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A new linearizing method is presented for globally solving sum of linear ratios problem with coefficients. By using the linearizing
method, linear relaxation programming (LRP) of the sumof linear ratios problemwith coefficients is established, which can provide
the reliable lower bound of the optimal value of the initial problem. Thus, a branch and bound algorithm for solving the sum of
linear ratios problem with coefficients is put forward. By successively partitioning the linear relaxation of the feasible region and
solving a series of the LRP, the proposed algorithm is convergent to the global optimal solution of the initial problem. Compared
with the known methods, numerical experimental results show that the proposed method has the higher computational efficiency
in finding the global optimum of the sum of linear ratios problem with coefficients.

1. Introduction

In this paper, we consider the following sum of linear ratios
problem with coefficients:

(SLRC) :
{{

{{

{

min 𝐻(𝑥) =

𝑝

∑
𝑗=1

𝐻𝑗 (𝑥) =

𝑝

∑
𝑗=1

𝛿𝑗
𝑡𝑗 (𝑥)

𝑠𝑗 (𝑥)

s.t. 𝑥 ∈ 𝐷 = {𝑥 ∈ 𝑅𝑛 | 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} ,

(1)

where 𝑡𝑗(𝑥) and 𝑠𝑗(𝑥) are all linear functions, 𝛿𝑗 are all
arbitrary real coefficients, 𝑗 = 1, . . . , 𝑝, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈

𝑅𝑚, and 𝐷 is a nonempty compact set. Here, symbols 𝛿𝑗 in
the problem (SLRC) can be considered the weight of each
linear ratio, since 𝛿𝑗 are all arbitrary real numbers; thus
the sum of linear ratios with coefficients 𝛿𝑗 can be called
the weighted sum and difference of linear ratios. Therefore,
the problem (SLRC) considered in this paper popularizes
the mathematical model of sum of linear ratios problem
investigated in many literatures.

The sum of linear ratios problemwith coefficients (SLRC)
has attracted the interest of researchers and practitioners for
many years. In part, this is because the problem (SLRC) and
its special case have broad applications in many practical

problems, for example, profit rates and pricing decisions
problem [1], cluster analysis problem [2], bond portfolio
optimization problem [3], and so forth. Another reason for
the strong interest in the problem (SLRC) is that from a
research point of view the problem (SLRC) poses many
important theoretical and computational difficulties. This is
mainly because the problem (SLRC) is a global optimization
problem; that is, it shows multiple local optimal solutions
which are not global optimal solutions.

During the past 20 years, many algorithms have been
presented for globally solving special cases of the problem
(SLRC), which are only developed for solving the sum of
linear ratios problemwith the assumption that all coefficients
𝛿𝑗 = +1, 𝑗 = 1, . . . , 𝑝. For example, when feasible region 𝐷

is a polyhedral set and 𝑝 = 2, Konno et al. [4] proposed a
parametric simplex method for sum of linear ratios problem
without coefficients. When all numerators 𝑡𝑗 (𝑥) ≥ 0 and
all denominators 𝑠𝑗(𝑥) ≥ 0, Wang et al. [5] proposed a
linear relaxation method for the sum of linear ratios problem
without coefficients. When the numerators 𝑡𝑗(𝑥) ≥ 0 and
the denominators 𝑠𝑗(𝑥) ̸= 0, Wang and Shen [6] and Ji et al.
[7] presented two different branch and bound algorithms
for globally solving the sum of linear ratios problem; Shen
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and Wang [8] first proposed a global optimization algorithm
for the sum of linear ratios problem with coefficients, which
is investigated in this paper. Recently, by using the linear
characteristics of convex envelope and concave envelope of
double variables product function, Gao and Jin [9] proposed
an effective branch and bound algorithm for solving sum
of linear ratios problem; by using subgradient and convex
envelope, Pei and Zhu [10] presented a global optimization
method for maximizing the sum of difference of convex
functions ratios over nonconvex region, which can be used
to globally solve the sum of linear ratios problem. However,
to our knowledge, although there exist many algorithms to
solve special cases of the problem (SLRC), due to its intrinsic
difficulty, less theoretical research and algorithm design have
been still expanded to globally solving the sumof linear ratios
problem with coefficients (SLRC).

The purpose of this paper is to develop a new linearizing
method for globally solving the sum of linear ratios problem
with coefficients (SLRC). The proposed new linearizing
method uses more information of the objective function
of the problem (SLRC); by using the method, the linear
relaxation programming (LRP) of the problem (SLRC) is
established, which can provide a tighter lower bound of
the global optimal value of the problem (SLRC) than the
previous linearizing method in branch and bound algorithm
and which can be used to reduce rapidly the growth of
branching tree in the branch and bound algorithm for solving
the problem (SLRC); therefore it can improve the computa-
tional efficiency of the algorithm. By successively subdividing
feasible region of the problem (SLRC) and solving a series of
the LRP, the proposed algorithm is convergent to the global
optimum of the problem (SLRC). Finally, compared with the
known methods, numerical experimental results imply that
the proposed new linearizing method can be used to globally
solve the problem (SLRC) with the higher computational
efficiency.

The remainder sections of this paper are organized as
follows. In Section 2, a new linearizing method is proposed;
by utilizing the method, the linear relaxation programming
(LRP) of the problem (SLRC) is established. In Section 3, a
branch and bound algorithm for globally solving the problem
(SLRC) is presented. Several test examples in the recent
literatures and their numerical results obtained are listed in
Section 4. At last, some concluding remarks are described in
Section 5.

2. New Linearizing Method

To globally solve the problem (SLRC), by solving 2𝑛 simple
linear programming problems, we obtain easily the initial
partitioned rectangle

𝑋
0
= {𝑥 | min

𝑥∈𝐷
𝑥𝑖 = 𝑥

𝑖
≤ 𝑥𝑖 ≤ 𝑥𝑖 = max

𝑥∈𝐷
𝑥𝑖, 𝑖 = 1, . . . , 𝑛} .

(2)

By the characteristic of fractional function 𝑡𝑗(𝑥)/𝑠𝑗(𝑥),
𝑗 = 1, . . . , 𝑝, we have the denominator 𝑠𝑗(𝑥) ̸= 0; that is,
𝑠𝑗(𝑥) > 0 or 𝑠𝑗(𝑥) < 0. If 𝑠𝑗(𝑥) < 0, by letting 𝑡𝑗(𝑥)/𝑠𝑗(𝑥) =

−𝑡𝑗(𝑥)/ − 𝑠𝑗(𝑥), we have −𝑠𝑗(𝑥) > 0. Thus, we can always
assume that all denominators 𝑠𝑗(𝑥) > 0. If 𝑡𝑗(𝑥) is an arbitrary
function, then there always exists an enough large positive
number 𝜎𝑗 such that 𝑡𝑗(𝑥) + 𝜎𝑗𝑠𝑗(𝑥) > 0; thus we can assume
𝑡𝑗(𝑥) > 0. Therefore, we can always suppose that 𝑡𝑗(𝑥) > 0

and 𝑠𝑗(𝑥) > 0, for all 𝑗 = 1, . . . , 𝑝.
The important structure in the establishment of a branch

and bound procedure to globally solve the problem (SLRC)
is the calculation of lower bounds for this problem and
for its subproblems. A lower bound of the global optimal
value of the problem (SLRC) and its subproblems can be
computed by solving a sequence of linear relaxation program-
ming problems. The proposed new linearizing method for
establishing linear relaxation programming of the problem
(SLRC) is to underestimate or overestimate each function
𝐻𝑗(𝑥) = 𝑡𝑗(𝑥)/𝑠𝑗(𝑥) with linear functions 𝐿𝑗(𝑥) or 𝑈𝑗(𝑥),
𝑗 = 1, 2, . . . , 𝑝. By the former assumption, let

𝐻𝑗 (𝑥) = exp {ln (𝑡𝑗 (𝑥)) − ln (𝑠𝑗 (𝑥))} . (3)

Firstly, for all 𝑥 ∈ 𝑋 ⊆ 𝑋0, for each 𝑗 ∈ {1, . . . , 𝑝}, let

𝑡
𝑙

𝑗
= min
𝑥∈𝑋

𝑡𝑗 (𝑥) , 𝑡
𝑢

𝑗
= max
𝑥∈𝑋

𝑡𝑗 (𝑥) ,

𝑘
1

𝑗
=
ln (𝑡𝑢
𝑗
) − ln (𝑡𝑙

𝑗
)

𝑡𝑢
𝑗
− 𝑡𝑙
𝑗

,

𝑠
𝑙

𝑗
= min
𝑥∈𝑋

𝑠𝑗 (𝑥) , 𝑠
𝑢

𝑗
= max
𝑥∈𝑋

𝑠𝑗 (𝑥) ,

𝑘
2

𝑗
=
ln (𝑠𝑢
𝑗
) − ln (𝑠𝑙

𝑗
)

𝑠𝑢
𝑗
− 𝑠𝑙
𝑗

.

(4)

Let 𝐿(ln(𝑍)) and 𝑈(ln(𝑍)) be the linear underestimating
function and the linear overestimating function of the ln(𝑍)

over the interval [𝑍𝑙, 𝑍𝑢]. By the linear characteristic of the
concave function ln(𝑍), we can get the following inequalities:

𝐿 (ln (𝑍)) = 𝑘 (𝑍 − 𝑍
𝑙
) + ln𝑍

𝑙

≤ ln (𝑍)

≤ 𝑘𝑍 − 1 − ln 𝑘

= 𝑈 (ln (𝑍)) ,

(5)

where

𝑘 =
ln𝑍
𝑢 − ln𝑍𝑙

𝑍𝑢 − 𝑍𝑙
. (6)

By the above inequality (5), it follows that

𝑘
1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln 𝑡

𝑙

𝑗
≤ ln (𝑡𝑗 (𝑥)) ≤ 𝑘

1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
,

𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] + ln 𝑠

𝑙

𝑗
≤ ln (𝑠𝑗 (𝑥)) ≤ 𝑘

2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
.

(7)

By the above inequalities (7), for each 𝑗 ∈ {1, . . . , 𝑝},
then we can establish the underestimating function 𝐻𝑙

𝑗
(𝑥)
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and the overestimating function𝐻𝑢
𝑗
(𝑥) of the function𝐻𝑗(𝑥)

as follows:

𝐻
𝑙

𝑗
(𝑥)

= exp {𝑘
1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln 𝑡

𝑙

𝑗
− [𝑘
2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
]} ,

𝐻
𝑢

𝑗
(𝑥)

= exp {𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
− 𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
} .

(8)

It is obvious that we have

𝐻
𝑙

𝑗
(𝑥) ≤ 𝐻𝑗 (𝑥) ≤ 𝐻

𝑢

𝑗
(𝑥) , for ∀𝑥 ∈ 𝑋 ⊆ 𝑋

0
. (9)

Secondly, for all 𝑥 ∈ 𝑋 ⊆ 𝑋0, we let

𝑍𝑗 = 𝑘
1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln 𝑡

𝑙

𝑗
− [𝑘
2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
] ,

𝑍
𝑢

𝑗
= max
𝑥∈𝑋

{𝑘
1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln 𝑡

𝑙

𝑗
− [𝑘
2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
]} ,

𝑍
𝑙

𝑗
= min
𝑥∈𝑋

{𝑘
1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln 𝑡

𝑙

𝑗
− [𝑘
2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
]} ,

𝐴
1

𝑗
=
exp (𝑍𝑢

𝑗
) − exp (𝑍𝑙

𝑗
)

𝑍𝑢
𝑗
− 𝑍𝑙
𝑗

,

𝑌𝑗 = 𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
− 𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
,

𝑌
𝑢

𝑗
= max
𝑥∈𝑋

{𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
− 𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
} ,

𝑌
𝑙

𝑗
= min
𝑥∈𝑋

{𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
− 𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
} ,

𝐴
2

𝑗
=
exp (𝑌𝑢

𝑗
) − exp (𝑌𝑙

𝑗
)

𝑌𝑢
𝑗
− 𝑌𝑙
𝑗

.

(10)

By the characteristic of the convex function, we can derive
its linear underestimating function 𝐿(exp(𝑍𝑗)) of exp(𝑍𝑗)
over the interval [𝑍𝑙

𝑗
, 𝑍𝑢
𝑗
] as follows:

𝐿𝑗 (exp (𝑍𝑗)) = 𝐴
1

𝑗
(1 + 𝑍𝑗 − ln𝐴

1

𝑗
) , (11)

such that

𝐿𝑗 (exp (𝑍𝑗)) ≤ exp (𝑍𝑗) . (12)

Based on the above discussion, for each 𝑗 ∈ {1, . . . , 𝑝}, by
(11)-(12), then finallywe can derive the linear underestimating
function 𝐿𝑗(𝑥) of 𝐻

𝑙

𝑗
(𝑥), which underestimates the value of

the function𝐻𝑙
𝑗
(𝑥) as follows:

𝐿𝑗 (𝑥) = 𝐴
1

𝑗
{1 + 𝑘

1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln 𝑡

𝑙

𝑗

− [𝑘
2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
] − ln𝐴

1

𝑗
} ,

(13)

such that

𝐿𝑗 (𝑥) ≤ 𝐻
𝑙

𝑗
(𝑥) , for ∀𝑥 ∈ 𝑋 ⊆ 𝑋

0
. (14)

Similarly, for each convex function exp (𝑌𝑗) over the
interval [𝑌

𝑙

𝑗
, 𝑌
𝑢

𝑗
], we can derive its linear overestimating

function 𝑈(exp (𝑌𝑗)) as follows:

𝑈𝑗 (exp (𝑌𝑗)) = 𝐴
2

𝑗
(𝑌𝑗 − 𝑌

𝑙

𝑗
) + exp (𝑌

𝑙

𝑗
) , (15)

such that

𝑈𝑗 (exp (𝑌𝑗)) ≥ exp (𝑌𝑗) . (16)

According to the above discussion, for each 𝑗 ∈ {1, . . . , 𝑝},
by (15)-(16), then finally we derive the linear overestimating
function 𝑈𝑗(𝑥) of 𝐻

𝑢

𝑗
(𝑥), which overestimates the optimal

value of the function𝐻𝑢
𝑗
(𝑥) as follows:

𝑈𝑗 (𝑥) = 𝐴
2

𝑗
{𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗

−𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
− 𝑌
𝑙

𝑗
} + exp (𝑌

𝑙

𝑗
) ,

(17)

such that

𝑈𝑗 (𝑥) ≥ 𝐻
𝑢

𝑗
(𝑥) , for ∀𝑥 ∈ 𝑋 ⊆ 𝑋

0
. (18)

By (9), (14), and (18), we get

𝐿𝑗 (𝑥) ≤ 𝐻
𝑙

𝑗
(𝑥) ≤ 𝐻𝑗 (𝑥) ≤ 𝐻

𝑢

𝑗
(𝑥) ≤ 𝑈𝑗 (𝑥) ,

for ∀𝑥 ∈ 𝑋 ⊆ 𝑋
0
.

(19)

Let

𝐻
𝐿
(𝑥) =

𝑝

∑
𝑗=1,𝛿𝑗>0

𝛿𝑗𝐿𝑗 (𝑥) +

𝑝

∑
𝑗=1,𝛿𝑗<0

𝛿𝑗𝑈𝑗 (𝑥) . (20)

Then, by (19), we have

𝐻
𝐿
(𝑥) =

𝑝

∑
𝑗=1,𝛿𝑗>0

𝛿𝑗𝐿𝑗 (𝑥)

+

𝑝

∑
𝑗=1,𝛿𝑗<0

𝛿𝑗𝑈𝑗 (𝑥)

≤

𝑝

∑
𝑗=1

𝛿𝑗𝐻𝑗 (𝑥)

≤ 𝐻 (𝑥) .

(21)

According to the above linearizing method, for ∀𝑋 ⊆ 𝑋0,
we can construct the linear relaxation programming (LRP) of
the problem (SLRC) over𝑋 as follows:

(LRP) :
{{

{{

{

min 𝐻
𝐿
(𝑥)

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0,

𝑥 ∈ 𝑋.

(22)
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According to the construction method of the linear
relaxation programming (LRP), for ∀𝑋 ⊆ 𝑋

0, the problem
(LRP) provides a valid lower bound for the global optimal
value of the problem (SLRC).

The following theorem ensures that the linear function
𝐻
𝐿(𝑥)will approximate infinitely the corresponding function

𝐻(𝑥) as ‖𝑥 − 𝑥‖ → 0.

Theorem 1. For all 𝑥 ∈ 𝑋 = [𝑥, 𝑥] ⊆ 𝑋0, then one can follow
that the error Δ = 𝐻(𝑥) − 𝐻𝐿(𝑥) → 0 as ‖ 𝑥 − 𝑥 ‖→ 0.

Proof. Let

Δ
1

𝑗
=

𝑡𝑗 (𝑥)

𝑠𝑗 (𝑥)
− 𝐿𝑗 (𝑥) , Δ

2

𝑗
= 𝑈𝑗 (𝑥) −

𝑡𝑗 (𝑥)

𝑠𝑗 (𝑥)
. (23)

Then, we have

Δ = 𝐻 (𝑥) − 𝐻𝐿 (𝑥)

= (

𝑝

∑
𝑗=1

𝛿𝑗
𝑡𝑗 (𝑥)

𝑠𝑗 (𝑥)
)

−(

𝑝

∑
𝑗=1,𝛿𝑗>0

𝛿𝑗𝐿𝑗 (𝑥) +

𝑝

∑
𝑗=1,𝛿𝑗<0

𝛿𝑗𝑈𝑗 (𝑥))

=

𝑝

∑
𝑗=1,𝛿𝑗>0

𝛿𝑗 (
𝑡𝑗 (𝑥)

𝑠𝑗 (𝑥)
− 𝐿𝑗 (𝑥))

−

𝑝

∑
𝑗=1,𝛿𝑗<0

𝛿𝑗 (𝑈𝑗 (𝑥) −
𝑡𝑗 (𝑥)

𝑠𝑗 (𝑥)
)

=

𝑝

∑
𝑗=1,𝛿𝑗>0

𝛿𝑗Δ
1

𝑗
−

𝑝

∑
𝑗=1,𝛿𝑗<0

𝛿𝑗Δ
2

𝑗
.

(24)

Firstly, in the following, we will prove that Δ1
𝑗

→ 0 as
‖𝑥 − 𝑥‖ → 0. Since

Δ
1

𝑗
= [𝐻𝑗 (𝑥) − 𝐻

𝑙

𝑗
(𝑥)] + [𝐻

𝑙

𝑗
(𝑥) − 𝐿𝑗 (𝑥)] = Δ

1

𝑗1
+ Δ
1

𝑗2
,

(25)

then we only need to prove that Δ1
𝑗1

→ 0 and Δ1
𝑗2

→ 0 as
‖ 𝑥 − 𝑥 ‖→ 0.

Let

𝑓𝑗 (𝑥) = ln (𝑡𝑗 (𝑥)) − ln (𝑠𝑗 (𝑥)) ,

𝑔𝑗 (𝑥) = 𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
− 𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
,

ℎ𝑗 (𝑥) = 𝑘
1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln 𝑡

𝑙

𝑗
− [𝑘
2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
] .

(26)

Then, we have

Δ
1

𝑗1
= exp {ln (𝑡𝑗 (𝑥)) − ln (𝑠𝑗 (𝑥))}

− exp {𝑘1
𝑗
[𝑡𝑗 (𝑥) − 𝑡𝑙

𝑗
]

+ ln 𝑡𝑙
𝑗
− [𝑘2
𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘2

𝑗
]}

= exp (𝑓𝑗 (𝑥)) − exp (ℎ𝑗 (𝑥))

≤

𝑓𝑗 (𝑥) − ℎ𝑗 (𝑥)


sup

𝜉𝑗∈𝐿(𝑓𝑗(𝑥),ℎ𝑗(𝑥))

exp (𝜉𝑗) ,

(27)

where

𝐿 (𝑓𝑗 (𝑥) , ℎ𝑗 (𝑥)) = 𝛼𝑓𝑗 (𝑥) + (1 − 𝛼) ℎ𝑗 (𝑥)

with 𝛼 ∈ [0, 1] .

(28)

Let

𝑓𝑗 (𝑥) − ℎ𝑗 (𝑥) = {ln (𝑡𝑗 (𝑥)) − ln (𝑠𝑗 (𝑥))}

− {𝑘1
𝑗
[𝑡𝑗 (𝑥) − 𝑡𝑙

𝑗
] + ln 𝑡𝑙

𝑗

− [𝑘2
𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘2

𝑗
]}

= {ln (𝑡𝑗 (𝑥)) − [𝑘1
𝑗
[𝑡𝑗 (𝑥) − 𝑡𝑙

𝑗
] + ln 𝑡𝑙

𝑗
]}

+ {[𝑘2
𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘2

𝑗
] − ln (𝑠𝑗 (𝑥))}

= Δ1
𝑗1.1

+ Δ1
𝑗1.2

.

(29)

Since Δ1
𝑗1.1

= ln(𝑡𝑗(𝑥)) − [𝑘1
𝑗
[𝑡𝑗(𝑥) − 𝑡𝑙

𝑗
] + ln 𝑡𝑙

𝑗
] is a

concave function about 𝑡𝑗(𝑥), we know that Δ1
𝑗1.1

can attain
themaximumΔ1.max

𝑗1.1
at the point 𝑡𝑗(𝑥) = 1/𝑘1

𝑗
. Let 𝑢𝑗 = 𝑡𝑢

𝑗
/𝑡𝑙
𝑗
;

then through computing, we can derive

Δ
1.max
𝑗1.1

=
ln 𝑢𝑗

𝑢𝑗 − 1
− 1 − ln

ln 𝑢𝑗

𝑢𝑗 − 1
. (30)

Since 𝑢𝑗 → 1 as ‖ 𝑥 − 𝑥 ‖→ 0, then we have Δ1.max
𝑗1.1

→ 0 as
‖ 𝑥 − 𝑥 ‖→ 0.

Since Δ1
𝑗1.2

= [𝑘2
𝑗
𝑠𝑗(𝑥) − 1 − ln 𝑘2

𝑗
] − ln(𝑠𝑗(𝑥)) is a convex

function about 𝑠𝑗(𝑥), it can attain the maximum Δ1.max
𝑗1.2

at the
points 𝑠𝑢

𝑗
or 𝑠𝑙
𝑗
. Let V𝑗 = 𝑠𝑢

𝑗
/𝑠𝑙
𝑗
; then through computing, we

can derive

Δ
1.max
𝑗1.2

=
ln V𝑗
V𝑗 − 1

− 1 − ln
ln V𝑗
V𝑗 − 1

. (31)
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Since V𝑗 → 1 as ‖𝑥 − 𝑥‖ → 0, then we have Δ1.max
𝑗1.2

→ 0 as
‖𝑥 − 𝑥‖ → 0.

Therefore, we have


𝑓𝑗 (𝑥) − ℎ𝑗 (𝑥)


=

Δ
1

𝑗1.1
+ Δ
1

𝑗1.2


≤

Δ
1

𝑗1.1


+

Δ
1

𝑗1.2


.

(32)

By the above proof, we have


𝑓𝑗 (𝑥) − ℎ𝑗 (𝑥)


→ 0, as 𝑥 − 𝑥

 → 0. (33)

Since exp(𝜉𝑗) is a continuous and bounded function about
variable 𝑥 and by the above (27) and (33), we have

Δ
1

𝑗1
→ 0, as 𝑥 − 𝑥

 → 0. (34)

Next, we consider the difference Δ1
𝑗2
, and it follows that

Δ
1

𝑗2
= 𝐻
𝑙

𝑗
(𝑥) − 𝐿𝑗 (𝑥)

= exp {𝑘
1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln (𝑡

𝑙

𝑗
) − [𝑘

2

𝑗
𝑠𝑗 (𝑥) − 1 − ln 𝑘

2

𝑗
]}

− 𝐴
1

𝑗
{1 + 𝑘

1

𝑗
[𝑡𝑗 (𝑥) − 𝑡

𝑙

𝑗
] + ln (𝑡

𝑙

𝑗
)

− [𝑘
2

𝑗
(𝑠𝑗 (𝑥)) − 1 − ln 𝑘

2

𝑗
] − ln𝐴

1

𝑗
}

= exp (𝑍𝑗) − 𝐴
1

𝑗
{1 + 𝑍𝑗 − ln𝐴

1

𝑗
} .

(35)

SinceΔ1
𝑗2
is a convex function about𝑍𝑗, for any𝑍𝑗 ∈ [𝑍

𝑙

𝑗
, 𝑍
𝑢

𝑗
]

defined in the former, then it follows that Δ1
𝑗2
can obtain the

maximum Δ1.max
𝑗2

at the points 𝑍𝑙
𝑗
or 𝑍𝑢
𝑗
. Let

𝑅𝑗 =
exp (𝑍𝑢

𝑗
− 𝑍𝑙
𝑗
) − 1

𝑍𝑢
𝑗
− 𝑍𝑙
𝑗

. (36)

Then, through computing, we can follow that

Δ
1.max
𝑗2

= Δ
1

𝑗2
(𝑍
𝑙

𝑗
)

= Δ
1

𝑗2
(𝑍
𝑢

𝑗
)

= exp (𝑍
𝑙

𝑗
) (1 − 𝑅𝑗 + 𝑅𝑗 ln𝑅𝑗) .

(37)

Since 𝑅𝑗 → 1 as |𝑍𝑢
𝑗
− 𝑍𝑙
𝑗
| → 0 and |𝑍𝑢

𝑗
− 𝑍𝑙
𝑗
| → 0 as

‖𝑥 − 𝑥‖ → 0, it is obvious that Δ1.max
𝑗2

→ 0 as ‖𝑥 − 𝑥‖ → 0.
Therefore, we have Δ1

𝑗2
→ 0 as ‖𝑥 − 𝑥‖ → 0.

Secondly, we will prove that Δ2
𝑗

→ 0 as ‖𝑥 − 𝑥‖ → 0.
Since

Δ
2

𝑗
= [𝑈𝑗 (𝑥) − 𝐻

𝑢

𝑗
(𝑥)] + [𝐻

𝑢

𝑗
(𝑥) − 𝐻𝑗 (𝑥)] = Δ

2

𝑗1
+ Δ
2

𝑗2
,

(38)

then we only need to prove that Δ2
𝑗1

→ 0 and Δ2
𝑗2

→ 0 as
‖ 𝑥 − 𝑥 ‖→ 0. Thus,

Δ
2

𝑗1
= 𝑈𝑗 (𝑥) − 𝐻

𝑢

𝑗
(𝑥)

= 𝐴
2

𝑗
{𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
− 𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
− 𝑌
𝑙

𝑗
}

+ exp (𝑌
𝑙

𝑗
) − exp {𝑘

1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗

−𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
}

= 𝐴
2

𝑗
(𝑌𝑗 − 𝑌

𝑙

𝑗
) + exp (𝑌

𝑙

𝑗
) − exp (𝑌𝑗) .

(39)

SinceΔ2
𝑗1
is a concave function about𝑌𝑗, for any𝑌𝑗 ∈ [𝑌𝑙

𝑗
, 𝑌𝑢
𝑗
]

defined in the former, then it follows that Δ2
𝑗1
can obtain the

maximum Δ2.max
𝑗1

at the points ln(𝐴2
𝑗
). Let

𝑊𝑗 =
exp (𝑌𝑢

𝑗
− 𝑌𝑙
𝑗
) − 1

𝑌𝑢
𝑗
− 𝑌𝑙
𝑗

. (40)

Then, through computing, we can get

Δ
2.max
𝑗1

= exp (𝑌
𝑙

𝑗
) (1 − 𝑊𝑗 + 𝑊𝑗 ln𝑊𝑗) . (41)

Since 𝑊𝑗 → 1 as |𝑌𝑢
𝑗
− 𝑌𝑙
𝑗
| → 0 and |𝑌𝑢

𝑗
− 𝑌𝑙
𝑗
| → 0 as

‖𝑥 − 𝑥‖ → 0, it is obvious that Δ2.max
𝑗1

→ 0 as ‖𝑥 − 𝑥‖ → 0.
Therefore, we have Δ2

𝑗1
→ 0 as ‖𝑥 − 𝑥‖ → 0.

Thus,

Δ
2

𝑗2
= 𝐻
𝑢

𝑗
(𝑥) − 𝐻𝑗 (𝑥)

= exp {𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
− 𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
}

− exp {ln (𝑡𝑗 (𝑥)) − ln (𝑠𝑗 (𝑥))}

= exp (𝑔𝑗 (𝑥)) − exp (𝑓𝑗 (𝑥))

≤

𝑔𝑗 (𝑥) − 𝑓𝑗 (𝑥)


sup

𝜂𝑗∈𝐿(𝑔𝑗(𝑥),𝑓𝑗(𝑥))

exp (𝜂𝑗) ,

(42)

where

𝐿 (𝑔𝑗 (𝑥) , 𝑓𝑗 (𝑥)) = 𝛽𝑔𝑗 (𝑥) + (1 − 𝛽) 𝑓𝑗 (𝑥)

with 𝛽 ∈ [0, 1] .

(43)

Let

𝑔𝑗 (𝑥) − 𝑓𝑗 (𝑥) = {𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗

−𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] − ln 𝑠

𝑙

𝑗
}

− {ln (𝑡𝑗 (𝑥)) − ln (𝑠𝑗 (𝑥))}
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= {[𝑘
1

𝑗
𝑡𝑗 (𝑥) − 1 − ln 𝑘

1

𝑗
] − ln (𝑡𝑗 (𝑥))}

+ {ln (𝑠𝑗 (𝑥)) − [𝑘
2

𝑗
[𝑠𝑗 (𝑥) − 𝑠

𝑙

𝑗
] + ln 𝑠

𝑙

𝑗
]}

= Δ
2

𝑗2.1
+ Δ
2

𝑗2.2
.

(44)

Since Δ2
𝑗2.1

= [𝑘1
𝑗
𝑡𝑗(𝑥) − 1 − ln 𝑘1

𝑗
] − ln(𝑡𝑗(𝑥)) is a convex

function about 𝑡𝑗(𝑥), it can attain the maximum Δ2.max
𝑗2.1

at the
points 𝑡𝑢

𝑗
or 𝑡𝑙
𝑗
. Then, through computing, we derive

Δ
2.max
𝑗1.1

=
ln 𝑢𝑗

𝑢𝑗 − 1
− 1 − ln

ln 𝑢𝑗

𝑢𝑗 − 1
. (45)

Since 𝑢𝑗 → 1 as ‖𝑥 − 𝑥‖ → 0, then we have Δ2.max
𝑗2.1

→ 0 as
‖𝑥 − 𝑥‖ → 0.

SinceΔ2
𝑗2.2

= ln(𝑠𝑗(𝑥))−[𝑘2
𝑗
[𝑠𝑗(𝑥)−𝑠𝑙

𝑗
]+ ln 𝑠𝑙

𝑗
] is a concave

function about 𝑠𝑗(𝑥), we can get the fact that Δ2
𝑗2.2

can attain
themaximumΔ2.max

𝑗2.2
at the point 𝑠𝑗(𝑥) = 1/𝑘2

𝑗
.Then, through

computing, we derive

Δ
2.max
𝑗2.2

=
ln V𝑗
V𝑗 − 1

− 1 − ln
ln V𝑗
V𝑗 − 1

. (46)

Since V𝑗 → 1 as ‖ 𝑥 − 𝑥 ‖→ 0, then we have Δ2.max
𝑗2.2

→ 0 as
‖ 𝑥 − 𝑥 ‖→ 0.

Therefore, we have

𝑔𝑗 (𝑥) − 𝑓𝑗 (𝑥)


=

Δ
2

𝑗2.1
+ Δ
2

𝑗2.2


≤

Δ
2

𝑗2.1


+

Δ
2

𝑗2.2


.

(47)

By the above proof, we have

𝑔𝑗 (𝑥) − 𝑓𝑗 (𝑥)


→ 0, as 𝑥 − 𝑥

 → 0. (48)

Since exp(𝜂𝑗) is a continuous and bounded function
about variable 𝑥 and by (42) and (48), we have

Δ
2

𝑗2
→ 0, as 𝑥 − 𝑥

 → 0. (49)

By the above proof, we can follow that

Δ
2

𝑗
= [𝑈𝑗 (𝑥) − 𝐻

𝑢

𝑗
(𝑥)] + [𝐻

𝑢

𝑗
(𝑥) − 𝐻𝑗 (𝑥)]

= Δ
2

𝑗1
+ Δ
2

𝑗2
, → 0 as 𝑥 − 𝑥

 → 0.

(50)

Therefore,

Δ = 𝐻 (𝑥) − 𝐻
𝐿
(𝑥)

=

𝑝

∑
𝑗=1,𝛿𝑗>0

𝛿𝑗Δ
1

𝑗
−

𝑝

∑
𝑗=1,𝛿𝑗<0

𝛿𝑗Δ
2

𝑗
→ 0 as 𝑥 − 𝑥

 → 0.

(51)

By the above discussion, it is obvious that the conclusion
is followed.

3. Algorithm and Its Convergence

In this section, based on the former new linearizing method,
we present an effective branch and bound algorithm for
globally solving the sum of linear ratios problem with
coefficients (SLRC).The critical construction in ensuring that
the proposed branch and bound algorithm is convergent to
the global optimum of the problem (SLRC) is the selection of
a reasonable branching rule. In this paper, we use a standard
branching rule which is called bisection.The selected branch-
ing rule is described as follows.

Assume that the hyperrectangle 𝑋
𝑘 = [𝑥𝑘, 𝑥

𝑘
] ⊆ 𝑋0 is

a node subproblem identified, select 𝜌 ∈ argmax {𝑥𝑘
𝑖
− 𝑥𝑘
𝑖
:

𝑖 = 1, . . . , 𝑛}, and subdivide 𝑋𝑘 by partitioning the maxi-
mum edge of the interval [𝑥𝑘

𝜌
, 𝑥
𝑘

𝜌
] into the two subintervals

[𝑥𝑘
𝜌
, (𝑥𝑘
𝜌
+ 𝑥
𝑘

𝜌
)/2] and [(𝑥𝑘

𝜌
+ 𝑥
𝑘

𝜌
)/2, 𝑥
𝑘

𝜌
].

Assume that 𝐿𝐵(𝑋𝑘) is the optimal value of the LRP(𝑋𝑘)
and 𝑥𝑘 = 𝑥(𝑋𝑘) is the corresponding optimal solution of the
LRP(𝑋𝑘). The steps of the proposed algorithm are as follows.

Step 1. Set the initial convergence tolerance 𝜀 > 0, the initial
number of iteration 𝑘 := 0, and the set of initial active node
Ξ0 = 𝑋0. Let the initial upper bound 𝑈𝐵0 = +∞ and the
initial feasible point set Θ := 0.

Calculate 𝐿𝐵0 := 𝐿𝐵(𝑋0) and 𝑥0 = 𝑥(𝑋0) by solving the
LRP over 𝑋0; if 𝑥0 is feasible to the problem (SLRC), update
the feasible point setΘ and the upper bound𝑈𝐵0, if necessary.
If 𝑈𝐵0 − 𝐿𝐵0 ≤ 𝜀, then the algorithm stops with 𝑥0 being
the global optimal solution of the problem (SLRC); otherwise,
continue the following Step 2.

Step 2. Subdivide hyperrectangle 𝑋
𝑘 into two new sub-

hyper-rectangles by utilizing the proposed branching rule
and denote the set of new partitioned subrectangles as𝑋𝑘.

Step 3. For every 𝑋 ∈ 𝑋
𝑘, calculate 𝐿𝐵(𝑋) and 𝑥(𝑋) by

solving the LRP over 𝑋. If 𝐿𝐵(𝑋) > 𝑈𝐵𝑘, then let 𝑋𝑘 :=

𝑋
𝑘
\𝑋; if 𝑥(𝑋) is feasible to the problem (SLRC), then update

feasible point set Θ, the upper bound 𝑈𝐵𝑘, and the best
known feasible point 𝑥𝑘, if necessary, and let Ξ𝑘 = (Ξ𝑘 \ 𝑋) ∪

𝑋
𝑘 and update the lower bound 𝐿𝐵𝑘 = inf𝑋∈Ξ𝑘𝐿𝐵(𝑋).

Step 4. Let Ξ𝑘+1 = Ξ𝑘 \ {𝑋 : 𝑈𝐵𝑘 − 𝐿𝐵(𝑋) ≤ 𝜀,𝑋 ∈

Ξ𝑘}. If Ξ𝑘+1 = 0, then the algorithm stops with 𝑈𝐵𝑘 being
the global 𝜖-optimal value for the problem (SLRC) and 𝑥𝑘

being a global optimization solution for the problem (SLRC).
Otherwise, let 𝑘 := 𝑘 + 1, select subrectangle 𝑋𝑘 satisfying
𝑋𝑘 = argmin𝑋∈Ξ𝑘𝐿𝐵(𝑋), and return to Step 2.

Theorem 2. The above proposed algorithm either stops finitely
with the global optimal solution for the problem (SLRC) or
generates an infinite sequence of iterations {𝑥𝑘}, the limitation
point of which will be the global optimal solution for the
problem (SLRC).
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Proof. If the proposed algorithm stops finitely at iteration 𝑘,
then, when the algorithm stops, we obtain 𝑈𝐵𝑘 = V∗ = 𝐿𝐵𝑘,
where V∗ is the global optimal value of the problem (SLRC).
Thus, by the structure of the proposed algorithm, we know
that 𝑥𝑘 must be a global optimal solution for the problem
(SLRC).

If the proposed algorithm generates an infinite sequence
of partitioned subrectangles {𝑋𝑘}, then, by exhaustiveness of
the branching method, we know that the sequence {𝑋𝑘}must
shrink to a singleton. By the design of the proposed algorithm
we can follow that the sequence {𝑈𝐵𝑘} is nonincreasing,
and the sequence {𝐿𝐵𝑘} is nondecreasing; thus, the sequence
{𝑈𝐵𝑘 − 𝐿𝐵𝑘} is nonincreasing. In conclusion, we can get the
fact that the bounding operation is consistent and that the
selection operation is bound improving; thus, by Theorem
IV.3. in [11], we can follow easily that the sequence {𝑈𝐵𝑘−𝐿𝐵𝑘}

must converge to zero. Since 𝐿𝐵𝑘 ≤ V∗ ≤ 𝑈𝐵𝑘, this shows
that lim𝑘→∞𝑈𝐵𝑘 = V∗. Since𝑈𝐵𝑘 = 𝐻(𝑥𝑘), any cluster point
𝑥∗ of the sequence {𝑥𝑘} is a feasible point for the problem
(SLRC) with the objective function value 𝐻(𝑥∗). Therefore,
the conclusion is followed.

4. Numerical Examples

To verify the reliability and effectiveness of the proposed new
linearizingmethod, several test examples that appeared in the
recent literatures are implemented on an Intel(R) Core(TM)2
Duo CPU (1.58GHZ) microcomputer. The proposed algo-
rithm using the new linearizing method is coded in C++
and every linear relaxation programming problem is solved
by simplex method. These test examples and their numerical
results are described as follows.

Example 1 (see [9]). We have the following:

min 37𝑥1 + 73𝑥2 + 13

13𝑥1 + 13𝑥2 + 13
+

63𝑥1 − 18𝑥2 + 39

13𝑥1 + 26𝑥2 + 13

s.t. 5𝑥1 − 3𝑥2 = 3,

1.5 ≤ 𝑥1 ≤ 3.

(52)

With 𝜖 = 10−4, using the method proposed
in this paper, the optimal solution is (𝑥1, 𝑥2) =

(1.500000000, 1.500000000), the global 𝜖-optimal value
is 4.912587413, the number of algorithm iterations is 29, the
maximal number of algorithm active nodes necessary is 9,
and the computational time is 0.12715 seconds.

Using the method in [9], with 𝜖 = 10
−4, the optimal

solution is (𝑥1, 𝑥2) = (1.5000, 1.5000), the global 𝜖-optimal
value is 4.9125, the number of algorithm iterations is 113, and
the computational time is 201.626020 seconds.

Example 2 (see [6]). We have the following:

max 37𝑥1 + 73𝑥2 + 13

13𝑥1 + 13𝑥2 + 13
+

63𝑥1 − 18𝑥2 + 39

13𝑥1 + 26𝑥2 + 13

s.t. 5𝑥1 − 3𝑥2 = 3,

1.5 ≤ 𝑥1 ≤ 3.

(53)

With 𝜖 = 10
−4, using the method proposed

in this paper, the optimal solution is (𝑥1, 𝑥2) =

(3.000000000, 4.000000000), the global 𝜖-optimal value
is 5.000000000, the number of algorithm iterations is 59, the
maximal number of algorithm active nodes necessary is 19,
and the computational time is 0.25843 seconds.

But, using the method in [6], with 𝜖 = 10
−4, the optimal

solution is (𝑥1, 𝑥2) = (3, 4), the global 𝜖-optimal value is 5, the
number of algorithm iterations is 32, the maximal number of
algorithmactive nodes necessary is 32, and the computational
time is 1.089285 seconds.

Example 3 (see [10]). We have the following:

max
3𝑥1 + 5𝑥2 + 3𝑥3 + 50

3𝑥1 + 4𝑥2 + 5𝑥3 + 50
+

3𝑥1 + 5𝑥2 + 50

3𝑥1 + 5𝑥2 + 3𝑥3 + 50

+
4𝑥1 + 2𝑥2 + 4𝑥3 + 50

5𝑥1 + 4𝑥2 + 3𝑥3 + 50

s.t. 6𝑥1 + 3𝑥2 + 3𝑥3 ≤ 10,

10𝑥1 + 3𝑥2 + 8𝑥3 ≤ 10,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

(54)

With 𝜖 = 10−5, using the proposed method
in this paper, the optimal solution is (𝑥1, 𝑥2, 𝑥3) =

(0.000000000, 0.000000000, 0.000000000), the global 𝜖-
optimal value is 3.000000000, the number of algorithm
iterations is 37, the maximal number of algorithm active
nodes necessary is 10, and the computational time is 0.109402
seconds.

Using the method in [10], with 𝜖 = 10
−5, the optimal

solution is (𝑥1, 𝑥2, 𝑥3) = (0.0013, 1.6725, 0.0000), the global
𝜖-optimal value is 3.0009, the number of algorithm iterations
is 1033, the maximal number of algorithm active nodes
necessary is 200, and the computational time is 99.3570
seconds.

Example 4 (see [10]). We have the following:

max
4𝑥1 + 3𝑥2 + 3𝑥3 + 50

3𝑥2 + 3𝑥3 + 50
+

3𝑥1 + 4𝑥2 + 50

4𝑥1 + 4𝑥2 + 5𝑥3 + 50

+
𝑥1 + 2𝑥2 + 5𝑥3 + 50

𝑥1 + 5𝑥2 + 5𝑥3 + 50

+
𝑥1 + 2𝑥2 + 4𝑥3 + 50

5𝑥2 + 4𝑥3 + 50

s.t. 2𝑥1 + 𝑥2 + 5𝑥3 ≤ 10,

𝑥1 + 6𝑥2 + 3𝑥3 ≤ 10,

5𝑥1 + 9𝑥2 + 2𝑥3 ≤ 10,

9𝑥1 + 7𝑥2 + 3𝑥3 ≤ 10,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

(55)

With 𝜖 = 10−5, using the proposed method
in this paper, the optimal solution is (𝑥1, 𝑥2, 𝑥3) =

(1.111111111, 0.000000000, 0.000000000), the global 𝜖-
optimal value is 4.090702948, the number of algorithm
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iterations is 21, the maximal number of algorithm active
nodes necessary is 3, and the computational time is 0.0831093
seconds.

Using the method in [10], with 𝜖 = 10
−5, the optimal

solution is (𝑥1, 𝑥2, 𝑥3) = (0.0013, 0.0000, 0.0000), the global
𝜖-optimal value is 4.0001, the number of algorithm iterations
is 1640, the maximal number of algorithm active nodes
necessary is 233, and the computational time is 120.6355
seconds.

By substituting verification, we know that the global
optimal solutions of Examples 3 and 4 obtained using our
algorithm are feasible and correct and the global optimal
values of Examples 3 and 4 obtained using our algorithm
are correct. From the above comparison, we know that the
optimal solutions and optimal values for Examples 3 and 4
using ourmethod are much better than those in the literature
[10]; that is, using our algorithm, we can obtain the more
accurate global optimal solution.

From numerical results for Examples 1–4, the proposed
new linearizing method can be used to globally solve the
problem (SLRC) with the higher computational efficiency.

5. Some Extensions

The new linearizing method used for solving the problem
(SLRC) can be extended to seek a global optimal solution
of the sum of linear ratios problem with coefficients whose
domain is not linear. Some extensions are given as follows.

When domain 𝐷 is convex set, by solving 2𝑛 simple
convex programming problems, we obtain easily the initial
rectangle 𝑋

0. For any 𝑋 ∈ 𝑋0, utilize the presented lineariz-
ing method to construct linear underestimating function of
the sum of linear fractional function, so that we can establish
a convex relaxation programming problem of the problem
(SLRC) over 𝑋. Use the algorithm proposed in Section 3,
at each iteration, and solve convex relaxation programming
subproblems rather than linear relaxation programming
subproblems; we can globally solve the problem (SLRC) over
convex set.

When constraint functions of the problem (SLRC) are
also sum of linear fractional functions with coefficients,
whose mathematical modeling can be reformulated as fol-
lows:

(SLRC1) :

{{{{{{{{{{

{{{{{{{{{{

{

min 𝐻0 (𝑥) =

𝑇0

∑
𝑞=1

𝛿0𝑞
𝑡0𝑞 (𝑥)

𝑠0𝑞 (𝑥)

s.t. 𝐻𝜎 (𝑥) =

𝑇𝜎

∑
𝑞=1

𝛿𝜎𝑞
𝑡𝜎𝑞 (𝑥)

𝑠𝜎𝑞 (𝑥)
≤ 𝐵𝜎,

𝜎 = 1, 2, . . . ,𝑀,

𝑥 ∈ 𝐷 = {𝑥 ∈ 𝑅𝑛 | 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} ,

(56)

where 𝑡𝜎𝑞(𝑥) and 𝑠𝜎𝑞(𝑥) are all linear affine functions, 𝛿𝜎𝑞 are
all arbitrary real coefficients, 𝜎 = 1, 2, . . . ,𝑀, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈

𝑅𝑚, 𝐵 ∈ 𝑅𝑀, and𝐷 is a nonempty compact set.
Using the linearizing method proposed in Section 2 to

construct the linear underestimating function𝐻𝐿
𝜎
(𝑥) of each

function 𝐻𝜎(𝑥), 𝜎 = 1, 2, . . . ,𝑀, we can establish the linear
relaxation programming (LRP1) of the problem (SLRC1) over
𝑋 as follows:

(LRP1) :
{{{{

{{{{

{

min 𝐻
𝐿

0
(𝑥)

s.t. 𝐻𝐿
𝜎
(𝑥) ≤ 𝐵𝜎, 𝜎 = 1, 2, . . . ,𝑀,

𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0,

𝑥 ∈ 𝑋 ⊆ 𝑋0.

(57)

Using the same algorithm step in Section 3, at each
iteration, and solving linear relaxation programming sub-
problem (LRP1), we can globally solve the sum of linear ratios
problem (SLRC1) with sum of linear ratios constraints. To
verify the feasibility of the proposed new linearizing method,
two test examples are implemented on a microcomputer; test
examples and their computational results are given as follows.

Example 5. We have the following:

min 1.6 ×
∑
𝑁

𝑖=1
𝑥𝑖 + 1

∑
𝑁

𝑖=1
𝑥𝑖 + 2

+ 2.3 ×
∑
𝑁

𝑖=1
𝑥𝑖 + 2

∑
𝑁

𝑖=1
𝑥𝑖 + 3

− 3.1

×
∑
𝑁

𝑖=1
𝑥𝑖 + 5

∑
𝑁

𝑖=1
𝑥𝑖 + 4

− 4.2 ×
∑
𝑁

𝑖=1
𝑥𝑖 + 6

∑
𝑁

𝑖=1
𝑥𝑖 + 5

s.t.
5

∑
𝑗=2

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗 + 1

≤ 3.61,

6

∑
𝑗=3

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗 + 1

≤ 3.76,

7

∑
𝑗=4

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗 + 1

≤ 3.83,

8

∑
𝑗=5

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗

∑
𝑁

𝑖=1
𝑥𝑖 + 𝑗 + 1

≤ 3.86,

1.0 ≤ 𝑥𝑖 ≤ 3.0, 𝑖 = 1, 2, . . . , 𝑁,

(58)

where𝑁 = 4.

With 𝜖 = 10−8, using the proposed method in this
paper, the global optimal solution is (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

(1.000000000, 1.000000000, 1.000000000, 1.000000000), the
global 𝜖-optimal value is −4.849404762, the number of algo-
rithm iterations is 181, and the maximal number of algorithm
active nodes necessary is 64.

Example 6. We have the following:

min
2𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 + 1

𝑥1 + 2𝑥2 − 𝑥3 + 𝑥4 + 2

+
𝑥1 + 2𝑥2 − 𝑥3 + 𝑥4 + 2

2𝑥1 + 2𝑥2 + 𝑥3 + 𝑥4 + 3
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−
𝑥1 + 𝑥2 + 3𝑥3 + 𝑥4 + 5

𝑥1 + 2𝑥2 + 3𝑥3 + 𝑥4 + 4

−
1.5𝑥1 − 𝑥2 + 1.5𝑥3 + 𝑥4 + 6

1.4𝑥1 − 𝑥2 + 2.5𝑥3 + 1.6𝑥4 + 5

s.t.
2𝑥1 − 𝑥2 + 3𝑥3 + 𝑥4 + 2

𝑥1 + 3𝑥2 + 𝑥3 + 3𝑥4 + 3

+
2𝑥1 + 𝑥2 + 4𝑥3 + 𝑥4 + 3

𝑥1 + 4𝑥2 − 𝑥3 + 5𝑥4 + 4

−
𝑥1 + 2𝑥2 + 𝑥3 + 3𝑥4 + 4

1.5𝑥1 + 𝑥2 + 3.5𝑥3 + 𝑥4 + 5

+
𝑥1 + 2𝑥2 + 𝑥3 + 𝑥4 + 5

2𝑥1 − 𝑥2 + 1.3𝑥3 + 𝑥4 + 6
≤ 1.55,

𝑥1 + 2𝑥2 + 2𝑥3 − 𝑥4 + 3

2𝑥1 − 𝑥2 + 2𝑥3 + 𝑥4 + 4

+
3𝑥1 + 𝑥2 + 4𝑥3 + 𝑥4 + 4

𝑥1 + 4𝑥2 − 𝑥3 + 5𝑥4 + 5

+
1.4𝑥1 − 𝑥2 + 1.5𝑥3 + 𝑥4 + 5

1.5𝑥1 + 𝑥2 + 1.7𝑥3 + 2𝑥4 + 6

−
2𝑥1 − 𝑥2 + 2𝑥3 + 2𝑥4 + 7

𝑥1 + 3𝑥2 + 4𝑥3 + 3𝑥4 + 6
≤ 3.15,

2𝑥1 − 𝑥2 + 2𝑥3 + 2𝑥4 + 4

3𝑥1 + 2𝑥2 + 𝑥3 + 4𝑥4 + 5

−
𝑥1 − 𝑥2 + 2𝑥3 + 3𝑥4 + 5

𝑥1 + 𝑥2 + 3𝑥3 + 4𝑥4 + 6

+
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 6

2𝑥1 + 2𝑥2 + 4𝑥3 + 3𝑥4 + 7

+
𝑥1 + 𝑥2 + 2𝑥3 + 𝑥4 + 7.6

𝑥1 + 2𝑥2 + 𝑥3 + 𝑥4 + 8.5
≤ 3.85,

𝑥1 − 3𝑥2 + 𝑥3 + 2𝑥4 + 5

𝑥1 − 2𝑥2 + 2𝑥3 + 3𝑥4 + 6

+
2.1𝑥1 − 𝑥2 + 𝑥3 + 𝑥4 + 6

𝑥1 + 2𝑥2 + 2𝑥3 + 𝑥4 + 7

+
𝑥1 + 2𝑥2 + 2𝑥3 + 3𝑥4 + 7

𝑥1 + 2𝑥2 + 3𝑥3 + 3𝑥4 + 8

+
1.5𝑥1 − 𝑥2 + 𝑥3 + 𝑥4 + 8

1.6𝑥1 + 𝑥2 − 𝑥3 + 2𝑥4 + 9
≤ 3.88,

1.0 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 3.0.

(59)

With 𝜖 = 10−8, using the proposed method in this
paper, the global optimal solution is (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

(1.000000000, 1.000000000, 3.000000000, 1.000000000), the
global 𝜖-optimal value is −0.888192268, the number of algo-
rithm iterations is 98, and the maximal number of algorithm
active nodes necessary is 18.

From numerical results for Examples 5–6, the proposed
new linearizing method can be extended to globally solve the
problem (SLRC) with the weighted sum of linear fractional
functions constraints.

It should also be noted that our approach could be
extended to solve more general generalized linear fractional
programming problems; this will constitute a subject for
future research.

6. Concluding Remarks

In this paper, by utilizing the linear approximation of expo-
nential and logarithmic functions, a new linearizing method
is presented. Combining the linearizing method within the
branch and bound scheme, a branch and bound algorithm
is constructed for solving the problem (SLRC). By subse-
quently partitioning linear relaxation of the feasible region
and solving a series of linear programming problems, the
proposed algorithm is convergent to a global optimal solution
of the problem (SLRC). Compared with the knownmethods,
numerical experimental results show that the proposed new
linearizing method can be used to globally solve the problem
(SLRC) with the higher computational efficiency.
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