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The main objective of this paper is to propose an optimal finite duration treatment method for cancer. A mathematical model is
proposed to show the interactions between healthy and cancerous cells in the human body. To extend the existing models, the
effect of vaccine therapy and chemotherapy are also added to the model. The equilibrium points and the related local stability
are derived and discussed. It is shown that the dynamics of the cancer model must be changed and modified for finite treatment
duration.Therefore, the vaccine therapy is used to change the parameters of the system and the chemotherapy is applied for pushing
the system to the domain of attraction of the healthy state. For optimal chemotherapy, an optimal control is used based on state
dependent Riccati equation (SDRE). It is shown that, in spite of eliminating the treatment, the system approaches the healthy state
conditions. The results show that the development of optimal vaccine-chemotherapy protocols for removing tumor cells would be
an appropriate strategy in cancer treatment. Also, the present study states that a proper treatment method not only reduces the
population of the cancer cells but also changes the dynamics of the cancer.

1. Introduction

Modeling and treatment of cancer are the main focus
of many researchers worldwide from clinicians, biologists,
mathematicians, and control engineers. Cancermathematical
models create an appropriate insight into the behavior of
cells in the presence of cancer cells and their interaction
with drugs. On the other hand, preparations of such drugs
and medical examination have high risk and cost. These
illustrate the importance of mathematical and suitable con-
trol modeling for cancer treatment. The cancer treatment
models, in addition, will enable researchers to forecast and
adjust the behavior of the cancerous tumor [1].Themodeling
approaches to study disease dynamics include but are not
limited to the following: optimization, compartmental, and
dynamical system approaches [2]. In this study, we use a
dynamical system approach which shows the interaction
among cells and drugs. In [3], a review of nonspatial tumor-
immune models is presented.

In order to avoid the adverse side effects of such drugs and
preserve the level of drug dosage, drugs should be used based
on a regular program. Different control methods have been
used for solving this problem. Using these methods along
with optimizing the amount of drugs used yields to effective
diminishing of cancer cells [4].

Theory of optimal control has been used in modeling
of chemotherapy treatment problems. In this problem, the
optimal controller is gained by solving a series of differ-
ential equations [5]. Currently, many researchers presented
mathematical models to simulate the behavior of the drug
and its effects on the body [6]. Chemotherapy treatment
program was introduced as an optimal control problem by
Swan and Vincent in 1977 [7]. In 1990, Swan studied applica-
tion of optimal control theory in cancer chemotherapy and
described great variation among these models [1]. In 2000,
Clare and his colleagues introduced several models in the
field of application of chemotherapy in the treatment of breast
cancer [8]. In 2001, Parker and Doyle performed a thorough
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review of articles that build the mathematical models of
drug delivery and allocated small parts of the cancer optimal
chemotherapy [9]. In 2005, Harrold and, in 2009, Harrold
and Parker recognized deficiencies and weaknesses in the
treatment of chemotherapy in the clinical programs [10, 11].
In 2007, Nanda et al. applied an optimal control model
of two-drug chemotherapy for leukemia [12]. In 2011, Shi
et al. presented a summary of the optimization models in
chemotherapy treatment programs [6]. In 2013, Moradi et al.
designed an optimal robust control of drug delivery in cancer
chemotherapy [4]. However, the recent studies assumed
that the dynamics of the cancer during treatment is time
invariant. In other words, the authors considered the effects
of therapeutic inputs only on the system states. However, the
dynamics of cancer changes during its progression [13]. As
an example, wrecking inputs such as external stresses can
disable the DNA repair genes [14]. These inputs are able to
change the functions of growth-inhibiting signals (TGF-b),
regulatory growth signals (TGF-a), and apoptosis (TP53) [13].
Therefore, an effective treatmentmethod should correct these
destructive changes in the dynamic behavior of the system.

In this study, a system of ordinary differential equations
(ODE) is considered to present the interaction between
healthy and cancerous cells. The present study extends the
existing mathematical model of [15]. Those studies have
investigated the effects of therapeutic inputs on the system
states. However, the important shortcoming is that the cancer
relapses after elimination of the therapy. In this paper, a
method for finite duration treatment is proposed such that
at the end of treatment the system approaches its healthy
equilibriumpoint.Moreover, the presentedmodel is analyzed
by adding vaccine and chemotherapy treatment terms. The
vaccine has an effect on some parameters of the system [16],
while chemotherapy has an effect on the cells populations. For
optimal chemotherapy, the state dependent Riccati equation
(SDRE) based optimal control technique is applied to the
nonlinear model.

The organization of the paper is as follows. In the next
section, the nonlinear mathematical model is analyzed. We
extend this model by adding vaccine and chemotherapy
treatment terms. Then, the SDRE based optimal control is
applied to the nonlinear cancer dynamics in Section 3. In
this work, the amount of chemotherapy drug is considered
the control input to the system. The aim of the mixed vac-
cine and chemotherapy treatments is to present an optimal
finite time duration treatment such that the cancer is not
able to relapse. In the last section, the simulation results
are discussed.

The main highlights of the present study can be summa-
rized as follows:

(i) changing the dynamics of the cancer model during
the treatment,

(ii) inserting the effects of the vaccine therapy in the
cancer model,

(iii) applying SDRE optimal control to the nonlinear
cancer dynamics.

2. The Mathematical Model

The presented population model originates from [15]. The
dynamic behavior of the body organ which is affected by the
cancer is given by the following equations:

𝑑

𝑑𝑡
[
𝑥

𝑦
] = [

𝑓
1
(𝑥, 𝑦)

𝑓
2
(𝑥, 𝑦)

] , (1)

where
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1
𝑥(1 −

𝑥

𝐾
1

) − (𝑑
1
+ 𝑐) 𝑥 − 𝑏

1
𝑥𝑦,

̇𝑦 = 𝑎
2
𝑦(1 −

𝑦

𝐾
2

) − 𝑑
2
𝑦 + 𝑐𝑥 − (𝑏

2
𝑥𝑦 + 𝑔) 𝑦.

(2)

In (2),𝑥 and𝑦 are the healthy and cancer cells concentrations,
respectively. The state variables should be physiologically
possible; therefore, their values are nonnegative; that is, 𝑥 ≥ 0
and𝑦 ≥ 0.The coefficients 𝑎

1
and 𝑎
2
represent the growth rate

of the healthy and cancer cells, respectively. The growth rate
of healthy and tumor tissues decelerates as the concentrations
of both the healthy and tumor tissues approach the carrying
capacities 𝐾

1
and 𝐾

2
, respectively [17]. The effect of the

immune system is to kill the mutated and cancer cells at
proportional rates 𝑑

1
and 𝑑

2
. The immune system agents

force the cancer cells to suicide through apoptosis [18]. The
coefficient 𝑐 represents the portion of the healthy cells, whose
genome is disordered by the external stresses. These cells
start the neoplastic transformation and are added to the
tumor cells [19]. The tumor competes with healthy tissue for
resources, such as blood, nutrients, and space [20]. Moreover,
all the cancer cells compete with each other.The competition
coefficients between different cells are 𝑏

1
, 𝑏
2
, and 𝑔.

The aim of this paper is the total recovery of the patient
after a finite duration treatment such that the cancer is
not able to relapse. In other words, the population of the
cancer cells must go to the healthy state after elimination of
treatment. However, based on the parameters presented in
Table 1, the trajectory of the system is shown in Figure 1(a).
The equilibrium point 2 in the figure is the only equilibrium
point of the system in the first orthant. Based on the
stability analysis which will be discussed in Section 2.1, the
dynamics of the system represents the cancer state. So, the
treatmentmust be applied during the entire life of the patient.
Otherwise, after elimination of the input, the system comes
back to the equilibrium point 2. So, for finite duration
treatment, the dynamics of the system must be changed.
Since the vaccine therapy impacts some parameters of the
system, mixed vaccine therapy and chemotherapy treatments
are used. The duty of the vaccine therapy is to change the
dynamics of the system and the duty of the chemotherapy
is to push the system toward the domain of attraction of the
healthy equilibrium point.

A complete effect of the vaccine therapy in time duration
is needed; therefore, saturation dynamic is applied in the
present model to change the parameters of the system. The
effect of vaccine therapy is considered on parameters 𝑎

1
and

𝑏
2
[16], which is included in the mathematical model by the
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Figure 1: The trajectory pattern of the free system: (a) before the vaccination and (b) after the vaccination.

Table 1: Estimated parameters.

Parameters Estimated value [16, 17, 21, 22]
𝑎
1

3.5
𝑎
2

6.7
𝐾
1

80000
𝐾
2

90000
𝑑
1

0.05
𝑑
2

0.03
𝑐 0.05
𝑏
1

0.2
𝑏
2

0.11
𝑔 0.1
𝐾
𝑥

0.6
𝐾
𝑦

0.6
𝐾
𝑎1

5
𝐾
𝑏2

0.4
𝜇 10

term VV(𝑡) ≥ 0. The rate of changing these parameters is
assumed to be proportional to the input magnitude VV(𝑡).The
values of 𝜇

𝑎
1

and 𝜇
𝑏
2

are dependent on the dynamics of 𝑎
1
and

𝑏
2
, respectively.The biotransformation coefficients saturate at

finite limits 𝐾
𝑎
1

and 𝐾
𝑏
2

, which are related to the biological
limits of body organs and the accumulation of external effect.
The trajectory pattern of the free system after the vaccine
therapy treatment is shown in Figure 1(b). As shown in this
figure, the healthy state is entered in the first orthant.

Also, the effect of chemotherapy is included by the term
𝑀(𝑡) for which V

𝑀
(𝑡) ≥ 0 is the amount of chemotherapy

agent injected per day per liter of blood. Some chemothera-
peutic drugs, such as doxorubicin, are only effective during
certain phases of the cell cycle, and pharmacokinetics also
indicates that the effectiveness of chemotherapy is bounded
[16]. Therefore, we use a saturation term 1.2𝑀/(0.8 + 𝑀) to
represent the chemotherapy fractional cell kill. Note that the
kill rate is almost linear at low concentrations of drug, while
it plateaus at a higher drug concentration.𝐾

𝑥
is the fractional

healthy cell kill by chemotherapy and 𝐾
𝑥
is the fractional

tumor cell kill by chemotherapy [16].The chemotherapy drug
concentration decays in the body and 𝛾 is a constant in Day−1
related to the drug elimination rate [16]. So, the modified
equations of the system with treatment are as follows:
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= −𝜇𝑀 + V

𝑀
(𝑡) .

(3)
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Note that the system is an autonomous system with differen-
tiable functions, which satisfies existence and uniqueness of
initial value problems.

Proposition 1. The subspace 𝑋 = {(𝑥(𝑡), 𝑦(𝑡)) | 𝑥 ≥ 0, 𝑦 ≥ 0}
is invariant under (2).

Proof. (i) It can easily be concluded that if (𝑥(0), 𝑦(0)) =
(0, 0), then (𝑥(𝑡), 𝑦(𝑡)) = (0, 0) for all 𝑡 ≥ 0.

(ii) If (𝑥(𝑡), 𝑦(𝑡)) approaches the vertical axis from sub-
space𝑋, �̇�|

𝑥=0
= 0, ̇𝑦|

𝑥=0
= [𝑎
2
(1 − (𝑦/𝐾

2
)) − (𝑑

2
+𝑔)]𝑦, and

𝑥 does not decrease, hence, its value remains on the subspace
𝑋.

(iii) If (𝑥(𝑡), 𝑦(𝑡)) approaches the horizontal axis from
subspace 𝑋, ̇𝑦|

𝑦=0
= 𝑐𝑥 ≥ 0, �̇�|

𝑦=0
= [𝑎
1
(1 − (𝑥/𝐾

1
)) −

(𝑑
1
+ 𝑐)]𝑥, and 𝑦 does not decrease, hence, its value remains

positive.
Therefore, the subspace 𝑋 = {(𝑥(𝑡), 𝑦(𝑡)) | 𝑥 ≥ 0, 𝑦 ≥ 0}

is invariant under (2).

2.1. Equilibrium Points. Four equilibrium points of (2) are
calculated as follows:

(1) 𝑥 = 0, 𝑦 = 0, (4)

(2) 𝑥 = 0, 𝑦 =
𝐾
2
(𝑎
2
− 𝑑
2
− 𝑔)

𝑎
2

= −
𝛽
2

𝛼
2

, (5)

(3) 𝑥 = 𝛼
6
+ 𝛼
7
, 𝑦 = 𝛼

1
(𝛼
6
+ 𝛼
7
) + 𝛽
1
, (6)

(4) 𝑥 = 𝛼
6
− 𝛼
7
, 𝑦 = 𝛼

1
(𝛼
6
− 𝛼
7
) + 𝛽
1
, (7)

where 𝛼
1
= −𝑎
1
/𝐾
1
𝑏
1
, 𝛽
1
= (𝑎
1
− 𝑑
1
− 𝑐)/𝑏

1
, 𝛼
2
= −𝑎
2
/𝐾
2
,

𝛽
2
= 𝑎
2
− 𝑑
2
− 𝑔, 𝛼

3
= 𝛼
1
(𝛼
1
𝛼
2
− 𝑏
2
), 𝛼
4
= 2𝛼
1
𝛼
2
𝛽
1
−

𝑏
2
𝛽
1
+ 𝛼
1
𝛽
2
+ 𝑐, 𝛼

5
= 𝛽
1
(𝛼
2
𝛽
1
+ 𝛽
2
),𝛼
6
= −𝛼

4
/2𝛼
3
, and

𝛼
7
= √𝛼
4

2 − 4𝛼
3
𝛼
5
/2𝛼
3
.

The linearization of (2) around the arbitrary equilibrium
point (𝑥, 𝑦) is given by

�̇�
∗
= 𝐴𝑍

∗
+ 𝐵
𝐻.𝑂.𝑇

+ 𝐶, (8)

where

𝑍
∗
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𝑥

𝑦
] ,

𝐴 =
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𝑎
1

𝐾
1

𝑥 + 𝑏
1
𝛽
1
− 𝑏
1
𝑦 −𝑏

1
𝑥

𝑐 − 𝑏
2
𝑦 −2

𝑎
2

𝐾
2

𝑦 + 𝑎
2
− 𝑑
2
− 𝑔 − 𝑏

2
𝑥

]
]

]

,

𝐵
𝐻.𝑂.𝑇
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[
[
[
[

[

𝑎
1

𝐾
1

𝑥
2
+ 𝑏
1
𝑥𝑦

𝑎
2

𝐾
2

𝑦
2
+ 𝑏
2
𝑥𝑦

]
]
]
]

]

,

𝐶 =

[
[
[
[

[

−
𝑎
1

𝐾
1

𝑥
2
+ (𝑎
1
− 𝑑
1
− 𝑐) 𝑥 − 𝑏

1
𝑥𝑦

−
𝑎
2

𝐾
2

𝑦
2
+ (𝑎
2
− 𝑑
2
− 𝑔) 𝑦 − 𝑏

2
𝑥𝑦 + 𝑐𝑥

]
]
]
]

]

.

(9)

The higher order terms are neglected around the origin
(𝑥, 𝑦) = (0, 0) and the last term 𝐶 is equal to zero at the
equilibrium points.

2.2. Stability Analysis. We study the stability of the equilib-
rium points of (2) in this section. The results of the analysis
are stated as follows.

(i) If the equilibrium point 3 is located in the first orthant
and the equilibrium point 2 is not, then the state
variables of (2) will converge to the equilibrium point
3 (healthy state).

(ii) If the equilibriumpoints 2 and 3 are located in the first
orthant, then the state variables of (2) will converge to
one of these two points.

(iii) If the equilibriumpoint 2 is located in the first orthant
and the equilibrium point 3 is not, then the state
variables of (2) will converge to the equilibrium point
2 (cancer state).

Proof. (1) At the equilibrium point 1, 𝑥 = 0, 𝑦 = 0, the
eigenvalues of 𝐴 are

𝜆
1
= 𝑎
1
− (𝑑
1
+ 𝑐) ,

𝜆
2
= 𝑎
2
− (𝑑
2
+ 𝑔) .

(10)

Based on Table 1, the value of 𝑎
1
is larger than the sum of 𝑑

1

and 𝑐. Also, 𝑎
2
is larger than the sum of 𝑑

2
and 𝑔. Thus, the

eigenvalues of the equilibrium point 1 are always positive and
the origin is an unstable node.

(2) At the equilibrium point 2, 𝑥 = 0, 𝑦 = −𝛽
2
/𝛼
2
, the

eigenvalues of 𝐴 are

𝜆
1
= 𝑏
1
(𝛽
1
+
𝛽
2

𝛼
2

) ,

𝜆
2
= − (𝑎

2
− 𝑑
2
− 𝑔) .

(11)

In (5), 𝑦 is positive; then 𝛽
2
/𝛼
2
< 0. Also, from Table 1, we

notice that the value of −𝛽
2
/𝛼
2
is larger than 𝛽

1
; then the

equilibrium point 2, if it exists, is a stable node.
(3) At the equilibrium point 3, 𝑥 = 𝛼

6
+ 𝛼
7
, 𝑦 = 𝛼

1
(𝛼
6
+

𝛼
7
) + 𝛽
1
. Noticing that 𝑥 and 𝑦 in (6) are in the first orthant,

then 𝛼
6
+ 𝛼
7
> 0 and 𝛼

1
(𝛼
6
+ 𝛼
7
) + 𝛽
1
> 0. The principal

minors of −𝐴 at this equilibrium point are as follows:

Δ
1
=
𝑎
1

𝐾
1

(𝛼
6
+ 𝛼
7
) > 0,

Δ
2
= (2

𝑎
1

2
𝑎
2

𝐾
1
𝐾
2
𝑏
1

[1 −
1

𝐾
1

(𝛼
6
+ 𝛼
7
)]

+
𝑎
1

𝐾
1

(2𝑏
2
(𝛼
6
+ 𝛼
7
) + 𝑑
2
+ 𝑔 − 2

𝑎
2
(𝑑
1
+ 𝑐)

𝐾
2
𝑏
1

− 𝑎
2
)

+𝑏
1
(𝑐 − 𝑏

2

𝑎
1
− 𝑑
1
− 𝑐

𝑏
1

)) (𝛼
6
+ 𝛼
7
)

> 0.

(12)
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Then, the coefficient matrix 𝐴 is negative definite at this
equilibrium point and it is a stable node.

(4) At the equilibrium point 4, 𝑥 = 𝛼
6
− 𝛼
7
, 𝑦 = 𝛼

1
(𝛼
6
−

𝛼
7
) + 𝛽
1
. Noticing that 𝑥 and 𝑦 in (7) are in the first orthant,

then 𝛼
6
− 𝛼
7
> 0 and 𝛼

1
(𝛼
6
− 𝛼
7
) + 𝛽
1
> 0. The principal

minors of −𝐴 at this equilibrium point are as follows:

Δ
1
=
𝑎
1

𝐾
1

(𝛼
6
− 𝛼
7
) > 0,

Δ
2
= (2

𝑎
1

2
𝑎
2

𝐾
1
𝐾
2
𝑏
1

[1 −
1

𝐾
1

(𝛼
6
− 𝛼
7
)]

+
𝑎
1

𝐾
1

(2𝑏
2
(𝛼
6
− 𝛼
7
) + 𝑑
2
+ 𝑔 − 2

𝑎
2
(𝑑
1
+ 𝑐)

𝐾
2
𝑏
1

− 𝑎
2
)

+𝑏
1
(𝑐 − 𝑏

2

𝑎
1
− 𝑑
1
− 𝑐

𝑏
1

)) (𝛼
6
− 𝛼
7
)

< 0.

(13)

Therefore, if this equilibrium point exists, then it is an
unstable saddle point.

3. Optimal Control for
Mixed Drug Administration

A novel optimal control is the SDRE based optimal control.
The theoretical background of the “SDRE based optimal
control” has not been completely analyzed. This method
becomes in the attention of many control engineers due to
its computational simplicity and satisfactory experimental
results [5]. In this paper, we apply SDRE based optimal
control to the nonlinear cancer dynamics. The control input
to the model is the amount of chemotherapy drug.

3.1. SDRE Optimal Control Theory. Consider the determin-
istic, infinite horizon nonlinear optimal regulation (stabi-
lization) problem, such that it is full state observable, time
invariant, and affine in the input, represented in the following
form:

𝑥 = 𝑓 (𝑥) + 𝐵 (𝑥) 𝑢 (𝑡) , 𝑥 (0) = 𝑥
0
, (14)

where 𝑥 ∈ 𝑅𝑛 is the state vector, 𝑢 ∈ 𝑅𝑚 is the input vector,
𝑡 ∈ [0,∞) with 𝐶1(𝑅𝑛) functions𝑓 : 𝑅𝑛 → 𝑅

𝑛 and 𝐵 :

𝑅
𝑛
→ 𝑅
𝑛×𝑚, and𝐵(𝑥) ̸= 0 for all 𝑥.Without loss of generality,

the origin 𝑥 = 0 is assumed to be an equilibrium point. The
minimization of the infinite time performance index,

𝐽 (𝑥
0
, 𝑢 (⋅)) =

1

2
∫

∞

0

{𝑥
𝑇
(𝑡) 𝑄 (𝑡) 𝑥 (𝑡) + 𝑢

𝑇
(𝑡) 𝑅 (𝑥) 𝑢 (𝑡)} 𝑑𝑡,

(15)

is considered, which is nonquadratic in 𝑥 but quadratic in 𝑢.
The state and inputweightingmatrices are assumed to be state
dependent such that𝑄 : 𝑅

𝑛
→ 𝑅
𝑛 and 𝑅 : 𝑅𝑛 → 𝑅

𝑚×𝑚.
It is assumed that 𝑄 and 𝑅 are symmetric and 𝑅 is positive
definite:

𝑄 (𝑥) ≥ 0, 𝑅 (𝑥) > 0. (16)

Since𝑓(0) = 0 and𝑓(⋅) ∈ 𝐶1(𝑅𝑛), the system (14) can be
written in pseudo-linear form:

�̇� = 𝐴 (𝑥) 𝑥 + 𝐵 (𝑥) 𝑢, (17)

where 𝑓(𝑥) = 𝐴(𝑥)𝑥. In (17), 𝐴(𝑥) ∈ 𝑅
𝑛×𝑛 and 𝐵(𝑥) ∈

𝑅
𝑛×𝑚 are state dependent coefficient (SDC) matrices which

bring the nonlinear system described by (14) into a linear-
like representation. These matrices are not unique. However,
the recommended selection of the matrices 𝐴(𝑥) and 𝐵(𝑥) is
that they are controllable. The state dependent controllability
matrix is as follows:

𝑀(𝑥) = [𝐵 (𝑥)𝐴 (𝑥) 𝐵 (𝑥) ⋅ ⋅ ⋅ 𝐴
𝑛−1
(𝑥) 𝐵 (𝑥)] . (18)

In order to control the nonlinear system, the abovematrix
must have full rank for the domain for which the nonlinear
system is controlled.

Some optimal control problems need constraints that
must be applied on state variables or the control input. Choice
of weight matrices 𝑄(𝑥) and𝑅(𝑥) plays an important role in
satisfying these optimal control problems constraints.

Hamiltonian matrix for the optimal control problem is as
follows:

𝐻(𝑥, 𝑢, 𝜆) =
1

2
(𝑥
𝑇
(𝑡) 𝑄 (𝑡) 𝑥 (𝑡) + 𝑢

𝑇
(𝑡) 𝑅 (𝑥) 𝑢 (𝑡))

+ 𝜆
𝑇
(𝐴 (𝑥) 𝑥 + 𝐵 (𝑥) 𝑢)

− 𝑤
𝑇
(𝑢 − 𝑢min) − 𝑤

𝑇
(𝑢max − 𝑢) .

(19)

𝑤
𝑇 and 𝑤𝑇 are 𝑚 dimensional nonnegative vectors and are

presented to apply constraint to the control input and they
must satisfy the following conditions:

𝑤
𝑇
(𝑢 − 𝑢min) = 𝑤

𝑇
(𝑢max − 𝑢) = 0. (20)

From the Hamiltonian, the necessary conditions for optimal-
ity are

�̇� =
𝜕𝐻

𝜕𝜆
= 𝐴 (𝑥) 𝑥 + 𝐵 (𝑥) 𝑢,

�̇� = −
𝜕𝐻

𝜕𝑥
= −𝑄 (𝑥) − [

𝑑𝐴 (𝑥) 𝑥

𝑑𝑥
]

𝑇

𝜆 − [
𝑑𝐵 (𝑥) 𝑢

𝑑𝑥
]

𝑇

𝜆,

0 =
𝜕𝐻

𝜕𝑢
= 𝑅 (𝑥) 𝑢 + 𝐵

𝑇
(𝑥) 𝜆 − 𝑤 + 𝑤.

(21)

The last equation of (21) gives the optimal control of the
following form:

𝑢 (𝑥) = −𝑅
−1
(𝑥) (𝐵

𝑇
(𝑥) 𝜆 − 𝑤 + 𝑤) . (22)

By applying the theory of LQR, the adjoint state vector
has the form given by

𝜆 = 𝑃 (𝑥) . (23)

Finally, the control input is obtained in the following
form:

𝑢 (𝑥) = −𝑅
−1
(𝑥) 𝐵
𝑇
(𝑥) 𝑃 (𝑥) 𝑥, (24)
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which is the control input with the following feedback gain:

𝐾 (𝑥) = −𝑅
−1
(𝑥) 𝐵
𝑇
(𝑥) 𝑃 (𝑥) . (25)

𝑃(𝑥) is a symmetric state dependent and positive definite
matrix which is given by the solution of algebraic Riccati
equations:

𝐴
𝑇
(𝑥) 𝑃 (𝑥) + 𝑃 (𝑥)𝐴 (𝑥)

− 𝑃 (𝑥) 𝐵 (𝑥) 𝑅
−1
(𝑥) 𝐵
𝑇
(𝑥) 𝑃 (𝑥) + 𝑄 (𝑥) = 0.

(26)

Dynamics of the closed loop system is obtained according
to the following equation:

�̇� = (𝐴 (𝑥) − 𝐵 (𝑥)𝐾 (𝑥)) 𝑥. (27)

3.2. SDRE Optimal Control Design. The equilibrium point 3
(healthy state) is entered to the first orthant by using vaccine
therapy. Now, by using chemotherapy, the trajectory of the
system must be pushed toward the domain of attraction of
the healthy state. Afterwards, the trajectory of the system
approaches the equilibrium point 3 even after eliminating the
treatment.

In order to design the SDRE based optimal control, we
must rewrite the system in the form of (17) by shifting the
healthy state to the origin. New state variables are defined as
follows:

𝑥
1
= 𝑥 − 77.89,

𝑥
2
= 𝑦 − 0.158,

𝑥
3
= 𝑀.

(28)

In this case, the system of equations is as follows:

�̇�
1
= 𝑎
1
(𝑥
1
+ 77.89) (1 −

𝑥
1
+ 77.89

𝐾
1

)

− (𝑑
1
+ 𝑐) (𝑥

1
+ 77.89)

− 𝑏
1
(𝑥
1
+ 77.89) (𝑥

2
+ 0.158) − 𝐾

𝑥

𝑥
3
(𝑥
1
+ 77.89)

1.2 + 𝑥
3

,

�̇�
2
= 𝑎
2
(𝑥
2
+ 0.158) (1 −

𝑥
2
+ 0.158

𝐾
2

)

− 𝑑
2
(𝑥
2
+ 0.158) + 𝑐 (𝑥

1
+ 77.89)

− (𝑏
2
(𝑥
1
+ 77.89) + 𝑔) (𝑥

2
+ 0.158)

− 𝐾
𝑦

𝑥
3
(𝑥
2
+ 0.158)

1.2 + 𝑥
3

,

�̇�
3
= −𝜇𝑥

3
+ V
𝑀
(𝑡) .

(29)

To use the SDRE method, the above equations must be
represented in the form of pseudo-linear given by (17). The
matrices 𝐴(𝑥) and 𝐵(𝑥) are

𝐴

=

[
[
[
[
[
[

[

𝐴
11

−𝑏
1
(𝑥
1
+ 77.89) −𝐾

𝑥

𝑥
1
+ 77.89

1.2 + 𝑥
3

−𝑏
2
(𝑥
1
+ 0.158) + 𝑐 𝐴

22
−𝐾
𝑦

𝑥
2
+ 0.158

1.2 + 𝑥
3

0 0 −𝜇

]
]
]
]
]
]

]

,

𝐴
11

= 𝑎
1
(1 −

𝑥
1
+ 77.89

𝐾
1

) − 77.89
𝑎
1

𝐾
1

− (𝑑
1
+ 𝑐) − 0.158𝑏

1
,

𝐴
22

= 𝑎
2
(1 −

𝑥
2
+ 0.158

𝐾
2

) − 0.158
𝑎
2

𝐾
2

− 𝑑
2
− 𝑔 − 77.89𝑏

2
,

𝐵 = [0 0 1]
𝑇
.

(30)

The first step to create an optimal control problem is
deriving a desirable cost function. We use the following
matrix for the cost function:

𝑄 (𝑥) = [

[

0 0 0

0 100 0

0 0 1

]

]

, 𝑅 = 4 × 10
12
. (31)

4. Numerical Simulations

In this section, we simulate the behavior of the model by
considering the combined treatment. We assume that the
initial state of the system is in the domain of attraction of the
equilibrium point 2. As shown in Figure 2, the chemotherapy
treatment pushes the trajectory of the system to the domain
of attraction of equilibrium point 3 in an optimal manner.
It is created by using vaccine therapy and changing the
trajectory pattern of the system in the first orthant. Then,
the chemotherapy is stopped and the system approaches the
healthy state without any treatment. In other words, at the
end of the treatment, the system is placed in a self-destruction
cycle by changing the dynamics of the system.

The simulation results show that the combined vaccine
therapy and chemotherapy treatment is effective for finite
duration treatment. In other words, changing the dynamics
of the cancer in order to have finite duration treatment is
essential. In other words, if the vaccination is not used, the
system goes back to its cancer state after the elimination of the
treatment (Figure 4). In Figure 4, the cancer cells are reduced
by chemotherapy, but, after elimination of the treatment, the
system approaches the only equilibrium point existing in the
first orthant.

In [23], the authors proposed on-off regimens for min-
imizing the number of tumor cells and preserving the
healthy cells in an admissible level. However, these suggested
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Figure 2: The behavior of the system during chemotherapy: (a) the time evolution of the system; (b) trajectory pattern of the system and
system response after vaccine therapy.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

Time 

C
ell

s c
on

ce
nt

ra
tio

n

Cancer cells concentration
Healthy cells concentration

×1000

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

1

2

x (healthy cells concentration)

y
 (c

an
ce

r c
el

ls 
co

nc
en

tr
at

io
n)

×1000

×1000

(b)

Figure 3: The behavior of the system during finite duration chemotherapy without vaccine therapy: (a) the time evolution of the system; (b)
trajectory pattern of the system and system response without vaccine therapy.
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regimens are not able to complete elimination of tumor cells.
Three different types of quadratic and linear cost functions
are considered in [24, 25]. The optimal chemotherapy regi-
mens which are calculated based on these cost functions are
able to eradicate the tumor, but they do not consider finite
duration treatment method. In [16], de Pillis et al. proposed
a mixed immunotherapy and chemotherapy protocol for
cancer treatment. The main shortcoming of this protocol is
that, after elimination of the treatment, the cancer relapses
due to lack of a stable tumor free equilibrium point. In
addition, this proposed method is open loop which has
many deficiencies such as unrobustness in dealing with
parameter variation. In [5, 26, 27], the authors presented
SDRE method for cancer treatment. In the model used in
those papers, the tumor free equilibrium point is stable.
Therefore, changes in the dynamics of the system do not
need and the chemotherapy treatment is sufficient for finite
duration treatment. However, in the extended version of this
model presented in [16], the authors showed that the tumor
free equilibrium point is unstable.

In the model presented in this paper, it is shown in
Figure 4 that the chemotherapy alone is not an adequate
approach for finite cancer treatment duration. This could
be interpreted due to lack of a stable healthy state at the
beginning of the treatment (Figure 1). To overcome this prob-
lem, the mixed vaccine-chemotherapy is used. In addition,
the chemotherapy terms are exerted in a saturation manner,
which is in accordance with the physical observations [16].

We may conclude that if there is no stable healthy
equilibrium point in the model, the dynamics of the system
must be changed to reinforce the immune system. This is in
accordance with the physical observation. Many evidences
exist which show that in some cases the immune system is
capable of diminishing the tumor cells without the assistance
of external treatments [28].

It has to be noted that, in the proposed treatmentmethod,
there are also side effects of chemotherapy.

5. Conclusion

In this paper, we have modified the existing mathematical
models of cancer by mixed vaccine therapy and chemother-
apy. We showed that, to obtain the finite duration treatment,
a change in the dynamics of the system is necessary. In
other words, a suitable cancer treatment method is a method
that reduces the population of the tumor cells and also
changes the dynamics of the cancer. To change the dynamics
of the system, the vaccine therapy is used for changing
the parameters of the system and the chemotherapy is also
employed for pushing the system to the domain of attraction
of the healthy state in an optimal manner. The SDRE optimal
control is used for chemotherapy. It is shown that thismethod
has fast and easy derivation for suboptimal control for the
chemotherapy problem.
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