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Based on recent progress on moment problems, semidefinite optimization approach is proposed for estimating upper and lower
bounds on linear functionals defined on solutions of linear integral equations with smooth kernels.The approach is also suitable for
linear integrodifferential equations with smooth kernels. Firstly, the primal problem with smooth kernel is converted to a series of
approximative problems with Taylor polynomials obtained by expanding the smooth kernel. Secondly, two semidefinite programs
(SDPs) are constructed for every approximative problem. Thirdly, upper and lower bounds on related functionals are gotten by
applying SeDuMi 1.1R3 to solve the two SDPs. Finally, upper and lower bounds series obtained by solving two SDPs, respectively
infinitely approach the exact value of discussed functional as approximative order of the smooth kernel increases. Numerical results
show that the proposed approach is effective for the discussed problems.

1. Introduction

Semidefinite optimization has been successfully applied to
deal with many important problems [1–10] since it was
proposed in 1963 [11]. Recently, the authors in [10] presented
the semidefinite optimization method for obtaining guar-
anteed bounds on linear functionals defined on solutions
of linear differential equations with polynomial coefficients.
Instead of directly handling linear differential equations, the
approach gets the discussed bounds by solving SDPs based
on these equations and related functionals. Their numerical
results are very encouraging. The authors in [12] proposed
the semidefinite optimization method for estimating bounds
on linear functionals of solutions of linear integral and
integrodifferential equations with polynomial kernels. The
method does not directly solve these equations as successive
approximations method, Runge-Kuta one, direct computa-
tion one, the Adomian decomposition one, the modified
Adomian decomposition one, the variational iterative one,
and so forth in the references [13–21]. Numerical results show
that the proposed method can get guaranteed bounds on the
discussed functionals.

In this paper, we will extend the polynomial kernels in
[12] to the generally smooth kernels and propose semidefinite
optimization method for providing guaranteed bounds on
linear functionals defined on solutions of Fredholm and
Volterra integral equations with generally smooth kernels.
Firstly, we expand smooth kernel in Fredholm or Volterra
integral equation as a series of Taylor polynomials, and then
the Fredholm or Volterra integral equation with the smooth
kernel is converted to a series of integral equations with
polynomial kernels. Secondly, semidefinite programs (SDPs)
are constructed based on these approximative equations and
discussed functionals.Thirdly, we apply SeDuMi 1.1R3 [22] to
solve these SDPs and get upper and lower bounds sequences
which all converge to the exact value of related functional.
Finally, we illustrate the effectiveness of the method by
carrying out some numerical experiments.

The rest of this paper is organized as follows. In Section 2,
we propose semidefinite optimization method for estimating
guaranteed bounds on the linear functionals defined on
solution of Volterra integral equation of the second kernel
with smooth kernel. In Section 3, four numerical examples
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are tested. We end the paper with some conclusions and
discussions in the final section.

2. Semidefinite Optimization Method

In this section, we propose semidefinite optimizationmethod
for estimating guaranteed bounds on linear functionals
defined on solutions of Volterra integral equation of the
second kind with smooth kernel.

Throughout the work, we suppose that related integral
equations make unique solutions exist in the distribution
spaceA, in which the polynomial ring R[𝑥] is dense.
Primal Problem. Computing

∫
1

0

𝑥
𝑖
𝜙 (𝑥) (1)

in which 𝜙(𝑥) satisfies

𝜙 (𝑥) = 𝑓 (𝑥) + ∫
𝑥

0

𝐾 (𝑥, 𝑠) 𝜙 (𝑠) 𝑑𝑠, (2)

where 𝑓(𝑥) and the kernel 𝐾(𝑥, 𝑠) are given in advance, and
the former is an integrable function on the interval [0, +∞),
and the latter is an infinitely smooth function in variables 𝑥
and 𝑠.

Equation (2) is called Volterra integral equation of the
second kind [17].

We expand the kernel 𝐾(𝑥, 𝑠) as the following Taylor
polynomial with orders 𝑛 at 𝑥 = 0 and 𝑠 = 0:

𝐾 (𝑥, 𝑠) = 𝐾
𝑛
(𝑥, 𝑠) + 𝑅

𝑛
(𝑥, 𝑠) , (3)

where

𝐾
𝑛
(𝑥, 𝑠) = 𝐾 (0, 0) + (𝑥

𝜕

𝜕𝑥
+ 𝑠
𝜕

𝜕𝑠
)𝐾 (0, 0)

+
1

2!
(𝑥
𝜕

𝜕𝑥
+ 𝑠
𝜕

𝜕𝑠
)

2

𝐾 (0, 0)

+ ⋅ ⋅ ⋅ +
1

𝑛!
(𝑥
𝜕

𝜕𝑥
+ 𝑠
𝜕

𝜕𝑠
)

𝑛

𝐾 (0, 0) ,

(4)

𝑅
𝑛
(𝑥, 𝑠) =

1

(𝑛 + 1)!
(𝑥
𝜕

𝜕𝑥
+ 𝑠
𝜕

𝜕𝑠
)

𝑛+1

𝐾 (𝜃𝑥, 𝜃𝑠) , 0 ≤ 𝜃 ≤ 1,

(5)

(𝑥
𝜕

𝜕𝑥
+ 𝑠
𝜕

𝜕𝑠
)

𝑖

𝐾 (0, 0) =

𝑖

∑
𝑟=0

𝐶
𝑟

𝑖
(
𝜕
𝑖
𝐾(𝑥, 𝑠)

𝜕𝑥𝑖−𝑟𝜕𝑠𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0,𝑠=0
)𝑥
𝑖−𝑟
𝑠
𝑟
.

(6)

Therefore, (2) can be approximated by the following
integral equation:

𝜙 (𝑥) = 𝑓 (𝑥) + ∫
𝑥

0

𝐾
𝑛
(𝑥, 𝑠) 𝜙 (𝑠) 𝑑𝑠, (7)

in which 𝐾
𝑛
(𝑥, 𝑠) is of the form (4).

For simplicity, we rewrite𝐾
𝑛
(𝑥, 𝑠) in (4) as

𝐾
𝑛
(𝑥, 𝑠) =

𝑛

∑
𝑖=0

(

𝑛

∑
𝑗=0

ℎ
𝑖𝑗
𝑥
𝑗
)𝑠
𝑖
. (8)

Further, Primal Problem can be written as the approxima-
tive form.
Approximative Problem. Compute

∫
1

0

𝑥
𝑖
𝜙 (𝑥) , (9)

where 𝜙(𝑥), satisfies (7), in which 𝑓(𝑥) is just the one in (2)
and the kernel𝐾

𝑛
(𝑥, 𝑠) is defined by (8).

In [12], semidefinite optimization method has been pro-
posed for estimating bounds on linear functionals defined
on solution of linear integral equation with polynomial
kernel. Nowwe present semidefinite optimizationmethod for
providing guaranteed bounds on the linear functional (1) in
Primal Problem, which is a generalized form of the method
proposed in [12].

Algorithm 1.
Step 0. Let 𝑛 = 1,𝑁 = 1 and give a tolerance 𝜖.
Step 1. Convert Primal Problem to Approximative Problem
according to the above analysis.
Step 2. Generate linear equality constraints.

Suppose that the solution 𝜙(𝑥) of (7) is bounded from
below; that is, there exists 𝑐 such that

𝜙 (𝑥) ≥ 𝑐, ∀𝑥 ∈ [0, 1] . (10)

We define

𝑚
𝑖
= ∫
1

0

𝑥
𝑖
(𝜙 (𝑥) − 𝑐) , 𝑖 = 0, 1, 2, . . . (11)

which may be called moments even though 𝜙(𝑥)may not be
a probability distribution.

Multiplying (2) by the testing functions 𝜏(𝑥) = 𝑥𝑙, 𝑙 =
0, 1, 2, . . . and integrating it over the interval [0, 1], we can get

∫
1

0

𝑥
𝑙
𝜙 (𝑥)

= ∫
1

0

𝑥
𝑙
𝑓 (𝑥) + ∫

1

0

(𝑥
𝑙
∫
𝑥

0

𝐾
𝑛
(𝑥, 𝑠) 𝜙 (𝑠) 𝑑𝑠) 𝑑𝑥

= ∫
1

0

𝑥
𝑙
𝑓 (𝑥) +

𝑛

∑
𝑖=0

∫
1

0

(∫
𝑥

0

(

𝑛

∑
𝑗=0

ℎ
𝑖𝑗
𝑥
𝑗+𝑙
)𝑠
𝑖
𝜙 (𝑠) 𝑑𝑠)𝑑𝑥

= ∫
1

0

𝑥
𝑙
𝑓 (𝑥) +

𝑛

∑
𝑖=0

∫
1

0

𝑠
𝑖
𝜙 (𝑠) 𝑑𝑠 ∫

1

𝑠

(

𝑛

∑
𝑗=0

ℎ
𝑖𝑗
𝑥
𝑗+𝑙
)𝑑𝑥

= ∫
1

0

𝑥
𝑙
𝑓 (𝑥) +

𝑛

∑
𝑖=0

𝑛

∑
𝑗=0

ℎ
𝑖𝑗

𝑗 + 𝑙 + 1

× (∫
1

0

𝑠
𝑖
𝜙 (𝑠) 𝑑𝑠 − ∫

1

0

𝑠
𝑖+𝑗+𝑙+1

𝜙 (𝑠) 𝑑𝑠) .

(12)
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By (11), we obtain

∫
1

0

𝑥
𝑖
𝜙 (𝑥) = 𝑚

𝑖
+

𝑐

𝑖 + 1
. (13)

Substituting (13) into (12), we can get

𝑚
𝑙
+

𝑛

∑
𝑖=0

𝛼
𝑖𝑙
𝑚
𝑖
+

𝑛

∑
𝑖=0

𝑛

∑
𝑗=0

𝛾
𝑖𝑗𝑙
𝑚
𝑖+𝑗+𝑙+1

= 𝛽
𝑙
, (14)

in which

𝛼
𝑖𝑙
= −

𝑛

∑
𝑗=0

ℎ
𝑖𝑗

𝑗 + 𝑙 + 1
,

𝛾
𝑖𝑗𝑙
=

ℎ
𝑖𝑗

𝑗 + 𝑙 + 1
,

𝛽
𝑙
=

𝑛

∑
𝑖=0

𝑛

∑
𝑗=0

𝑐ℎ
𝑖𝑗

(𝑖 + 1) (𝑖 + 𝑗 + 𝑙 + 2)
−

𝑐

𝑙 + 1
+ ∫
1

0

𝑥
𝑙
𝑓 (𝑥) .

(15)

Because the solution 𝜙(𝑥) of (2) is in the distribution
spaceA, in whichR[𝑥] is dense, (7) can be transformed into
the system which consists of the equations as described by
(14) where 𝑙 = 0, 1, 2, . . ..
Step 3. Generate semidefinite constraints.

It is obvious that 𝑥 ∈ [0, 1] is equivalent to 𝑥 ∈ {𝑥 |
𝑓
1
(𝑥) = 𝑥 ≥ 0, 𝑓

2
(𝑥) = 1 − 𝑥 ≥ 0}.

Denote

F
𝑀
(𝑥) = [1 𝑥 𝑥

2
⋅ ⋅ ⋅ 𝑥
𝑀]
󸀠

, (16)

where𝑀 is a nonnegative integer.
By the method in [10], for 𝑥 ∈ [0, 1], we have

∫
1

0

(𝜙 (𝑥) − 𝑐) F
𝑀
(𝑥)F
𝑀
(𝑥)
󸀠
∏
𝑗∈I

𝑓
𝑗
(𝑥) ⪰ 0, I ⊆ {1, 2} .

(17)
We can obtain the following positive semidefinite matri-

ces:
𝑄
0
⪰ 0, 𝑄

1
⪰ 0,

𝑄
0
− 𝑄
1
⪰ 0, 𝑄

1
− 𝑄
2
⪰ 0,

(18)

in which

𝑄
0
= (

𝑚
0

𝑚
1
⋅ ⋅ ⋅ 𝑚

𝑀

𝑚
1

𝑚
2
⋅ ⋅ ⋅ 𝑚

𝑀+1

...
... d

...
𝑚
𝑀
𝑚
𝑀+1

⋅ ⋅ ⋅ 𝑚
2𝑀

),

𝑄
1
= (

𝑚
1

𝑚
2
⋅ ⋅ ⋅ 𝑚

𝑀+1

𝑚
2

𝑚
3
⋅ ⋅ ⋅ 𝑚

𝑀+2

...
... d

...
𝑚
𝑀+1

𝑚
𝑀+2

⋅ ⋅ ⋅ 𝑚
2(𝑀+1)

),

𝑄
2
= (

𝑚
2

𝑚
3
⋅ ⋅ ⋅ 𝑚

𝑀+2

𝑚
3

𝑚
4
⋅ ⋅ ⋅ 𝑚

𝑀+3

...
... d

...
𝑚
𝑀+2

𝑚
𝑀+3

⋅ ⋅ ⋅ 𝑚
2(𝑀+2)

),

(19)

where𝑀 = 2𝑛 + 𝑁 + 1 in the three matrices 𝑄
0
, 𝑄
1
, and 𝑄

2
,

by replacing ∫1
0
(𝜙(𝑥)−𝑐)𝑥

𝑖 in (17) with𝑚
𝑖
and setting the four

subsets of the set {1, 2} toI in (17), respectively.
Step 4. Construct two SDPs.

Assuming that the testing function with the highest
degree is 𝑥𝑁, we get the following two SDPs:

max /min 𝑚
𝑖
+

𝑐

𝑖 + 1
,

s.t. (14) , 𝑙 = 0, 1, . . . , 𝑁,

(18) ,

(20)

where decision variables are𝑚
𝑖
, 𝑖 = 0, 1, . . . , 2(𝑀 + 2).

Step 5. Apply SeDuMi 1.1R3 to solve the two SDPs.

Denote by𝑚(max,𝑁,𝑛)
𝑖

the decision variable𝑚
𝑖
obtained by

solving the above maximizing programming. 𝑚(min,𝑁,𝑛)
𝑖

has
similar meaning.
Step 6. Define whether the highest degree 𝑁 of the testing
function increases or not.

When𝑁 = 1, go to Step 7; or if
󵄨󵄨󵄨󵄨󵄨
𝑚
(max,𝑁,𝑛)
𝑖

− 𝑚
(max,𝑁−1,𝑛)
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖, 𝑖 = 0, 1, . . . , 2𝑛 + 𝑁 + 1,

󵄨󵄨󵄨󵄨󵄨
𝑚
(min,𝑁,𝑛)
𝑖

− 𝑚
(min,𝑁−1,𝑛)
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖, 𝑖 = 0, 1, . . . , 2𝑛 + 𝑁 + 1

(21)

all hold, go to Step 7, or let𝑁 := 𝑁 + 1 and go to Step 4.
Step 7. Judge whether iteration goes on or not.

When 𝑛 = 1, go to Step 2, or if
󵄨󵄨󵄨󵄨󵄨
𝑚
(max,𝑁,𝑛)
𝑖

− 𝑚
(max,𝑁,𝑛−1)
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖, 𝑖 = 0, 1, . . . , 2𝑛 + 𝑁 + 1,

󵄨󵄨󵄨󵄨󵄨
𝑚
(min,𝑁,𝑛)
𝑖

− 𝑚
(min,𝑁,𝑛−1)
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖, 𝑖 = 0, 1, . . . , 2𝑛 + 𝑁 + 1

(22)

all hold, stop the iteration and output 𝑚(max,𝑁,𝑛)
𝑖

and
𝑚
(min,𝑁,𝑛)
𝑖

, which are upper and lower bounds of ∫1
0
𝑥
𝑖
𝜙(𝑥),

respectively; or let 𝑛 := 𝑛 + 1 and go to Step 1.

Remark 2. Obviously, 𝑥 ∈ [0, 1] in Algorithm 1 can extend
to 𝑥 ∈ [𝑎, 𝑏] with 𝑎 < 𝑏. Of course, some necessary
modifications must be done.

Remark 3. The proposed method is also suitable for other
linear integral and integrodifferential equations with smooth
kernels.

Remark 4. In general, 𝑐 in (5) is unknown. Butwe do not need
infimum of 𝜙(𝑥) over [0, 1], so we can set a small value to 𝑐.

Remark 5. The semidefinite constraints (18) in Algorithm 1
only depend on the integral interval [0, 1]. The moments
𝑚
2𝑛+𝑁+2

, . . . , 𝑚
2(2𝑛+𝑁+3)

in the semidefinite constraints (18)
do not appear in the linear constraints. They are extension
moments (see [9] or [10] for details).
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Remark 6. In practical applications, for reducing compu-
tation amounts of Algorithm 1, we usually set two suitable
positive integers to 𝑛 and𝑁, respectively.

Remark 7. In some cases,𝐾(𝑥, 𝑠) in (2) can also be expanded
as Taylor polynomials in variables 𝑥 and 𝑠 with different
orders, respectively.

3. Numerical Experiments

In this section, we give four examples to illustrate the
effectiveness of Algorithm 1. For simplicity, the interval [0, 1]
is always taken as the integral interval in these examples.

3.1. Volterra Integral Equation of the First Kind with
Smooth Kernel.

Example 1. Computing

∫
1

0

𝑥
𝑖
𝜙 (𝑥) , (23)

where 𝜙(𝑥), satisfies

∫
𝑥

0

(cos𝑥 + 𝑒𝑡) 𝜙 (𝑡) 𝑑𝑡

= −
1

2
+
1

2
𝑒
𝑥 cos𝑥 + 1

2
𝑒
𝑥 sin𝑥 + sin𝑥 cos𝑥.

(24)

The exact solution of (24) is 𝜙(𝑥) = cos𝑥.
Multiplying (24) by 𝑥𝑖 and integrating it over the interval

[0, 1], we can get

∫
1

0

(∫
𝑥

0

𝑥
𝑖
(cos𝑥 + 𝑒𝑡) 𝜙 (𝑡) 𝑑𝑡) 𝑑𝑥

= ∫
1

0

(
1

2
+
1

2
𝑒
𝑥 cos𝑥 + 1

2
𝑒
𝑥 sin𝑥 + sin𝑥 cos𝑥)𝑥𝑖.

(25)

In this example, 𝑢(𝑥) ≥ 0 for all 𝑥 ∈ [0, 1]. Zero is set to 𝑐
in (11). Then we define

𝑚
𝑖
= ∫
1

0

𝑥
𝑖
𝜙 (𝑥) . (26)

Taylor polynomial with degree 6 of cos𝑥 at 𝑥 = 0 and Taylor
polynomial with degree 7 of 𝑒𝑡 at 𝑡 = 0 are as follows:

cos𝑥 ≈ 𝑔
1
(𝑥) = 𝑎

0
+ 𝑎
1
𝑥
2
+ 𝑎
2
𝑥
4
+ 𝑎
3
𝑥
6
,

𝑒
𝑡
≈ 𝑔
2
(𝑡) = 𝑏

0
+ 𝑏
1
𝑡 + 𝑏
2
𝑡
2
+ 𝑏
3
𝑡
3

+ 𝑏
4
𝑡
4
+ 𝑏
5
𝑡
5
+ 𝑏
6
𝑡
6
+ 𝑏
7
𝑡
7
,

(27)

where 𝑎
0
= 1, 𝑎

1
= −1/2, 𝑎

2
= 1/24, 𝑎

3
= −1/720, 𝑏

0
= 1,

𝑏
1
= 1, 𝑏
2
= 1/2, 𝑏

3
= 1/6, 𝑏

4
= 1/24, 𝑏

5
= 1/120, 𝑏

6
= 1/720,

and 𝑏
7
= 1/5040, respectively.

Table 1: Upper and lower bounds for Example 1 for𝑁 = 28.

UN-Ob LLFoS ULFoS ELFoS Error
𝑚
0

0.842 0.855 0.841 0.014
𝑚
1

0.382 0.396 0.382 0.014
𝑚
2

0.240 0.253 0.239 0.014
𝑚
3

0.172 0.186 0.172 0.014
𝑚
4

0.134 0.147 0.133 0.014
𝑚
5

0.109 0.122 0.108 0.014
𝑚
6

0.092 0.105 0.091 0.014
𝑚
7

0.079 0.092 0.078 0.014
𝑚
8

0.069 0.083 0.069 0.014
𝑚
9

0.062 0.075 0.061 0.014
𝑚
10

0.056 0.069 0.055 0.014
...

...
...

...
...

𝑚
20

0.028 0.042 0.029 0.013

Substituting (27) into (25) and replacing ∫1
0
𝑡
𝑖
𝜙(𝑡)𝑑𝑡 with

𝑚
𝑖
, we can obtain

(
𝑎
0

𝑖 + 1
+
𝑎
1

𝑖 + 3
+
𝑎
2

𝑖 + 5
+
𝑎
3

𝑖 + 7
+
𝑏
0

𝑖 + 1
)𝑚
0

+
𝑏
1

𝑖 + 1
𝑚
1
+
𝑏
2

𝑖 + 1
𝑚
2
+
𝑏
3

𝑖 + 1
𝑚
3

+
𝑏
4

𝑖 + 1
𝑚
4
+
𝑏
5

𝑖 + 1
𝑚
5
+
𝑏
6

𝑖 + 1
𝑚
6
+
𝑏
7

𝑖 + 1
𝑚
7

− (
𝑏
0

𝑖 + 1
+
𝑎
0

𝑖 + 1
)𝑚
𝑖+1
−
𝑏
1

𝑖 + 1
𝑚
𝑖+2

− (
𝑏
2

𝑖 + 1
+
𝑎
1

𝑖 + 3
)𝑚
𝑖+3
−
𝑏
3

𝑖 + 1
𝑚
𝑖+4

− (
𝑏
4

𝑖 + 1
+
𝑎
2

𝑖 + 5
)𝑚
𝑖+5
− (

𝑏
6

𝑖 + 1
+
𝑎
3

𝑖 + 7
)𝑚
𝑖+7

−
𝑏
5

𝑖 + 1
𝑚
𝑖+6
−
𝑏
7

𝑖 + 1
𝑚
𝑖+8

= ∫
1

0

(
1

2
+
1

2
𝑒
𝑥 cos𝑥 + 1

2
𝑒
𝑥 sin𝑥 + sin𝑥 cos𝑥)𝑥𝑖.

(28)

For 𝑥 ∈ [0, 1], we know that the semidefinite constraints are
the same as (18).

We construct the following two SDPs:

max /min 𝑚
𝑖

s.t. (28) , 𝑖 = 0, 1, . . . , 𝑁,

(18) .

(29)

Letting 𝑁 = 28, we apply SeDuMi 1.1R3 to solve the
max /min SDPs. The partial numerical results are reported
in Table 1.

In Table 1, UN-Ob, LLFoS, ULFoS, and ELFoS mean
decision variables or objective functions in the above two
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Table 2: Upper and lower bounds for Example 1 for𝑁 = 50.

UN-Ob LLFoS ULFoS ELFoS Error
𝑚
0

0.84148 0.84148 0.84147 0.00001
𝑚
1

0.38180 0.38180 0.38177 0.00003
𝑚
2

0.23916 0.23916 0.23913 0.00003
𝑚
3

0.17176 0.17176 0.17174 0.00002
𝑚
4

0.13309 0.13309 0.13308 0.00001
𝑚
5

0.10823 0.10823 0.10822 0.00001
𝑚
6

0.09100 0.09100 0.09098 0.00002
𝑚
7

0.07839 0.07839 0.07837 0.00002
𝑚
8

0.06878 0.06878 0.06877 0.00001
𝑚
9

0.06123 0.06123 0.06122 0.00001
𝑚
10

0.05515 0.05515 0.05514 0.00001
...

...
...

...
...

𝑚
20

0.02750 0.02750 0.02750 0.00000
...

...
...

...
...

𝑚
30

0.01826 0.01826 0.01826 0.00000
...

...
...

...
...

𝑚
40

0.01366 0.01366 0.01366 0.00000

Table 3: Upper and lower bounds for Example 2 for𝑁 = 50.

UN-Ob LLFoS ULFoS ELFoS Error
𝑚
0

1.333335 1.333335 1.333333 0.000000
𝑚
1

0.916669 0.916669 0.916667 0.000002
𝑚
2

0.700002 0.700002 0.700000 0.000002
𝑚
3

0.566668 0.566668 0.566667 0.000001
𝑚
4

0.476192 0.476192 0.476190 0.000002
𝑚
5

0.410716 0.410716 0.410714 0.000002
𝑚
6

0.361113 0.361113 0.361111 0.000002
𝑚
7

0.322224 0.322224 0.322222 0.000002
𝑚
8

0.290910 0.290910 0.290909 0.000001
𝑚
9

0.265153 0.265153 0.265152 0.000000
𝑚
10

0.243591 0.243591 0.243590 0.000000
...

...
...

...
...

𝑚
20

0.134388 0.134388 0.134387 0.000000
...

...
...

...
...

𝑚
30

0.092804 0.092804 0.092803 0.000000
...

...
...

...
...

𝑚
40

0.070875 0.070875 0.070875 0.000000

SDPs, lower bounds, upper bounds, and exact values on linear
functionals defined on solution of (24), respectively. Error
means |ULFoS − ELFoS|. These signs in Tables 2, 3, 4, and
5 have the same meanings. From Table 1, we can see that for
every𝑚

𝑖
, |ULFoS−ELFoS| is more than 10−2, and these errors

do not decrease as𝑁 increases. Maybe the case is resulted in
by accumulative error.

In order to increase the precision of numerical results of
Example 1, we first convert (24) to the following equivalent

Table 4: Upper and lower bounds for Example 3 for𝑁 = 50.

UN-Ob LLFoS ULFoS ELFoS Error
𝑚
0

0.666762 0.666762 0.666667 0.000095
𝑚
1

0.291711 0.291711 0.291667 0.000044
𝑚
2

0.183362 0.183362 0.183333 0.000029
𝑚
3

0.133354 0.133354 0.133333 0.000021
𝑚
4

0.104778 0.104778 0.104762 0.000016
𝑚
5

0.086323 0.086323 0.086310 0.000013
𝑚
6

0.073424 0.073424 0.073413 0.000009
𝑚
7

0.0638985 0.063985 0.063889 0.000014
𝑚
8

0.0565740 0.0566574 0.056566 0.000008
𝑚
9

0.050765 0.050765 0.050758 0.000007
𝑚
10

0.046044 0.046044 0.046037 0.000003
...

...
...

...
...

𝑚
20

0.023907 0.023907 0.023904 0.000003
...

...
...

...
...

𝑚
30

0.016162 0.016162 0.016159 0.000003
...

...
...

...
...

𝑚
40

0.012210 0.012210 0.012209 0.000001

Table 5: Upper and lower bounds for Example 4 for𝑁 = 50.

UN-Ob LLFoS ULFoS ELFoS Error
𝑚
0

1.7185 1.7185 1.7183 0.0002
𝑚
1

1.0002 1.0002 1.0000 0.0002
𝑚
2

0.7185 0.7185 0.7183 0.0002
𝑚
3

0.5636 0.5636 0.5634 0.0001
𝑚
4

0.4647 0.4647 0.4645 0.0001
𝑚
5

0.3957 0.3957 0.3956 0.0001
𝑚
6

0.3448 0.3448 0.3447 0.0001
𝑚
7

0.3056 0.3056 0.3055 0.0001
𝑚
8

0.2744 0.2744 0.2744 0.0000
𝑚
9

0.2491 0.2491 0.2490 0.0001
𝑚
10

0.2281 0.2280 0.2280 0.0000
...

...
...

...
...

𝑚
20

0.1238 0.1238 0.1238 0.0000
...

...
...

...
...

𝑚
30

0.0850 0.0850 0.0850 0.0000
...

...
...

...
...

𝑚
40

0.0648 0.0648 0.0648 0.0000

integral equation (30) and then apply Algorithm 1 to estimate
(23), where 𝜙(𝑥) satisfies (30).

Differentiating both sides of (24) with respect to 𝑥 gives

(cos𝑥 + 𝑒𝑥) 𝜙 (𝑥) − ∫
𝑥

0

sin𝑥𝜙 (𝑡) 𝑑𝑡

= cos𝑥 ⋅ 𝑒𝑥 + cos2𝑥 − sin2𝑥.
(30)
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Use the two polynomials

cos𝑥 + 𝑒𝑥 ≈ 𝑔
1
(𝑥) = 𝑎

󸀠

0
+ 𝑎
󸀠

1
𝑥 + 𝑎
󸀠

2
𝑥
3

+ 𝑎
󸀠

3
𝑥
4
+ 𝑎
󸀠

4
𝑥
5
+ 𝑎
󸀠

5
𝑥
7
,

sin𝑥 ≈ 𝑔
2
(𝑥) = 𝑏

󸀠

0
𝑥 + 𝑏
󸀠

1
𝑥
3
,

(31)

where 𝑎󸀠
0
= 2, 𝑎󸀠

1
= 1, 𝑎󸀠

2
= 1/6, 𝑎󸀠

3
= 1/12, 𝑎󸀠

4
= 1/120,

𝑎
󸀠

5
= 1/5040, 𝑏󸀠

0
= 0.9973, and 𝑏󸀠

1
= −0.1563, to approximate

cos𝑥 + 𝑒𝑥 and sin𝑥, respectively.
Substituting (31) into (30), multiplying its both sides by

𝑥
𝑖, and integrating it over the interval [0, 1], we have

∫
1

0

𝑔
1
(𝑥) 𝑥
𝑖
𝜙 (𝑥) − ∫

1

0

(𝑥
𝑖
𝑔
2
(𝑥) ∫
𝑥

0

𝜙 (𝑡) 𝑑𝑡) 𝑑𝑥

= ∫
1

0

(cos𝑥 ⋅ 𝑒𝑥 + cos2𝑥 − sin2𝑥) 𝑥𝑖.

(32)

Let

𝑚
𝑖
= ∫
1

0

𝑥
𝑖
𝜙 (𝑥) . (33)

Substituting (33) into (32) and simplifying it, we get

− (
𝑏
󸀠

0

𝑖 + 2
+
𝑏
󸀠

1

𝑖 + 4
)𝑚
0
+ 𝑎
󸀠

0
𝑚
𝑖
+ 𝑎
󸀠

1
𝑚
𝑖+1

+ 𝑏
󸀠

0
𝑚
𝑖+2
+ 𝑎
󸀠

3
𝑚
𝑖+3
+ 𝑏
󸀠

1
𝑚
𝑖+4

+ 𝑎
󸀠

4
𝑚
𝑖+5
+ 𝑎
󸀠

5
𝑚
𝑖+7

= ∫
1

0

(cos𝑥 ⋅ 𝑒𝑥 + cos2𝑥 − sin2𝑥) 𝑥𝑖.

(34)

According to 𝑥 ∈ [0, 1], we have semidefinite optimiza-
tion as stated by (18).

We construct the SDPs:
max /min 𝑚

𝑖

s.t. (34) , 𝑖 = 0, 1, . . . , 𝑁,

(18) .

(35)

Letting 𝜖 = 10−8 and 𝑁 = 50, we apply SeDuMi 1.1R3
to solve the above SDPs. Some numerical results are listed in
Table 2.

From Table 2 we can see that the numerical results are
accurate to four decimal points of the related exact values.
Numerical results inTable 2 show that the proposed approach
can efficiently estimate upper and lower bounds on the linear
functionals ∫1

0
𝑥
𝑖
𝜙(𝑥) defined on solution of Volterra integral

equation of the first kind. If we want to increase precision
of the numerical results, we can reach the goal by expanding
cos𝑥 and 𝑒𝑡 in the kernel of (24) as Taylor polynomials with
higher degrees. We also solved the max/min programs when
𝑁 = 49. Numerical results show that |𝑚(max,50,7)

𝑗
−𝑚
(max,49,7)
𝑗

|

and |𝑚(min,50,7)
𝑗

− 𝑚
(min,49,7)
𝑗

|, 𝑗 = 0, 1, . . . , 40, are all less than
10
−9. So the examples are as follows.

3.2. Volterra Integral Equation of the Second Kind with
Smooth Kernel

Example 2. Computing

∫
1

0

𝑥
𝑖
𝜙 (𝑥) , (36)

where 𝜙(𝑥), satisfies

𝜙 (𝑥) = ∫
𝑥

0

(1 + 𝑥𝑒
𝑡
) 𝜙 (𝑡) 𝑑𝑡 + 2𝑥 −

1

3
𝑥
3
− 𝑥
3
𝑒
𝑥
. (37)

The exact solution of the equation is 𝜙(𝑥) = 𝑥2 + 2𝑥.
Define𝑚

𝑖
as stated by (26). We expand 𝑒𝑡 as follows:

𝑒
𝑡
≈ 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑡
2
+ 𝑎
3
𝑡
3
+ 𝑎
4
𝑡
4
, (38)

where 𝑎
0
= 1, 𝑎

1
= 1, 𝑎

2
= 1/2, 𝑎

3
= 1/6, and 𝑎

4
= 1/24.

Multiplying (37) in which 𝑥𝑒𝑡 is replaced with 𝑥(𝑎
0
+𝑎
1
𝑡+

𝑎
2
𝑡
2
+ 𝑎
3
𝑡
3
+ 𝑎
4
𝑡
4
) by 𝑥𝑖 and integrating it over the interval

[0, 1], we can get

− (
1

𝑖 + 1
+

1

𝑖 + 2
)𝑚
0
−
𝑎
1

𝑖 + 1
𝑚
1
−
𝑎
2

𝑖 + 1
𝑚
2

−
𝑎
3

𝑖 + 1
𝑚
3
−
𝑎
4

𝑖 + 1
𝑚
4
−
𝑎
5

𝑖 + 1
𝑚
5

−
𝑎
6

𝑖 + 1
𝑚
6
−
𝑎
7

𝑖 + 1
𝑚
7
+ 𝑚
𝑖
+

1

𝑖 + 1
𝑚
𝑖+1

+
𝑎
0

𝑖 + 2
𝑚
𝑖+2
+
𝑎
1

𝑖 + 2
𝑚
𝑖+3
+
𝑎
2

𝑖 + 2
𝑚
𝑖+4

+
𝑎
3

𝑖 + 5
𝑚
𝑖+1
+
𝑎
4

𝑖 + 2
𝑚
𝑖+6
+
𝑎
5

𝑖 + 2
𝑚
𝑖+7

+
𝑎
6

𝑖 + 8
𝑚
𝑖+1
+
𝑎
7

𝑖 + 2
𝑚
𝑖+9

= ∫
1

0

(2𝑥 −
1

3
𝑥
3
− 𝑥
3
𝑒
𝑥
)𝑥
𝑖
.

(39)

Because 𝑥 ∈ [0, 1], we obtain semidefinite constraints as
stated by (18).

We construct the following SDPs:

max /min 𝑚
𝑖

s.t. (39) 𝑖 = 0, 1, . . . , 𝑁,

(18) .

(40)

Letting 𝜖 = 10−8 and 𝑁 = 50, we apply SeDuMi 1.1R3 to
solve the above SDPs. The partial numerical upper and lower
bounds are listed in Table 3.

Numerical results in Table 3 show that the proposed
method is very effective for obtaining guaranteed upper and
lower bounds whose precision can reach 10−5.
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3.3. Fredholm Integral Equation of the Second Kind with
Smooth Kernel

Example 3. Computing

∫
1

0

𝑥
𝑖
𝜙 (𝑥) , (41)

where 𝜙(𝑥), satisfies

𝜙 (𝑥) = ∫
1

0

(𝑥
2 sin 𝑡 + 4 cos 𝑡) 𝜙 (𝑡) 𝑑𝑡

+
1 − cos 1
2

𝑥
2
− 𝑥 − 3 + 2 sin 1.

(42)

The exact solution of (42) is 𝜙(𝑥) = (𝑥2/2) − 𝑥 + 1.
Chebyshev polynomial with degree 3 of sin 𝑡 at 𝑡 = 0 and

Chebyshev polynomial with degree 4 of cos 𝑡 at 𝑡 = 0 are as
follows:

sin 𝑡 ≈ 0.9974𝑡 − 0.1563𝑡3,

cos 𝑡 ≈ 1.0005 − 0.5040𝑡2 + 0.0440𝑡4.
(43)

Define𝑚
𝑖
as (26). Substituting (43) into (42), multiplying

(42) by 𝑥𝑖, and integrating it over the interval [0, 1], we have

𝑚
𝑖
−
0.9974

𝑖 + 3
𝑚
1
+
0.1563

𝑖 + 3
𝑚
3
−
4.002

𝑖 + 1
𝑚
0

+
2.016

𝑖 + 1
𝑚
2
−
0.176

𝑖 + 1
𝑚
4

=
1 − cos 1
2 (𝑖 + 3)

−
1

𝑖 + 2
−
3 − 2 sin 1
𝑖 + 1

.

(44)

For 𝑥 ∈ [0, 1], we get semidefinite constraints as stated by
(18).

We construct the following SDPs:

max /min 𝑚
𝑖

s.t. (44) , 𝑖 = 0, 1, . . . , 𝑁,

(18) .

(45)

Letting 𝜖 = 10−8 and 𝑁 = 50, we apply SeDuMi 1.1R3
to solve the above SDPs and get numerical upper and lower
bounds of related functionals which are partially listed in
Table 4.

Obviously, the numerical results in Table 4 are accurate to
four decimal points of the exact functional values.

3.4. Volterra Integrodifferential Equation with Smooth Kernel

Example 4. Computing

∫
1

0

𝑥
𝑖
𝜙 (𝑥) , (46)

where 𝜙(𝑥), satisfies

𝜙
󸀠
(𝑥) − ∫

𝑥

0

(𝑒
𝑥
+ 2) 𝜙 (𝑡) 𝑑𝑡 = 2 − 𝑒

2𝑥 (47)

with boundary condition 𝜙(0) = 1.

The exact solution of (47) is 𝜙(𝑥) = 𝑒𝑥.
Integrating (47) over the interval [0, 1], we get

𝜙 (𝑥) − ∫
𝑥

0

(𝑒
𝑥
+ 2𝑥 − 𝑒

𝑡
− 2𝑡) 𝜙 (𝑡) 𝑑𝑡 = 2𝑥 −

𝑒
2𝑥

2
+
3

2
.

(48)

Replace 𝑒𝑡 in the kernel of (48) with (38), and do the
similar replacement for 𝑒𝑥 in the kernel. Applying SeDuMi
1.1R3 to solve the corresponding approximative problem
which is just Volterra integral equation of the second kind,
we get numerical results partially reported in Table 5.

Numerical results in Table 5 show that the semidefinite
optimization method can provide guaranteed bounds on
linear functionals defined on solution of (47). If we hope to
obtainmore accurate numerical results, we can expand 𝑒𝑡 and
𝑒
𝑥 in the kernel of (47) as Taylor polynomials with higher
degrees.

4. Conclusions and Discussions

In this paper, we have presented the semidefinite optimiza-
tion method for providing guaranteed bounds on linear
functionals defined on solutions of linear integral equations
with smooth kernels. Four examples show that the proposed
approach is effective for estimating bounds on linear integral
and integrodifferential equations with smooth kernels. The
proposed approach requires that the related integral equation
is linear. It cannot be directly applied to solve the nonlinear
integral equation. So next work is to improve the proposed
method, so that it can handle nonlinear problems.
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