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The Chinese commodity futures markets neglect the existence of the risk hedge and diversification between futures contracts, thus
leading to overcharge futures portfolio holders’ maintenance margins. To this end, this paper proposes a new method, namely,
the multivariate t-Copula-POT-PSRM method, which combines three models, that is, the multivariate t-Copula, the peaks over
threshold (POT), and the power spectral risk measures (PSRM), to set futures portfolios’ maintenance margins. In the empirical
analysis, we first construct four kinds of futures portfolios and set their maintenance margins by using the new method. Then,
we introduce two evaluation indicators, namely, the prudence index (PI) and the opportunity cost index (OCI), to assess the
effectiveness of the proposed method. We also compare the outcomes of the two evaluation indicators of the new method with
those of the widely used linear additive model. The empirical results show that the new method can, respectively, lower the OCI
value of all four kinds of futures portfolios for the In-sample period and theOut-of-sample periodwithout significantly reducing the
PI value as against the traditional model, which implies that the proposed method can be used to balance security and investment
efficiency in the futures market.

1. Introduction

As a means of controlling risk as well as a guarantee of
fulfilling the contracts in futures trading, futures margins
are indispensable to the futures market and even the entire
capital market. According to the nature and role of futures
margins, they can be classified into the clearing margin and
the trading margin. The trading margin includes the initial
margin and the maintenance margin. The initial margin is
the minimum levels to open futures positions, while the
maintenance margin refers to the minimum levels to carry
futures positions. Setting maintenance margins runs through
the whole course of futures trading, and the effectiveness of
the maintenance margins greatly influences the stability and
efficiency of the futures market.

Although the Chinese futures market is an emerging
market, it has become the world’s biggest commodity futures
market since its turnover exceeded RMB 300 trillion in 2010.
With the sustainable growth of the Chinese futures market,
the international influence of the Chinese commodity futures

exchanges is growing rapidly. There are three commodity
futures exchanges in Chinese commodity futures markets,
namely, the Dalian Commodity Exchange (DCE), the Shang-
hai Commodity Exchange (SHFE), and the ZhengzhouCom-
modity Exchange (ZCE). The Chinese commodity futures
exchanges are in the initial period from the quantitative
expansion to the qualitative leap nowadays, but also face with
some challenges especially in setting maintenance margins.
The three commodity futures exchanges only consider a
single futures contract to set the maintenance margins, while
ignoring the existence of the risk diversion and risk hedge
between futures contracts. Meanwhile, they also neglect that
holding multiple future contracts and investing in futures
portfolios become the main choice for the futures investors.
Actually, the commodity futures exchanges just linearly add
the maintenance margins of all futures contracts when the
maintenance margins are charged to the futures portfolio
holder, which implies that there exists a high opportunity
cost as well as a serious occupation of investment capitals.
At the same time, the commodity futures exchanges cannot

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 325975, 11 pages
http://dx.doi.org/10.1155/2014/325975

http://dx.doi.org/10.1155/2014/325975


2 Journal of Applied Mathematics

precisely describe the tail risk and choose a sound risk
measure to estimate the risk of futures portfolios.

In setting futures portfolios’ maintenance margins, the
dependence structure between futures contracts and the
overall risk of futures portfolios need to be carefully taken
into consideration. In terms of the characterization of the
dependence structure between variables, one of the most
commonly usedmethods is the Copulamodel.Many scholars
confirmed that the Copula model can be used to investigate
the marginal distributions of variables and the dependence
structure between variables regardless of the forms of their
marginal distributions [1–4]. There are many different forms
for the Copula model which possesses strong flexibility and
expandability. Hence, it has a very wide scope of application.
For example, based on the Pair-Copula model, Li and Cheng
[5] proposed a setting model of futures’ maintenance mar-
gins, which gives sufficient consideration to the risk hedge
between futures contracts. In brief, theCopulamodel canwell
describe the dependence structure between futures contracts.
However, Wang et al. [6] pointed that the Copula model
fails to estimate the tail risk. As for effectively depicting
the tail risk, the extreme value theory (EVT) shows an
obvious superiority, because it directly focuses on the tail
and thus can estimate and forecast the risk more accurately.
A lot of previous works [7–12] reported that the peaks over
threshold (POT) model of EVT is capable of fully using
sample information on extreme values. There is a plentiful
of literature in this field. For instance, Gilli and Këllezi [13]
introduced the EVT to measure the financial risk. Based on
the EVT, Liu and Wang [14] constructed a model to set the
maintenance margins for a single futures contract, but they
did not consider the setting of futures portfolios’maintenance
margins. Additionally, the choice of the risk measure method
is indispensable to accurately estimate the overall risk of
futures portfolios, and hence it largely influences the effec-
tiveness of the maintenance margins. The widely used risk
measure is the Value at Risk (VaR), which does not conform
to the consistency axiom and cannot reflect the investors’
risk aversion. To overcome the drawbacks of VaR, Acerbi [15]
put forward a new risk measure, namely, the power spectral
risk measures (PSRM), and indicated that the PSRM has the
features of the consistency and the risk aversion. Following
Acerbi [15], there are a lot of developments; for details, see
Cotter and Dowd [16], Dowd et al. [17], and Han et al. [18].
They came to a similar conclusion that the PSRM is superior
to the VaR in terms of the subadditive property as well as the
description of the tail information.

In a word, the existing studies on futures maintenance
margins not only neglect that futures investors tend to hold
futures portfolio and there exist a significant risk hedge and
risk diversion between future contracts but also ignore the
characteristics of the tail risk and the choice of the risk
measure method. Therefore, it is obvious that we should not
separately study the maintenance margins for a single futures
contact. So the existing studies on setting maintenance
margins for a single futures contact cannot satisfy the needs
of practical operation in the futures market. That is why
we explore the setting of the maintenance margins for the
futures portfolio in our study. In order to cope with the

above-listed problems, we develop a new method for setting
futures portfolios’ maintenance margins by combining three
models, namely, the GARCH (1, 1)-𝑡model nestedmultivari-
ate 𝑡-Copula, the peaks over threshold (POT) model, and the
power spectral riskmeasures (PSRM).Moreover, considering
that the trend of the percentagemargins system is irreversible,
in our method, the maintenance margins for each futures
portfolio are stated as some percentages of the value of the
futures portfolio.

The remainder of this paper is organized as follows.
The next section shows the related methodologies. Section 3
encompasses the data set and the empirical results. In
Section 4, we present the conclusions and implication.

2. Methodology

Assume that the number of futures contracts in a futures
portfolio (denoted as pf) is 𝑛. 𝜔

𝑖
(𝑖 = 1, 2, . . . , 𝑛) represents

the proportion of the position of futures contract 𝑖 in the
gross position of the futures portfolio pf, and thus 𝜔

𝑖
meets

the condition: ∑𝑛
𝑖=1

𝜔
𝑖
= 1. Let 𝑃

𝑖,𝑡
denote the daily closing

price of the futures contract 𝑖 on day 𝑡. The daily return of the
futures contract 𝑖 on day 𝑡, that is, 𝑅

𝑖,𝑡
, is defined as

𝑅
𝑖,𝑡

= ln(
𝑃
𝑖,𝑡

𝑃
𝑖,𝑡−1

) . (1)

Han et al. [18] considered the enforcement of the short-
selling mechanism and separately studied the long position
and the short position. In this study, we define the loss rates
of the futures contract 𝑖 in terms of the long position and the
short position on day 𝑡 as follows:

𝐿
+

𝑖,𝑡
= 1 − exp (𝑅

𝑖,𝑡
) ,

𝐿−
𝑖,𝑡

= exp (𝑅
𝑖,𝑡
) − 1;

(2)

where 𝐿+
𝑖,𝑡
and 𝐿−

𝑖,𝑡
represent the loss rates of the long position

and the short position of the futures contract 𝑖 on day 𝑡,
respectively. Based on (1)-(2), the loss rate of the futures
contract 𝑖 on day 𝑡 is described as

𝐿
𝑖,𝑡

= (−1)
sign(𝑥)

[exp (𝑅
𝑖,𝑡
) − 1]

sign(𝑥)
, (3)

here,

sign (𝑥) = {
0, if 𝑥 is the long position
1, if 𝑥 is the short position,

sign (𝑥) = {
+, if 𝑥 is the long position
−, if 𝑥 is the short position.

(4)

On the basis of the portfolio theory, the return 𝑅pf,𝑡 and
the loss rate 𝐿pf,𝑡 of the futures portfolio pf on day 𝑡 can be,
respectively, defined as

𝑅pf,𝑡 =
𝑛

∑
𝑖=1

𝜔
𝑖
𝑅
𝑖,𝑡
,

𝐿pf,𝑡 =
𝑛

∑
𝑖=1

𝜔
𝑖
𝐿
𝑖,𝑡
.

(5)
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In this paper, we propose a new method, namely, the
multivariate 𝑡-Copula-POT-PSRM method, which contains
four steps to set the maintenance margins of the futures
portfolio pf. Firstly, we employ the GARCH (1, 1)-𝑡 model
nested multivariate 𝑡-Copula to describe the covariance and
the dependence structure. Subsequently, by combining the
quantitative finance theory and portfolio theory, we measure
the standardized residual and variance of the loss rate of the
futures portfolio pf. Thirdly, we focus directly on the tail
of the futures portfolio pf by modeling the extreme tail of
the standardized residual using the POT model, and we also
estimate the quantile of the standardized residual sequence
under a certain significant level. Finally, the dynamic risk of
the futures portfolio pf is estimated by PSRM, which is an
important part of setting the maintenance margins.

2.1. Modeling Covariance and Dependence Structure of Futures
Contracts. Based on the characteristics of the Copula model,
we use a two-step process that includes the modeling of
marginal distributions and the application of the Copula
function, to isolate the dependence structure from the
marginal distributions.

2.1.1. Modeling Marginal Distributions. Considering that the
GARCH (1, 1)-𝑡model is superior in analyzing and forecast-
ing the volatilities of the financial data, we select the GARCH
(1, 1)-𝑡model to estimate themarginal distributions. Accord-
ing to the study of Bollerslev [19], the GARCH (1, 1)-𝑡model
is showed as

𝐿
𝑖,𝑡

= 𝑢
𝑖
+ 𝜎
𝑖,𝑡
𝑧
𝑖,𝑡
, (6)

𝜎
2

𝑖,𝑡
= 𝑐 + 𝛼𝜀

2

𝑖,𝑡−1
+ 𝛾𝜎
2

𝑖,𝑡−1
, (7)

𝑓 (𝑥,𝑚) =
Γ (𝑚 + 1/2)

(𝑚𝜋)
1/2

Γ (𝑚/2)
[1 + (𝑥

2
/𝑚)]
−(𝑚+1)/2

, (8)

where 𝐿
𝑖,𝑡

and 𝜎
𝑖,𝑡

are the conditional mean and the con-
ditional standard deviation of the loss rate of the futures
contract 𝑖, respectively; 𝜀

𝑖,𝑡
refers to the disturbance term

of the mean equation; {𝑧
𝑖,𝑡
} obeys a 𝑡-distribution and its

degree of freedom is 𝑚; Γ(⋅) means the Gamma distribution
function; and (8) is the probability density function of the
𝑡-distribution. In GARCH (1, 1)-𝑡 model, the parameters are
𝑢, 𝑐, 𝛼, 𝛾, and 𝑚, which meet the constraint conditions 𝑐 > 0,
𝛼 ≥ 0, 𝛾 ≥ 0, and 𝛼 + 𝛾 < 1.

2.1.2. Constructing Multivariate 𝑡-Copula Function. After
confirming themarginal distributions of futures contracts, we
model the dependence structure between futures contracts
based on the multivariate 𝑡-Copula function which can be
used to study the marginal distributions and the dependence
structure. The multivariate 𝑡-Copula function defined by
Nikoloulopoulos et al. [20] is showed as follows:

C (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
; 𝜌, V)

= T
𝜌,V (T
−1
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1
) ,T−1V (𝑢

2
) , . . . ,T−1V (𝑢

𝑛
))

= ∫
T−1V (𝑢1)

−∞

∫
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−∞

∫
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−∞

⋅ ⋅ ⋅
Γ ((V + 𝑛) /2)
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𝑥
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(9)
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𝑖
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,

(10)

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

, 𝜍 = (𝜍

1
, 𝜍
2
, . . . , 𝜍

𝑛
)

,

𝜍
𝑖
= T−1V (𝑢

𝑖
) , 𝑖 = 1, 2, . . . , 𝑛,

(11)

where 𝜌 is a symmetrical positive definite matrix and all
of its diagonal elements are equal to 1, and its determinant
is denoted as |𝜌|; T

𝜌,V(., . . . , .) represents the distribution
function of the standardized multivariate 𝑡-distribution with
a correlation coefficient matrix 𝜌 and degrees of freedom V;
T−1V(⋅) is the inverse distribution function of 𝑡-distribution
with V degrees of freedom.

2.2. Estimating the Variance of the Futures Portfolio pf. To set
the maintenance margins of the futures portfolio pf, we need
to figure out the variance of the futures portfolio pf. On the
basis of the quantitative finance theory and portfolio theory,
the mean and variance of the loss rate of the futures portfolio
pf can be, respectively, expressed as

𝐿pf,𝑡 = 𝑢pf,𝑡 + 𝜀pf,𝑡 = 𝑢pf,𝑡 + 𝜎pf,𝑡𝑍pf,𝑡 =
𝑛

∑
𝑖=1

𝜔
𝑖
𝑢
𝑖,𝑡
+ 𝜎pf,𝑡𝑍pf,𝑡,

(12)

𝜎
2

pf,𝑡 =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝜔
𝑖
𝜔
𝑗
𝜎
𝑖𝑗,𝑡

=

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝜔
𝑖
𝜔
𝑗
𝜎
𝑖,𝑡
𝜎
𝑗,𝑡
𝜌
𝑖𝑗
, (13)

where 𝑢pf,𝑡 is the conditional mean of the loss rate of
the futures portfolio pf on day 𝑡, and {𝑍pf,𝑡} means the
standardized residual sequence of the loss rate of the futures
portfolio pf; 𝑢

𝑖,𝑡
refers to the conditional mean of the loss

rate of the futures contract 𝑖, while 𝜎
𝑖,𝑡

and 𝜎
𝑗,𝑡

are the
standard deviations of the loss rates of futures contracts 𝑖 and
𝑗, respectively; and 𝜎

𝑖𝑗,𝑡
denotes the covariance of the loss

rates of futures contracts 𝑖 and 𝑗.
Here, we deem that 𝜌

𝑖𝑗
in (13), which connotes the

correlation coefficient between futures contracts 𝑖 and 𝑗, is
decided by the correlation coefficient matrix 𝜌 in (10) and
(11). Meanwhile, for futures contracts 𝑖 and 𝑗, the following
conditions need to be met: 𝜎

𝑖𝑗,𝑡
= 𝜎
𝑗𝑖,𝑡
, 𝜌
𝑖𝑗
= 𝜌
𝑗𝑖
, 𝜌
𝑖𝑖
= 𝜌
𝑗𝑗

= 1,
and 𝜎

𝑖𝑖,𝑡
= 𝜎2
𝑖,𝑡
, 𝜎
𝑗𝑗,𝑡

= 𝜎2
𝑗,𝑡
.
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2.3. Depicting Tail Features of the Futures Portfolio pf. In order
to set proper maintenance margins, we should emphasize on
the tail risk of the futures portfolio pf, which is embodied in
the standardized residual sequence {𝑍pf,𝑡}. Smith [21] pointed
out that the observations of {𝑍pf,𝑡} over a high value 𝜇 in
the POT model are assumed to be independent and to obey
arbitrary common distributions:

𝐹
𝜇 (𝑧) = 𝑃 {𝑍 − 𝜇 ≤ 𝑧 | 𝑍 > 𝜇} =

𝑃 {𝑍 − 𝜇 ≤ 𝑧, 𝑍 > 𝜇}

𝑃 {𝑍 > 𝜇}

=
𝑃 {𝜇 < 𝑍 ≤ 𝑧 + 𝜇}

𝑃 {𝑍 > 𝜇}
=

𝐹 (𝑧 + 𝜇) − 𝐹 (𝜇)

1 − 𝐹 (𝜇)
,

(14)

where 𝑍 refers to a random variable, 𝑧 denotes the right
endpoint of the range of 𝑍, and 𝐹 is the distribution function
of 𝑍, while 𝐹

𝜇
(𝑧) represents the distribution function of

all observations which exceed a given threshold 𝜇. All
observations larger than 𝜇 (which is large enough) obey
the generalized Pareto distribution (GPD).Based on the
researches of Balkema anddeHaan [22] andPickands III [23],
𝐹
𝜇
(𝑧) can also be denoted as

𝐹
𝜇 (𝑧) =

{{{

{{{

{

1 − exp(−
𝑧 − 𝜇

𝛽
) , 𝜉 = 0, 𝑧 ∈ [𝜇, −

𝛽

𝜉
+ 𝜇] ,

1 − (1 + 𝜉
𝑧 − 𝜇

𝛽
)

−1/𝜉

, 𝜉 ̸= 0, 𝑧 ∈ [𝜇, +∞) ,

(15)

where 𝛽 and 𝜉 are parameters. Obviously, the fitting effect of
POT model, to a large degree, depends on the rationality of
the value of 𝜇. To obtain the value of 𝜇, we adopt the mean
excess plotting, which is the point set of {𝜇, 𝑒(𝜇)} [24]. The
expression of 𝑒(𝜇) is defined by

𝑒 (𝜇) = 𝐸 (𝑍 − 𝜇 | 𝑍 > 𝜇) =
1

𝑁∗

𝑁
∗

∑
𝑖=1

(𝑧 (𝑖) − 𝜇) ,

0 ≤ 𝜇 ≤ 𝑧 (𝑖) ,

(16)

where 𝑧(𝑖), 𝑖 = 1, 2, . . . , 𝑁∗ refers to the observations
of {𝑍pf,𝑡} and 𝑁∗ represents the number of observations
exceeding 𝜇. An appropriate threshold 𝜇 should meet the
following condition: the mean excess plotting presents a
linear momentum, starting from the point where its abscissa
value is 𝜇. Here, we can roughly use (𝑛 − 𝑁

∗)/𝑛 to estimate
𝐹(𝜇). Furthermore, based on (15) and (16), we can deduce the
𝑞 quantile of {𝑍pf,𝑡}, that is,

𝐹
←

𝑧
(𝑞) = inf {𝑧 | 𝐹

𝑧 (𝑧) ≥ 𝑞}

= 𝜇 +
𝛽

𝜉
{[

𝑁

𝑁∗
(1 − 𝑞)]

−𝜉

− 1} .
(17)

2.4. Setting the Maintenance Margins of the Futures Portfolio
pf. An appropriate risk measure plays an important role in
estimating risk and setting maintenance margins. Acerbi [15]

pointed that PSRM can not only reflect the risk aversion,
but also perfectly fit the fact that the absolute risk aversion
coefficient decreases progressively while the relative risk
aversion coefficient roughly stays as a constant. Thereby, we
employ PSRM, to estimate the risk of the future portfolio pf,
and then set its maintenance margins. The PSRM is defined
as

PSRM = ∫
1

0

𝑋
𝛼
𝜑 (𝑝) = ∫

1

0

𝑋
𝛼 (1 − 𝑎) (1 − 𝑝)

−𝑎d𝑝,

0 < 𝑎 < 1,

(18)

where 𝜑(⋅) is a risk aversion function, 𝑋
𝛼
represents the

𝛼 quantile, 𝑎 refers to the relative risk aversion coefficient,
and 𝑝 stands for the cumulative probability. Dowd et al. [17]
manifested that PSRM is sensitive to the changes of volatility
when the relative risk aversion coefficient 𝑎 is equal to 0.7.
Hence, following Dowd et al. [17], we set 𝑎 as 0.7. By using
PSRM, we estimate the overall risk of the futures portfolio pf.
Combining (13), (17), and (18), the dynamic risk of the futures
portfolio pf can be defines as

PSRM
𝑡
= ∫
1

0

{

{

{

𝑛

∑
𝑖=1

𝜔
𝑖
𝑢
𝑖,𝑡
+ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝜔
𝑖
𝜔
𝑗
𝜎
𝑖,𝑡
𝜎
𝑗,𝑡
𝜌
𝑖𝑗

× [𝜇 +
𝛽

𝜉
((

𝑁

𝑁∗
(1 − 𝑞))

−𝜉

− 1)]
}

}

}

× [(1 − 𝑎) (1 − 𝑝)
−𝑎
] d𝑝 .

(19)

Subsequently, we can obtain the computational formula
of Margin

𝑡
, which means the maintenance margin of the

futures portfolio pf on day 𝑡, that is,

Margin
𝑡
= ⌈

PSRM𝑡
⌉ , (20)

where ⌈𝑥⌉ stands for the smallest integer not smaller than 𝑥.

3. Data and Empirical Results

3.1. Data Set and Statistical Analysis. Based on the differences
in the varieties and the trading locations of the popular
futures contracts in the Chinese commodity futures markets,
we construct four kinds of futures portfolios, denoted as
Futures Portfolio A, Futures Portfolio B, Futures Portfolio
C, and Futures Portfolio D. Futures Portfolio A involves the
Number 1 Soybeans futures contract from DCE, the Copper
Cathode futures contract from SHFE, and the Cotton futures
contract from ZCE. Futures Portfolio B encompasses the
Number 1 Soybeans futures contract, the Copper Cathode
futures contract, and the Crude Soybean Oil futures contract
from DCE. Futures Portfolio C includes the Copper Cathode
futures contract, the Cotton futures contract, and the Crude
Soybean Oil futures contract. Futures Portfolio D is made
of the Number 1 Soybeans futures contract, the Cotton
futures contract, and the Crude Soybean Oil futures contract.
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The distribution of the gross position along with the direc-
tions of futures positions for all four kinds of Futures Portfo-
lios are shown in Table 1. In Table 1, taking Futures Portfolio
A for example, 4/9, 3/9, and 2/9 refer to the proportions of the
long Number 1 Soybeans position, the short Copper Cathode
position, and the long Cotton position in the gross position.
The data set consists of the daily closing prices of the nearby
contracts of the Number 1 Soybeans, the Copper Cathode,
the Cotton and the Crude SoybeanOil futures contracts from
January 4, 2007 to June 28, 2013. We choose the period from
January 4, 2007 to December 31, 2012 as the In-sample period
to estimate the parameters of our method and set the period
from January 4, 2013 to June 28, 2013 as the Out-of-sample
period to test the effectiveness of our method. We obtain the
empirical data from the websites of the Dalian Commodity
Exchange (http://www.dce.com.cn), the Shanghai Commod-
ity Exchange (http://www.shfe.com.cn), and the Zhengzhou
Commodity Exchange (http://www.czce.com.cn).

Table 2 presents a series of statistics and test results for
the return series of four futures contracts and their portfolios,
that is, Futures Portfolio A, Futures Portfolio B, Futures
Portfolio C, and Futures Portfolio D. As revealed in Table 2,
for the return series of each portfolio, its mean and standard
deviation are smaller than the smallest return series and
bigger than the biggest one, which illustrates the existence of
risk hedge and risk diversification. In Table 2, one can find
that all the values of kurtosis and skewness are greater than
3 and not equal to 0, respectively, which indicates that all the
return series are fat-tailed. The fat-tailed phenomenon also
can be confirmed by the Jarque-Bera statistics that reject the
null hypothesis ofGaussian distribution at the 1% significance
level. For each sequence, theARCH(1)-LM statistic rejects the
null hypothesis at the 1% significance level, which implies that
the heteroscedasticity exists in the return series. The results
of ADF test demonstrate that all the eight return series are
stationary series at the 1% significance level.

3.2. Estimation of Parameters. The estimated parameters in
our method mainly include the parameters of marginal
distribution models, the degree of freedom of multivariate
𝑡-Copulas function, the correlation coefficient matrix, and
the parameters of the POT model. In Table 3, the estimates
of 𝛼 and 𝛾 are positive, which proves the existence of the
volatility clustering phenomenon in all the four series. For
each sequence, the degree of freedom𝑚 is significant, which
confirms that all series are fat-tailed. Moreover, the values of
𝛼 + 𝛾 are close to 1, which implies that each series has strong
persistence in volatility.

We employ the two-stage maximum likelihood estima-
tion method to estimate the parameters of the multivariate 𝑡-
Copula function. To be more specific, the degree of freedom
of the multivariate 𝑡-Copula model based on the Number 1
Soybeans, Copper Cathode, and Cotton futures contracts is
equal to 2.5318, the degree of freedom of the multivariate 𝑡-
Copula model on basis of the Number 1 Soybeans, Copper
Cathode, and Cotton futures contracts is equivalent to 3.267,
the degree of freedom of the multivariate 𝑡-Copula function
based on the Copper Cathode, Cotton, and Crude Soybean
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Figure 1: Mean excess plotting for the standardized residual
sequence of the loss rate of the Futures Portfolio A. The solid line
is the mean excess plotting.The region between the two dotted lines
refers to the 95% confidence interval.

Oil futures contracts is equal to 3.1253, and that of the
multivariate 𝑡-Copula function on basis of the Number 1
Soybeans, Cotton, and Crude Soybean Oil futures contracts
is equivalent to 2.643. Moreover, we list the correlation
coefficient matrix in Table 4. Table 4 illustrates that there
exists the low positive or negative correlation among the three
series, which verifies that the portfolio investment strategy is
advisable on this occasion.

Considering the length of the paper, we take Future
Portfolio A as an example to describe the detailed process of
the estimation parameters of the POT model. We determine
the value of 𝜇 by employing the mean excess plotting and
show the graph in Figure 1. As drawn in Figure 1, the solid
curve shows an almost linear trend when 𝜇 is in the interval
(0, 2). Therefore, we initially identify 𝜇 in the interval (0,
2). To accurately position 𝜇 further, we present the fitting
effect graph of the POT model with 𝜇 in the interval (0, 2) in
Figure 2. When 𝜇 is equal to 1.1000, as shown in Figure 2, the
values of 𝛽 and 𝜉 roughly level off, which implies that 1.1000
is an appropriate value. In such case, the corresponding value
of 𝑁∗ is 117. Then, we use the maximum likelihood method
to estimate the parameters of the POT model, and the log-
likelihood function is denoted as follows:

L (𝜉, 𝛽 | 𝑧)=

{{{{

{{{{

{

−𝑛 ln𝛽 − (1 +
1

𝜉
)

𝑛

∑
𝑘=1

ln(1 +
𝜉

𝛽
𝑧
𝑘
) , 𝜉 ̸= 0,

−𝑛 ln𝛽 −
1

𝛽

𝑛

∑
𝑘=1

𝑧
𝑘
, 𝜉 = 0.

(21)

Finally, we calculate the values of 𝛽 and 𝜉 for Future
Portfolio A as 0.4089 and 0.1102, respectively.The value of the
shape parameter 𝜉 is positive, which indicates that the loss
rate of Futures Portfolio A is fat-tailed. Similarly, we obtain
the results for the other three futures portfolios as follows: the
values of 𝛽 and 𝜉 for Futures Portfolio B are equal to 0.3872
and 0.0965; the values of 𝛽 and 𝜉 for Futures Portfolio C are
equivalent to 0.4152 and 0.0731; and the values of 𝛽 and 𝜉

for Futures Portfolio D are equal to 0.3167 and 0.0638.
After determining the parameters of our method, we can

calculate the PSRM values based on (18). In 1995, reference
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Table 1: Allocation of the gross position for four kinds of Futures Portfolios.

Futures Portfolio Futures contracts Commodity futures exchange Long position Short position

Portfolio A
Number 1 Soybeans DCE 4/9 0
Copper Cathode SHFE 0 3/9

Cotton ZCE 2/9 0

Portfolio B
Number 1 Soybeans DCE 4/9 0
Copper Cathode SHFE 0 3/9
Crude Soybean Oil DCE 2/9 0

Portfolio C
Copper Cathode SHFE 4/9 0

Cotton ZCE 0 3/9
Crude Soybean Oil DCE 2/9 0

Portfolio D
Number 1 Soybeans DCE 4/9 0

Cotton ZCE 0 3/9
Crude Soybean Oil DCE 2/9 0

Table 2: Descriptive statistics of return series.

Parameters Number 1
soybeans

Copper
cathode Cotton Crude

soybean oil Portfolio A Portfolio B Portfolio C Portfolio D

Mean 0.0004 0.0003 −0.0001 0.0002 0.0002 0.0003 0.0001 0.0002
Maximum 0.0612 0.0791 0.1079 0.0768 0.0377 0.0738 0.0437 0.0519
Minimum −0.0583 −0.1061 −0.1343 −0.1316 −0.0449 −0.0664 −0.0915 −0.0827
Std-Dev 0.0115 0.0184 0.0121 0.0162 0.0093 0.0103 0.0095 0.0118
Kurtosis 8.8896 5.4383 4.0254 8.3548 5.8681 6.1527 5.8674 6.4317
Skewness −0.1825 −0.4028 −0.2069 −0.8634 −0.4438 −0.5167 −0.6872 −0.7105

Jarque-Bera 1976.0640
(0.0000)

1746.2950
(0.0000)

2510.1400
(0.0000)

1435.2574
(0.0000)

511.5199
(0.0000)

1176.0864
(0.0000)

987.1367
(0.0000)

1039.5378
(0.0000)

ARCH(1)-LM 123.9881
(0.0000)

44.7033
(0.0009)

31.8447
(0.0000)

36.2749
(0.0000)

72.3283
(0.0000)

83.1259
(0.0000)

46.8973
(0.0000)

93.6217
(0.0000)

ADF −18.8755
(0.0000)

−19.3994
(0.0000)

−22.0336
(0.0000)

−21.7358
(0.0000)

−19.0045
(0.0000)

−19.8639
(0.0000)

−20.1693
(0.0000)

−19.9476
(0.0000)

Notes: the figures in parenthesis denote 𝑃 values of statistics. Std-Dev stands for the standard deviation. The Jarque-Bera statistic tests for the null hypothesis
of normality distribution. The ARCH(1)-LM statistic tests for the null hypothesis of the inexistence of heteroscedasticity until the lag order is equal to 1. For
the ADF test, the number of lags is estimated through the Akaike Information Criterion (AIC).

Table 3: Estimation of parameters of marginal distribution models.

Parameters Number 1 soybeans Copper cathode Cotton Crude soybean oil
𝑢 −0.0003∗ (−1.7553) 0.0006∗ (1.7566) −0.0001 (−0.7287) 0.0004 (−0.9183)
𝑐 1.3556𝑒 − 5∗∗∗ (2.9357) 5.6875𝑒 − 6∗∗∗ (2.4469) 2.9713𝑒 − 6∗∗∗ (3.4973) 3.5372𝑒 − 6∗∗∗ (3.5842)
𝛼 0.2714∗∗∗ (3.2369) 0.1146∗∗∗ (5.0954) 0.1698∗∗∗ (4.7560) 0.1064∗∗∗ (4.8432)
𝛾 0.7286∗∗∗ (16.5762) 0.8775∗∗∗ (42.5026) 0.8302∗∗∗ (37.4746) 0.8637∗∗∗ (26.8547)
𝑚 2.7196∗∗∗ (10.1095) 4.9958∗∗∗ (6.8156) 3.0547∗∗∗ (10.6815) 5.0262∗∗∗ (8.8953)
Notes: the figures in parenthesis denote the value of 𝑡 statistics. The asterisks ∗∗∗, ∗∗, and ∗ represent the significance level at the 1%, 5%, and 10%, respectively.

Table 4: Correlation coefficient matrix of futures contracts.

Number 1 soybeans Copper cathode Cotton Crude soybean oil
Number 1 soybeans 1.0000 −0.2493 0.0028 0.0014
Copper cathode −0.2493 1.0000 −0.0076 −0.0032
Cotton 0.0028 −0.0076 1.0000 0.0062
Crude soybean oil 0.0014 −0.0032 0.0062 1.0000
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Table 5: The results of the Kupiec test for the PSRMmethod.

The number of the failure days The failure rate LR statistics

Portfolio A
P∗ = 5% 59 0.0502 0.0007 (0.9787)
P∗ = 2.5% 26 0.0221 0.4194 (0.5173)
P∗ = 1% 9 0.0077 0.7119 (0.3988)

Portfolio B
P∗ = 5% 47 0.0400 2.6477 (0.1037)
P∗ = 2.5% 17 0.0145 6.2875 (0.0122)
P∗ = 1% 5 0.0043 4.9949 (0.0254)

Portfolio C
P∗ = 5% 54 0.0459 0.4150 (0.5195)
P∗ = 2.5% 26 0.0221 0.4134 (0.5202)
P∗ = 1% 7 0.0060 2.2682 (0.1321)

Portfolio D
P∗ = 5% 64 0.0545 0.4804 (0.4882)
P∗ = 2.5% 38 0.0323 2.3807 (0.1228)
P∗ = 1% 12 0.0102 0.0053 (0.9418)

Notes: the figures in parenthesis denote the 𝑃 value of the LR statistics.
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Figure 2: Fitting effect graph of the POTmodel with 𝜇in the interval
(0, 2) for the Futures Portfolio A.

[25] proposed the Kupiec test which is used to quantify
the accuracy of an institution’s VaR estimates.Thus, following
[25], we use the Kupiec test to verify the accuracy of the
PSRMmethod.The detailed procedures of the Kupiec test are
represented as follows.

Firstly, we calculate the number of the failure days as well
as the failure rate:

𝐼
𝑡+1

= {
1, 𝐿pf,𝑡+1 < PSRM

𝑡+1,𝑡
,

0, 𝐿pf,𝑡+1 ≥ PSRM
𝑡+1,𝑡

,

𝑁 =

𝑇

∑
𝑡=1

𝐼
𝑡+1

, 𝑃fail =
𝑁

𝑇
,

(22)

where 𝐿pf,𝑡+1 stands for the actual loss rate of futures portfolio
on day 𝑡 + 1, 𝑃fail is the failure rate, PSRM𝑡+1,𝑡 is the estimated
value by using the PSRMmethod, and𝑇 represents the length
of the observation period.

Then, based on Kupiec’s work, the LR statistics is defined
by

LR = −2 ln [(1 − 𝑝
∗
)
𝑇−𝑁

(𝑝
∗
)
𝑁
]

+ 2 ln [(1 − 𝑃fail)
𝑇−𝑁

(𝑃fail)
𝑁
] ,

(23)

where 𝑝∗ is a given significance level.
According to the studies of Kupiec [25], if the null

hypothesis, that is, 𝑃fail = 𝑝∗, is met, the LR statistics should
obey the Chi-square distribution with 1 degree of freedom.
The specific rules of the Kupiec test are presented as follows.
On the one hand, if the 𝑝 value of the LR statistics is smaller
than 𝑝

∗, we reject the null hypothesis. In such cases, when
𝑃fail is smaller than 𝑝∗, the PSRMmethod is too conservative
so that it overestimates the risk, while when𝑃fail is bigger than
𝑝∗, the PSRMmethod tends to underestimate the risk. On the
other hand, if the 𝑝 value of the LR statistics is bigger than 𝑝∗

and 𝑃fail is close to 𝑝∗, we accept the null hypothesis, which
implies that the PSRM method is effective in measuring and
estimating the risk.We display the results of the Kupiec test in
Table 5. From Table 5, we can find that the 𝑝 value of the LR
statistics is greater than the corresponding significance level,
and at the same time the failure rate 𝑃fail is close to 𝑝∗, which
indicates that the PSRM can effectively measure and estimate
the risk.

3.3. Effectiveness Evaluation

3.3.1. Evaluation Indicators. In order to accurately appraise
the effectiveness of the proposed method, we introduce two
indicators as proposed in [26], namely, the prudence index
(PI) and the opportunity cost index (OCI). PI is defined as
the probability at which the loss is not more than the main-
tenance margins. OCI connotes the average of overcharged
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maintenance margins, which reflects the opportunity cost of
investors. The two indicators are defined as

PI = 1

𝑛

𝑛

∑
𝑡=1

𝐼 (Margin
𝐴,𝑡

>
𝐿𝐴,𝑡

) ,

OCI =
∑
𝑛

𝑡=1
(Margin

𝐴,𝑡
−
𝐿𝐴,𝑡

) 𝐼 (Margin
𝐴,𝑡

>
𝐿𝐴,𝑡

)

𝐼 (Margin
𝐴,𝑡

>
𝐿𝐴,𝑡

)
,

(24)

where 𝐼(⋅) is an indicative function and 𝑀
𝑡
and 𝐿

𝑡
represent

the maintenance margins and the loss rate of the Futures
Portfolio A on day 𝑡, respectively. More details about the two
evaluation indicators (PI and OCI) can be seen in [26].

Considering that the main function of futures mainte-
nance margins is to safeguard the safety and stabilities of the
futures market, the sound and effective maintenancemargins
should firstly satisfy the security requirement and then try
to reduce the transaction cost and improve the capital usage
effectiveness.Hence, whenwe evaluate the effectiveness of the
maintenance margins, we must abide by the following rules:
(i) PI is the key indicator, and it should be seen as the first
evaluation standard. Specifically, the larger the PI value is,
the better the effectiveness of the maintenancemargins is; (ii)
when there exists no significant difference in the PI value,
the OCI should be regarded as the evaluation standard. To
be more exact, the smaller the OCI value is, the better the
effectiveness of the maintenance margins is.

3.3.2. Effectiveness of the ProposedMethod. When the relative
risk aversion coefficient 𝑎 falls in the interval [0.5, 0.7], the
results of the effectiveness of the maintenance margins for
Futures Portfolios A, B, C, and D by using our method for
the In-sample period as well as the Out-of-sample period
are displayed in Table 6. From Table 6, we can find that the
values of PI and OCI vary with different relative risk aversion
coefficient 𝑎, which implies that the maintenance margins
that are set by using our method can accordingly adjust to
the change of the degree of risk aversion. That is to say, our
method presents a relatively strong adaptability. Moreover,
according to the rules of evaluating the effectiveness of the
maintenance margins, we can find that when the relative
risk aversion coefficient 𝑎 is equal to 0.7, the effectiveness of
the maintenance margins is the best for both the In-sample
period and the Out-of-sample period. So we set the relative
risk aversion coefficient 𝑎 to be 0.7 in our method.

3.3.3. Comparison between Different Methods of Setting
the Maintenance Margins. In fact, the Chinese commodity
futures exchanges implement the fixed futures margin sys-
tem, and only on special occasions, such as legal holidays,
they adjust maintenance margins. When the Chinese com-
modity futures exchanges charge futures portfolios’ mainte-
nance margins, they use a linear additivity model and ignore
the risk diversification and hedge between futures contracts.
For each futures contract, its maintenance margins vary in a
certain fixed interval, and the interval is determined by the
commodity futures exchanges without full consideration of
the actual volatility of the futures contract.

Table 6: Effectiveness of our method under different relative risk
aversion coefficients.

Interval 𝑎 PI OCI

Portfolio A

In-sample

0.5 0.9674 0.0627
0.6 0.9832 0.0671
0.7 1.0000 0.0778
0.8 1.0000 0.0815
0.9 1.0000 0.0860

Out-of-sample

0.5 0.9476 0.0501
0.6 0.9657 0.0615
0.7 0.9983 0.0709
0.8 0.9994 0.0810
0.9 1.0000 0.0852

Portfolio B

In-sample

0.5 0.9356 0.0684
0.6 0.9474 0.0575
0.7 0.9792 0.06844
0.8 1.0000 0.0858
0.9 1.0000 0.0893

Out-of-sample

0.5 0.9364 0.0674
0.6 0.9582 0.0797
0.7 0.9993 0.0847
0.8 0.9995 0.0889
0.9 1.0000 0.0904

Portfolio C

In-sample

0.5 0.9467 0.0649
0.6 0.9770 0.0666
0.7 0.9867 0.0748
0.8 1.0000 0.0806
0.9 1.0000 0.0835

Out-of-sample

0.5 0.9476 0.0501
0.6 0.9657 0.0615
0.7 0.9845 0.0694
0.8 0.9906 0.0795
0.9 1.0000 0.0847

Portfolio D

In-sample

0.5 0.9575 0.0585
0.6 0.9807 0.0697
0.7 0.9897 0.0745
0.8 1.0000 0.0873
0.9 1.0000 0.0906

Out-of-sample

0.5 0.9578 0.0567
0.6 0.9667 0.0675
0.7 0.9975 0.0693
0.8 0.9981 0.0795
0.9 1.0000 0.0814

Notes: 𝑎 stands for the relative risk aversion coefficient.

Taking Futures PortfolioA as an example, we compare the
maintenancemargins between ourmethod (when the relative
risk aversion coefficient 𝑎 is equal to 0.7) and the current
linear additive model, and present the results for the In-
sample period in Figure 3. Obviously, the two kinds of main-
tenance margins can perfectly cover the futures portfolio’s
extreme risk, which suggests that they are capable of keeping
risk within an acceptable range. However, compared with
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Figure 3: Comparison diagram of maintenance margins for Futures Portfolio A.

Table 7: Effectiveness of different methods of setting futures maintenance margins.

Interval Model PI OCI

Portfolio A
In-sample Linear additive model 1.0000 0.1080

Our new method 1.0000 0.0778

Out-of-sample Linear additive model 0.9997 0.0978
Our new method 0.9983 0.0709

Portfolio B
In-sample Linear additive model 1.0000 0.1036

Our new method 1.0000 0.0745

Out-of-sample Linear additive model 0.9986 0.0964
Our new method 0.9979 0.0694

Portfolio C
In-sample Linear additive model 0.9997 0.1046

Our new method 0.9995 0.0815

Out-of-sample Linear additive model 0.9963 0.0848
Our new method 0.9957 0.0615

Portfolio D
In-sample Linear additive model 1.0000 0.1080

Our new method 1.0000 0.0778

Out-of-sample Linear additive model 0.9983 0.0815
Our new method 0.9979 0.0695

the linear additive model, there exist more significant ups
and downs in the maintenance margins of Futures Portfolio
A which are obtained by means of our method. This finding
implies that our method is more flexible than the current
approach.

In order to test the effectiveness, we compare our method
with the current widely-used linear additive model for
Futures Portfolios A, B, C, and D in terms of the values of
PI as well as OCI for both the In-sample period and the Out-
of-sample period and display the results of the comparison in
Table 7. When it comes to Futures Portfolio A, from Table 7
we can conclude that in terms of PI the newly proposed
method shows a similar performance as the current linear
additivemodel for both the In-sample period and theOut-of-
sample period, while the value of OCI, respectively, decreases
by 28% and 27.5% for the In-sample period and the Out-of-
sample period after adopting the new method. Similarly, as
for the other three futures portfolios, our new method shows

superiority over the linear additive model with regard to
the PI and OCI values for the In-sample period and the Out-
of-sample period. In short, our method can not only effec-
tively cover the risk of futures portfolio, but also significantly
reduce the opportunity cost of futures’ investors and thus
improve the capital investment efficiency.

4. Conclusion

In view of the problems in setting futures portfolios’ mainte-
nancemargins for theChinese commodity futures exchanges,
we propose a new method that integrates the GARCH
(1, 1)-𝑡model nested multivariate 𝑡-Copula, the POT model,
and PSRM. To verify the validity of the method, we firstly
construct four kinds of futures portfolios, that is, the Future
Portfolios A, B, C, and D, and then by using the new method
set the maintenance margins of the Future Portfolios A,
B, C, and D. Subsequently, for both the In-sample period
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and the Out-of-sample period, we assess the effectiveness of
the proposed method, and compare the new method with
the commonly used linear additive model with respect to the
two evaluation indicators, namely, PI andOCI.The empirical
results show that our newmethod can, respectively, lower the
OCI value for the In-sample period and the Out-of-sample
period for all four kinds of futures portfolios, which means
that the occupied funds of futures portfolio holders can be
largely releasedwith the result of increased capital investment
efficiency. Moreover, we find that the new method shows
more flexibility compared to the current model, because
the new method can better capture and cover the futures
portfolio’s risk, and it is also able to adjust the maintenance
margins in accordance with the size and the direction of
futures position.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful to the Editor and three anonymous
reviewers for their valuable suggestions that significantly
improved the quality of the paper. Gang-Jin Wang thanks
the partial support from the Scholarship Award for Excellent
Doctoral Student granted by the Ministry of Education of
China, the Fundamental Research Funds for the Central
Universities of Hunan University and the Hunan Provin-
cial Innovation Foundation for Postgraduate (Grant no.
CX2013A006). This work was supported by the National
Natural Science Foundation of China (Grant no. 71373072),
the Specialized Research Fund for the Doctoral Program
of Higher Education (Grant no. 20130161110031) and the
Foundation for Innovative Research Groups of the National
Natural Science Foundation of China (Grant no. 71221001).

References

[1] G. Frahm, M. Junker, and R. Schmidt, “Estimating the tail-
dependence coefficient: properties and pitfalls,” Insurance, vol.
37, no. 1, pp. 80–100, 2005.

[2] E. I. George and S. T. Jensen, “A latent variable perspective of
copula modeling,” Marketing Science, vol. 30, no. 1, pp. 22–24,
2011.

[3] S. Kusuoka and T. Nakashima, “A remark on credit risk models
and copula,” Advances in Mathematical Economics, vol. 16, pp.
53–84, 2012.

[4] A. Panagiotelis, C. Czado, and H. Joe, “Pair copula construc-
tions for multivariate discrete data,” Journal of the American
Statistical Association, vol. 107, no. 499, pp. 1063–1072, 2012.

[5] N. Li and X. J. Cheng, “A new method for setting dynamic
futures portfolio margin level,” Journal of University of Science
and Technology of China, vol. 42, no. 3, pp. 198–202, 2012
(Chinese).

[6] Z.-R. Wang, X.-H. Chen, Y.-B. Jin, and Y.-J. Zhou, “Estimating
risk of foreign exchange portfolio: using VaR and CVaR based

on GARCHEVT-Copula model,” Physica A, vol. 389, no. 21, pp.
4918–4928, 2010.
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