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In real-life games, the consequence or payoff of a strategy profile and a player’s belief about the consequence of a strategy profile are
often ambiguous, and players may have different optimistic attitudes with respect to a strategy profile. To handle this problem, this
paper proposes a decision rule using the Hurwicz criterion and Dempster-Shafer theory. Based on this rule, we introduce a new
kind of games, called ambiguous games, and propose a solution concept that is appropriate for this sort of games. Moreover, we
also study how the beliefs regarding possible payoffs and optimistic attitudes may affect the solutions of such a game. To illustrate
our model, we provide an analysis of a scenario concerning allocating resource of defending and attacking in military contexts.

1. Introduction

Game theory is a powerful tool for analyzing strategic
interactions between decisionmakers inmany domains, such
as voting, economics, and artificial intelligence. In this theory,
a strategic (also called normal form or static) game is used
to model a strategic situation, in which it is assumed that the
consequence or payoff of a pure strategy profile is determinate
or precise. According to this model, many kinds of games and
their corresponding solutions can be defined.

In real-life games, the players have to make decisions
under ambiguity because there is often only limited infor-
mation available to the decision maker. In canonical opinion,
ambiguity is referred to as a kind of uncertainty that describes
situations where decision makers cannot determine a precise
probability distribution over the possible consequences of
an action [1–3]. Therefore, in games under ambiguity, the
players could only assign a set of possible payoffs, rather
than a precise payoff, to a pure strategy profile and have an
imprecise probability distribution over this set. Moreover,
the players often have some optimistic attitudes (decision
attitudes), including optimistic, neutral, and pessimistic, in
the decision problems under ambiguity [4–7]. In view of this,
this aforementioned assumption of strategic games seems
implausible under ambiguity [8–10].

To model situations with indeterminate payoffs, one kind
of games, known as Bayesian games [11], is constructed based

on the assumption that a player’s belief regarding either the
other players’ types or their strategy choices is accurate.
This means that the player is assumed to have a precise
probability distribution over the consequences of a strategy
profile. Another kind of games, called fuzzy games [8, 12,
13], assumes instead that the payoffs are fuzzy. This kind of
model usually interprets ambiguity as cases where decision
makers are uncertain about the probability of each possibility.
It is worth noting that players’ optimistic attitudes are not
considered in such fuzzy games.

Unlike these two approaches, some researchers have tried
to apply some original ideas taken from decision theory to
games [14–18]. To be more specific, they use nonadditive
beliefs (capacities) [19] or multiple prior model (a set of
probabilities) to represent ambiguity. Nevertheless, these
kinds of work still assume that the consequences in a game
are accurate.They thus cannot adequately handle the problem
concerning ambiguous consequences and players’ optimistic
attitudes. More recently, researchers [20] have proposed a
theoretic framework to study games with ambiguous payoffs,
where only the case of ambiguity aversion in an interactive
situation has been considered.

The aim of this paper is to propose a game-theoretic
framework that can deal with imprecise probability theories.
Using this theory, we first construct a decision model, in
which decision makers are assumed to employ the Hurwicz
criterion [21] (a well-known rule that has been used to
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model decisions under uncertainty [22, 23]) to determine a
preference ordering over actions given the interval-valued
expected utilities and optimistic attitudes.

Based on this decision-theoretic framework, we then
propose a game model, that is, the ambiguous game, which
relaxes the assumption that a player’s belief about the con-
sequences of a strategy profile should be precise. In contrast
with those frameworks mentioned above, our model allows
a player’s belief about the consequence or payoff of each
strategy profile to be represented by imprecise probabilities.
More importantly, our approach can also be used to model
situations where the consequence or payoff of each strategy
profile may possibly be ambiguous, and players may have
different optimistic attitudes towards ambiguity.

The remainder of this paper is organized as follows.
Section 2 briefly reviews some basic concepts and notations of
Dempster-Shafer theory, expected utility intervals defined by
D-S theory, and theHurwicz criterion. Section 3 describes the
basic elements of strategic games with ambiguous payoffs and
investigates the conditions under which the degrees in beliefs
regarding possible consequences and optimistic attitudes
influence the solutions of an ambiguous game. Section 4
illustrates our approach by considering a scenario concerning
allocating resource of defending and attacking in military
contexts. Section 5 discusses some related research on the
issue of ambiguous games. Finally, in Section 6, we conclude
the paper and provide some thoughts about future work.

2. Preliminaries

This section recaps Dempster-Shafer theory [24], the
expected utility interval based on this theory [25], and the
Hurwicz criterion [21].

Definition 1. Let Θ be a frame of discernment (i.e., the set of
states of the world).

(i) A function 𝑚 : 2
Θ

→ [0, 1] is called a basic
probability assignment or a mass function over Θ if
𝑚(0) = 0 and ∑

𝐴⊆Θ
𝑚(𝐴) = 1. If 𝑚(𝐴) > 0, then

𝐴 is said to be a focal element. A mass function 𝑚 is
called a simple mass function over Θ if 𝑚(𝐴

0
) = 𝑠,

𝑚(Θ) = 1 − 𝑠, where 𝐴
0
⊂ Θ and 0 ≤ 𝑠 ≤ 1. In this

case, we call 𝑠 a focal mass value.
(ii) A function Bel : 2Θ → [0, 1], defined as follows, is a

belief function over Θ:
Bel (𝐴) = ∑

𝐵⊆𝐴

𝑚(𝐵) . (1)

By formula (1), the belief function (called a simple support
function) induced by a simple mass function over Θ is given
as follows:

Bel (𝐴) =

{{

{{

{

0 if 𝐴
0

̸⊂ 𝐴,

𝑠 if 𝐴
0
⊂ 𝐴 ̸=Θ.

1 if 𝐴 = Θ.

(2)

The mass function is one of the most important concepts
in Dempster-Shafer theory. There exists a natural interpre-
tation of this concept proposed by Shafer and Tversky [26],

which interprets a mass function as the degree of reliability
for encoding a piece of evidence. To illustrate this, suppose
that we randomly draw a ball from an urn containing 300
balls, and we know that 100 of them are red, and the
remaining balls might be red (𝑟), blue (𝑏), or green (𝑔). How
should we model such a situation where we only have partial
information about the proportion of the balls? According to
the reliability interpretation, it can be modeled by a simple
mass function: 𝑚({𝑟}) = 1/3, and 𝑚(Θ) = 2/3, where Θ =

{𝑟, 𝑏, 𝑔}. The mass value 1/3 encodes that there are 100 balls
which are red in the urn, and the value 2/3 encodes that the
remaining 200 balls might be red, blue, or green. It should be
noted that𝑚({𝑏}) = 𝑚({𝑔}) = 0, since there is no information
concerning the amount of blue and green balls in the urn.

Note that a probability function can be regarded as a
special case of mass function. In fact, if 𝑚(𝐴) > 0 and
∑𝑚(𝐴) = 1, where 𝐴 is a singleton (i.e., |𝐴| = 1), then 𝑚

is indeed a probability function because 𝑚(𝐴) = Bel(𝐴) =

𝑝(𝐴). Nevertheless, we have in general that Bel(𝐴) ≤ 𝑝(𝐴).
That is, the belief function can be interpreted as the lower
bound of probability function (i.e., the worst case estimate
for probability). Given a simple mass function with support
degree 𝑠 to the focal element 𝐴, then, 𝑚(𝐴) = Bel(𝐴) = 𝑠.
Thus, we can interpret the focal mass value 𝑠 as the lower
probability of focal element 𝐴.

The foregoing example shows that Dempster-Shafer the-
ory can represent ambiguous evidence or information in
a sensible way. In particular, the simple mass functions
(basic mass functions) can be used to model some kinds of
ambiguity including the cases of total ignorance and partial
information. Regarding the former case, we can assume the
support degree 𝑠 to be zero; that is, 𝑚(𝐴) = 0, 𝐴 ̸=Θ, and
𝑚(Θ) = 1, which suitably describes the situation of total
ignorance. In this case, we callm a vacuous mass function. To
represent the case of partial information, let support degree
𝑠 be 1 to a specific subset of the frame of discernment;
that is, 𝑚(𝐴) = 1, 𝐴 ̸=Θ. Such a mass function (called a
pseudovacuous mass function) can properly model the case of
partial information,wherewe can only be certain that the true
event belongs to a subset of the frame of discernment based
on the available information.

Now, consider the decision situations, where a decision
maker cannot identify the exact consequence that an action
will result in, although he can specify the utilities of those
possible consequences. In addition, it may be the case that he
cannot even determine the probabilities associatedwith those
possible consequences. Using the terminology of Dempster-
Shafer theory, the decision maker can only represent such
information in terms of a mass function defined over the
set of possible consequences. Formally, we can define such
decision situations as follows.

Definition 2. A decision problem under ambiguity (or called
an ambiguity decision problem) is a 4-tuple of (𝐴,Θ,𝑀, 𝑢),
where

(i) 𝐴 = {𝑎
1
, . . . , 𝑎

𝑛
} is the set of all actions;

(ii) Θ = {𝑐
1
, . . . , 𝑐

𝑘
} is the set of all of consequences of

actions;
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(iii) 𝑀 = {𝑚
1
, . . . , 𝑚

𝑛
}, where 𝑚

𝑖
(𝑖 = 1, . . . , 𝑛) is the

mass function over a set Θ
𝑖
(⊂Θ), the set of the

consequences that action 𝑎
𝑖
∈ 𝐴 could lead to;

(iv) 𝑢 is a utility function; that is, 𝑢 : Θ → R, where R is
the set of real numbers.

Then, based on the concept of mass functions, the point-
valued expected utility formula can be extended to the
context of ambiguity by defining the notion called expected
utility interval [25].

Definition 3. Given an ambiguity decision problem
(𝐴,Θ,𝑀, 𝑢), for action 𝑎

𝑖
∈ 𝐴, its expected utility interval is

given by EUI(𝑎
𝑖
) = [𝑈(𝑎

𝑖
), 𝑈(𝑎

𝑖
)], where

𝑈 (𝑎
𝑖
) = ∑

𝐵⊆Θ𝑖

𝑚
𝑖 (𝐵)min {𝑢 (𝑐

𝑖
) | 𝑐
𝑖
∈ 𝐵} ,

𝑈 (𝑎
𝑖
) = ∑

𝐵⊆Θ𝑖

𝑚
𝑖 (𝐵)max {𝑢 (𝑐

𝑖
) | 𝑐
𝑖
∈ 𝐵} .

(3)

We cannot obtain a complete preference ordering from
an expected utility interval. To address the problem, we
can employ a well-known decision rule called the Hurwicz
criterion [21], which is given as follows:

Ξ (𝑎
𝑖
) = (1 − 𝜔

𝑖
) 𝑈 (𝑎

𝑖
) + 𝜔
𝑖
𝑈 (𝑎
𝑖
) , (4)

where the pointed value Ξ(𝑎
𝑖
) is called the generalized

expected utility or payoff of action 𝑎
𝑖
and the index 𝜔

𝑖
∈ [0, 1]

can be interpreted as a degree of optimism, which reflects
a decision attitude. Particularly, If 1/2 < 𝜔

𝑖
≤ 1, then

the decision attitude is optimistic. In contrast, the decision
attitude is pessimistic if 0 ≤ 𝜔

𝑖
< 1/2. And the decision

attitude is neutral if 𝜔
𝑖
= 1/2.

More specifically, theHurwicz criterion says that, for each
action, a decision maker takes a weighted average of the
purely optimistic and purely pessimistic value by the degree
of optimism. In particular, if 𝜔

𝑖
= 0, then Ξ(𝑎

𝑖
) = 𝑈(𝑎

𝑖
).

This means that the decision maker has a purely pessimistic
attitude and chooses the alternative that has the best worst.
This strategy is often called the maximin strategy. In contrast,
if 𝜔
𝑖

= 1, then Ξ(𝑎
𝑖
) = 𝑈(𝑎

𝑖
). This means that the

decisionmaker has a purely optimistic attitude and selects the
action that has the best best. This strategy is often called the
maximax strategy.

Using this criterion, the preference can then be deter-
mined as

𝑎
𝑖
⪰ 𝑎
𝑗
⇐⇒ Ξ(𝑎

𝑖
) ≥ Ξ (𝑎

𝑗
) . (5)

It is easy to see that the preference ordering defined as (5)
is complete.

3. Game Definition

This section presents a new game-theoretic framework for
games with ambiguous consequences and then introduces a
solution concept for solving such games.

Table 1: Payoff matrix of a 2 × 2 game.

𝑏
1

𝑏
2

𝑎
1

Θ
(𝑎1 ,𝑏1)

1
, Θ(𝑎1 ,𝑏1)
2

Θ
(𝑎1 ,𝑏2)

1
, Θ(𝑎1 ,𝑏2)
2

𝑎
2

Θ
(𝑎2 ,𝑏1)

1
, Θ(𝑎2 ,𝑏1)
2

Θ
(𝑎2 ,𝑏2)

1
, Θ(𝑎2 ,𝑏2)
2

Intuitively, games with ambiguous consequences are
designed to depict cases where players only know that the
possible consequences of each strategy profile lie in a certain
set. For example, Table 1 is the payoff matrix of a 2 × 2 game,
where Θ

(𝑎𝑗 ,𝑏𝑘)

𝑖
is the set of possible consequences associated

with the strategy profile (𝑎
𝑗
, 𝑏
𝑘
) for player 𝑖. However, players

are not sure which one of the consequence will occur and also
what the probability of each consequence is. More precisely,
for each strategy profile, the players can only use amass func-
tion, rather than a probability measure, defined over the set
of possible consequences to represent ambiguity concerning
consequences. In particular, if mass functions are simple (see
Definition 1), then the players are only required to determine
the lower probability of some possible consequences within
that set. In order to obtain the generalized expected utilities
and a complete preference ordering, players need to assign
a degree of optimism for each strategy profile. We can then
formally define an ambiguous game as follows.

Definition 4. An ambiguous game denoted as𝐺 is a tuple𝐺 =

(𝑁,𝐴,Θ,𝑀,Ω,𝑈), where

(i) 𝑁 is a set of natural numbers, which denotes the set
of players of the game;

(ii) 𝐴 = {𝐴
𝑖
}
𝑖∈𝑁

, where 𝐴
𝑖
denotes a finite set of pure

strategies (or actions) for player 𝑖;

(iii) Θ = {Θ
𝑖
}
𝑖∈𝑁

, where Θ
𝑖

= {Θ
𝜌

𝑖
| Θ
𝜌

𝑖
is the set

of possible consequences associated with the pure
strategy profile 𝜌 for player 𝑖};

(iv) 𝑀 = {𝑀
𝑖
}
𝑖∈𝑁

, where 𝑀
𝑖

= {𝑚
𝜌

𝑖
| 𝑚
𝜌

𝑖
is the

simple mass function over Θ
𝜌

𝑖
associated with the

pure strategy profile 𝜌 for player 𝑖};

(v) Ω = {Ω
𝑖
}
𝑖∈𝑁

, where Ω
𝑖
= {𝜔
𝜌

𝑖
| 𝜔
𝜌

𝑖
is the degree of

optimism associated with the pure strategy profile 𝜌

for player 𝑖};

(vi) 𝑈 = {𝑢
𝑖
}
𝑖∈𝑁

, where 𝑢
𝑖
denotes the payoff function of

player 𝑖 from the set of the all consequences to the set
of real numbers; that is, 𝑢

𝑖
: ⋃
𝑖
Θ
𝑖
→ R.

Given an ambiguous game, each player needs to compute
the expected payoff interval associated with a pure strategy
profile according to formulas (3). By applying the Hurwicz
criterion, we can obtain the generalized expected payoffs of
profiles. In particular, we have the following result.

Lemma 5. Given an ambiguous game 𝐺 = (𝑁,𝐴,Θ,𝑀,Ω,

𝑈), suppose that, for any pure strategy profile 𝜌, 𝑚
𝜌

𝑖
(𝐵
𝜌

𝑖
) =

𝜉
𝜌

𝑖
, 𝑚
𝜌

𝑖
(Θ
𝜌

𝑖
) = 1 − 𝜉

𝜌

𝑖
, 𝐵
𝜌

𝑖
⊂ Θ
𝜌

𝑖
, and 𝜔

𝜌

𝑖
∈ Ω
𝑖
. Let

𝑡
𝜌

𝑖
= min{𝑢

𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ 𝐵
𝜌

𝑖
}, 𝑇𝜌
𝑖

= max{𝑢
𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ 𝐵
𝜌

𝑖
}, 𝑦𝜌
𝑖

=

min{𝑢
𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ Θ
𝜌

𝑖
}, and 𝑌

𝜌

𝑖
= max{𝑢

𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ Θ
𝜌

𝑖
}, and let
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Ξ
𝜌

𝑖
be the generalized expected utility of the pure strategy profile

𝜌. Then,

Ξ
𝜌

𝑖
= (1 − 𝜔

𝜌

𝑖
) (𝜉
𝜌

𝑖
𝑡
𝜌

𝑖
+ (1 − 𝜉

𝜌

𝑖
) 𝑦
𝜌

𝑖
)

+ 𝜔
𝜌

𝑖
(𝜉
𝜌

𝑖
𝑇
𝜌

𝑖
+ (1 − 𝜉

𝜌

𝑖
) 𝑌
𝜌

𝑖
) .

(6)

Proof. Since player 𝑖 has simple support function 𝑚
𝜌

𝑖
, by

formulas (3), the lower and upper expected payoffs of profile
𝜌 given mass function 𝑚

𝜌

𝑖
are given as follows:

𝑈
𝜌

𝑖
= 𝜉
𝜌

𝑖
𝑡
𝜌

𝑖
+ (1 − 𝜉

𝜌

𝑖
) 𝑦
𝜌

𝑖
,

𝑈
𝜌

𝑖
= 𝜉
𝜌

𝑖
𝑇
𝜌

𝑖
+ (1 − 𝜉

𝜌

𝑖
) 𝑌
𝜌

𝑖
.

(7)

By formula (4), we obtain the generalized expected utility of
profile 𝜌 for player 𝑖 as formula (6), which establishes the
required result.

The above lemma provides a way to calculate Ξ
𝜌

𝑖
associ-

ated with any pure strategy profile 𝜌 in an ambiguous game
where mass functions are simple. In particular, if 𝑚

𝜌

𝑖
is a

vacuous mass function, that is, 𝜉𝜌
𝑖

= 0, then, by formula (6),
we obtain that

Ξ
𝜌

𝑖
= (1 − 𝜔

𝜌

𝑖
) 𝑦
𝜌

𝑖
+ 𝜔
𝜌

𝑖
𝑌
𝜌

𝑖
. (8)

In addition, if 𝑚𝜌
𝑖
is a pseudovacuous mass function, that is,

𝜉
𝜌

𝑖
= 1, then we have

Ξ
𝜌

𝑖
= (1 − 𝜔

𝜌

𝑖
) 𝑡
𝜌

𝑖
+ 𝜔
𝜌

𝑖
𝑇
𝜌

𝑖
. (9)

It thus follows that we can transform an ambiguous game
into a strategic game defined by classic game theory [27, 28].
As such, we can derive a normal form game with precise
payoffs from an ambiguous game. More precisely, given an
ambiguous game 𝐺 we can turn it into a strategic game 𝐺

󸀠
=

(𝑁,𝐴,𝑈
󸀠
), where 𝑈

󸀠
= {𝑢
󸀠

𝑖
}
𝑖∈𝑁

and 𝑢
󸀠

𝑖
(𝜌) = Ξ

𝜌

𝑖
.

Definition 6. Given an ambiguous game 𝐺 = (𝑁,𝐴,Θ,𝑀,

Ω,𝑈), a strategic game, denoted by 𝐺
󸀠

= (𝑁,𝐴,𝑈
󸀠
) (since

𝑢
󸀠

𝑖
(𝜌) = Ξ

𝜌

𝑖
by formula (6), the payoff 𝑢

󸀠 depends on 𝜔
𝜌

𝑖
and

𝜉
𝜌

𝑖
), is called an induced game of𝐺, if the element of its payoff

matrix is obtained by using formula (6) based on 𝐺.

As usual, a mixed strategy 𝛼
𝑖
for player 𝑖 is defined as

a probability distribution over the pure strategy set 𝐴
𝑖
. We

denote𝛼
𝑖
(𝑎
𝑖
) as the probability assigned by themixed strategy

𝛼
𝑖
to player 𝑖’s pure strategy 𝑎

𝑖
∈ 𝐴
𝑖
. Let Ξ

𝑖
(𝛼) be player

𝑖’s generalized expected payoff given by the mixed-strategy
profile 𝛼 = (𝛼

𝑖
, 𝛼
−𝑖
). A pure strategy can then be regarded

as a degenerate case of a mixed strategy, in which that pure
strategy is assigned with probability 1.

Given an ambiguous game 𝐺 = (𝑁,𝐴,Θ,𝑀,Ω,𝑈) and
a mixed-strategy profile 𝛼, we can compute player 𝑖’s gen-
eralized expected payoff to 𝛼 as follows:

Ξ
𝑖 (𝛼) = ∑

𝜌

(∏

𝑖

𝛼
𝑖
(𝑎
𝑖
))Ξ
𝜌

𝑖
, (10)

where 𝑎
𝑖
∈ 𝐴
𝑖
is the element of 𝜌 and Ξ

𝜌

𝑖
is given by (6).

Definition 7. A mixed-strategy profile 𝛼
∗

= (𝛼
∗

𝑖
, 𝛼
∗

−𝑖
) in the

ambiguous game 𝐺 = (𝑁,𝐴,Θ,𝑀,Ω,𝑈) is an ambiguous
mixed-strategy equilibrium, if for all 𝑖 ∈ 𝑁, for every mixed-
strategy 𝛼

𝑖
of player 𝑖, Ξ

𝑖
(𝛼
∗

𝑖
, 𝛼
∗

−𝑖
) ≥ Ξ
𝑖
(𝛼
𝑖
, 𝛼
∗

−𝑖
).

Theorem 8. Given ambiguous game 𝐺 = (𝑁,𝐴,Θ,𝑀,Ω,𝑈),
suppose that 𝛼∗ is an ambiguous mixed-strategy equilibrium of
game 𝐺. Then 𝛼

∗ is an ambiguous equilibrium of 𝐺 if and only
if 𝛼∗ is a mixed-strategy Nash equilibrium of its induced game
𝐺
󸀠
= (𝑁,𝐴,𝑈

󸀠
).

Proof. By Definition 6 and formula (10), for any mixed-
strategy profile 𝛼 = (𝛼

𝑖
, 𝛼
−𝑖
), we have that

Ξ
𝑖
(𝛼
𝑖
, 𝛼
−𝑖
) = 𝐸
𝑖
(𝛼
𝑖
, 𝛼
−𝑖
) , (11)

where 𝐸
𝑖
(𝛼
𝑖
, 𝛼
−𝑖
) is player 𝑖’s expected payoff given by mixed-

strategy profile𝛼 in game𝐺󸀠. Let 𝛼∗ be amixed-strategyNash
equilibrium of game 𝐺

󸀠. Then, for any 𝛼
𝑖

̸= 𝛼
∗

𝑖
, we have

𝐸
𝑖
(𝛼
∗

𝑖
, 𝛼
∗

−𝑖
) ≥ 𝐸
𝑖
(𝛼
𝑖
, 𝛼
∗

−𝑖
) . (12)

This implies that, for any 𝛼
𝑖

̸= 𝛼
∗

𝑖
, we have

Ξ
𝑖
(𝛼
∗

𝑖
, 𝛼
∗

−𝑖
) ≥ Ξ
𝑖
(𝛼
𝑖
, 𝛼
∗

−𝑖
) . (13)

Then, according toDefinition 7, themixed-strategy profile𝛼∗
is an ambiguous equilibrium of 𝐺.

If 𝛼∗ is an ambiguous equilibrium of𝐺, then we can show
that 𝛼∗ is also a mixed-strategy Nash equilibrium of 𝐺󸀠 in a
similar way.

Recall from the well-known result proved by Nash that
there always exists at least one mixed-strategy Nash equilib-
rium for any finite game [28]. It follows immediately from
Theorem 8 that any ambiguous game has at least one ambi-
guous equilibrium, since its induced game has at least one
Nash equilibrium.

Essentially, Theorem 8 provides an approach to find the
ambiguous mixed-strategy equilibria of an ambiguous game.
Given an ambiguous game, we can obtain the induced game
with focal mass values using formulas (6) and (10) and then
find the mixed-strategy Nash equilibria of the induced game,
which are also the ambiguous mixed-strategy equilibria of
the original ambiguous game. In this sense, we can find
ambiguous mixed strategy equilibria when focal mass values
𝜉
𝜌

𝑖
are given. Therefore, the set of ambiguous mixed-strategy

equilibria can be regarded as a value of a function, where the
variables are the focal mass values.

It is worth noting that in our model players’ payoffs
are allowed to be ambiguous, while the traditional games
always assume precise payoffs. Within our framework, the
point-valued payoffs in the induced game are computed from
an interval-valued payoff of the original ambiguous game.
Nevertheless, our approach can capture the idea of ambiguity
aversion under interactive situations, which is a missing
feature of the traditional game-theoretic approaches.

Next, we study how the focused masses may influence
the outcomes (solutions) of an ambiguous game. Suppose
that every focal mass value 𝜉

𝜌

𝑖
in Theorem 8 is an unknown



Journal of Applied Mathematics 5

variable. The following theorem demonstrates how to find
themaximumvalue of functionΞ

𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) given amixed-

strategy profile.

Theorem 9. Given an ambiguous game (𝑁, 𝐴,Θ,𝑀,Ω,𝑈),
suppose that 𝑚

𝜌

𝑖
(𝐵
𝜌

𝑖
) = 𝜉

𝜌

𝑖
, 𝑚
𝜌

𝑖
(Θ
𝜌

𝑖
) = 1 − 𝜉

𝜌

𝑖
, 𝐵
𝜌

𝑖
⊂ Θ
𝜌

𝑖
,

𝑖 ∈ 𝑁, and 𝜔
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
∈ Ω
𝑖
. Let 𝑡𝜌

𝑖
= min{𝑢

𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ 𝐵
𝜌

𝑖
},

𝑇
𝜌

𝑖
= max{𝑢

𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ 𝐵
𝜌

𝑖
}, 𝑦𝜌
𝑖

= min{𝑢
𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ Θ
𝜌

𝑖
}, and

𝑌
𝜌

𝑖
= max{𝑢

𝑖
(𝑐
𝑖
) | 𝑐
𝑖
∈ Θ
𝜌

𝑖
}. Given a mixed-strategy profile 𝛼,

let Ξ
𝑖
be player 𝑖’s generalized expected utility to 𝛼. Moreover,

define 𝛽
𝜌

𝑖
as follows:

𝛽
𝜌

𝑖
=

𝑡
𝜌

𝑖
− 𝑦
𝜌

𝑖

(𝑌
𝜌

𝑖
− 𝑇
𝜌

𝑖
) + (𝑡
𝜌

𝑖
− 𝑦
𝜌

𝑖
)
. (14)

Then, the following assertions hold:

(i) if 𝜔
𝜌

𝑖
< 𝛽
𝜌

𝑖
, then function Ξ

𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) is strictly

increasing in the coordinate 𝜉
𝜌

𝑖
;

(ii) if 𝜔𝜌
𝑖

> 𝛽
𝜌

𝑖
, then the function Ξ

𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) is strictly

decreasing in the coordinate 𝜉
𝜌

𝑖
;

(iii) if 𝜔𝜌
𝑖

= 𝛽
𝜌

𝑖
, then the function Ξ

𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) is inde-

pendent of the coordinate 𝜉
𝜌

𝑖
;

(iv) the function Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) has its maximum at

(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
), where

𝜉
𝜌

𝑖
=

{{

{{

{

1 𝑖𝑓 𝜔
𝜌

𝑖
< 𝛽
𝜌

𝑖
,

0 𝑖𝑓 𝜔
𝜌

𝑖
> 𝛽
𝜌

𝑖
,

𝑥, 𝑥 ∈ [0, 1] 𝑖𝑓 𝜔
𝜌

𝑖
= 𝛽
𝜌

𝑖
.

(15)

Proof. Firstly, we show that 0 ≤ 𝛽
𝜌

𝑖
≤ 1. Since 𝐵

𝜌

𝑖
⊂ Θ
𝜌

𝑖
, we

have 𝑦
𝜌

𝑖
≤ 𝑡
𝜌

𝑖
≤ 𝑇
𝜌

𝑖
< 𝑌
𝜌

𝑖
or 𝑦𝜌
𝑖
< 𝑡
𝜌

𝑖
≤ 𝑇
𝜌

𝑖
≤ 𝑌
𝜌

𝑖
, which implies

that 0 ≤ 𝛽
𝜌

𝑖
≤ 1.

For anymixed-strategy profile𝛼, by formulas (6) and (10),
we have

Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
)

= ∑

𝜌

(∏

𝑖

𝛼
𝑖
(𝑎
𝑖
))Ξ
𝜌

𝑖
,

= ∑

𝜌

(∏

𝑖

𝛼
𝑖
(𝑎
𝑖
)) ((1 − 𝜔

𝜌

𝑖
) (𝜉
𝜌

𝑖
𝑡
𝜌

𝑖
+ (1 − 𝜉

𝜌

𝑖
) 𝑦
𝜌

𝑖
)

+𝜔
𝜌

𝑖
(𝜉
𝜌

𝑖
𝑇
𝜌

𝑖
+ (1 − 𝜉

𝜌

𝑖
) 𝑌
𝜌

𝑖
))

= ∑

𝜌

(∏

𝑖

𝛼
𝑖
(𝑎
𝑖
)) (𝜉
𝜌

𝑖
(𝜔
𝜌

𝑖
(𝑇
𝜌

𝑖
− 𝑡
𝜌

𝑖
− 𝑌
𝜌

𝑖
+ 𝑦
𝜌

𝑖
)

+ 𝑡
𝜌

𝑖
− 𝑦
𝜌

𝑖
) + 𝜔
𝜌

𝑖
𝑌
𝜌

𝑖

+ (1 − 𝜔
𝜌

𝑖
) 𝑦
𝜌

𝑖
) .

(16)

Let

𝑓
𝜌

𝑖
(𝜉
𝜌

𝑖
) = 𝜉
𝜌

𝑖
(𝜔
𝜌

𝑖
(𝑇
𝜌

𝑖
− 𝑡
𝜌

𝑖
− 𝑌
𝜌

𝑖
+ 𝑦
𝜌

𝑖
) + 𝑡
𝜌

𝑖
− 𝑦
𝜌

𝑖
)

+ 𝜔
𝜌

𝑖
𝑌
𝜌

𝑖
+ (1 − 𝜔

𝜌

𝑖
) 𝑦
𝜌

𝑖
.

(17)

Clearly, 𝑓𝜌
𝑖
(𝜉
𝜌

𝑖
) is linear.

If 𝜔𝜌
𝑖
< 𝛽
𝜌

𝑖
, then

𝜔
𝜌

𝑖
(𝑇
𝜌

𝑖
− 𝑡
𝜌

𝑖
− 𝑌
𝜌

𝑖
+ 𝑦
𝜌

𝑖
) + 𝑡
𝜌

𝑖
− 𝑦
𝜌

𝑖
> 0. (18)

In this case, 𝑓
𝜌

𝑖
(𝜉
𝜌

𝑖
) is strictly increasing, and thus Ξ

𝑖
(𝜉
𝜌

𝑖
,

. . . , 𝜉
𝜌
󸀠

𝑖
) is also strictly increasing in the coordinate 𝜉

𝜌

𝑖
.

If 𝜔𝜌
𝑖
> 𝛽
𝜌

𝑖
, then

𝜔
𝜌

𝑖
(𝑇
𝜌

𝑖
− 𝑡
𝜌

𝑖
− 𝑌
𝜌

𝑖
+ 𝑦
𝜌

𝑖
) + 𝑡
𝜌

𝑖
− 𝑦
𝜌

𝑖
< 0. (19)

In this case, 𝑓
𝜌

𝑖
(𝜉
𝜌

𝑖
) is strictly decreasing, and accordingly

Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) is strictly decreasing in the coordinate 𝜉

𝜌

𝑖
as

well.
Finally, if 𝜔𝜌

𝑖
= 𝛽
𝜌

𝑖
, then

𝜔
𝜌

𝑖
(𝑇
𝜌

𝑖
− 𝑡
𝜌

𝑖
− 𝑌
𝜌

𝑖
+ 𝑦
𝜌

𝑖
) + 𝑡
𝜌

𝑖
− 𝑦
𝜌

𝑖
= 0, (20)

which means that Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) is independent of the coor-

dinate 𝜉
𝜌

𝑖
. In this case, 𝑓𝜌

𝑖
(𝜉
𝜌

𝑖
) = 𝛽
𝜌

𝑖
𝑌
𝜌

𝑖
+ (1 − 𝛽

𝜌

𝑖
)𝑦
𝜌

𝑖
, and thus

we have

Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) = ∑

𝜌

(∏

𝑖

𝛼
𝑖
(𝑎
𝑖
)) (𝛽

𝜌

𝑖
𝑌
𝜌

𝑖
+ (1 − 𝛽

𝜌

𝑖
) 𝑦
𝜌

𝑖
) .

(21)

Since function 𝑓
𝜌

𝑖
(𝜉
𝜌

𝑖
) is linear, Ξ

𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) has its

maximum if each 𝑓(𝜉
𝜌

𝑖
) achieves its maximum. Thus, the

function has its maximum at (𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
), where 𝜉

𝜌

𝑖
= 1, if

𝜔
𝜌

𝑖
< 𝛽
𝜌

𝑖
, 𝜉𝜌
𝑖

= 0 if 𝜔𝜌
𝑖

> 𝛽
𝜌

𝑖
, and 𝜉

𝜌

𝑖
= 𝑥, where 𝑥 ∈ [0, 1], if

𝜔
𝜌

𝑖
= 𝛽
𝜌

𝑖
.

As shown in Theorem 9, we have established the rela-
tionship between focal mass values, optimistic attitudes, and
the generalized expected payoffs given by anymixed-strategy
profile. As a result, this theorem demonstrates what a player
should do under an ambiguous interactive situation, where
he/she only needs to decide his/her 𝛽-values and degree of
optimism. More specifically, item (i) shows that, for any
player 𝑖, if 𝛽𝜌

𝑖
is more than his/her corresponding degrees of

optimism𝜔
𝜌

𝑖
, then the bigger the focalmass value (i.e., the less

ambiguity), the bigger the generalized expected payoff and
thus the better for player 𝑖. In contrast, item (ii) indicates that,
if 𝛽𝜌
𝑖
is less than his/her corresponding degrees of optimism

𝜔
𝜌

𝑖
, then the more ambiguity the better for player 𝑖. And item

(iii) says that if𝛽𝜌
𝑖
is equal to his/her corresponding degrees of

optimism 𝜔
𝜌

𝑖
, then player 𝑖 could assign any focal mass value

for the focal element of mass function 𝑚
𝜌

𝑖
. In addition, item

(iv) identifies the conditions under which function Ξ
𝑖
has a

maximum value.
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It is important to note that Theorem 9 holds for any
mixed-strategy profile. In light of these results, it seems
reasonable to say that there is a close relationship between the
focalmass values and the equilibria of an ambiguous game (to
find the equilibria of an ambiguous game, players’ focal mass
values and degrees of optimism are required to be common
knowledge among players; however, Theorem 9 holds even if
a player only knows his/her own mass values and degrees of
optimism).

The generalized expected utilityΞ
𝑖
is calculated according

to the Hurwicz criterion, which depends on the attitude of
player 𝑖 in an ambiguous game.

Corollary 10. Under the conditions given in Theorem 9, the
following assertions hold:

(i) if𝜔𝜌
𝑖
< 𝛽
𝜌

𝑖
, and player 𝑖 switches from his/her𝜔𝜌

𝑖
to𝜔
󸀠𝜌

𝑖
,

𝜔
󸀠𝜌

𝑖
> 𝛽
𝜌

𝑖
, then Ξ

𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) > Ξ
𝑖
(𝜉
󸀠𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
), where

𝜉
󸀠𝜌

𝑖
< 𝜉
𝜌

𝑖
;

(ii) if𝜔𝜌
𝑖
> 𝛽
𝜌

𝑖
, and player 𝑖 switches from his/her𝜔𝜌

𝑖
to𝜔
󸀠𝜌

𝑖
,

𝜔
󸀠𝜌

𝑖
< 𝛽
𝜌

𝑖
, then Ξ

𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) > Ξ
𝑖
(𝜉
󸀠𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
), where

𝜉
󸀠𝜌

𝑖
> 𝜉
𝜌

𝑖
.

Proof. Since 𝜔
󸀠𝜌

𝑖
< 𝛽
𝜌

𝑖
, by item (ii) of Theorem 9, function

Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) is strictly decreasing in the coordinate 𝜉

𝜌

𝑖
. This

means that the smaller the focal mass value, the bigger the
generalized expected payoff to any mixed-strategy profile.
Thus, as a rational player, player 𝑖 will try to get less
information so that he/she will obtain a bigger generalized
expected payoff. That is, we have 𝜉

󸀠𝜌

𝑖
< 𝜉
𝜌

𝑖
. On the other

hand, since 𝜔
𝜌

𝑖
< 𝛽
𝜌

𝑖
, by item (i) of Theorem 9, function

Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) is strictly increasing in the coordinate 𝜉

𝜌

𝑖
. So,

we have Ξ
𝑖
(𝜉
𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
) > Ξ

𝑖
(𝜉
󸀠𝜌

𝑖
, . . . , 𝜉

𝜌
󸀠

𝑖
). This completes the

proof of item (i). Similarly, we can establish item (ii).

Corollary 10 investigates what happens when a player is
too optimistic or pessimistic about a strategy profile. If 𝜔𝜌

𝑖
<

𝛽
𝜌

𝑖
and player 𝑖 switches from his/her𝜔𝜌

𝑖
to𝜔
󸀠𝜌

𝑖
with𝜔

󸀠𝜌

𝑖
> 𝛽
𝜌

𝑖
,

then player 𝑖 is too optimistic. In contrast, if if 𝜔𝜌
𝑖

> 𝛽
𝜌

𝑖
and

player 𝑖 switches from his/her 𝜔
𝜌

𝑖
to 𝜔
󸀠𝜌

𝑖
with 𝜔

󸀠𝜌

𝑖
< 𝛽
𝜌

𝑖
, then

we say that player 𝑖 is too pessimistic.The corollary shows that
any player’s generalized expected payoff will be decreasing if
he/she is too optimistic or pessimistic.

4. Example: A Defending and Attacking Game

In this section, we illustrate our game-theoretic framework
using a strategic situation between a defender and an attacker
(both could be a team).

4.1. Problem Description. In this problem, the attacker needs
to allocate his/her available resources, for example, personnel
and weapons, to attack some targets chosen from three
international airports in a country, while the defender needs
to allocate his available resources to prevent attacks. Suppose
that the possible attack effects or consequences can be

divided into 11 different scales from the 1st one being the
best attack effect (denoted by 𝑐

1
) to the 11th one being the

worst attack effect (denoted by 𝑐
11
). Clearly, the attacker’s

preference ranking over the set of the possible attack effects or
consequences is from 𝑐

1
to 𝑐
11
, while the defender’s preference

ranking over that set is reversed.
Moreover, suppose that there are two kinds of informa-

tion available in this case. First, public information is known
by both the defender and the attacker, such as the average pas-
senger flows, the architectures, the flight schedules of these
three airports, the regular safety inspections, and ordinary
defending and attacking methods. By contrast, private infor-
mation of one player might not be available to his opponent.
For example, special defending and attacking resources can
be regarded as private information, such as irregular patrols,
special attacking methods and skills, and the allocation of
attackers. In addition, there are some random factors in the
game environment that might have impact on the attack
effects, which are not controlled by neither the defender nor
the attacker during the possible attacks, such as the coopera-
tion abilities of related departments to deal with emergences,
the defending skills of unarmed people, and the weather.

As such, it seems unrealistic for both the defender and the
attacker to specify the exact consequence (or precise payoff)
of a pure strategy profile. Nevertheless, based upon public
information and relevant knowledge, they are certain that
the possible consequences of each pure strategy profile 𝜌 lie
in a set of Θ

𝜌

𝑖
, a subset of the set of all the possible attack

effects. Due to limited information, the defender and the
attacker can only identify the lower probabilities (the focal
mass values), rather than exact probabilities, of some possible
consequences of the pure strategy profile 𝜌. Furthermore,
given such mass values, they both hold an optimistic attitude
for each pure strategy profile that determines a generalized
expected payoff under the profile.

4.2. GameModel. In this case, we write the pure strategies of
the defender and the attacker as 𝑎

1
, 𝑎
2
, and 𝑎

3
, which mean

that the defender and the attacker use their full resources to
prevent and attack the airports 𝑎

1
, 𝑎
2
, and 𝑎

3
, respectively.

According to public information, the ambiguity concerning
consequences of each pure strategy profile 𝜌 is represented
by a simple mass function𝑚

𝜌

1
for the defender and𝑚

𝜌

2
for the

attacker.
By applying Definition 4, this interactive situation

can then be modeled as an ambiguous game of
𝐺 = (𝑁,𝐴,Θ,𝑀,Ω,𝑈), where

(i) 𝑁 = {1, 2} is the player set, where player 1 is the
defender and player 2 is the attacker;

(ii) 𝐴 = {𝐴
1
, 𝐴
2
} is the pure strategy set, where 𝐴

1
=

𝐴
2
= {𝑎
1
, 𝑎
2
, 𝑎
3
};

(iii) Θ = {Θ
𝜌

1
, Θ
𝜌

2
} is the consequence set, where Θ

𝜌

1
and

Θ
𝜌

2
are the sets of attack effects given pure strategy

profile 𝜌, which are given as row 3 in Tables 2 and 3,
respectively, and ⋃

𝜌
Θ
𝜌

1
= ⋃
𝜌
Θ
𝜌

2
= {𝑐
1
, 𝑐
2
, . . . , 𝑐

11
},

where 𝑐
𝑖
is an attack effect, 𝑖 = 1, 2, . . . , 11;
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Table 2: Important elements of the ambiguous game for the
defender.

𝐵
𝜌

1
Θ
𝜌

1
𝜉
𝜌

1
𝛽
𝜌

1
𝜔
𝜌

1

𝜌 = (𝑎
1
, 𝑎
1
) {𝑐

10
, 𝑐
11
} {𝑐

7
, . . . , 𝑐

11
} 0.7 1 1/3

𝜌 = (𝑎
1
, 𝑎
2
) {𝑐

5
} {𝑐

4
, . . . , 𝑐

7
} 0.4 1/3 1/2

𝜌 = (𝑎
1
, 𝑎
3
) {𝑐

3
} {𝑐

1
, . . . , 𝑐

5
} 0.8 1/2 1/2

𝜌 = (𝑎
2
, 𝑎
1
) {𝑐

1
, 𝑐
2
} {𝑐

1
, . . . , 𝑐

5
} 0.3 0 4/5

𝜌 = (𝑎
2
, 𝑎
2
) {𝑐

8
} {𝑐

6
, . . . , 𝑐

9
} 0.5 2/3 1/2

𝜌 = (𝑎
2
, 𝑎
3
) {𝑐

3
} {𝑐

1
, . . . , 𝑐

4
} 0.6 2/3 4/5

𝜌 = (𝑎
3
, 𝑎
1
) {𝑐

1
} {𝑐

1
, . . . , 𝑐

5
} 0.6 1/2 2/3

𝜌 = (𝑎
3
, 𝑎
2
) {𝑐

5
} {𝑐

4
, 𝑐
5
, 𝑐
6
} 0.7 1/2 1/2

𝜌 = (𝑎
3
, 𝑎
3
) {𝑐

9
} {𝑐

7
, . . . , 𝑐

11
} 0.8 1/2 1/2

(iv) 𝑀 = {𝑀
1
,𝑀
2
} is the mass function set, where

𝑀
1
= {𝑚
𝜌

1
}, 𝑀
2
= {𝑚
𝜌

2
}, 𝑚𝜌
1
and 𝑚

𝜌

2
are simple mass

functions over Θ
𝜌

1
and Θ

𝜌

2
, and the focal elements

are 𝐵
𝜌

1
and 𝐵

𝜌

2
with focal mass values 𝜉

𝜌

1
and 𝜉

𝜌

2
,

respectively. That is, 𝑚
𝜌

𝑖
(𝐵
𝜌

𝑖
) = 𝜉

𝜌

𝑖
and 𝑚

𝜌

𝑖
(Θ
𝜌

𝑖
) =

1 − 𝜉
𝜌

𝑖
, 𝑖 = 1, 2; for instance, according to public

information and relevant knowledge,𝐵𝜌
1
(𝐵𝜌
2
),Θ𝜌
1
(Θ𝜌
2
),

and 𝜉
𝜌

1
(𝜉𝜌
2
) are given by row 2, row 3, and row 4 in

Table 2 (Table 3), respectively;

(v) Ω = {Ω
1
, Ω
2
} is the optimistic attitude set, where

Ω
1
= {𝜔
𝜌

1
} and Ω

2
= {𝜔
𝜌

2
} are given by row 6 in Tables

2 and 3, respectively;

(vi) 𝑈 = {𝑢
1
, 𝑢
2
} is the payoff function set, where 𝑢

1
(𝑐
𝑖
) =

𝑖 − 6 and 𝑢
2
(𝑐
𝑖
) = 6 − 𝑖, where 𝑖 = 1, . . . , 11;

clearly,𝑢
1
does reflect the defender’s preference order-

ing 𝑐
11
≻
1
𝑐
10
≻
1
⋅ ⋅ ⋅ ≻
1
𝑐
1
, and 𝑢

2
reflects the attacker’s

preference ordering 𝑐
1
≻
2
𝑐
2
≻
2
⋅ ⋅ ⋅ ≻
2
𝑐
11
.

Given the above setting, 𝛽-values can be calculated as
follows. Since 𝐵

(𝑎1 ,𝑎1)

1
= {𝑐
10
, 𝑐
11
}, 𝐵(𝑎1 ,𝑎2)
1

= {𝑐
5
}, Θ(𝑎1 ,𝑎1)
1

=

{𝑐
7
, . . . , 𝑐

11
}, and Θ

(𝑎1 ,𝑎2)

1
= {𝑐
4
, . . . , 𝑐

7
}, we have

𝑡
(𝑎1 ,𝑎1)

1
= 𝑢
1
(𝑐
10
) = 10 − 6 = 4,

𝑇
(𝑎1 ,𝑎1)

1
= 𝑢
1
(𝑐
11
) = 11 − 6 = 5;

𝑡
(𝑎1 ,𝑎2)

1
= 𝑇
(𝑎1 ,𝑎2)

1
= 𝑢
1
(𝑐
5
) = 5 − 6 = −1;

𝑦
(𝑎1 ,𝑎1)

1
= min {𝑢

1
(𝑐
7
) , . . . , 𝑢

1
(𝑐
11
)} = 𝑢

1
(𝑐
7
) = 1,

𝑌
(𝑎1 ,𝑎1)

1
= max {𝑢

1
(𝑐
7
) , . . . , 𝑢

1
(𝑐
11
)} = 𝑢

1
(𝑐
11
) = 5;

𝑦
(𝑎1 ,𝑎2)

1
= min {𝑢

1
(𝑐
4
) , . . . , 𝑢

1
(𝑐
7
)} = 𝑢

1
(𝑐
4
) = −2,

𝑌
(𝑎1 ,𝑎2)

1
= max {𝑢

1
(𝑐
4
) , . . . , 𝑢

1
(𝑐
7
)} = 𝑢

1
(𝑐
7
) = 1.

(22)

Table 3: Important elements of the ambiguous game for the attacker.

𝐵
𝜌

2
Θ
𝜌

2
𝜉
𝜌

2
𝛽
𝜌

2
𝜔
𝜌

2

𝜌 = (𝑎
1
, 𝑎
1
) {𝑐

9
} {𝑐

7
, . . . , 𝑐

11
} 0.8 1/2 1/2

𝜌 = (𝑎
1
, 𝑎
2
) {𝑐

5
} {𝑐

3
, . . . , 𝑐

6
} 0.4 1/3 2/3

𝜌 = (𝑎
1
, 𝑎
3
) {𝑐

3
} {𝑐

1
, . . . , 𝑐

5
} 0.7 1/2 4/5

𝜌 = (𝑎
2
, 𝑎
1
) {𝑐

1
} {𝑐

1
, . . . , 𝑐

5
} 0.6 1 1/3

𝜌 = (𝑎
2
, 𝑎
2
) {𝑐

7
} {𝑐

5
, . . . , 𝑐

8
} 0.5 1/3 2/3

𝜌 = (𝑎
2
, 𝑎
3
) {𝑐

3
} {𝑐

1
, . . . , 𝑐

5
} 0.7 1/2 4/5

𝜌 = (𝑎
3
, 𝑎
1
) {𝑐

1
} {𝑐

1
, . . . , 𝑐

5
} 0.4 1 1/2

𝜌 = (𝑎
3
, 𝑎
2
) {𝑐

5
} {𝑐

3
, . . . , 𝑐

6
} 0.5 1/3 1/3

𝜌 = (𝑎
3
, 𝑎
3
) {𝑐

9
} {𝑐

7
, . . . , 𝑐

11
} 0.8 1/2 2/3

Thus, by formula (14), we have

𝛽
(𝑎1 ,𝑎1)

1
=

𝑡
(𝑎1 ,𝑎1)

1
− 𝑦
(𝑎1 ,𝑎1)

1

(𝑌
(𝑎1 ,𝑎1)

1
− 𝑇
(𝑎1 ,𝑎1)

1
) + (𝑡

(𝑎1 ,𝑎1)

1
− 𝑦
(𝑎1 ,𝑎1)

1
)

=
4 − 1

5 − 5 + 4 − 1
= 1,

𝛽
(𝑎1 ,𝑎2)

1
=

𝑡
(𝑎1 ,𝑎2)

1
− 𝑦
(𝑎1 ,𝑎2)

1

(𝑌
(𝑎1 ,𝑎2)

1
− 𝑇
(𝑎1 ,𝑎2)

1
) + (𝑡

(𝑎1 ,𝑎2)

1
− 𝑦
(𝑎1 ,𝑎2)

1
)

=
−1 + 2

1 + 2 + 1 − 1
=

1

3
.

(23)

Similarly, we can calculate the other 𝛽-values for both
players, which are given in row 5 of Tables 2 and 3.

4.3. Ambiguous Equilibrium. To find the ambiguous equi-
libria of this game, let us first compute the expected utility
intervals of the pure strategy profile. Take the pure strategy
profile 𝜌 = (𝑎

1
, 𝑎
1
) as an example. By formulas (7), we can

calculate the lower and upper bound of the expected payoff
interval for (𝑎

1
, 𝑎
1
) as

𝑈
(𝑎1 ,𝑎1)

1
= 𝜉
(𝑎1 ,𝑎1)

1
𝑡
(𝑎1 ,𝑎1)

1
+ (1 − 𝜉

(𝑎1 ,𝑎1)

1
) 𝑦
(𝑎1 ,𝑎1)

1

= 0.7 × 𝑢
1
(𝑐
10
) + (1 − 0.7) 𝑢1 (𝑐7)

= 0.7 × 4 + 0.3 × 1 = 3.1,

𝑈
(𝑎1 ,𝑎1)

1
= 𝜉
(𝑎1 ,𝑎1)

1
𝑇
(𝑎1 ,𝑎1)

1
+ (1 − 𝜉

(𝑎1 ,𝑎1)

1
) 𝑌
(𝑎1 ,𝑎1)

1

= 0.7 × 𝑢
1
(𝑐
11
) + (1 − 0.7) 𝑢1 (𝑐11)

= 0.7 × 5 + 0.3 × 5 = 5.

(24)

In this ambiguous game 𝐺, we associate the pure strategy
profile (𝑎

1
, 𝑎
1
) with the expected payoff interval [3.1, 5.0] for

player 1. Similarly, we can obtain the expected payoff intervals
associated with the other pure strategy profiles, which are all
shown in Table 4.
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Table 4: Expected payoff intervals for the ambiguous game 𝐺.

𝑎
1

𝑎
2

𝑎
3

𝑎
1

[3.1, 5.0],
[−3.4, −2.6]

[−1.6, 0.2],
[0.4, 2.2]

[−3.4, −2.6],
[2.4, 3.6]

𝑎
2

[−5.0, −1.9],
[3.4, 5.0]

[1.0, 2.5],
[−1.5, 0.0]

[−3.8, −2.6],
[2.4, 3.6]

𝑎
3

[−5.0, −3.4],
[2.6, 5.0]

[−1.3, −0.7],
[0.5, 2.0]

[2.6, 3.4],
[−3.4, −2.6]

Table 5: Payoff matrix of the induced game 𝐺
󸀠

1
.

𝑎
1

𝑎
2

𝑎
3

𝑎
1

3.733, −3.0 −0.7, 1.6 −3.0, 3.36
𝑎
2

−2.52, 3.933 1.75, −0.5 −2.84, 3.36
𝑎
3

−3.933, 3.8 −1.0, 1.0 3.0, −2.867

By formula (6), we thus obtain the payoff matrix of
induced game 𝐺

󸀠

1
= (𝑁, 𝑆, 𝑈

󸀠
) (as shown in Table 5).

In this ambiguous game, a mixed strategy (𝑝
1
, 𝑝
2
, 𝑝
3
)

(where 𝑝
3
= 1−𝑝

1
−𝑝
2
) can be interpreted as the defender or

attacker allocating proportion 𝑝
𝑖
of his available resources to

prevent or attack airport 𝑎
𝑖
(𝑖 = 1, 2, 3). Let 𝛼 = ((𝑝

1
, 𝑝
2
, 1 −

𝑝
1
−𝑝
2
), (𝑞
1
, 𝑞
2
, 1−𝑞
1
−𝑞
2
)) be amixed-strategy profile. Given

the induced game (𝑁, 𝑆, 𝑈
󸀠
), we have

𝐸
1 (𝛼) = 3.733𝑝

1
𝑞
1
− 0.7𝑝

1
𝑞
2
− 3𝑝
1
(1 − 𝑞

1
− 𝑞
2
)

− 2.52𝑝
2
𝑞
1
+ 1.75𝑝

2
𝑞
2
− 2.84𝑝

2
(1 − 𝑞

1
− 𝑞
2
)

− 3.933 (1 − 𝑝
1
− 𝑝
2
) 𝑞
1
− (1 − 𝑝

1
− 𝑝
2
) 𝑞
2

+ 3 (1 − 𝑝
1
− 𝑝
2
) (1 − 𝑞

1
− 𝑞
2
) ,

𝐸
2 (𝛼) = −3𝑝

1
𝑞
1
+ 1.6𝑝

1
𝑞
2
+ 3.36𝑝

1
(1 − 𝑞

1
− 𝑞
2
)

+ 3.933𝑝
2
𝑞
1
− 0.5𝑝

2
𝑞
2
+ 3.36𝑝

2
(1 − 𝑞

1
− 𝑞
2
)

+ 3.8 (1 − 𝑝
1
− 𝑝
2
) 𝑞
1
+ (1 − 𝑝

1
− 𝑝
2
) 𝑞
2

− 2.867 (1 − 𝑝
1
− 𝑝
2
) (1 − 𝑞

1
− 𝑞
2
) .

(25)

Let 𝜕𝐸
1
/𝜕𝑝
𝑖
= 0 and 𝜕𝐸

2
/𝜕𝑞
𝑖
= 0 (𝑖 = 1, 2). Then, we have

𝑝
1
= 0.4211, 𝑝

2
= 0.1938, 𝑞

1
= 0.2057, and 𝑞

2
= 0.5062. One

can easily verify that the strategy profile

𝛼
∗
= ((0.4211, 0.1938, 0.3851) , (0.2057, 0.5062, 0.2881))

(26)

is the unique mixed-strategy equilibrium of induced game
𝐺
󸀠. According to Theorem 8, 𝛼∗ is also the only ambiguous

equilibriumof the ambiguous game𝐺. Given this equilibrium
point, it follows from formulas (25) that Ξ

1
(𝛼
∗
) = −0.4508

and Ξ
2
(𝛼
∗
) = 0.9620.

4.4. Relation between Focal Mass Values and Solutions. This
subsection illustrates the relationship between the focal mass
values and the solutions of an ambiguous game, and how to
manage private information under such a situation.

In the above analysis, each focused mass 𝜉
𝜌

1
is given as

a constant. Now, assume that all the focused masses are

Table 6: Payoff matrix of the induced game 𝐺
󸀠

2
.

𝑎
1

𝑎
2

𝑎
3

𝑎
1

4.333, −3.00 −0.50, 2.00 −3.00, 4.20
𝑎
2

−1.80, 5.00 2.00, 0.00 −2.60, 4.20
𝑎
3

−2.333, 5.00 −1.25, 1.00 3.00, −3.667

variables.Then, according toTheorem 9 and values 𝛽𝜌
1
in row

5 and values 𝜔𝜌
1
in row 6 of Table 2, for the defender and any

mixed-strategy profile 𝛼, we have the following.

(i) Since 𝜔
(𝑎1 ,𝑎1)

1
< 𝛽
(𝑎1 ,𝑎1)

1
and 𝜔

(𝑎2 ,𝑎2)

1
< 𝛽
(𝑎2 ,𝑎2)

1
, the

function Ξ
1
(𝜉
(𝑎1 ,𝑎1)

1
, . . . , 𝜉

(𝑎3 ,𝑎3)

1
) is strictly increasing

in the coordinates 𝜉
(𝑎1 ,𝑎1)

1
and 𝜉

(𝑎2 ,𝑎2)

1
. This means

that the more the information represented by𝑚
(𝑎1 ,𝑎1)

1
,

(𝑚(𝑎2 ,𝑎2)
1

) the better for the defender.

(ii) Since 𝜔
(𝑎1 ,𝑎2)

1
> 𝛽
(𝑎1 ,𝑎2)

1
, 𝜔(𝑎2 ,𝑎1)
1

> 𝛽
(𝑎2 ,𝑎1)

1
, 𝜔(𝑎2 ,𝑎3)
1

>

𝛽
(𝑎2 ,𝑎3)

1
, and 𝜔

(𝑎3 ,𝑎1)

1
> 𝛽
(𝑎3 ,𝑎1)

1
, the function Ξ

1
(𝜉
(𝑎1 ,𝑎1)

1
,

. . . , 𝜉
(𝑎3 ,𝑎3)

1
) is strictly decreasing in the coordinates

𝜉
(𝑎1 ,𝑎2)

1
, 𝜉
(𝑎2 ,𝑎1)

1
, 𝜉
(𝑎2 ,𝑎3)

1
, and 𝜉

(𝑎3 ,𝑎1)

1
. This means that

the less information represented by 𝑚
(𝑎1 ,𝑎2)

1
(𝑚(𝑎2 ,𝑎1)
1

,
𝑚
(𝑎2 ,𝑎3)

1
, and 𝑚

(𝑎3 ,𝑎1)

1
) the better for the defender.

(iii) Since 𝜔
(𝑎1 ,𝑎3)

1
= 𝛽
(𝑎1 ,𝑎3)

1
, 𝜔
(𝑎3 ,𝑎2)

1
= 𝛽
(𝑎3 ,𝑎2)

1
, and

𝜔
(𝑎3 ,𝑎3)

1
= 𝛽
(𝑎3 ,𝑎3)

1
, the function Ξ

1
(𝜉
(𝑎1 ,𝑎1)

1
, . . . , 𝜉

(𝑎3 ,𝑎3)

1
)

is independent of the coordinates 𝜉
(𝑎1 ,𝑎3)

1
, 𝜉(𝑎3 ,𝑎2)
1

, and
𝜉
(𝑎3 ,𝑎3)

1
.

(iv) The function Ξ
1
(𝜉
(𝑎1 ,𝑎1)

1
, . . . , 𝜉

(𝑎3 ,𝑎3)

1
) has its maximum

value at point (1, 0, 𝑥, 0, 1, 0, 0, 𝑦, 𝑧), where 𝑥, 𝑦, 𝑧 ∈

[0, 1].

Similarly, for the attacker and any mixed-strategy profile
𝛼, the function Ξ

2
(𝜉
(𝑎1 ,𝑎1)

2
, . . . , 𝜉

(𝑎3 ,𝑎3)

2
) achieves its maximum

value at point (𝑥󸀠, 0, 0, 1, 0, 0, 1, 𝑦󸀠, 0), where 𝑥
󸀠
, 𝑦
󸀠
∈ [0, 1].

Given these critical points, we can compute the lower and
upper expected payoffs for each pure strategy profile using
formulas (7).Thus, we obtain by formula (6) the payoffmatrix
of the induced game 𝐺

󸀠

2
= (𝑁, 𝑆, 𝑈

󸀠󸀠
) as shown in Table 6. It

is easy to show that

𝛼
⋆
= ((0.4631, 0.1679, 0.3690) , (0.2164, 0.4828, 0.3008))

(27)

is the unique mixed-strategy equilibrium of induced game
𝐺
󸀠

2
. Thus, by Theorem 8, 𝛼⋆ is the unique ambiguous mixed-

strategy equilibrium of the ambiguous game 𝐺. Given this
equilibrium point, we can obtain Ξ

1
(𝛼
⋆
) = −0.2060 and

Ξ
2
(𝛼
⋆
) = 1.295, which are the maximums of the defender’s

and attacker’s expected payoffs given by the equilibria of the
ambiguous game. Indeed, we have that Ξ

1
(𝛼
⋆
) > Ξ
1
(𝛼
∗
) and

Ξ
2
(𝛼
⋆
) > Ξ
2
(𝛼
∗
).

In order to provide a geometric illustration, let us con-
sider a special case that is helpful in demonstrating the
relation between the mass value and the ambiguous equi-
librium. Let 𝜉

(𝑎1 ,𝑎1)

1
and 𝜉

(𝑎1 ,𝑎2)

1
be two variables, and let the



Journal of Applied Mathematics 9

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−0.7
−0.65
−0.6
−0.55
−0.5
−0.45
−0.4
−0.35

Ξ
1
(
𝛼
∗ 1
,
𝛼
∗ 2
)

𝜉
1 (a

1 , a
2 )

𝜉1
(a1

, a1
)

Figure 1: Generalized expected payoffs at the ambiguous equilibria.

other focused masses be constants as those shown in Table 2.
Since 𝛽

(𝑎1 ,𝑎1)

1
> 𝜔
(𝑎1 ,𝑎1)

1
and 𝛽

(𝑎1 ,𝑎2)

1
< 𝜔
(𝑎1 ,𝑎2)

1
, by item (iv)

of Theorem 9, the function Ξ
1
achieves its maximum value

at the critical point (1, 0). In view of this, we obtain that the
mixed-strategy profile

𝛼
∗
= ((0.4211, 0.1938, 0.3851) , (0.1801, 0.5278, 0.2921))

(28)

is the ambiguous equilibrium with maximum value Ξ
1
(𝛼
∗
) =

−0.3598. Figure 1 depicts the relation between the focal mass
values 𝜉

(𝑎1 ,𝑎1)

1
, 𝜉(𝑎1 ,𝑎2)
1

, and Ξ
1
(𝛼
∗
). One can observe from the

figure that the function Ξ
1
(𝛼
∗
) is strictly increasing in the

coordinate 𝜉
(𝑎1 ,𝑎1)

1
and is strictly decreasing in the coordinate

𝜉
(𝑎1 ,𝑎2)

1
.

5. Discussion

In the literature, the Bayesian game [11] is widely used
to model interactive situations under ambiguity. Basically,
the framework of Bayesian games assumes that a player’s
belief regarding the other players’ types is accurate. In other
words, it is assumed that the player has a precise probability
distribution over the set of the types. In particular, the
player should assign an equal probability to each type in the
case of complete ignorance. In this framework, the expected
payoff of each strategy profile can be computed, and thus
a preference ordering can be determined. However, many
researches [2, 3, 24] have shown that the belief of a decision
maker may not be representable by a precise probability
distribution when ambiguity occurs. In contrast, our model
employs Dempster-Shafer theory, an instance of theories of
imprecise probability, to model ambiguity and thus relaxes
the fundamental assumption of Bayesian games.

TheChoquet expected utility theory is a natural extension
of the expected utility theory to decision making under
ambiguity. To deal with ambiguity in games, some papers [14–
18] apply the Choquet expected utility theory to the context
of games, which leads to a Choquet expected payoff for each
strategy profile. In these approaches, the players maximize
the Choquet expected payoffs, from which a preference

ordering can be determined. It is worth pointing out that
these approaches assume the consequence of a strategy profile
to be determinate. By contrast, our model relaxes such an
assumption. Another problem with these approaches is that
their solutions, called equilibria in games, may not exist in
some cases [29]. However, we have established that there is at
least one ambiguous equilibrium in any ambiguous game.

Based on the Choquet expected utility theory, Marinacci
[17] studies the ambiguous games by considering pessimism
and optimism towards ambiguity, which are two different
kinds of extreme attitudes. Unlike his framework, our model
resolves ambiguity using the Hurwicz criterion, which is
a weighted average of the purely optimistic and purely
pessimistic value according to the degree of optimism. As
shown in Corollary 10, each player’s outcomes will become
worse if he/she is too optimistic or pessimistic. In order to
model ambiguity in games, researchers [30, 31] use the model
of multiple priors (a set of probabilities) to represent players’
beliefs and employ the maximin decision rule to determine
a preference ordering. Such a decision rule requires the deci-
sion maker to choose an option that maximizes the minimal
expected utilities with respect to the set of multiple priors.
Based on these ideas, they provide some analysis for games
where players’ beliefs are modeled by multiple priors. As a
matter of fact, the Hurwicz criterion is much more general in
comparison with the maximin decision rule. Therefore, our
game model based on the Hurwicz criterion enables us to
investigate howdifferent kinds of attitudes towards ambiguity
may affect the solutions of an ambiguous game.

6. Conclusion

In real life, we often need to make decisions under uncer-
tainty. In particular, we may not have sufficient evidence to
determine a precise probability distribution over the set of
possible consequences of a choice. In this paper, we have
provided a new decision-theoretic framework for decision
making under uncertainty by applying Dempster-Shafer the-
ory to model ambiguity and the Hurwicz criterion to deter-
mine a preference ordering. Based on this decision-theoretic
framework, we have developed a game-theoretic model for
analyzing games where players may be ambiguous about
consequences of some strategy profile. In order to determine
the outcomes of such games, we have proposed a new solution
concept called ambiguous equilibrium. We have also studied
in this paper how players’ optimistic attitudes and their
beliefs about the consequences may influence the possible
solutions of an ambiguous game. Moreover, we have shown
that overly optimistic or pessimistic attitude would make
players’ expected payoff worse in ambiguous games.

There are some interesting projects that deserve further
investigation.One natural future project is to study the conse-
quences of applying our theory to extensive form games and
cooperative games.One can considerDempster’s rule of com-
bination as the rule for updating based on new information in
ambiguous games. It also seemsnatural to investigate the con-
sistency of the optimistic attitudes that different players have
towards the same strategy profile. Finally, another important
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project for future work is to find some simple algorithm for
solving an ambiguous game.
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