
Research Article
Periodic Solutions for Shunting Inhibitory Cellular
Neural Networks of Neutral Type with Time-Varying
Delays in the Leakage Term on Time Scales

Yongkun Li,1 Lei Wang,1 and Yu Fei2

1 Department of Mathematics, Yunnan University, Kunming, Yunnan 650221, China
2 School of Statistics and Mathematics, Yunnan University of Finance and Economics,
Kunming, Yunnan 650221, China

Correspondence should be addressed to Yongkun Li; yklie@ynu.edu.cn

Received 11 September 2013; Accepted 25 November 2013; Published 9 February 2014

Academic Editor: Yansheng Liu

Copyright © 2014 Yongkun Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A class of shunting inhibitory cellular neural networks of neutral type with time-varying delays in the leakage term on time scales
is proposed. Based on the exponential dichotomy of linear dynamic equations on time scales, fixed point theorems, and calculus
on time scales we obtain some sufficient conditions for the existence and global exponential stability of periodic solutions for that
class of neural networks. The results of this paper are completely new and complementary to the previously known results even if
the time scale T = R or Z. Moreover, we present illustrative numerical examples to show the feasibility of our results.

1. Introduction

As we know, shunting inhibitory cellular neural networks
(SCINNs) have been applied in awide range of practical fields
such as psychophysics, speech, perception, robotics, adaptive
pattern recognition, and image processing. Hence, they have
been the object of intensive analysis by numerous authors
in recent years. In particular, there have been extensive
results on the problem of the existence and stability of
periodic solutions and almost periodic solutions for SCINNs
in the literature. For example, in [1–3], authors consider
the existence and stability of almost periodic solutions for
SCINNs; in [4, 5], authors consider the existence and sta-
bility of periodic solutions for SCINNs; in [5], authors by
using the continuation theorem of coincidence degree theory
and constructing suitable Lyapunov functions consider the
periodic solution for SCINNs; in [6, 7], authors obtained
some sufficient conditions for the existence and stability of
an equilibrium point.

Recently, another type of timedelays, namely, neutral type
time delays, which always appears in the study of automatic
control, population dynamics, and vibrating masses attached

to an elastic bar, and so forth, has recently drawn much
research attention.There are some results on the stability and
the existence of periodic solutions to delayed neural networks
of neutral type, for example in [8–13], by using the Lyapunov
functions and the linear matrix inequality approach, authors
studied the asymptotic stability or exponential stability of the
equilibrium point for delayed neural networks of neutral type
and in [14, 15], by using the theory of abstract continuation
theorem of 𝑘-set contractive operator, authors studied the
existence of periodic solutions for delayed cellular neural
networks of neutral type and Hopfield neural networks
with neutral delays, respectively. In a recent paper [16],
authors studied the existence and exponential stability for
the following SICNN with continuously distributed delays of
neutral type:

𝑥



𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡) − ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑡 − 𝑢)] 𝑑𝑢𝑥

𝑖𝑗
(𝑡)
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− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥



𝑘𝑙
(𝑡 − 𝑢)] 𝑑𝑢𝑥

𝑖𝑗
(𝑡) + 𝐼

𝑖𝑗
(𝑡) ,

(1)

where 𝐶
𝑖𝑗
is the cell at the (𝑖, 𝑗) position of the lattice, the 𝑟

neighborhood𝑁
𝑟
(𝑖, 𝑗) of 𝐶

𝑖𝑗
is defined as follows:

𝑁
𝑟
(𝑖, 𝑗) = {𝐶

𝑘𝑙
: max {|𝑘 − 𝑖| , 



𝑙 − 𝑗






} ≤ 𝑟,

1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛} ,

(2)

where 𝑥
𝑖𝑗
represents the state of the cell 𝐶

𝑖𝑗
, the coefficient

𝑎
𝑖𝑗
(𝑡) > 0 means the passive decay rate of the passive decay

rate of the cell activity, and 𝐶𝑘𝑙
𝑖𝑗
(𝑡) and 𝐷𝑘𝑙

𝑖𝑗
(𝑡) describe the

connection or coupling strength of postsynaptic activity of
the cell 𝐶

𝑘𝑙
transmitted to the cell 𝐶

𝑖𝑗
.

Very recently, a leakage delay, which is the time delay
in the leakage term of the systems and a considerable factor
affecting dynamics for the worse in the systems, is being put
to use in the problem of stability for neural networks [17, 18].
However, so far, very little attention has been paid to neural
networks with time delay in the leakage (or “forgetting”) term
[19–25]. Such time delays in the leakage term are difficult to
handle but have great impact on the dynamical behavior of
neural networks.

Also, it is well known that both continuous time and
discrete time neural networks have equal importance in
various applications.Moreover, the theory of calculus on time
scales was initiated by Stefan Hilger [26] in his Ph.D. thesis
in order to unify continuous and discrete analysis, and it
has a tremendous potential for applications and has recently
received much attention since his foundational work. For
instance, in [27], the authors studied antiperiodic solutions to
impulsive SICNNs with distributed delays on time scales. In
[28], the authors studied almost periodic solutions of SCINNs
on time scales. However, to the best of our knowledge, there is
no paper published on the existence and stability of periodic
solutions for SCINNs of neutral type with the time delay in
the leakage term.

Motivated by the above discussions, in this paper, we are
concerned with the following SCINNs of neutral type with
time-varying delays in the leakage term on time scale T :

𝑥

Δ

𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡 − 𝜇

𝑖𝑗
(𝑡)) − ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡) + 𝐼

𝑖𝑗
(𝑡) ,

𝑡 ∈ T
+
,

(3)

where T is a periodic time scale and T+ = T ∩ [0, +∞), 𝐶
𝑖𝑗
is

the cell at the (𝑖, 𝑗) position of the lattice, the 𝑟 neighborhood
𝑁
𝑟
(𝑖, 𝑗) of 𝐶

𝑖𝑗
is defined as follows:

𝑁
𝑟
(𝑖, 𝑗) = {𝐶

𝑘𝑙
: max {|𝑘 − 𝑖| , 



𝑙 − 𝑗






} ≤ 𝑟,

1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛} ,

(4)

𝑥
𝑖𝑗
represents the state of the cell 𝐶

𝑖𝑗
, the coefficient 𝑎

𝑖𝑗
(𝑡) >

0 means the passive decay rate of the passive decay rate of
the cell activity, and𝐶𝑘𝑙

𝑖𝑗
(𝑡) and𝐷𝑘𝑙

𝑖𝑗
(𝑡) describe the connection

or coupling strength of postsynaptic activity of the cell 𝐶
𝑘𝑙

transmitted to the cell 𝐶
𝑖𝑗
.

The initial condition associated with (3) is defined as
follows:

𝑥
𝑖𝑗
(𝑠) = 𝜓

𝑖𝑗
(𝑠) , 𝑠 ∈ (−∞, 0]T , (5)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and 𝜓
𝑖𝑗
(𝑠) are Δ-

differentiable.
Clearly, if T = R and 𝜇

𝑖𝑗
≡ 0, then (3) reduces to (1).

Our main purpose of this paper is to study the existence
and global exponential stability of periodic solutions to (3) by
using the exponential dichotomy of linear dynamic equations
on time scales and some inequality technics. Our results of
this paper are completely new and complementary to the
previously known results even if the time scale T = R or Z.
Our methods used in this paper are different from those used
in [14, 15, 19] and can be used to study other types’ delayed
neural networks of neutral type with delays in the leakage
term.

For convenience, we denote [𝑎, 𝑏]T := {𝑡 | 𝑡 ∈ [𝑎, 𝑏] ∩ T}.
And we introduce the following notations:

𝑎

𝑀

𝑖𝑗
= sup

𝑡∈R







𝑎
𝑖𝑗
(𝑡)







, 𝑎

𝑚

𝑖𝑗
= inf

𝑡∈R







𝑎
𝑖𝑗
(𝑡)







,

𝜇

𝑀

𝑖𝑗
= sup

𝑡∈R







𝜇
𝑖𝑗
(𝑡)







, 𝐶

𝑘𝑙

𝑖𝑗
= sup

𝑡∈R







𝐶

𝑘𝑙

𝑖𝑗
(𝑡)







,

𝐷

𝑘𝑙

𝑖𝑗
= sup

𝑡∈R







𝐷

𝑘𝑙

𝑖𝑗
(𝑡)







, 𝐼
𝑖𝑗
= sup

𝑡∈R







𝐼
𝑖𝑗
(𝑡)







,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(6)

Throughout this paper, we assume that the following
conditions hold:

(𝐻
1
) 𝐶

𝑘𝑙

𝑖𝑗
(𝑡), 𝐷

𝑘𝑙

𝑖𝑗
(𝑡), 𝐼

𝑖𝑗
(𝑡) ∈ 𝐶(T ,R),𝑎

𝑖𝑗
(𝑡) ∈ 𝐶(T ,R+

), and
𝜇
𝑖𝑗
(𝑡) ∈ 𝐶(T , T+) are all 𝜔-periodic functions, for 𝑢 ∈

(0, +∞)T and 𝑡 ∈ T , 𝑡−𝑢 ∈ T and for 𝑡 ∈ T , 𝑡−𝜇
𝑖𝑗
(𝑡) ∈

T , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.
(𝐻

2
) 𝑓

𝑗
, 𝑔

𝑗
∈ 𝐶(R,R) and there exist positive constants 𝐿, 𝑙

such that






𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)






≤ 𝐿 |𝑢 − V| ,







𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)






≤ 𝑙 |𝑢 − V| ,
(7)

for all 𝑢, V ∈ R, 𝑗 = 1, 2, . . . , 𝑚.
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(𝐻
3
) For 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, the delay kernels
𝐾
𝑖𝑗
, 𝐽
𝑖𝑗
: [0,∞) ∩ T → R are continuous and

integrable with

0 ≤ ∫

∞

0







𝐾
𝑖𝑗
(𝑠)







Δ𝑠 ≤ 𝐾

0

𝑖𝑗
, 0 ≤ ∫

∞

0







𝐽
𝑖𝑗
(𝑠)







Δ𝑠 ≤ 𝐽

0

𝑖𝑗
. (8)

This paper is organized as follows: in Section 2, we
introduce some notations and definitions and state some
preliminary results which are needed in later sections. In
Section 3, we establish some sufficient conditions for the
existence of periodic solutions of (3). In Section 4, we
prove that the periodic solution obtained in Section 3 is
globally exponentially stable. In Section 5, we give examples
to illustrate the feasibility of our results obtained in previous
sections.

2. Preliminaries

In this section, we introduce some definitions and state some
preliminary results.

Definition 1 (see [29]). Let T be a nonempty closed subset
(time scale) ofR. The forward and backward jump operators
𝜎, 𝜌 : T → T and the graininess 𝜇 : T → R+ are defined,
respectively, by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} , 𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡.

(9)

Definition 2 (see [29]). A point 𝑡 ∈ T is called left-dense if
𝑡 > inf T and 𝜌(𝑡) = 𝑡, left-scattered if 𝜌(𝑡) < 𝑡, right-dense if
𝑡 < sup T and 𝜎(𝑡) = 𝑡, and right-scattered if 𝜎(𝑡) > 𝑡. If T has
a left-scattered maximum 𝑚, then T𝑘 = T \ {𝑚}; otherwise
T𝑘 = T . If T has a right-scattered minimum 𝑚, then T𝑘 =

T \ {𝑚}; otherwise T𝑘 = T .

Definition 3 (see [30]). One says that a time scale T is periodic
if there exists 𝑝 > 0 such that if 𝑡 ∈ T , then 𝑡 ± 𝑝 ∈ T . For
T ̸=R, the smallest positive 𝑝 is called the period of the time
scale.

Throughout this paper, we restrict our discussions in
periodic time scales.

Definition 4 (see [29]). A function 𝑟 : T → R is called
regressive if

1 + 𝜇 (𝑡) 𝑟 (𝑡) ̸= 0, (10)

for all 𝑡 ∈ T𝑘. The set of all regressive and rd-continuous
functions 𝑟 : T → R will be denoted by R = R(T) =
R(T ,R); one defines the set R+

= R+
(T ,R) = {𝑟 ∈ R, 1 +

𝜇(𝑡)𝑟(𝑡) > 0, ∀𝑡 ∈ T}. If 𝑟 is regressive function, then the
generalized exponential function 𝑒

𝑟
is defined by

𝑒
𝑟
(𝑡, 𝑠) = exp{∫

𝑡

𝑠

𝜉
𝜇(𝜏)
(𝑟 (𝜏)) Δ𝜏} , for 𝑠, 𝑡 ∈ T , (11)

with the cylinder transformation

𝜉
ℎ
(𝑧) =

{

{

{

Log (1 + ℎ𝑧)
ℎ

if ℎ ̸= 0,

𝑧 if ℎ = 0.
(12)

Let 𝑝, 𝑞 : T → R be two regressive functions, we define

𝑝 ⊕ 𝑞 := 𝑝 + 𝑞 + 𝜇𝑝𝑞, ⊖𝑝 := −

𝑝

1 + 𝜇𝑝

,

𝑝 ⊖ 𝑞 := 𝑝 ⊕ (⊖𝑞) .

(13)

Then the generalized exponential function has the following
properties.

Lemma 5 (see [29]). Assume that 𝑝, 𝑞 : T → R are two
regressive functions, then

(i) 𝑒
0
(𝑡, 𝑠) ≡ 1 and 𝑒

𝑝
(𝑡, 𝑡) ≡ 1;

(ii) 𝑒
𝑝
(𝜎(𝑡), 𝑠) = (1 + 𝜇(𝑡)𝑝(𝑡))𝑒

𝑝
(𝑡, 𝑠);

(iii) 𝑒
𝑝
(𝑡, 𝑠) = (1/𝑒

𝑝
(𝑠, 𝑡)) = 𝑒

⊖𝑝
(𝑠, 𝑡);

(iv) 𝑒
𝑝
(𝑡, 𝑠)𝑒

𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(v) 𝑒
𝑝
(𝑡, 𝑠)𝑒

𝑞
(𝑡, 𝑠) = 𝑒

𝑝⊕𝑞
(𝑡, 𝑠).

Lemma 6 (see [29]). Assume that 𝑓, 𝑔 : T → R are delta
differentiable at 𝑡 ∈ T𝑘, then

(i) (]
1
𝑓 + ]

2
𝑔)

Δ
= ]

1
𝑓

Δ
+ ]

2
𝑔

Δ for any constants ]
1
, ]
2
;

(ii) (𝑓𝑔)Δ(𝑡) = 𝑓Δ(𝑡)𝑔(𝑡) + 𝑓(𝜎(𝑡))𝑔Δ(𝑡) = 𝑓(𝑡)𝑔Δ(𝑡) +
𝑓

Δ
(𝑡)𝑔(𝜎(𝑡));

(iii) if 𝑓Δ ≥ 0, then 𝑓 is nondecreasing.

Lemma 7 (see [29]). Assume that 𝑝(𝑡) ≥ 0 for 𝑡 ≥ 𝑠, then
𝑒
𝑝
(𝑡, 𝑠) ≥ 1.

Lemma 8 (see [29]). Suppose that 𝑝 ∈R+, then

(i) 𝑒
𝑝
(𝑡, 𝑠) > 0, for all 𝑡, 𝑠 ∈ T ;

(ii) if 𝑝(𝑡) ≤ 𝑞(𝑡) for all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ T , then 𝑒
𝑝
(𝑡, 𝑠) ≤

𝑒
𝑞
(𝑡, 𝑠) for all 𝑡 ≥ 𝑠.

Definition 9 (see [29]). If 𝑎 ∈ T , sup T = ∞ and 𝑓 is rd-
continuous on [𝑎,∞), then one defines the improper integral
by

∫

∞

𝑎

𝑓 (𝑡) Δ𝑡 = lim
𝑏→∞

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡, (14)

provided this limit exists, and one says that the improper
integral converges in this case. If this limit does not exist, then
one says that the improper integral diverges.

Definition 10 (see [29]). If 𝑎 ∈ T , inf T = −∞, and 𝑓 is
rd-continuous on (−∞, 𝑎), then one defines the improper
integral by

∫

𝑎

−∞

𝑓 (𝑡) Δ𝑡 = lim
𝑏→−∞

∫

𝑎

𝑏

𝑓 (𝑡) Δ𝑡, (15)
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provided this limit exists, and we say that the improper
integral converges in this case. If this limit does not exist, then
one says that the improper integral diverges.

Lemma 11 (see [29]). Let 𝑎 ∈ T𝑘 and 𝑏 ∈ T and assume that
𝑓 : T × T𝑘 → R is continuous at (𝑡, 𝑡), where 𝑡 ∈ T𝑘 with
𝑡 > 𝑎. Also assume that 𝑓Δ(𝑡, ⋅) is 𝑟𝑑-continuous on [𝑎, 𝜎(𝑡)].
Suppose that for each 𝜀 > 0, there exists a neighborhood 𝑈 of
𝜏 ∈ [𝑎, 𝜎(𝑡)] such that







𝑓 (𝜎 (𝑡) , 𝜏) − 𝑓 (𝑠, 𝜏) − 𝑓

Δ

(𝑡, 𝜏) (𝜎 (𝑡) − 𝑠)







≤ 𝜀 |𝜎 (𝑡) − 𝑠| , ∀𝑠 ∈ 𝑈,

(16)

where 𝑓Δ denotes the derivative of 𝑓 with respect to the first
variable. Then

(i) 𝑔(𝑡) := ∫𝑡
𝑎
𝑓(𝑡, 𝜏)Δ𝜏 implies 𝑔Δ(𝑡) := ∫𝑡

𝑎
𝑓

Δ
(𝑡, 𝜏)Δ𝜏 +

𝑓(𝜎(𝑡), 𝑡);

(ii) ℎ(𝑡) := ∫𝑏
𝑡
𝑓(𝑡, 𝜏)Δ𝜏 implies ℎΔ(𝑡) := ∫𝑡

𝑎
𝑓

Δ
(𝑡, 𝜏)Δ𝜏 −

𝑓(𝜎(𝑡), 𝑡).

Definition 12 (see [31]). Let 𝑋 ∈ R𝑛 and 𝐴(𝑡) be a 𝑛 × 𝑛
matrix-valued function on T , the linear system

𝑋

Δ

(𝑡) = 𝐴 (𝑡)𝑋 (𝑡) , 𝑡 ∈ T , (17)
is said to admit an exponential dichotomy on T if there exist
positive constants 𝑘

𝑖
and 𝛼

𝑖
, 𝑖 = 1, 2, projection 𝑃, and the

fundamental solution matrix𝑋(𝑡) of (17) satisfying






𝑋 (𝑡) 𝑃𝑋

−1

(𝜎 (𝑠))







≤ 𝑘
1
𝑒
⊖𝛼1
(𝑡, 𝑠) , 𝑠, 𝑡 ∈ T , 𝑡 ≥ 𝑠,







𝑋 (𝑡) (𝐼 − 𝑃)𝑋

−1

(𝜎 (𝑠))







≤ 𝑘
2
𝑒
⊖𝛼2
(𝑠, 𝑡) , 𝑠, 𝑡 ∈ T , 𝑡 ≤ 𝑠,

(18)
where | ⋅ | is a matrix norm on T ; that is, if 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑚

, then
we can take |𝐴| = (∑𝑛

𝑖=1
∑

𝑚

𝑗=1
|𝑎
𝑖𝑗
|

2
)

1/2.

Lemma 13 (see [31]). If (17) admits an exponential dichotomy,
then the following 𝜔-periodic system:

𝑥

Δ

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑔 (𝑡) , 𝑡 ∈ T , (19)
has an 𝜔-periodic solution as follows:

𝑥 (𝑡) = ∫

𝑡

−∞

𝑋 (𝑡) 𝑃𝑋

−1

(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠

− ∫

+∞

𝑡

𝑋(𝑡) (𝐼 − 𝑃)𝑋

−1

(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠,

(20)

where𝑋(𝑡) is the fundamental solution matrix of (17).

Lemma 14 (see [31]). If 𝐴(𝑡) is a uniformly bounded 𝑟𝑑-
continuous 𝑛 × 𝑛 matrix-valued function on T and there is a
𝛿 > 0 such that






𝑎
𝑖𝑖
(𝑡)






− ∑

𝑗 ̸= 𝑖







𝑎
𝑖𝑗
(𝑡)







−

1

2

𝜇 (𝑡)(

𝑛

∑

𝑗=1







𝑎
𝑖𝑗
(𝑡)







)

2

− 𝛿

2
𝜇 (𝑡) ≥ 2𝛿, 𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑛,

(21)

then (17) admits an exponential dichotomy on T .

Lemma 15 (see [29]). If 𝑝 ∈R and 𝑎, 𝑏, 𝑐 ∈ T , then

[𝑒
𝑝
(𝑐, ⋅)]

Δ

= −𝑝[𝑒
𝑝
(𝑐, ⋅)]

𝜎

,

∫

𝑏

𝑎

𝑝 (𝑡) 𝑒
𝑝
(𝑐, 𝜎 (𝑡)) Δ𝑡 = 𝑒

𝑝
(𝑐, 𝑎) − 𝑒

𝑝
(𝑐, 𝑏) .

(22)

3. Existence of Periodic Solutions

In this section, we will state and prove the sufficient condi-
tions for the existence of periodic solutions of (3).

Set X = {𝜑 = {𝜑
𝑖𝑗
} | 𝜑

𝑖𝑗
∈ 𝐶

1
(T ,R), 𝜑 is an 𝜔-

periodic function on T , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚}

with the norm ‖𝜑‖ = max{|𝜑|
0
, |𝜑

Δ
|
0
}, where |𝜑|

0
=

max
𝑖,𝑗
max

𝑡∈[0,𝜔]T
|𝜑
𝑖𝑗
(𝑡)|, |𝜑Δ|

0
= max

𝑖,𝑗
max

𝑡∈[0,𝜔]T
|𝜑

Δ

𝑖𝑗
(𝑡)|,

𝐶

1
(T ,R) is the set of continuous functions with contin-

uous Δ-derivatives on T ; then X is a Banach space. Let
𝜑

0
(𝑡) = {𝜑

0

𝑖𝑗
(𝑡)}, where 𝜑0

𝑖𝑗
(𝑡) = ∫

𝑡

−∞
𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎(𝑠))𝐼

𝑖𝑗
(𝑠)Δ𝑠, 𝑖 =

1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 and let 𝐴 be a constant satisfying
𝐴 ≥ max{‖𝜑0‖,max

1≤𝑗≤𝑛
|𝑓
𝑗
(0)|,max

1≤𝑗≤𝑛
|𝑔
𝑗
(0)|}.

Theorem 16. Let (𝐻
1
)–(𝐻

3
) hold. Suppose that

(𝐻
4
) there exists a positive constant 𝛿 such that

𝑎
𝑖𝑗
(𝑡) −

1

2

𝜇 (𝑡) 𝑎

2

𝑖𝑗
(𝑡) − 𝛿

2
𝜇 (𝑡) ≥ 2𝛿,

𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚;

(23)

(𝐻
5
) more over

max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

𝜃

0

𝑖𝑗

𝑎

𝑚

𝑖𝑗

, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃

0

𝑖𝑗
} ≤

1

2

,

max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

𝜃
𝑖𝑗

𝑎

𝑚

𝑖𝑗

, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃
𝑖𝑗
} < 1,

(24)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

𝜃

0

𝑖𝑗
= 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
𝐾

0

𝑖𝑗
(2𝐴𝐿 +






𝑓 (0)






)

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
𝐽

0

𝑖𝑗
(2𝐴𝑙 +






𝑔 (0)






) ,

𝜃
𝑖𝑗
= 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
𝐾

0

𝑖𝑗
(4𝐴𝐿 +






𝑓 (0)






)

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
𝐽

0

𝑖𝑗
(4𝐴𝑙 +






𝑔 (0)






) .

(25)

Then (3) has a unique periodic solution in X
0
= {𝜑 ∈ X |

‖𝜑 − 𝜑

0
‖ ≤ 𝐴}.
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Proof. Rewrite (3) in the form

𝑥

Δ

𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡) + 𝑎

𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜇𝑖𝑗(𝑡)

𝑥

Δ

𝑖𝑗
(𝑠) Δ𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡) + 𝐼

𝑖𝑗
(𝑡) ,

(26)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. The initial condition
associated with (3) is defined as follows:

𝑥
𝑖𝑗
(𝑠) = 𝜓

𝑖𝑗
(𝑠) , 𝑠 ∈ (−∞, 0]T , (27)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and 𝜓
𝑖𝑗
(𝑠) are Δ-

differentiable. For any given 𝜑 ∈ X, we consider the following
periodic system:

𝑥

Δ

𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡) + 𝑎

𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜇𝑖𝑗(𝑡)

𝜑

Δ

𝑖𝑗
(𝑠) Δ𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝜑

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝜑

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝜑

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝜑

𝑖𝑗
(𝑡) + 𝐼

𝑖𝑗
(𝑡)

= −𝑎
𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡) + 𝐹

𝜑

𝑖𝑗
(𝑡) + 𝐼

𝑖𝑗
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(28)

where

𝐹

𝜑

𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜇𝑖𝑗(𝑡)

𝜑

Δ

𝑖𝑗
(𝑠) Δ𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝜑

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝜑

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝜑

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝜑

𝑖𝑗
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(29)

Since (𝐻
4
) holds, it follows from Lemma 14 that the linear

system

𝑥

Δ

𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(30)

admits an exponential dichotomy on T . Thus, by Lemma 13,
we obtain that (28) has an 𝜔-periodic solution, which is
expressed as follows:

𝑥

𝜑

𝑖𝑗
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠)) (𝐹

𝜑

𝑖𝑗
(𝑠) + 𝐼

𝑖𝑗
(𝑠)) Δ𝑠,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(31)

For 𝜑 ∈ X
0
, then ‖𝜑‖ ≤ ‖𝜑 − 𝜑

0
‖ + ‖𝜑

0
‖ ≤ 2𝐴. Define the

following nonlinear operator:

Φ : X
0
→ X

0
, 𝜑 = {𝜑

𝑖𝑗
} → 𝑥

𝜑
= {𝑥

𝜑

𝑖𝑗
} . (32)

First we show that, for any 𝜑 ∈ X
0
, Φ(𝜑) ∈ X

0
. Note that







𝐹

𝜑

𝑖𝑗
(𝑠)







≤ 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗






𝜑






+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)













𝑓 [𝜑
𝑘𝑙
(𝑠 − 𝑢)] |Δ𝑢| 𝜑

𝑖𝑗
(𝑠)







+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× ∫

+∞

0







𝐽
𝑖𝑗
(𝑢)













𝑔 [𝜑

Δ

𝑘𝑙
(𝑠 − 𝑢)]







Δ𝑢







𝜑
𝑖𝑗
(𝑠)







≤ 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗






𝜑






+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢 (𝐿






𝜑






+






𝑓 (0)






)






𝜑






+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







Δ𝑢 (𝑙






𝜑






+






𝑔 (0)






)






𝜑






≤ (𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
𝐾

0

𝑖𝑗
(𝐿






𝜑






+






𝑓 (0)






)

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
𝐽

0

𝑖𝑗
(𝑙






𝜑






+






𝑔 (0)






))






𝜑






≤ (𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
𝐾

0

𝑖𝑗
(2𝐴𝐿 +






𝑓 (0)






)

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
𝐽

0

𝑖𝑗
(2𝐴𝑙 +






𝑔 (0)






)) 2𝐴

≤ 2𝐴𝜃

0

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(33)
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So








(Φ (𝜑 − 𝜑

0
))

𝑖𝑗
(𝑡)








=










∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠)) 𝐹

𝜑

𝑖𝑗
(𝑠) Δ𝑠










≤ ∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠))







𝐹

𝜑

𝑖𝑗
(𝑠)







Δ𝑠

≤ ∫

𝑡

−∞

𝑒
−𝑎
𝑚

𝑖𝑗

(𝑡, 𝜎 (𝑠)) 2𝐴𝜃

0

𝑖𝑗
Δ𝑠

≤

2𝐴𝜃

0

𝑖𝑗

𝑎

𝑚

𝑖𝑗

,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(34)

On the other hand, we have









(Φ(𝜑 − 𝜑

0
)

Δ

)

𝑖𝑗

(𝑡)









=












(∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠)) 𝐹

𝜑

𝑖𝑗
(𝑠) Δ𝑠)

Δ

𝑡












=










𝐹

𝜑

𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠)) 𝐹

𝜑

𝑖𝑗
(𝑠) Δ𝑠










≤







𝐹

𝜑

𝑖𝑗
(𝑡)







+







𝑎
𝑖𝑗
(𝑡)







∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠))







𝐹

𝜑

𝑖𝑗
(𝑠)







Δ𝑠

≤

2𝐴𝜃

0

𝑖𝑗

𝑎

𝑚

𝑖𝑗

+ 𝑎

𝑀

𝑖𝑗

2𝐴𝜃

0

𝑖𝑗

𝑎

𝑚

𝑖𝑗

= (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)2𝐴𝜃

0

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(35)

In view of (𝐻
5
), we have







Φ (𝜑 − 𝜑

0
)







≤ max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

2𝐴𝜃

0

𝑖𝑗

𝑎

𝑚

𝑖𝑗

, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)2𝐴𝜃

0

𝑖𝑗
} ≤ 𝐴;

(36)

that is,Φ(𝜑) ∈ X
0
. Next, we show thatΦ is a contraction. For

𝜑, 𝜓 ∈ X
0
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, denote

𝐺

1

𝑖𝑗
(𝑠, 𝜑, 𝜓) = − ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑠)

× [∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝜑

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝜑

𝑖𝑗
(𝑠)

−∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝜓

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝜓

𝑖𝑗
(𝑠)] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

𝐺

2

𝑖𝑗
(𝑠, 𝜑, 𝜓)

= 𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜇𝑖𝑗(𝑠)

[𝜑

Δ

𝑖𝑗
(𝑢) − 𝜓

Δ

𝑖𝑗
(𝑢)] Δ𝑢

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑠)

× [∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝜑

Δ

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝜑

𝑖𝑗
(𝑠)

−∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝜓

Δ

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝜓

𝑖𝑗
(𝑠)] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(37)
So






𝐺

1

𝑖𝑗
(𝑠, 𝜑, 𝜓)







=














− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑠)

× [∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝜑

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝜑

𝑖𝑗
(𝑠)

− ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝜓

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝜓

𝑖𝑗
(𝑠)]














≤ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)







𝐶

𝑘𝑙

𝑖𝑗
(𝑠)







×










∫

+∞

0

𝐾
𝑖𝑗
(𝑢) [𝑓 (𝜑

𝑘𝑙
(𝑠 − 𝑢)) − 𝑓 (𝜓

𝑘𝑙
(𝑠 − 𝑢))]

× Δ𝑢𝜑
𝑖𝑗
(𝑠)

− ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 (𝜓

𝑘𝑙
(𝑠 − 𝑢)) Δ𝑢 (𝜓

𝑖𝑗
(𝑠) − 𝜑

𝑖𝑗
(𝑠))









≤ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)







𝐶

𝑘𝑙

𝑖𝑗
(𝑠)







× {∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







𝑓 (𝜑
𝑘𝑙
(𝑠 − 𝑢))

− 𝑓 (𝜓
𝑘𝑙
(𝑠 − 𝑢)) |Δ𝑢|







𝜑
𝑖𝑗
(𝑠)







+ ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







(






𝑓 (𝜓
𝑘𝑙
(𝑠 − 𝑢)) − 𝑓 (0)






+






𝑓 (0)






)

× Δ𝑢







𝜓
𝑖𝑗
(𝑠) − 𝜑

𝑖𝑗
(𝑠)







}

≤ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
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× (𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢






𝜑 − 𝜓











𝜑






+∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢 (𝐿






𝜓






+






𝑓 (0)






)






𝜑 − 𝜓






)

≤ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝐾

0

𝑖𝑗
(4𝐴𝐿 +






𝑓 (0)






))






𝜓 − 𝜑






,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(38)

Similarly,







𝐺

2

𝑖𝑗
(𝑠, 𝜑, 𝜓)







≤ (𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝐽

0

𝑖𝑗
(4𝐴𝑙 +






𝑔 (0)






)))






𝜓 − 𝜑






,

(39)

so







𝐺

1

𝑖𝑗
(𝑠, 𝜑, 𝜓) + 𝐺

2

𝑖𝑗
(𝑠, 𝜑, 𝜓)







≤







𝐺

1

𝑖𝑗
(𝑠, 𝜑, 𝜓)







+







𝐺

2

𝑖𝑗
(𝑠, 𝜑, 𝜓)







≤ (𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
𝐾

0

𝑖𝑗
(4𝐴𝐿 +






𝑓 (0)






)

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
𝐽

0

𝑖𝑗
(4𝐴𝑙 +






𝑔 (0)






))






𝜓 − 𝜑






= 𝜃
𝑖𝑗






𝜓 − 𝜑






, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,








(Φ𝜑 − Φ𝜓)

𝑖𝑗
(𝑡)








=










∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠)) (𝐺

1

𝑖𝑗
(𝑠, 𝜑, 𝜓) + 𝐺

2

𝑖𝑗
(𝑠, 𝜑, 𝜓)) Δ𝑠










≤ ∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠))







𝐺

1

𝑖𝑗
(𝑠, 𝜑, 𝜓) + 𝐺

2

𝑖𝑗
(𝑠, 𝜑, 𝜓)







Δ𝑠

≤

𝜃
𝑖𝑗

𝑎

𝑚

𝑖𝑗






𝜓 − 𝜑






, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(40)








(Φ𝜑 − Φ𝜓)

Δ

𝑖𝑗
(𝑡)








=












(∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠)) (𝐺

(1)

𝑖𝑗
(𝑡, 𝜑, 𝜓) + 𝐺

(2)

𝑖𝑗
(𝑡, 𝜑, 𝜓)))

Δ

𝑡












=









𝐺

(1)

𝑖𝑗
(𝑡, 𝜑, 𝜓) + 𝐺

(2)

𝑖𝑗
(𝑡, 𝜑, 𝜓) − 𝑎

𝑖𝑗
(𝑡)

× ∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠)) (𝐺

(1)

𝑖𝑗
(𝑡, 𝜑, 𝜓) + 𝐺

(2)

𝑖𝑗
(𝑡, 𝜑, 𝜓)) Δ𝑠










≤







𝐺

(1)

𝑖𝑗
(𝑡, 𝜑, 𝜓) + 𝐺

(2)

𝑖𝑗
(𝑡, 𝜑, 𝜓)







+







𝑎
𝑖𝑗
(𝑡)







× ∫

𝑡

−∞

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠))







𝐺

(1)

𝑖𝑗
(𝑡, 𝜑, 𝜓) + 𝐺

(2)

𝑖𝑗
(𝑡, 𝜑, 𝜓)







Δ𝑠

≤ (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃
𝑖𝑗






𝜓 − 𝜑






,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(41)

By (𝐻
5
), we have

max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

1

𝑎

𝑚

𝑖𝑗

𝜃
𝑖𝑗
, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃
𝑖𝑗
}






𝜓 − 𝜑






<






𝜓 − 𝜑






, (42)

which implies that






Φ𝜑 − Φ𝜓






<






𝜑 − 𝜓






. (43)

It follows that Φ is a contraction. Therefore, Φ has a fixed
point in X

0
; that is, (3) has a unique periodic solution in X

0
.

This completes the proof of Theorem 16.

4. Exponential Stability of
the Periodic Solution

In this section, we will discuss the exponential stability of the
periodic solution of (3).

Definition 17. The periodic solution 𝑥(𝑡) = {𝑥
𝑖𝑗
(𝑡)} of system

(3) with initial value 𝜓(𝑡) = {𝜓
𝑖𝑗
(𝑡)} is said to be globally

exponentially stable, if there exists a positive constant 𝜆
with ⊖𝜆 ∈ R+ and 𝑀 > 1 such that every solution
𝑦(𝑡) = {𝑦

𝑖𝑗
(𝑡)} of (3) with any initial value 𝜑(𝑡) = {𝜑

𝑖𝑗
(𝑡)}

satisfies






𝑥 (𝑡) − 𝑦 (𝑡)




1
≤ 𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)






𝜙






, ∀𝑡 ∈ (0, +∞)T , (44)
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where






𝑥 (𝑡) − 𝑦 (𝑡)




1
= max{max

𝑖𝑗

{







𝑥
𝑖𝑗
(𝑡) − 𝑦

𝑖𝑗
(𝑡)







} ,

max
𝑖𝑗

{







𝑥

Δ

𝑖𝑗
(𝑡) − 𝑦

Δ

𝑖𝑗
(𝑡)







}} ,






𝜙






= max{ sup
𝑠∈(−∞,0]T

max
𝑖𝑗

{







𝜓
𝑖𝑗
(𝑠) − 𝜑

𝑖𝑗
(𝑠)







} ,

sup
𝑠∈(−∞,0]T

max
𝑖𝑗

{







𝜓

Δ

𝑖𝑗
(𝑠) − 𝜑

Δ

𝑖𝑗
(𝑠)







}} ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

𝑡
0
= max {(−∞, 0]T } .

(45)

Theorem 18. Suppose that all of the conditions in Theorem 16
are satisfied; then the unique periodic solution of (3) is globally
exponentially stable.

Proof. By Theorem 16, (3) has an 𝜔-periodic solution 𝑥(𝑡) =
{𝑥

𝑖𝑗
(𝑡)} with initial condition 𝜓(𝑡) = {𝜓

𝑖𝑗
(𝑡)}, 𝑖 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚. Suppose that 𝑦(𝑡) = {𝑦
𝑖𝑗
(𝑡)} is an arbitrary

solution of (3), associatedwith the initial value𝜑(𝑡) = {𝜑
𝑖𝑗
(𝑡)},

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. Let 𝑧(𝑡) = 𝑦(𝑡) − 𝑥(𝑡)

and 𝜙(𝑡) = 𝜑(𝑡) − 𝜓(𝑡). Then it follows from system (3)
that

𝑧

Δ

𝑖𝑗
(𝑡) + 𝑎

𝑖𝑗
(𝑡) 𝑧

𝑖𝑗
(𝑡)

= 𝑎
𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜇𝑖𝑗(𝑡)

𝑧

Δ

𝑖𝑗
(𝑠) Δ𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× [∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡)

− ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑦

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑡)]

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× [∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡)

− ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑦

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑡)] ,

(46)

where 𝑧
𝑖𝑗
(𝑡) = 𝑦

𝑖𝑗
(𝑡) − 𝑥

𝑖𝑗
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚

and the initial condition of (46) is

𝜙
𝑖𝑗
(𝑠) = 𝜑

𝑖𝑗
(𝑠) − 𝜓

𝑖𝑗
(𝑠) ,

𝑠 ∈ (−∞, 0]T , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(47)

Let 𝑆
𝑖𝑗
and 𝑇

𝑖𝑗
be defined as follows:

𝑆
𝑖𝑗
(𝛽) = 𝑎

𝑚

𝑖𝑗
− 𝛽 − exp(𝛽 sup

𝑠∈T

(𝜇 (𝑠)))𝐴
𝑖𝑗
(𝛽) ,

𝑇
𝑖𝑗
(𝛽) = 𝑎

𝑚

𝑖𝑗
− 𝛽

− (𝑎

𝑀

𝑖𝑗
exp(𝛽 sup

𝑠∈T

(𝜇 (𝑠))) + 𝑎

𝑚

𝑖𝑗
− 𝛽)𝐴

𝑖𝑗
(𝛽) ,

(48)

where

𝐴
𝑖𝑗
(𝛽)

= 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
[(𝐴𝐿 +






𝑓 (0)






) ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢

+𝐴𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







exp (𝛽𝑢) Δ𝑢]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
[(𝐴𝑙 +






𝑔 (0)






) ∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







Δ𝑢

+𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







exp (𝛽𝑢) Δ𝑢] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(49)

By (𝐻
5
), for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, we have

𝑆
𝑖𝑗
(0) = 𝑎

𝑚

𝑖𝑗
− 𝐴

𝑖𝑗
(0) ≥ 𝑎

𝑚

𝑖𝑗
− 𝜃

0

𝑖𝑗
> 0,

𝑇
𝑖𝑗
(0) = 𝑎

𝑚

𝑖𝑗
− (𝑎

𝑀

𝑖𝑗
+ 𝑎

𝑚

𝑖𝑗
)𝐴

𝑖𝑗
(0)

≥ 𝑎

𝑚

𝑖𝑗
− (𝑎

𝑀

𝑖𝑗
+ 𝑎

𝑚

𝑖𝑗
) 𝜃

0

𝑖𝑗
> 0.

(50)

Since 𝑆
𝑖𝑗

and 𝑇
𝑖𝑗

are continuous on [0, +∞) and
𝑆
𝑖𝑗
(𝛽), 𝑇

𝑖𝑗
(𝛽) → +∞ as 𝛽 → +∞, there exist 𝜆

𝑖𝑗
> 0

and 𝜍
𝑖𝑗
> 0 such that 𝑆

𝑖𝑗
(𝜆

𝑖𝑗
) = 0 and 𝑆

𝑖𝑗
(𝛽) > 0 for all

𝛽 ∈ (0, 𝜆
𝑖𝑗
), 𝑇

𝑖𝑗
(𝜍
𝑖𝑗
) = 0, and 𝑇

𝑖𝑗
(𝛽) > 0 for all 𝛽 ∈ (0, 𝜍

𝑖𝑗
).

Take 𝜆∗ = min
1≤𝑖≤𝑛,1≤𝑗≤𝑚

{𝜆
𝑖𝑗
, 𝜍
𝑖𝑗
}; then

𝑆
𝑖𝑗
(𝜆

∗
) ≥ 0, 𝑇

𝑖𝑗
(𝜆

∗
) ≥ 0,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(51)

So, we can choose a positive constant 0 < 𝜆 < min{𝜆∗, 𝑎𝑚
𝑖𝑗
, 𝑖 =

1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚} such that

𝑆
𝑖𝑗
(𝜆) > 0, 𝑇

𝑖𝑗
(𝜆) > 0,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(52)
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which implies that

exp (𝜆sup
𝑠∈T (𝜇 (𝑠))) 𝐴 𝑖𝑗

(𝜆)

𝑎

𝑚

𝑖𝑗
− 𝜆

< 1,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(53)

(1 +

𝑎

𝑀

𝑖𝑗
exp (𝜆sup

𝑠∈T (𝜇 (𝑠)))

𝑎

𝑚

𝑖𝑗
− 𝜆

)𝐴
𝑖𝑗
(𝜆) < 1,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(54)

Let𝑀 = max
1≤𝑖≤𝑛, 1≤𝑗≤𝑚

{𝑎

𝑚

𝑖𝑗
/𝐴

𝑖𝑗
(0)}; by (𝐻

5
), we have𝑀 > 1.

It is obvious that

‖𝑍 (𝑡)‖
1
=






𝜙 (𝑡)




1
≤ 𝑀






𝜙






𝑒
⊖𝜆
(𝑡, 𝑡

0
) , ∀𝑡 ∈ (−∞, 0]T ,

(55)

where 𝜆 ∈R+. In the following, we will show that

‖𝑍 (𝑡)‖
1
=






𝜙 (𝑡)




1
≤ 𝑀






𝜙






𝑒
⊖𝜆
(𝑡, 𝑡

0
) , ∀𝑡 ∈ (0, +∞)T .

(56)

holds for all 𝑡 ∈ (0, +∞)T .
For this aim, we show that for any 𝑃 > 1,

‖𝑍 (𝑡)‖
1
< 𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡, 𝑡

0
) , ∀𝑡 ∈ (0, +∞)T . (57)

If (57) is not true, then there must be 𝑡
1
∈ (0, +∞)T such that






𝑍 (𝑡
1
)






= max {


𝑍 (𝑡
1
)






,







𝑍

Δ
(𝑡
1
)







}

= max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{







𝑍
𝑖𝑗
(𝑡
1
)







,







𝑍

Δ

𝑖𝑗
(𝑡
1
)







}

≥ 𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) ,

‖𝑍 (𝑡)‖ ≤ 𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡, 𝑡

0
) ,

𝑡 ∈ (−∞, 𝑡
1
]

T
, 𝑡

0
∈ (−∞, 0)T .

(58)

Therefore, there must exist a constant 𝑐 ≥ 1 such that






𝑍 (𝑡
1
)






= max {


𝑍 (𝑡
1
)






,







𝑍

Δ
(𝑡
1
)







}

= max {



𝑍
𝑖𝑗
(𝑡
1
)







,







𝑍

Δ

𝑖𝑗
(𝑡
1
)







}

= 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) ,

(59)

‖𝑍 (𝑡)‖ ≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡, 𝑡

0
) ,

𝑡 ∈ (−∞, 𝑡
1
]

T
, 𝑡

0
∈ (−∞, 0)T .

(60)

Multiplying both sides of (46) by 𝑒
−𝑎𝑖𝑗
(𝑡
0
, 𝜎(𝑠)) and inte-

grating over [𝑡
0
, 𝑡], by Lemma 15, for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑚, we get

𝑧
𝑖𝑗
(𝑡) = 𝜙

𝑖𝑗
(𝑡
0
) 𝑒

−𝑎𝑖𝑗
(𝑡, 𝑡

0
)

+ ∫

𝑡

𝑡0

𝑒
−𝑎𝑖𝑗
(𝑡, 𝜎 (𝑠))

×

{

{

{

𝑎
𝑖𝑗
(𝑠) ∫

𝑠

𝑠−𝜇𝑖𝑗(𝑠)

𝑥

Δ

𝑖𝑗
(𝑢) Δ𝑢 − ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑠)

× [∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑠)

−∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑦

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑠)]

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑠)

× [∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥

Δ

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑠)

−∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑦

Δ

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑠)]

}

}

}

Δ𝑠.

(61)

It follows from (60), (61), and the assumptions of the theorem
that







𝑧
𝑖𝑗
(𝑡
1
)







≤






𝜙






𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝑡
0
) + ∫

𝑡1

𝑡0

𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝜎 (𝑠))

× {𝑎

𝑀

𝑖𝑗
∫

𝑠

𝑠−𝜇𝑖𝑗(𝑠)







𝑧

Δ

𝑖𝑗
(𝑢)







Δ𝑢 + ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

×










∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑠)

− ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑦

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑠)










+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

×










∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥

Δ

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑠)

−∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑦

Δ

𝑘𝑙
(𝑠 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑠)










}Δ𝑠
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≤






𝜙






𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝑡
0
) + ∫

𝑡1

𝑡0

𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝜎 (𝑠))

× {𝑎

𝑀

𝑖𝑗
∫

𝑠

𝑠−𝜇𝑖𝑗(𝑠)







𝑧

Δ

𝑖𝑗
(𝑢)







Δ𝑢

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× [𝐴𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)












𝑥
𝑘𝑙
(𝑠 − 𝑢) − 𝑦

𝑘𝑙
(𝑠 − 𝑢)






Δ𝑢

+ (𝐴𝐿 +






𝑓 (0)






)

×∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢






𝑥
𝑘𝑙
(𝑠) − 𝑦

𝑘𝑙
(𝑠)






]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× [𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)













𝑥

Δ

𝑘𝑙
(𝑠 − 𝑢) − 𝑦

Δ

𝑘𝑙
(𝑠 − 𝑢)







Δ𝑢

+ (𝐴𝑙 +






𝑔 (0)






)

×∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







Δ𝑢






𝑥
𝑘𝑙
(𝑠) − 𝑦

𝑘𝑙
(𝑠)






] }Δ𝑠

≤






𝜙






𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝑡
0
) + 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗

+ ∫

𝑡1

𝑡0

𝑐𝑃𝑀






𝜙






𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝜎 (𝑠)) 𝑒

⊖𝜆
(𝑡
1
, 𝑡
0
) 𝑒

𝜆
(𝑡
1
, 𝜎 (𝑠))

×

{

{

{

∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× [𝐴𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝜎 (𝑠) , 𝑠 − 𝑢)

+ (𝐴𝐿 +






𝑓 (0)






) ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝜎 (𝑠) , 𝑠) Δ𝑢]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× [𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝜎 (𝑠) , 𝑠 − 𝑢)

+ (𝐴𝑙 +






𝑔 (0)






)

×∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝜎 (𝑠) , 𝑠) Δ𝑢]

}

}

}

Δ𝑠

≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

×

{

{

{

1

𝑐𝑃𝑀

𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝑡
0
) 𝑒

⊖𝜆
(𝑡
0
, 𝑡
1
) + 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗

+ ∫

𝑡1

𝑡0

𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝜎 (𝑠)) 𝑒

𝜆
(𝑡
1
, 𝑡
0
)

×

{

{

{

∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× [𝐴𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







× exp(𝜆(𝑢 + sup
𝑠∈T

𝜇 (𝑠)))Δ𝑢

+ (𝐴𝐿 +






𝑓 (0)






)

× ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







exp (𝜆𝜇 (𝑠)) Δ𝑢]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× [𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







exp(𝜆(𝑢 + sup
𝑠∈T

𝜇 (𝑠)))Δ𝑢

+ (𝐴𝑙 +






𝑔 (0)






)

× ∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







exp (𝜆𝜇 (𝑠)) Δ𝑢]
}

}

}

}

}

}

≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

×

{

{

{

1

𝑀

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) + 𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ exp(𝜆sup

𝑠∈T

𝜇 (𝑠))

×

{

{

{

∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× [𝐴𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







exp (𝜆𝑢) Δ𝑢

+ (𝐴𝐿 +






𝑓 (0)






)

× ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× [𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







exp (𝜆𝑢) Δ𝑢 + (𝐴𝑙 + 


𝑔 (0)






)

× ∫

+∞

0







𝐽
𝑖j (𝑢)







Δ𝑢]

}

}

}

}

}

}

∫

𝑡1

𝑡0

𝑒
−𝑎𝑖𝑗
(𝑡
1
, 𝜎 (𝑠)) Δ𝑠
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≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

× {(

1

𝑀

−

exp (𝜆sup
𝑠∈T (𝜇 (𝑠))) 𝐴 𝑖𝑗

(𝜆)

𝑎

𝑚

𝑖𝑗
− 𝜆

)

× 𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
)

+

exp (𝜆sup
𝑠∈T (𝜇 (𝑠))) 𝐴 𝑖𝑗

(𝜆)

𝑎

𝑚

𝑖𝑗
− 𝜆

}

< 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) .

(62)

A direct differentiation of (61) gives

𝑧

Δ

𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑧

𝑖𝑗
(𝑡) + 𝑎

𝑖𝑗
(𝑡) ∫

𝑡

𝑡−𝜇𝑖𝑗(𝑡)

𝑧

Δ

𝑖𝑗
(𝑠) Δ𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× [∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡)

− ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑦

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑡)]

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× [∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡)

− ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑦

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑦

𝑖𝑗
(𝑡)] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(63)

Thus, we have by (53), (54), (60), and (63)







𝑧

Δ

𝑖𝑗
(𝑡
1
)







≤ 𝑎

𝑀

𝑖𝑗







𝑧
𝑖𝑗
(𝑡
1
)







+ 𝑎

𝑀

𝑖𝑗
∫

𝑡1

𝑡1−𝜇𝑖𝑗(𝑡1)







𝑧

Δ

𝑖𝑗
(𝑠)







Δ𝑠

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× [𝐴𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)












𝑥
𝑘𝑙
(𝑡
1
− 𝑢) − 𝑦

𝑘𝑙
(𝑡
1
− 𝑢)






Δ𝑢

+ (𝐴𝐿 +






𝑓 (0)






)

× ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢






𝑥
𝑘𝑙
(𝑡
1
) − 𝑦

𝑘𝑙
(𝑡
1
)






]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× [𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)













𝑥

Δ

𝑘𝑙
(𝑡
1
− 𝑢) − 𝑦

Δ

𝑘𝑙
(𝑡
1
− 𝑢)







Δ𝑢

+ (𝐴𝑙 +






𝑔 (0)






) ∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







Δ𝑢






𝑥
𝑘𝑙
(𝑡
1
) − 𝑦

𝑘𝑙
(𝑡
1
)






]

≤ 𝑎

𝑀

𝑖𝑗







𝑧
𝑖𝑗
(𝑡
1
)







+ 𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

×

{

{

{

𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× [𝐴𝐿 × ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝑡
1
, 𝑡
1
− 𝑢)Δ𝑢

+ (𝐴𝐿 +






𝑓 (0)






) ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝑡
1
, 𝑡
1
) Δ𝑢]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× [𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝑡
1
, 𝑡
1
− 𝑢)Δ𝑢

+ (𝐴𝑙 +






𝑔 (0)






) ∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







𝑒
𝜆
(𝑡
1
, 𝑡
1
) Δ𝑢]

}

}

}

≤ 𝑎

𝑀

𝑖𝑗







𝑧
𝑖𝑗
(𝑡
1
)







+ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

×

{

{

{

𝑎

𝑀

𝑖𝑗
𝜇

𝑀

𝑖𝑗
+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗

× [𝐴𝐿∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







exp (𝜆𝑢) Δ𝑢

+ (𝐴𝐿 +






𝑓 (0)






) ∫

+∞

0







𝐾
𝑖𝑗
(𝑢)







Δ𝑢]

+ ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗

× [𝐴𝑙∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







exp (𝜆𝑢) Δ𝑢

+ (𝐴𝑙 +






𝑔 (0)






) ∫

+∞

0







𝐽
𝑖𝑗
(𝑢)







Δ𝑢]

}

}

}

≤ 𝑎

𝑀

𝑖𝑗







𝑧
𝑖𝑗
(𝑡
1
)







+ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) 𝐴

𝑖𝑗
(𝜆)

≤ 𝑎

𝑀

𝑖𝑗











𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

× {

1

𝑀

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) + exp(𝜆 sup

𝑠∈T

𝜇 (𝑠))𝐴
𝑖𝑗
(𝜆)

×∫

𝑡1

𝑡0

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝜎 (𝑠)) Δ𝑠}
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+ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) 𝐴

𝑖𝑗
(𝜆)

≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

× {

𝑎

𝑀

𝑖𝑗

𝑀

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) + 𝑎

𝑀

𝑖𝑗
exp(𝜆 sup

𝑠∈T

𝜇 (𝑠))𝐴
𝑖𝑗
(𝜆)

× ∫

𝑡1

𝑡0

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝜎 (𝑠)) Δ𝑠 + 𝐴

𝑖𝑗
(𝜆)}

≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

× {

𝑎

𝑀

𝑖𝑗

𝑀

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) + 𝑎

𝑀

𝑖𝑗
exp(𝜆 sup

𝑠∈T

𝜇 (𝑠))𝐴
𝑖𝑗
(𝜆)

×(

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) − 1

𝜆 − 𝑎

𝑚

𝑖𝑗

) + 𝐴
𝑖𝑗
(𝜆)}

≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

× {

𝑎

𝑀

𝑖𝑗

𝑀

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) − 𝑎

𝑀

𝑖𝑗
exp(𝜆 sup

𝑠∈T

𝜇 (𝑠))𝐴
𝑖𝑗
(𝜆)

×(

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) − 1

𝑎

𝑚

𝑖𝑗
− 𝜆

) + 𝐴
𝑖𝑗
(𝜆)}

≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

× {

𝑎

𝑀

𝑖𝑗

𝑀

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) + 𝑎

𝑀

𝑖𝑗
exp(𝜆 sup

𝑠∈T

𝜇 (𝑠))𝐴
𝑖𝑗
(𝜆)

×(

𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
) − 1

𝑎

𝑚

𝑖𝑗
− 𝜆

) + 𝐴
𝑖𝑗
(𝜆)}

≤ 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
)

× {(

1

𝑀

−

exp (𝜆 sup
𝑠∈T (𝜇 (𝑠))) 𝐴 𝑖𝑗

(𝜆)

𝑎

𝑚

𝑖𝑗
− 𝜆

)

× 𝑎

𝑀

𝑖𝑗
𝑒
−𝑎𝑖𝑗⊕𝜆

(𝑡
1
, 𝑡
0
)

+(

𝑎

𝑀

𝑖𝑗
exp (𝜆 sup

𝑠∈T (𝜇 (𝑠)))

𝑎

𝑚

𝑖𝑗
− 𝜆

+ 1)𝐴
𝑖𝑗
(𝜆)}

< 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) .

(64)

In view of (62) and (64), we obtain

‖𝑍 (𝑡)‖
1
< 𝑐𝑃𝑀






𝜙






𝑒
⊖𝜆
(𝑡
1
, 𝑡
0
) , (65)

which contradicts (59), and so (57) holds. Letting 𝑃 → 1,
then (56) holds.Hence, the almost periodic solution of system

(3) is globally exponentially stable. The global exponential
stability implies that the periodic solution is unique. The
proof is complete.

5. Some Examples

Consider the following SICNNs model:

𝑥

Δ

𝑖𝑗
(𝑡) = −𝑎

𝑖𝑗
(𝑡) 𝑥

𝑖𝑗
(𝑡 − 𝜇

𝑖𝑗
(𝑡))

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐾
𝑖𝑗
(𝑢) 𝑓 [𝑥

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑠(𝑖,𝑗)

𝐷

𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

+∞

0

𝐽
𝑖𝑗
(𝑢) 𝑔 [𝑥

Δ

𝑘𝑙
(𝑡 − 𝑢)] Δ𝑢𝑥

𝑖𝑗
(𝑡) + 𝐼

𝑖𝑗
(𝑡) ,

𝑡 ∈ T ,

(66)

where 𝑓(𝑥) = 2 cos𝑥, 𝑔(𝑥) = 2|𝑥|, 𝐾
𝑖𝑗
(𝑢) = 𝑒

−4𝑢, and
𝐽
𝑖𝑗
(𝑢) = 𝑒

−2𝑢, 𝑖, 𝑗 = 1, 2, 3.

Example 1. In system (66), let T = R; then 𝜇(𝑡) ≡ 0, and take

[

[

𝑎
11
(𝑡) 𝑎

12
(𝑡) 𝑎

13
(𝑡)

𝑎
21
(𝑡) 𝑎

22
(𝑡) 𝑎

23
(𝑡)

𝑎
31
(𝑡) 𝑎

32
(𝑡) 𝑎

33
(𝑡)

]

]

=
[

[

4 + |sin 𝑡| 5 + |sin 2𝑡| 8 + |sin 𝑡|
6 + |cos 𝑡| 6 + |sin 𝑡| 7 + |cos 𝑡|
8 + |cos 𝑡| 8 + |sin 𝑡| 5 + |sin 2𝑡|

]

]

,

[

[

𝑐
11
(𝑡) 𝑐

12
(𝑡) 𝑐

13
(𝑡)

𝑐
21
(𝑡) 𝑐

22
(𝑡) 𝑐

23
(𝑡)

𝑐
31
(𝑡) 𝑐

32
(𝑡) 𝑐

33
(𝑡)

]

]

=
[

[

0.01 |sin 2𝑡| 0.02 |sin 3𝑡| 0.01 |sin 4𝑡|
0.01 |sin 2𝑡| 0.01 |sin 3𝑡| 0.01 |sin 4𝑡|
0.01 |sin 2𝑡| 0.01 |sin 3𝑡| 0.01 |sin 4𝑡|

]

]

,

[

[

𝑑
11
(𝑡) 𝑑

12
(𝑡) 𝑑

13
(𝑡)

𝑑
21
(𝑡) 𝑑

22
(𝑡) 𝑑

23
(𝑡)

𝑑
31
(𝑡) 𝑑

32
(𝑡) 𝑑

33
(𝑡)

]

]

=
[

[

0.01 |cos 2𝑡| 0.01 |cos 3𝑡| 0.02 |cos 4𝑡|
0.01 |cos 2𝑡| 0.01 |cos 3𝑡| 0.01 |cos 4𝑡|
0.01 |cos 2𝑡| 0.01 |cos 3t| 0.01 |cos 4𝑡|

]

]

,

[

[

𝐼
11
(𝑡) 𝐼

12
(𝑡) 𝐼

13
(𝑡)

𝐼
21
(𝑡) 𝐼

22
(𝑡) 𝐼

23
(𝑡)

𝐼
31
(𝑡) 𝐼

32
(𝑡) 𝐼

33
(𝑡)

]

]

=
[

[

sin 𝑡 sin 𝑡 cos 𝑡
sin 𝑡 cos 𝑡 cos 𝑡
cos 𝑡 cos 𝑡 cos 𝑡

]

]

,
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[

[

[

𝜇
11
(𝑡) 𝜇

12
(𝑡) 𝜇

13
(𝑡)

𝜇
21
(𝑡) 𝜇

22
(𝑡) 𝜇

23
(𝑡)

𝜇
31
(𝑡) 𝜇

32
(𝑡) 𝜇

33
(𝑡)

]

]

]

=

[

[

[

0.02 |cos 2𝑡| 0.01 |cos 3𝑡| 0.01 |cos 4𝑡|
0.011 |cos 2𝑡| 0.001 |cos 3𝑡| 0.01 |cos 4𝑡|
0.01 |cos 2𝑡| 0.01 |cos 3𝑡| 0.02 |cos 4𝑡|

]

]

]

.

(67)

Let 𝑟 = 𝑠 = 1, 𝐴 = 1/2, and 𝛿 = 1. Obviously, 𝐿 = 𝑙 = 2,
𝑓(0) = 2 and 𝑔(0) = 0, 𝐾0

𝑖𝑗
= 1/4, 𝐽0

𝑖𝑗
= 1/2,

[

[

[

[

[

𝑎

𝑀

11
𝑎

𝑀

12
𝑎

𝑀

13

𝑎

𝑀

21
𝑎

𝑀

22
𝑎

𝑀

23

𝑎

𝑀

31
𝑎

𝑀

32
𝑎

𝑀

33

]

]

]

]

]

=
[

[

5 6 9

7 7 8

9 9 6

]

]

,

[

[

[

[

𝑎

𝑚

11
𝑎

𝑚

12
𝑎

𝑚

13

𝑎

𝑚

21
𝑎

𝑚

22
𝑎

𝑚

23

𝑎

𝑚

31
𝑎

𝑚

32
𝑎

𝑚

33

]

]

]

]

=
[

[

4 5 8

6 6 7

8 8 5

]

]

,

[

[

[

𝑐
11
𝑐
12
𝑐
13

𝑐
21
𝑐
22
𝑐
23

𝑐
31
𝑐
32
𝑐
33

]

]

]

=
[

[

0.02 0.02 0.01

0.01 0.01 0.01

0.01 0.01 0.01

]

]

,

[

[

[

𝑑
11
𝑑
12
𝑑
13

𝑑
21
𝑑
22
𝑑
23

𝑑
31
𝑑
32
𝑑
33

]

]

]

=
[

[

0.01 0.01 0.02

0.01 0.01 0.01

0.01 0.01 0.01

]

]

,

[

[

𝐼
11
𝐼
12
𝐼
13

𝐼
21
𝐼
22
𝐼
23

𝐼
31
𝐼
32
𝐼
33

]

]

=
[

[

1 1 1

1 1 1

1 1 1

]

]

,

[

[

[

[

𝜇

𝑀

11
𝜇

𝑀

12
𝜇

𝑀

13

𝜇

𝑀

21
𝜇

𝑀

22
𝜇

𝑀

23

𝜇

𝑀

31
𝜇

𝑀

32
𝜇

𝑀

33

]

]

]

]

=
[

[

0.02 0.01 0.01

0.011 0.001 0.01

0.01 0.01 0.02

]

]

.

(68)

So

[

[

[

[

𝜃

0

11
𝜃

0

12
𝜃

0

13

𝜃

0

21
𝜃

0

22
𝜃

0

23

𝜃

0

31
𝜃

0

32
𝜃

0

33

]

]

]

]

=
[

[

0.2 0.21 0.19

0.217 0.217 0.22

0.17 0.21 0.2

]

]

,

[

[

𝜃
11
𝜃
12
𝜃
13

𝜃
21
𝜃
22
𝜃
23

𝜃
31
𝜃
32
𝜃
33

]

]

=
[

[

0.27 0.32 0.265

0.317 0.372 0.325

0.23 0.3 0.26

]

]

.

(69)

It is easy to check that

𝐴 ≥







𝜑

0




, max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

𝜃

0

𝑖𝑗

𝑎

𝑚

𝑖𝑗

, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃

0

𝑖𝑗
} ≤

1

2

,

max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

𝜃
𝑖𝑗

𝑎

𝑚

𝑖𝑗

, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃
𝑖𝑗
} < 1.

(70)

Therefore, all the conditions in Theorems 16 and 18 are
satisfied. Hence (66) has a 2𝜋-periodic solution, which is
globally exponentially stable (we give numerical simulations
in Figures 1, 2, and 3 by taking 𝑥

11
, 𝑥

12
, and 𝑥

13
to illustrate

our results).

Example 2. In system (66), let T = Z, then 𝜇(𝑡) ≡ 1, and take

[

[

𝑎
11
(𝑡) 𝑎

12
(𝑡) 𝑎

13
(𝑡)

𝑎
21
(𝑡) 𝑎

22
(𝑡) 𝑎

23
(𝑡)

𝑎
31
(𝑡) 𝑎

32
(𝑡) 𝑎

33
(𝑡)

]

]

=
[

[

0.8 + 0.1 |sin 3𝑡| 0.7 + 0.1 |sin 2𝑡| 0.7 + 0.1 |sin 𝑡|
0.7 + 0.2 |cos 𝑡| 0.8 + 0.1 |cos 𝑡| 0.8 + 0.1 |sint|
0.7 + 0.2 |cos 𝑡| 0.7 + 0.1 |sin 𝑡| 0.8 + 0.1 |cos 2𝑡|

]

]

,

[

[

𝑐
11
(𝑡) 𝑐

12
(𝑡) 𝑐

13
(𝑡)

𝑐
21
(𝑡) 𝑐

22
(𝑡) 𝑐

23
(𝑡)

𝑐
31
(𝑡) 𝑐

32
(𝑡) 𝑐

33
(𝑡)

]

]

=
[

[

0.01 |sin 2𝑡| 0.02 |sin 3𝑡| 0.01 |sin 4𝑡|
0.02 |sin 2𝑡| 0.01 |sin 3𝑡| 0.01 |cos 4𝑡|
0.01 |sin 2𝑡| 0.01 |sin 3𝑡| 0.02 |cos 4𝑡|

]

]

,

[

[

𝑑
11
(𝑡) 𝑑

12
(𝑡) 𝑑

13
(𝑡)

𝑑
21
(𝑡) 𝑑

22
(𝑡) 𝑑

23
(𝑡)

𝑑
31
(𝑡) 𝑑

32
(𝑡) 𝑑

33
(𝑡)

]

]

=
[

[

0.01 |cos 2𝑡| 0.02 |sin 3𝑡| 0.01 |sin 4𝑡|
0.01 |cos 2𝑡| 0.01 |cos 3𝑡| 0.01 |cos 4𝑡|
0.01 |cos 2𝑡| 0.01 |sin 2𝑡| 0.02 |cos 4𝑡|

]

]

,

[

[

𝐼
11
(𝑡) 𝐼

12
(𝑡) 𝐼

13
(𝑡)

𝐼
21
(𝑡) 𝐼

22
(𝑡) 𝐼

23
(𝑡)

𝐼
31
(𝑡) 𝐼

32
(𝑡) 𝐼

33
(𝑡)

]

]

=
[

[

0.08 sin 𝑡 + 0.03 cos 𝑡 0.02 sin 𝑡 + 0.01 cos 2𝑡 0.02 cos 𝑡
0.01 sin 𝑡 0.02 cos 𝑡 0.06 cos 𝑡
0.01 cos 𝑡 0.01 sin 𝑡 + 0.02 sin 𝑡 0.01 cos 𝑡

]

]

,

[

[

𝜇
11
(𝑡) 𝜇

12
(𝑡) 𝜇

13
(𝑡)

𝜇
21
(𝑡) 𝜇

22
(𝑡) 𝜇

23
(𝑡)

𝜇
31
(𝑡) 𝜇

32
(𝑡) 𝜇

33
(𝑡)

]

]

=
[

[

0.02 |sin 𝑡| 0.01 |sin 2𝑡| 0.02 |cos 𝑡|
0.01 |cos 2𝑡| 0.01 |sin 𝑡| 0.01 |cos 𝑡|
0.02 |sin 2𝑡| 0.01 |cos 𝑡| 0.02 |sin 2𝑡|

]

]

.

(71)
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Let 𝑟 = 𝑠 = 1, 𝐴 = 1/2, and 𝛿 = 0.1. Obviously, 𝐿 = 𝑙 = 2,
𝑓(0) = 2 and 𝑔(0) = 0, 𝐾0

𝑖𝑗
= 1/4, 𝐽0

𝑖𝑗
= 1/2,

[

[

[

[

𝑎

𝑀

11
𝑎

𝑀

12
𝑎

𝑀

13

𝑎

𝑀

21
𝑎

𝑀

22
𝑎

𝑀

23

𝑎

𝑀

31
𝑎

𝑀

32
𝑎

𝑀

33

]

]

]

]

=
[

[

0.9 0.8 0.9

0.9 0.9 0.9

0.9 0.8 0.9

]

]

,

[

[

[

𝑎

𝑚

11
𝑎

𝑚

12
𝑎

𝑚

13

𝑎

𝑚

21
𝑎

𝑚

22
𝑎

𝑚

23

𝑎

𝑚

31
𝑎

𝑚

32
𝑎

𝑚

33

]

]

]

=
[

[

0.8 0.7 0.7

0.7 0.8 0.8

0.7 0.7 0.8

]

]

,

[

[

𝑐
11
𝑐
12
𝑐
13

𝑐
21
𝑐
22
𝑐
23

𝑐
31
𝑐
32
𝑐
33

]

]

=
[

[

0.01 0.02 0.01

0.02 0.01 0.01

0.01 0.01 0.02

]

]

,

[

[

[

𝑑
11
𝑑
12
𝑑
13

𝑑
21
𝑑
22
𝑑
23

𝑑
31
𝑑
32
𝑑
33

]

]

]

=
[

[

0.01 0.02 0.01

0.01 0.01 0.01

0.01 0.01 0.02

]

]

,

[

[

𝐼
11
𝐼
12
𝐼
13

𝐼
21
𝐼
22
𝐼
23

𝐼
31
𝐼
32
𝐼
33

]

]

=
[

[

0.11 0.03 0.02

0.01 0.02 0.06

0.01 0.03 0.01

]

]

,

[

[

[

[

𝜇

𝑀

11
𝜇

𝑀

12
𝜇

𝑀

13

𝜇

𝑀

21
𝜇

𝑀

22
𝜇

𝑀

23

𝜇

𝑀

31
𝜇

𝑀

32
𝜇

𝑀

33

]

]

]

]

=
[

[

0.02 0.01 0.02

0.01 0.01 0.01

0.02 0.01 0.02

]

]

.

(72)

So

[

[

[

[

𝜃

0

11
𝜃

0

12
𝜃

0

13

𝜃

0

21
𝜃

0

22
𝜃

0

23

𝜃

0

31
𝜃

0

32
𝜃

0

33

]

]

]

]

=
[

[

0.128 0.158 0.118

0.159 0.229 0.169

0.108 0.158 0.118

]

]

,

[

[

𝜃
11
𝜃
12
𝜃
13

𝜃
21
𝜃
22
𝜃
23

𝜃
31
𝜃
32
𝜃
33

]

]

=
[

[

0.208 0.288 0.193

0.269 0.389 0.289

0.133 0.268 0.193

]

]

.

(73)

It is easy to check that

𝐴 ≥







𝜑

0




, max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

𝜃

0

𝑖𝑗

𝑎

𝑚

𝑖𝑗

, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃

0

𝑖𝑗
} ≤

1

2

, (74)

max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{

𝜃
𝑖𝑗

𝑎

𝑚

𝑖𝑗

, (1 +

𝑎

𝑀

𝑖𝑗

𝑎

𝑚

𝑖𝑗

)𝜃
𝑖𝑗
} < 1. (75)

Therefore, all the conditions in Theorems 16 and 18 are
verified. Hence (66) has a 2𝜋-periodic solution, which is
globally exponentially stable(we give numerical simulations
in Figures 4, 5, and 6 by taking 𝑥

11
, 𝑥

12
, and 𝑥

13
to illustrate

our results).

Remark. In [27], authors studied the existence and stability
of antiperiodic solutions to impulsive shunting inhibitory
cellular neural networks with distributed delays on time
scales by using a continuation theorem of coincidence degree
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theory and constructing a suitable Lyapunov functions, and
in [28], authors investigated the existence and stability of
almost periodic solutions to shunting inhibitory cellular
neural networks on time scales by the exponential dichotomy
of linear dynamic equations on time scales and constructing a
suitable Lyapunov functions. However, our methods used in
this paper are different from those used in [27, 28]; also, the
results obtained in [27, 28] cannot be applied to our examples
here.
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