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Firstly, we show a connection between the first Lucas sequence and the determinants of some tridiagonal matrices. Secondly,
we derive the complex factorizations of the first Lucas sequence by computing those determinants with the help of Chebyshev
polynomials of the second kind. Furthermore, we also obtain the complex factorizations of the second Lucas sequence by the
similar matrix method using Chebyshev polynomials of the first kind.

1. Introduction

Given two nonzero integers 𝑃 and 𝑄 satisfying 𝑃2 − 4𝑄 ̸= 0.
The first Lucas sequence {𝑈

𝑛
(𝑃, 𝑄)}

𝑛≥0
and the second Lucas

sequence {𝑉
𝑛
(𝑃, 𝑄)}

𝑛≥0
are defined by the recurrence relations

𝑈
0
(𝑃, 𝑄) = 0,

𝑈
1
(𝑃, 𝑄) = 1,

𝑈
𝑛
(𝑃, 𝑄) = 𝑃𝑈

𝑛−1
(𝑃, 𝑄) − 𝑄𝑈

𝑛−2
(𝑃, 𝑄) , 𝑛 ≥ 2,

(1)

𝑉
0
(𝑃, 𝑄) = 2,

𝑉
1
(𝑃, 𝑄) = 𝑃,

𝑉
𝑛
(𝑃, 𝑄) = 𝑃𝑉

𝑛−1
(𝑃, 𝑄) − 𝑄𝑉

𝑛−2
(𝑃, 𝑄) , 𝑛 ≥ 2,

(2)

respectively.
By assigning 𝑃 and 𝑄 some special values, we will

see some well-known Lucas sequences, which are impor-
tant historically and for their own sake. The numbers
{𝑈
𝑛
(1, −1)}

𝑛≥0
are called the Fibonacci numbers while the

numbers {𝑉
𝑛
(1, −1)}

𝑛≥0
are called the Lucas numbers, the

numbers {𝑈
𝑛
(2, −1)}

𝑛≥0
and {𝑉

𝑛
(2, −1)}

𝑛≥0
are the Pell

numbers and the Pell-Lucas numbers, {𝑈
𝑛
(1, −2)}

𝑛≥0
and

{𝑉
𝑛
(1, −2)}

𝑛≥0
are Jacobsthal numbers and Jacobsthal-Lucas

numbers, respectively, {𝑈
𝑛
(3, 2)}

𝑛≥0
are Mersenne numbers,

and so on.

There is a long tradition of usingmatrix methods to study
Lucas sequences [2–5]. In 2003, Cahill et al. obtained complex
factorizations for Fibonacci numbers and Lucas numbers by
using the determinants of two slightly different sequences
of tridiagonal matrices [2]. They used the 𝑛 × 𝑛 tridiagonal
matrix 𝑀(𝑛) with entries 𝑚

𝑘,𝑘
= 1 (1 ≤ 𝑘 ≤ 𝑛), and

𝑚
𝑘−1,𝑘

= 𝑚
𝑘,𝑘−1

= i (2 ≤ 𝑘 ≤ 𝑛) to prove that

𝐹
𝑛
=

𝑛−1

∏

𝑘=1

(1 − 2i cos𝜋𝑘
𝑛
) , 𝑛 ≥ 2, (3)

where 𝐹
𝑛
is the 𝑛th Fibonacci number and i = √−1, and also

used the 𝑛 × 𝑛 tridiagonal matrix 𝑆(𝑛) with entries 𝑠
1,1
= 1/2,

𝑠
𝑘,𝑘
= 1 (2 ≤ 𝑘 ≤ 𝑛) and 𝑠

𝑘−1,𝑘
= 𝑠
𝑘,𝑘−1

= i (2 ≤ 𝑘 ≤ 𝑛) to
prove that

𝐿
𝑛
=

𝑛

∏

𝑘=1

(1 − 2i cos𝜋 (𝑘 − (1/2))
𝑛

) , 𝑛 ≥ 1, (4)

where 𝐿
𝑛
is the 𝑛th Lucas number and i = √−1. In 2011,

Burcu Bozkurt et al. obtained the complex factorization of the
second Lucas sequence {𝑉

𝑛
(𝑃, −1)}

𝑛≥0
[4]:

𝑉
𝑛
=

𝑛

∏

𝑘=1

(𝑃 − 2i cos𝜋 (𝑘 − (1/2))
𝑛

) , 𝑛 ≥ 1, (5)

by using the 𝑛 × 𝑛 tridiagonal matrix𝐷(𝑛) with entries 𝑑
1,1
=

𝑃/2, 𝑑
𝑘,𝑘
= 𝑃 (2 ≤ 𝑘 ≤ 𝑛), and 𝑑

𝑘−1,𝑘
= 𝑑
𝑘,𝑘−1

= i (2 ≤ 𝑘 ≤ 𝑛),
where i = √−1.
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In this study, number theory and linear algebra (with the
help of orthogonal polynomials) are similarly intertwined to
yield the complex factorizations of the first and second Lucas
sequences.

Now we give the following lemma which will be needed
later.

Lemma 1 ([2]). Let {𝐻(𝑛), 𝑛 = 1, 2, . . .} be a sequence of tridi-
agonal matrices of the form

𝐻(𝑛) =

(
(
(
(
(
(
(

(

ℎ
1,1

ℎ
1,2

ℎ
2,1

ℎ
2,2

ℎ
2,3

ℎ
3,2

ℎ
3,3

d

d d ℎ
𝑛−1,𝑛

ℎ
𝑛,𝑛−1

ℎ
𝑛,𝑛

)
)
)
)
)
)
)

)

. (6)

Then the successive determinants of 𝐻(𝑛) are given by the
recursive formula:

|𝐻 (1)| = ℎ1,1, |𝐻 (2)| = ℎ1,1ℎ2,2 − ℎ1,2ℎ2,1,

|𝐻 (𝑛)| = ℎ𝑛,𝑛 |𝐻 (𝑛 − 1)|

− ℎ
𝑛−1,𝑛

ℎ
𝑛,𝑛−1 |𝐻 (𝑛 − 2)| , 𝑛 ≥ 3.

(7)

2. Complex Factorizations of
the First Lucas Sequence

First of all, we introduce the tridiagonal matrix sequence
{𝐴(𝑛), 𝑛 = 1, 2, . . .} and express the first Lucas sequence
𝑈
𝑛
(𝑃, 𝑄) by the determinant of 𝐴(𝑛 − 1) for 𝑛 ≥ 2. Then we

use this connection to prove the explicit formula for𝑈
𝑛
(𝑃, 𝑄)

which is a generalization of the Binet Form for 𝑈
𝑛
(𝑃, −1).

Theorem 2. Let {𝐴(𝑛), 𝑛 = 1, 2, . . .} be a sequence of tridiago-
nal matrices of the form

𝐴 (𝑛) =

(
(
(
(
(
(
(

(

𝑃 𝛼

𝛽 𝑃 𝛼

𝛽 𝑃 d

d d 𝛼

𝛽 𝑃

)
)
)
)
)
)
)

)

(8)

with 𝛼𝛽 = 𝑄, where 𝑃 and 𝑄 are nonzero integers satisfying
𝑃
2
− 4𝑄 ̸= 0. Then

𝑈
𝑛
(𝑃, 𝑄) = |𝐴 (𝑛 − 1)| for 𝑛 ≥ 2, (9)

𝑈
𝑛
(𝑃, 𝑄) =

𝑎
𝑛
− 𝑏
𝑛

𝑎 − 𝑏
for 𝑛 ≥ 0, (10)

where | ⋅ | denotes the determinant 𝑎 and 𝑏 are roots of 𝑥2−𝑃𝑥+
𝑄 = 0.

Proof. According to Lemma 1, successive determinants of
𝐴(𝑛) are given by the recursive formula:

|𝐴 (1)| = 𝑃, |𝐴 (2)| = 𝑃
2
− 𝑄,

|𝐴 (𝑛)| = 𝑃 |𝐴 (𝑛 − 1)| − 𝑄 |𝐴 (𝑛 − 2)| , 𝑛 ≥ 3.

(11)

Clearly, this is also the first Lucas sequence, starting with
𝑈
2
(𝑃, 𝑄). Therefore,

𝑈
𝑛
(𝑃, 𝑄) = |𝐴 (𝑛 − 1)| for 𝑛 ≥ 2. (12)

Since 𝑎 and 𝑏 are roots of 𝑥2 − 𝑃𝑥 + 𝑄 = 0,
𝑎 + 𝑏 = 𝑃, 𝑎𝑏 = 𝑄. (13)

Note that 𝑈
0
(𝑃, 𝑄) = 0 = (𝑎

0
− 𝑏
0
)/(𝑎 − 𝑏) and 𝑈

1
(𝑃, 𝑄) =

1 = (𝑎
1
− 𝑏
1
)/(𝑎 − 𝑏). In order to prove (10), it is sufficient to

prove

|𝐴 (𝑛 − 1)| =
𝑎
𝑛
− 𝑏
𝑛

𝑎 − 𝑏
for 𝑛 ≥ 2 (14)

by (9). Now we prove (14) by induction on 𝑛. When 𝑛 = 2, 3,
we have

|𝐴 (1)| = 𝑃 = 𝑎 + 𝑏 =
𝑎
2
− 𝑏
2

𝑎 − 𝑏
,

|𝐴 (2)| = 𝑃
2
− 𝑄 = (𝑎 + 𝑏)

2
− 𝑎𝑏 = 𝑎

2
+ 𝑎𝑏 + 𝑏

2
=
𝑎
3
− 𝑏
3

𝑎 − 𝑏
.

(15)
Next we assume (14) holds for 3 ≤ 𝑛 ≤ 𝑘.Thenwhen 𝑛 = 𝑘+1,
we have

|𝐴 (𝑘)| = 𝑃 |𝐴 (𝑘 − 1)| − 𝑄 |𝐴 (𝑘 − 2)|

= (𝑎 + 𝑏) |𝐴 (𝑘 − 1)| − 𝑎𝑏 |𝐴 (𝑘 − 2)|

= (𝑎 + 𝑏)
𝑎
𝑘
− 𝑏
𝑘

𝑎 − 𝑏
− 𝑎𝑏

𝑎
𝑘−1
− 𝑏
𝑘−1

𝑎 − 𝑏

=
𝑎
𝑘+1
− 𝑎𝑏
𝑘
+ 𝑎
𝑘
𝑏 − 𝑏
𝑘+1
− 𝑎
𝑘
𝑏 + 𝑎𝑏

𝑘

𝑎 − 𝑏

=
𝑎
𝑘+1
− 𝑏
𝑘+1

𝑎 − 𝑏
.

(16)

Hence, (14) is proved.

Now we give two complex factorizations and one explicit
formula of the first Lucas sequence by using the determinants
of tridiagonal matrices and Chebyshev polynomials of the
second kind.

Theorem 3. The first Lucas sequence {𝑈
𝑛
(𝑃, 𝑄)}

𝑛≥0
satisfies

𝑈
𝑛
(𝑃, 𝑄) =

𝑛−1

∏

𝑘=1

(𝑃 + 2√𝑄 cos 𝑘𝜋
𝑛
) , 𝑛 ≥ 2, (17)

𝑈
𝑛
(𝑃, 𝑄) =

𝑛−1

∏

𝑘=1

(𝑃 − 2√𝑄 cos 𝑘𝜋
𝑛
) , 𝑛 ≥ 2, (18)

𝑈
𝑛
(𝑃, 𝑄) = (√𝑄)

𝑛−1 sin (𝑛 arccos (𝑃/2√𝑄))
sin ( arccos (𝑃/2√𝑄))

, 𝑛 ≥ 1,

(19)

where√𝑄 ≡ √−𝑄 i and i = √−1 if 𝑄 is a negative integer.
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Proof. Choosing 𝛼 = 𝛽 = √𝑄 in {𝐴(𝑛), 𝑛 = 1, 2, . . .}, where
√𝑄 represents √−𝑄i when 𝑄 is negative, we obtain a
sequence of tridiagonal matrices {𝐵(𝑛), 𝑛 = 1, 2, . . .} of the
form

𝐵 (𝑛) =

(
(
(
(
(
(
(

(

𝑃 √𝑄

√𝑄 𝑃 √𝑄

√𝑄 𝑃 d

d d √𝑄

√𝑄 𝑃

)
)
)
)
)
)
)

)

. (20)

Then

𝑈
𝑛+1
(𝑃, 𝑄) = |𝐵 (𝑛)| for 𝑛 ≥ 1 (21)

by Theorem 2. Considering that the determinant of a matrix
can be found by taking the product of its eigenvalues, we will
compute the spectrum of 𝐵(𝑛) in order to find an alternate
formulation for |𝐵(𝑛)|.

We now introduce another sequence of tridiagonalmatri-
ces {𝐺(𝑛), 𝑛 = 1, 2, . . .}, where𝐺(𝑛) is the 𝑛×𝑛 tridiagonalma-
trix with 𝑔

𝑘,𝑘
= 0 (1 ≤ 𝑘 ≤ 𝑛) and 𝑔

𝑘−1,𝑘
= 𝑔
𝑘,𝑘−1

= 1 (2 ≤

𝑘 ≤ 𝑛). That is,

𝐺 (𝑛) =

(
(
(
(
(
(
(

(

0 1

1 0 1

1 0 d

d d 1

1 0

)
)
)
)
)
)
)

)

. (22)

Note that 𝐵(𝑛) = 𝑃𝐼
𝑛
+√𝑄𝐺(𝑛), where 𝐼

𝑛
is the 𝑛 × 𝑛 identity

matrix. Let 𝜆
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, be the eigenvalues of𝐺(𝑛)with

associated eigenvectors 𝑥
𝑘
. Then for each 1 ≤ 𝑗 ≤ 𝑛, we have

𝐵 (𝑛) 𝑥
𝑗
= (𝑃𝐼

𝑛
+ √𝑄𝐺 (𝑛)) 𝑥

𝑗

= 𝑃𝐼
𝑛
𝑥
𝑗
+ √𝑄𝐺 (𝑛) 𝑥

𝑗

= 𝑃𝑥
𝑗
+ √𝑄𝜆

𝑗
𝑥
𝑗

= (𝑃 + √𝑄𝜆
𝑗
) 𝑥
𝑗
.

(23)

Therefore, 𝑃 + √𝑄𝜆
𝑘
, 𝑘 = 1, 2, . . . , 𝑛 are the eigenvalues of

𝐵(𝑛). Hence,

|𝐵 (𝑛)| =

𝑛

∏

𝑘=1

(𝑃 + √𝑄𝜆
𝑘
) , 𝑛 ≥ 1. (24)

Next we compute 𝜆
𝑘
’s by recalling that each 𝜆

𝑘
is a zero

of the characteristic polynomial 𝑝
𝑛
(𝜆) = |𝜆𝐼

𝑛
− 𝐺(𝑛)|. Notice

that

𝜆𝐼
𝑛
− 𝐺 (𝑛) =

(
(
(
(
(
(
(

(

𝜆 −1

−1 𝜆 −1

−1 𝜆 d

d d −1

−1 𝜆

)
)
)
)
)
)
)

)

; (25)

we use Lemma 1 to obtain a recursive formula for the
characteristic polynomials of {𝐺(𝑛), 𝑛 = 1, 2, . . .}:

𝑝
1
(𝜆) = 𝜆, 𝑝

2
(𝜆) = 𝜆

2
− 1,

𝑝
𝑛
(𝜆) = 𝜆𝑝

𝑛−1
(𝜆) − 𝑝

𝑛−2
(𝜆) , 𝑛 ≥ 3.

(26)

This family of characteristic polynomials can be transformed
into another family {𝑈

𝑛
(𝑥), 𝑛 = 1, 2, . . .} by the transforma-

tion 𝜆 ≡ 2𝑥 as follows:

𝑈
1
(𝑥) = 2𝑥, 𝑈

2
(𝑥) = 4𝑥

2
− 1,

𝑈
𝑛
(𝑥) = 2𝑥𝑈

𝑛−1
(𝑥) − 𝑈

𝑛−2
(𝑥) , 𝑛 ≥ 3,

(27)

and this family {𝑈
𝑛
(𝑥), 𝑛 = 1, 2, . . .} is the set of Chebyshev

polynomials of the second kind. It is well known [6] that
defining 𝑥 ≡ cos 𝜃 allows the Chebyshev polynomials of the
second kind to be written as follows:

𝑈
𝑛
(𝑥) =

sin [(𝑛 + 1) 𝜃]
sin 𝜃

. (28)

From (28), we can easily see that the roots of 𝑈
𝑛
(𝑥) = 0 are

𝜃
𝑘
= 𝑘𝜋/(𝑛 + 1), 𝑘 = 1, 2, . . . , 𝑛, or equally, 𝑥

𝑘
= cos 𝜃

𝑘
=

cos(𝑘𝜋/(𝑛 + 1)), 𝑘 = 1, 2, . . . , 𝑛. So we get the eigenvalues of
𝐺(𝑛) as follows:

𝜆
𝑘
= 2 cos 𝑘𝜋

𝑛 + 1
, 𝑘 = 1, 2, . . . , 𝑛. (29)

Combining (21), (24), and (29), we finally have

𝑈
𝑛+1
(𝑃, 𝑄) =

𝑛

∏

𝑘=1

(𝑃 + 2√𝑄 cos 𝑘𝜋

𝑛 + 1
) , 𝑛 ≥ 1, (30)

which is equivalent to (17). Moreover, by taking 𝑘 = 𝑛 + 1 − 𝑡,
we get

𝑈
𝑛+1
(𝑃, 𝑄) =

𝑛

∏

𝑡=1

(𝑃 + 2√𝑄 cos(𝜋 − 𝑡𝜋

𝑛 + 1
))

=

𝑛

∏

𝑡=1

(𝑃 − 2√𝑄 cos 𝑡𝜋

𝑛 + 1
) , 𝑛 ≥ 1,

(31)

which is identical to (18).
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From (25), we can think of Chebyshev polynomials of the
second kind as being generated by determinants of successive
matrices of the form

𝐻(𝑛, 𝑥) =

(
(
(
(
(
(
(

(

2𝑥 −1

−1 2𝑥 −1

−1 2𝑥 d

d d −1

−1 2𝑥

)
)
)
)
)
)
)

)

, (32)

where𝐻(𝑛, 𝑥) is 𝑛×𝑛. Note that 𝐵(𝑛) = −√𝑄𝐻(𝑛, −𝑃/2√𝑄).
So we obtain

|𝐵 (𝑛)| = (−√𝑄)
𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻(𝑛, −
𝑃

2√𝑄
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (−√𝑄)
𝑛

𝑈
𝑛
(−

𝑃

2√𝑄
) .

(33)

Since the Chebyshev polynomial of the second kind 𝑈
𝑛
(𝑥) is

an even or odd function, involving only even or oddpowers of
𝑥, as 𝑛 is even or odd, the right side of (33) can be represented
as

(−√𝑄)
𝑛

𝑈
𝑛
(−

𝑃

2√𝑄
) = (√𝑄)

𝑛

𝑈
𝑛
(

𝑃

2√𝑄
) . (34)

Combining (21), (33), (34), and (28), we derive

𝑈
𝑛+1
(𝑃, 𝑄) = (√𝑄)

𝑛 sin ((𝑛 + 1) arccos (𝑃/2√𝑄))
sin (arccos (𝑃/2√𝑄))

, 𝑛 ≥ 1,

(35)

which is identical to (19) since it also holds for 𝑛 = 0:

𝑈
1
(𝑃, 𝑄) = 1 = (√𝑄)

0 sin (arccos (𝑃/2√𝑄))
sin (arccos (𝑃/2√𝑄))

. (36)

Remark 4. For 𝑃 = 1, 𝑄 = −1, (18) and (19) are exactly the
formulas for Fibonacci numbers in [2].

3. Complex Factorizations of
the Second Lucas Sequence

The complex factorization of {𝑉
𝑛
(𝑃, −1)}

𝑛≥0
was derived in

[4], and we generalize the formula to {𝑉
𝑛
(𝑃, 𝑄)}

𝑛≥0
for any

integer 𝑄 in the following theorem.

Theorem 5. The second Lucas sequence {𝑉
𝑛
(𝑃, 𝑄)}

𝑛≥0
satisfies

𝑉
𝑛
(𝑃, 𝑄) =

𝑛

∏

𝑘=1

(𝑃 + 2√𝑄 cos (𝑘 − (1/2)) 𝜋
𝑛

) , 𝑛 ≥ 1,

(37)

𝑉
𝑛
(𝑃, 𝑄) =

𝑛

∏

𝑘=1

(𝑃 − 2√𝑄 cos (𝑘 − (1/2)) 𝜋
𝑛

) , 𝑛 ≥ 1,

(38)

𝑉
𝑛
(𝑃, 𝑄) = 2(√𝑄)

𝑛

cos(𝑛 arccos ( 𝑃

2√𝑄
)) , 𝑛 ≥ 1,

(39)

where√𝑄 ≡ √−𝑄 i and i = √−1 if 𝑄 is a negative integer.

Proof. In order to obtain (37), we introduce a sequence of
tridiagonal matrices {𝐹(𝑛), 𝑛 = 1, 2, . . .} of the form

𝐹 (𝑛) =

(
(
(
(
(
(
(
(
(
(
(

(

𝑃

2
√𝑄

√𝑄 𝑃 √𝑄

√𝑄 𝑃 d

d d √𝑄

√𝑄 𝑃

)
)
)
)
)
)
)
)
)
)
)

)

, (40)

where√𝑄 represents√−𝑄i when 𝑄 is negative. Then

𝑉
𝑛
(𝑃, 𝑄) = 2 |𝐹 (𝑛)| (41)

by Theorem 1 of [4]. Unlike the derivation in Theorem 3, we
will not compute the spectrum of 𝐹(𝑛) directly. Instead, since
|𝐼
𝑛
+ 𝑒
1
𝑒
𝑇

1
| = 2, we have

|𝐹 (𝑛)| =
1

2

󵄨󵄨󵄨󵄨󵄨
(𝐼
𝑛
+ 𝑒
1
𝑒
𝑇

1
) 𝐹 (𝑛)

󵄨󵄨󵄨󵄨󵄨
, (42)

where 𝐼
𝑛
is the 𝑛 × 𝑛 identity matrix and 𝑒

𝑗
is the 𝑗th column

of 𝐼
𝑛
. Moreover, we can express the right-hand side of (42) as

follows:

1

2

󵄨󵄨󵄨󵄨󵄨
(𝐼
𝑛
+ 𝑒
1
𝑒
𝑇

1
) 𝐹 (𝑛)

󵄨󵄨󵄨󵄨󵄨
=
1

2

󵄨󵄨󵄨󵄨󵄨
𝑃𝐼
𝑛
+ √𝑄(𝐺 (𝑛) + 𝑒

1
𝑒
𝑇

2
)
󵄨󵄨󵄨󵄨󵄨
, (43)

where 𝐺(𝑛) is the 𝑛 × 𝑛 matrix defined in Theorem 3. Let
𝜇
𝑘
, 𝑘 = 1, 2, . . . , 𝑛 be the eigenvalues of 𝐺(𝑛) + 𝑒

1
𝑒
𝑇

2
with

associated eigenvectors 𝑦
𝑘
. Then for each 1 ≤ 𝑗 ≤ 𝑛, we get

(𝑃𝐼
𝑛
+ √𝑄(𝐺 (𝑛) + 𝑒

1
𝑒
𝑇

2
)) 𝑦
𝑗

= 𝑃𝐼
𝑛
𝑦
𝑗
+ √𝑄(𝐺 (𝑛) + 𝑒

1
𝑒
𝑇

2
) 𝑦
𝑗

= 𝑃𝑦
𝑗
+ √𝑄𝜇

𝑗
𝑦
𝑗

= (𝑃 + √𝑄𝜇
𝑗
) 𝑦
𝑗
.

(44)

Therefore, 𝑃 + √𝑄𝜇
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are the eigenvalues of

𝑃𝐼
𝑛
+ √𝑄(𝐺(𝑛) + 𝑒

1
𝑒
𝑇

2
). Hence,

󵄨󵄨󵄨󵄨󵄨
(𝐼
𝑛
+ 𝑒
1
𝑒
𝑇

1
) 𝐹 (𝑛)

󵄨󵄨󵄨󵄨󵄨
=

𝑛

∏

𝑘=1

(𝑃 + √𝑄𝜇
𝑘
) , 𝑛 ≥ 1. (45)
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Next we compute 𝜇
𝑘
’s by recalling that each 𝜇

𝑘
is a zero

of the characteristic polynomial 𝑞
𝑛
(𝜇) = |𝜇𝐼

𝑛
− (𝐺(𝑛) +

𝑒
1
𝑒
𝑇

2
)|. Since |(𝐼

𝑛
− (1/2)𝑒

1
𝑒
𝑇

1
)| = 1/2, we can represent the

characteristic polynomial as follows:

𝑞
𝑛
(𝜇) = 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐼
𝑛
−
1

2
𝑒
1
𝑒
𝑇

1
) (𝜇𝐼
𝑛
− (𝐺 (𝑛) + 𝑒

1
𝑒
𝑇

2
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (46)

Notice that

(𝐼
𝑛
−
1

2
𝑒
1
𝑒
𝑇

1
) (𝜇𝐼
𝑛
− (𝐺 (𝑛) + 𝑒

1
𝑒
𝑇

2
))

=

(
(
(
(
(
(

(

𝜇

2
−1

−1 𝜇 −1

−1 𝜇 d

d d −1

−1 𝜇

)
)
)
)
)
)

)

.

(47)

We use Lemma 1 to obtain a recursive formula for the
characteristic polynomials:

𝑞
1
(𝜇) =

𝜇

2
, 𝑞

2
(𝜇) =

𝜇
2

2
− 1,

𝑞
𝑛
(𝜇) = 𝜇𝑞

𝑛−1
(𝜇) − 𝑞

𝑛−2
(𝜇) , 𝑛 ≥ 3.

(48)

This family of characteristic polynomials can be transformed
into another family {𝑇

𝑛
(𝑥), 𝑛 = 1, 2, . . .} by taking 𝜇 = 2𝑥:

𝑇
1
(𝑥) = 𝑥, 𝑇

2
(𝑥) = 2𝑥

2
− 1,

𝑇
𝑛
(𝑥) = 2𝑥𝑇

𝑛−1
(𝑥) − 𝑇

𝑛−2
(𝑥) , 𝑛 ≥ 3.

(49)

In fact, this family {𝑇
𝑛
(𝑥), 𝑛 = 1, 2, . . .} is the set of Chebyshev

polynomials of the first kind. It is well known [6] that defining
𝑥 ≡ cos 𝜃 allows the Chebyshev polynomials of the first kind
to be written as

𝑇
𝑛
(𝑥) = cos 𝑛𝜃. (50)

It is easy to see that the roots of 𝑇
𝑛
(𝑥) = 0 are given by 𝜃

𝑘
=

(𝑘 − (1/2))𝜋/𝑛, 𝑘 = 1, 2, . . . , 𝑛, or 𝑥
𝑘
= cos 𝜃

𝑘
= cos(𝑘 −

(1/2))𝜋/𝑛, 𝑘 = 1, 2, . . . , 𝑛. Thus, we derive

𝜇
𝑘
= 2 cos (𝑘 − (1/2)) 𝜋

𝑛
, 𝑘 = 1, 2, . . . , 𝑛. (51)

Combining (41), (42), (45), and (51), we finally have

𝑉
𝑛
(𝑃, 𝑄) =

𝑛

∏

𝑘=1

(𝑃 + 2√𝑄 cos (𝑘 − (1/2)) 𝜋
𝑛

) , 𝑛 ≥ 1.

(52)
Furthermore, by taking 𝑘 = 𝑛 + 1 − 𝑡, we obtain

𝑉
𝑛
(𝑃, 𝑄) =

𝑛

∏

𝑡=1

(𝑃 + 2√𝑄 cos(𝜋 − (𝑡 − (1/2)) 𝜋
𝑛

))

=

𝑛

∏

𝑡=1

(𝑃 − 2√𝑄 cos (𝑡 − (1/2)) 𝜋
𝑛

) , 𝑛 ≥ 1.

(53)
Equations (37) and (38) are proved.

Now we think of Chebyshev polynomials of the first kind
from (47) as being generated by determinants of successive
matrices of the form

𝐾 (𝑛, 𝑥) =

(
(
(
(
(
(
(

(

𝑥 −1

−1 2𝑥 −1

−1 2𝑥 d

d d −1

−1 2𝑥

)
)
)
)
)
)
)

)

, (54)

where𝐾(𝑛, 𝑥) is 𝑛 × 𝑛. Note that 𝐹(𝑛) = −√𝑄𝐾(𝑛, −𝑃/2√𝑄).
So we get

|𝐹 (𝑛)| = (−√𝑄)
𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾(𝑛, −
𝑃

2√𝑄
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (−√𝑄)
𝑛

𝑇
𝑛
(−

𝑃

2√𝑄
) .

(55)

Since the Chebyshev polynomial of the first kind 𝑇
𝑛
(𝑥) is an

even or odd function, involving only even or odd powers of
𝑥, according as 𝑛 is even or odd, the right side of (55) can be
represented as

(−√𝑄)
𝑛

𝑇
𝑛
(−

𝑃

2√𝑄
) = (√𝑄)

𝑛

𝑇
𝑛
(

𝑃

2√𝑄
) . (56)

Combining (41), (55), (56), and (50), we derive

𝑉
𝑛
(𝑃, 𝑄) = 2(√𝑄)

𝑛

cos(𝑛 arccos( 𝑃

2√𝑄
)) , 𝑛 ≥ 1.

(57)

Equation (39) is completed.

Remark 6. For 𝑃 = 1, 𝑄 = −1, (38) and (39) are exactly the
formulas for Lucas numbers in [2].

Remark 7. For𝑄 = −1, (38) and (39) are exactly the formulas
for {𝑉

𝑛
(𝑃, −1)} in [4].

4. Examples

Finally, we give some examples.

Example 1. Choosing 𝑃 = 2, 𝑄 = −1, we can get the complex
factorization of Pell numbers by (17). Let 𝑃

𝑛
be the 𝑛th Pell

number and i = √−1. Then the fourth Pell number is

𝑃
4
= 𝑈
4
(2, −1) =

3

∏

𝑘=1

(2 + 2i cos𝑘𝜋
4
)

= (2 + 2i cos𝜋
4
) (2 + 2i cos2𝜋

4
)

× (2 + 2i cos3𝜋
4
)

= (2 + √2i) (2 + 0) (2 − √2i)

= 12.

(58)
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Example 2. Choosing 𝑃 = 1, 𝑄 = −2, we can get the complex
factorization of Jacobsthal numbers by (18). Let 𝐽

𝑛
be the 𝑛th

Jacobsthal number and i = √−1. Then the third Jacobsthal
number is

𝐽
3
= 𝑈
3
(1, −2) =

2

∏

𝑘=1

(1 − 2√2i cos𝑘𝜋
3
)

= (1 − 2√2i cos𝜋
3
) (1 − 2√2i cos2𝜋

3
)

= (1 − √2i) (1 + √2i)

= 3.

(59)

Example 3. Choosing 𝑃 = 2, 𝑄 = −1, we can get the complex
factorization of Pell-Lucas numbers by (37). Let 𝑝

𝑛
be the 𝑛th

Pell-Lucas number and i = √−1. Then the third Pell-Lucas
number is

𝑝
3
= 𝑉
3
(2, −1) =

3

∏

𝑘=1

(2 + 2i cos (𝑘 − (1/2)) 𝜋
3

)

= (2 + 2i cos𝜋
6
) (2 + 2i cos3𝜋

6
) (2 + 2i cos5𝜋

6
)

= (2 + √3i) (2 + 0) (2 − √3i)

= 14.

(60)

Example 4. Choosing 𝑃 = 1, 𝑄 = −2, we can get the complex
factorization of Jacobsthal-Lucas numbers by (38). Let 𝑗

𝑛
be

the 𝑛th Jacobsthal-Lucas number and i = √−1.Then the third
Jacobsthal-Lucas number is

𝑗
3
= 𝑉
3
(1, −2) =

3

∏

𝑘=1

(1 − 2√2i cos (𝑘 − (1/2)) 𝜋
3

)

= (1 − 2√2i cos𝜋
6
) (1 − 2√2i cos3𝜋

6
)

× (1 − 2√2i cos5𝜋
6
)

= (1 − √6i) (1 − 0) (1 + √6i)

= 7.

(61)

5. Conclusion

We use the tridiagonal matrices 𝐵(𝑛) and 𝐹(𝑛) to obtain
the complex factorizations of the first and second Lucas
sequences, respectively. It is possible to find other suitable
matrices for different factorizations of Lucas sequences.
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