒 − 005 3.962
1/40 1/40 7.182𝑒 − 006 3.999
1/80 1/80 1.796𝑒 − 006 4.000
1/160 1/160 4.489𝑒 − 007 4.000

 
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

x

h = t = 1/10

h = t = 1/20

h = t = 1/40

h = t = 1/80

×10
−4

|U
(
x
,
1
)
−
U
h
t
(
x
,
1
)
|

Figure 1: Error curves of difference scheme (13) solving for problem
(41) with different step sizes, when 𝑡 = 1.

size and the time step size are reduced by a factor of 1/2,
then the maximum absolute errors are reduced by a factor
of approximately 1/4.

Figure 1 provides us with the error curves of numerical
solutions for (41) at 𝑡 = 1 by using scheme (13). Figures 2 and
3 give the error surface of the numerical solutions with step
sizes ℎ = 𝜏 = 1/80 and ℎ = 𝜏 = 1/160, respectively.

Generally speaking, from the results of the tables and the
figures provided, we can see that the numerical results are
coincident with the theoretical results.
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Figure 2: Error surface maps of difference scheme (13) solving for
problem (41) with step size ℎ = 𝜏 = 1/80.

5. Conclusion

In this paper, a type of variable coefficient delay partial differ-
ential equations is considered. A linearized Crank-Nicolson
scheme is constructed and is proved to be unconditionally
stable and convergent. Finally, a numerical test is provided
to illustrate the theoretical results.
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