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The reduction of covering decision systems is an important problem in data mining, and covering-based rough sets serve as an
efficient technique to process the problem. Geometric lattices have been widely used in many fields, especially greedy algorithm
design which plays an important role in the reduction problems. Therefore, it is meaningful to combine coverings with geometric
lattices to solve the optimization problems. In this paper, we obtain geometric lattices from coverings through matroids and then
apply them to the issue of attribute reduction. First, a geometric lattice structure of a covering is constructed through transversal
matroids. Then its atoms are studied and used to describe the lattice. Second, considering that all the closed sets of a finite matroid
form a geometric lattice, we propose a dependence space through matroids and study the attribute reduction issues of the space,
which realizes the application of geometric lattices to attribute reduction. Furthermore, a special type of information system is
taken as an example to illustrate the application. In a word, this work points out an interesting view, namely, geometric lattice, to
study the attribute reduction issues of information systems.

1. Introduction

Rough set theory [1], based on equivalence relations, was
proposed by Pawlak to deal with the vagueness and incom-
pleteness of knowledge in information systems. It has been
widely applied tomany practical applications in various areas,
such as attribute reductions [2–4] and rule extractions [5].
In order to extend rough set theory’s applications, some
scholars have extended the theory to generalized rough set
theory based on tolerance relation [6], similarity relation [7],
and arbitrary binary relation [8, 9]. Through extending a
partition to a covering, rough set theory has been generalized
to covering-based rough set theory [9, 10]. Because of its
high efficiency inmany complicated problems such as knowl-
edge reduction and rule learning in incomplete information
system, covering-based rough set theory has been attracting
increasing research interest [11–18].

A lattice is suggested by the form of the Hasse diagram
depicting it. In mathematics, a lattice is a partially ordered
set in which any two elements have a unique supremum
(also called a least upper bound or join) and a unique

infimum (also called a greatest lower bound or meet). They
encode the algebraic behavior of the entailment relation
and such basic logical connectives as “and” (conjunction)
and “or” (disjunction), which results in adequate algebraic
semantics for a variety of logical systems. Lattices, especially
geometric lattices, are important algebraic structures and are
used extensively in both theoretical and applicable fields, such
as rough sets [19, 20], formal concept analysis [21–23], and
domain theory [24, 25].

Matroid theory [26, 27] borrows extensively from linear
algebra and graph theory.There are dozens of equivalent ways
to characterize a matroid. Significant definitions of a matroid
include those in terms of independent sets, bases, circuits,
closed sets or flats, and rank functions, which provides
well-established platforms to connect with other theories.
In applications, matroids have been widely used in many
fields such as combinatorial optimization, network flows, and
algorithm design, especially greedy algorithm design [28,
29]. Studying rough sets with matroids is helpful to enrich
the theory system and to extend the applications of rough
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sets. Some works on the connection between rough sets and
matroids have been conducted [30–39].

In this paper, we pay our attention to geometric lattice
structures of coverings and their applications to attribute
reduction issues of information systems. First, a geometric
lattice of a covering is constructed through the transversal
matroid induced by the covering. Then its atoms are studied
and used to characterize the lattice structure. It is interesting
that any element of the lattice can be expressed as the union
of all closures of single-point sets in the element. Second, we
apply the obtained geometric lattice to attribute reduction
issues in information systems. It is interesting that a subset
of a finite nonempty set is a reduct of the information system
if and only if it is a minimal set with respect to the property
of containing an element from each nonempty complement
of any coatom of the lattice.

The rest of this paper is organized as follows. In Section 2,
we recall some fundamental concepts related to rough sets,
lattices, andmatroids. Section 3 presents a geometric lattice of
a covering and characterizes the structure by the atoms of the
lattice. In Section 4, we apply the obtained geometric lattices
to the attribute reduction issues of information systems.
Finally, this paper is concluded and further work is pointed
out in Section 5.

2. Preliminaries

In this section, we review some basic concepts of rough sets,
matroids, and geometric lattices.

2.1. Rough Sets. Rough set theory is a new mathematical tool
for imprecise and incomplete data analysis. It uses equiva-
lence relations (resp. partitions) to describe the knowledgewe
canmaster. In this subsection, we introduce some concepts of
rough sets used in this paper.

Definition 1 (covering and partition). Let𝑈 be a universe and
C a family of subsets of 𝑈. If none of subsets inC are empty
and ⋃C = 𝑈, then C is called a covering of 𝑈. The element
of C is called a covering block. IfP is a covering of 𝑈 and it
is a family of pairwise disjoint subsets of 𝑈, thenP is called
a partition of 𝑈.

It is clear that a partition is certainly a covering, so the
concept of a covering is an extension of the concept of a
partition.

Definition 2 (approximation operators [1]). Let 𝑈 be a finite
set and 𝑅 an equivalent relation (reflexive, symmetric, and
transitive) on 𝑈. For all 𝑋 ⊆ 𝑈, the lower and upper
approximations of𝑋 are, respectively, defined as follows:

𝑅
∗
(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]

𝑅
⊆ 𝑋} ,

𝑅
∗

(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]
𝑅
⋂𝑋 ̸= 0} ,

(1)

where [𝑥]
𝑅
is called the equivalence class of 𝑥 with respect to

𝑅.

2.2. Matroids. Matroid theory borrows extensively from the
terminology of linear algebra and graph theory, largely
because it is the abstraction of various notions of central
importance in these fields, such as independent sets, bases,
and the rank function.

Definition 3 (matroid [27]). A matroid is an ordered pair
(𝑈,I) consisting of a finite set𝑈 and a collectionI of subsets
of 𝑈 satisfying the following three conditions.

(I1) 0 ∈ I.
(I2) If 𝐼 ∈ I and 𝐼 ⊆ 𝐼, then 𝐼 ∈ I.
(I3) If 𝐼

1
, 𝐼
2
∈ I and |𝐼

1
| < |𝐼
2
|, then there is an element

𝑒 ∈ 𝐼
2
− 𝐼
1
such that 𝐼

1
⋃{𝑒} ∈ I, where |𝑋| denotes

the cardinality of𝑋.

Let𝑀 = (𝑈,I) be a matroid. The members ofI are the
independent sets of𝑀. A set in I which is maximal in the
sense of inclusion is called a based of𝑀. If𝑋 ∉ I,𝑋 is called
a dependent set of 𝑀. In the sense of inclusion, a minimal
dependent subset of𝑈 is called a circuit of𝑀.The collections
of the bases and the circuits of matroid 𝑀 are denoted by
B(𝑀) andC(𝑀), respectively. The rank function of matroid
𝑀 is a function 𝑟

𝑀
: 2
𝑈

→ 𝑁 defined by 𝑟
𝑀
(𝑋) = max{|𝐼| :

𝐼 ⊆ 𝑋, 𝐼 ∈ I}, where 𝑋 ⊆ 𝑈. For each 𝑋 ⊆ 𝑈, we say that
cl
𝑀
(𝑋) = {𝑎 ∈ 𝑈 : 𝑟

𝑀
(𝑋) = 𝑟

𝑀
(𝑋⋃{𝑎})} is the closure of

𝑋 in 𝑀. If cl
𝑀
(𝑋) = 𝑋, 𝑋 is called a closed set of 𝑀. For

any 𝑋 ⊆ 𝑈, if cl
𝑀
(𝑋) = 𝑋 and 𝑟

𝑀
(𝑋) = 𝑟

𝑀
(𝑈) − 1, then 𝑋

is called a hyperplane in𝑀. The rank function of a matroid,
directly analogous to a similar theorem of linear algebra, has
the following proposition.

Proposition 4 (rank axiom [27]). Let 𝑈 be a set. A function
𝑟 : 2
𝑈

→ 𝑁 is the rank function of a matroid on𝑈 if and only
if it satisfies the following conditions.

(R1) For all𝑋 ⊆ 𝑈, 0 ≤ 𝑟(𝑋) ≤ |𝑋|.
(R2) If𝑋 ⊆ 𝑌 ⊆ 𝑈, then 𝑟(𝑋) ≤ 𝑟(𝑌).
(R3) If𝑋,𝑌 ⊆ 𝑈, then 𝑟(𝑋⋃𝑌) + 𝑟(𝑋⋂𝑌) ≤ 𝑟(𝑋) + 𝑟(𝑌).

The following proposition is the closure axiom of a
matroid. It means that an operator satisfies the following four
conditions if and only if it is the closure operator of amatroid.

Proposition 5 (closure axiom [27]). Let𝑈 be a set. A function
𝑐𝑙 : 2
𝑈

→ 2
𝑈 is the closure operator of a matroid on 𝑈 if and

only if it satisfies the following conditions.
(1) If𝑋 ⊆ 𝑈, then𝑋 ⊆ 𝑐𝑙(𝑋).
(2) If𝑋 ⊆ 𝑌 ⊆ 𝑈, then 𝑐𝑙(𝑋) ⊆ 𝑐𝑙(𝑌).
(3) If𝑋 ⊆ 𝑈, 𝑐𝑙(𝑐𝑙(𝑋)) = 𝑐𝑙(𝑋).
(4) If 𝑋 ⊆ 𝑈, 𝑥 ∈ 𝑈, and 𝑦 ∈ 𝑐𝑙(𝑋⋃{𝑥}) − 𝑐𝑙(𝑋), then
𝑥 ∈ 𝑐𝑙(𝑋⋃{𝑦}).

Transversal theory is a branch of matroids. It shows
how to induce a matroid, namely, transversal matroid from
a family of subsets of a set. Hence, transversal matroids
establish a bridge between a collection of subsets of a set and
a matroid.
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Definition 6 (transversal [27]). Let 𝑆 be a nonempty finite
set and 𝐽 = {1, 2, . . . , 𝑚}. F = {𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑚
} denotes a

family of subsets of 𝑆. A transversal or system of distinct
representatives of {𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑚
} is a subset {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚
} of

𝑆 such that 𝑒
𝑖
∈ 𝐹
𝑖
for all 𝑖 ∈ 𝐽. If, for a subset 𝐾 of 𝐽, 𝑋 is a

transversal of {𝐹
𝑖
: 𝑖 ∈ 𝐾}, then𝑋 is called a partial transversal

of {𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑚
}.

Example 7. Let 𝑆 = {1, 2, 3, 4, 5}, 𝐹
1
= {1, 3}, 𝐹

2
= {2, 3}, and

𝐹
3
= {3, 4}. ForF = {𝐹

1
, 𝐹
2
, 𝐹
3
}, 𝑇 = {2, 3, 4} is a transversal

of F because 2 ∈ 𝐹
2
, 3 ∈ 𝐹

1
, and 4 ∈ 𝐹

3
. 𝑇 = {2, 4} is a

partial transversal of F because there exists a subset of F,
that is, {𝐹

2
, 𝐹
3
}, such that 𝑇 is a transversal of it.

The following proposition shows what kind of matroid is
a transversal matroid.

Proposition 8 (transversal matroid [27]). Let F = {𝐹
𝑖
: 𝑖 ∈

𝐽} be a family of subsets of𝑈.𝑀(F) = (𝑈,I(F)) is amatroid,
whereI(F) is the family of all partial transversals ofF. One
calls𝑀(F) = (𝑈,I(F)) the transversal matroid induced by
F.

Example 9 (continued fromExample 7). 𝑀(F) = (𝑈,I(F))
is a matroid, where I(F) = {0,{1}, {2}, {3}, {4}, {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

2.3. Geometric Lattice. A lattice is a poset (L, ≤) such that,
for every pair of elements, the least upper bound and greatest
lower boundof the pair exist. Formally, if𝑥 and𝑦 are arbitrary
elements ofL, thenL contains elements𝑥∨𝑦 and𝑥∧𝑦.The
element 𝑎 of L is an atom of lattice (L, ≤) if it satisfies the
condition: 0 < 𝑎 and there is no 𝑥 ∈ L such that 0 < 𝑥 < 𝑎.
The element 𝑎 ofL is a coatom of lattice (L, ≤) if it satisfies
the condition 𝑎 < 1 and there is no𝑥 ∈L such that 𝑎 < 𝑥 < 1.
The following lemma gives another definition of a geometric
lattice from the viewpoint of matroids. In fact, the set of all
closed sets of a matroid, ordered by inclusion, is a geometric
lattice.

Proposition 10 (see [27]). A latticeL is a geometric lattice if
and only if it is the lattice of closed sets of a matroid.

The above proposition indicates that (L(𝑀), ⊆) is a
geometric lattice, where L(𝑀) denotes the collection of all
closed sets of matroid 𝑀. The operations join and meet of
the lattice are, respectively, defined as 𝑋∧𝑌 = 𝑋⋂𝑌 and
𝑋∨𝑌 = cl

𝑀
(𝑋⋃𝑌) for all 𝑋,𝑌 ∈ L(𝑀). Moreover, the

height of any element of the lattice is equal to the rank of the
element in𝑀. As we know, the atoms of a lattice are precisely
the elements of height one. Therefore, the collection of the
atoms of the lattice is the family of the sets which are closed
sets of matroid𝑀 and have value 1 as their ranks.

3. Geometric Lattice Structure of
Covering through Matroids

As we know, a collection of all the closed sets of a matroid, in
the sense of inclusion, is a geometric lattice. In this section, we

convert a covering to a matroid through transversal matroids
and then study the lattice of all the closed sets of the matroid.
By this way, we realize the purpose to construct a geometric
lattice structure from a covering.

Let 𝑈 be a nonempty and finite set andF a collection of
nonempty subsets of 𝑈. As shown in Proposition 8, 𝑀(F)
is the transversal matroid induced by F and we denote
the geometric lattice of F by (L(𝑀(F)), ⊆). When F is
a covering C, the geometric lattice corresponding to it is
denoted by (L(𝑀(C)), ⊆). For convenience, we substitute 𝑥
for {𝑥} in the following discussion.

3.1. Atoms of the Geometric Lattice Structure Induced by a
Covering. Atoms of a geometric lattice are elements that are
minimal among the nonzero elements and can be used to
express the lattice. Therefore, atoms play an important role
in the lattices. In this subsection, we study the atoms of the
geometric lattice structure induced by a covering.

A covering of universe of objects is the collection of
some basic knowledge we master; therefore it is important
to be studied in detail. The following theorem provides
some equivalence characterizations for a covering from the
viewpoint of matroids.

Lemma 11 (see [27]). Let𝑀 be a matroid of 𝑈 and 𝑋 ⊆ 𝑈.
Then 𝑟

𝑀
(𝑋) = 𝑟

𝑀
(𝑐𝑙
𝑀
(𝑋)).

Lemma 12 (see [27]). Let𝑀 be a matroid of𝑈 and𝑋,𝑌 ⊆ 𝑈.
If𝑋 ⊆ 𝑌 and 𝑟

𝑀
(𝑋) = 𝑟

𝑀
(𝑌), then 𝑐𝑙

𝑀
(𝑋) = 𝑐𝑙

𝑀
(𝑌).

Theorem 13. LetF be a family of nonempty subsets of 𝑈 and
F ̸= 0. The following statements are equivalent.

(1) F is a covering of 𝑈.
(2) 𝑐𝑙F(0) = 0.
(3) {𝑐𝑙F(𝑥) : 𝑥 ∈ 𝑈} is a partition of 𝑈.
(4) {𝑐𝑙F(𝑥) : 𝑥 ∈ 𝑈} is the collection of the atoms of
(L(𝑀(F)), ⊆).

Proof. “(1) ⇒ (2)”: According to the definition of transversal
matroids, any partial transversal is an independent set. Since
F is a covering, any single-point set is an independent set.
Therefore, cl

𝑀(F)(0) = 0.
“(2) ⇒ (4)”: For all 𝑥 ∈ 𝑈, cl

𝑀(F)(cl𝑀(F)(𝑥)) =

cl
𝑀(F)(𝑥), then cl

𝑀(F)(𝑥) ∈ L(𝑀(F)). Since cl
𝑀(F)(0) =

0, any single-point set is an independent set; that is, for
all 𝑥 ∈ 𝑈, 𝑟

𝑀(F)(𝑥) = 1. Utilizing Lemma 11, we have
𝑟
𝑀(F)(cl𝑀(F)(𝑥)) = 𝑟

𝑀(F)(𝑥) = 1. Thus, for all 𝑥 ∈ 𝑈,
cl
𝑀(F)(𝑥) is an atom of the lattice (L(𝑀(F)), ⊆). Conversely,

if𝐴 is an atom of the lattice (L(𝑀(F)), ⊆), then cl
𝑀(F)(𝐴) =

𝐴 and 𝑟
𝑀(F)(𝐴) = 1. It is clear that 𝐴 ̸= 0. Pitch 𝑥 ∈ 𝐴;

then 𝑟
𝑀(F)(𝑥) = 1 = 𝑟𝑀(F)(𝐴). Utilizing Lemma 12, we have

cl
𝑀(F)(𝑥) = cl

𝑀(F)(𝐴) = 𝐴. Therefore, we have proved the
result.

“(4) ⇒ (3)”: We firstly prove that, for all 𝑥, 𝑦 ∈ 𝑈,
if cl
𝑀(F)(𝑥)⋂ cl

𝑀(F)(𝑦) ̸= 0, then cl
𝑀(F)(𝑥) = cl

𝑀(F)(𝑦).
We may as well suppose 𝑧 ∈ cl

𝑀(F)(𝑥)⋂ cl
𝑀(F)(𝑦).

Then cl
𝑀(F)(0) ⊆ cl

𝑀(F)(𝑧) ⊆ cl
𝑀(F)(𝑥) and



4 Journal of Applied Mathematics

cl
𝑀(F)(0) ⊆ cl

𝑀(F)(𝑧) ⊆ cl
𝑀(F)(𝑦). We conclude that

cl
𝑀(F)(0) ̸= cl𝑀(F)(𝑧). Otherwise, 𝑟

𝑀(F)(cl𝑀(F)(𝑧)) =

𝑟
𝑀(F)(cl𝑀(F)(0)) = 𝑟

𝑀(F)(0) = 0, which contradicts that
cl
𝑀(F)(𝑧) is an atom.Thus cl

𝑀(F)(0) ⊂ cl
𝑀(F)(𝑧) ⊆ cl

𝑀(F)(𝑥)

and cl
𝑀(F)(0) ⊂ cl

𝑀(F)(𝑧) ⊆ cl
𝑀(F)(𝑦). According to the

definition of atoms, we have cl
𝑀(F)(𝑥) = cl

𝑀(F)(𝑧) =

cl
𝑀(F)(𝑦). For all 𝑥 ∈ 𝑈, 𝑥 ∈ cl

𝑀(F)(𝑥), then cl
𝑀(F)(𝑥) ̸= 0.

Moreover, 𝑈 = ⋃
𝑥∈𝑈
{𝑥} ⊆ ⋃

𝑥∈𝑈
cl
𝑀(F)(𝑥) ⊆ ⋃𝑥∈𝑈𝑈 = 𝑈;

that is, 𝑈 = ⋃
𝑥∈𝑈

cl
𝑀(F)(𝑥). Hence {cl𝑀(F)(𝑥) : 𝑥 ∈ 𝑈} is a

partition of 𝑈.
“(3) ⇒ (1)”: Since {clF(𝑥) : 𝑥 ∈ 𝑈} is a partition

of 𝑈, for any distinct elements cl
𝑀(F)(𝑢) and cl

𝑀(F)(V) of
{cl
𝑀(F)(𝑥) : 𝑥 ∈ 𝑈}, cl

𝑀(F)(𝑢)⋂ cl
𝑀(F)(V) = 0. Thus

cl
𝑀(F)(0) ⊆ cl

𝑀(F)(𝑢) and cl
𝑀(F)(0) ⊆ cl

𝑀(F)(V). Hence
cl
𝑀(F)(0) ⊆ cl

𝑀(F)(𝑢)⋂ cl
𝑀(F)(V) = 0. As with 0 ⊆ cl

𝑀(F),
we have cl

𝑀(F)(0) = 0. Thus, for all 𝑥 ∈ 𝑈, 𝑥 is an
independent set; that is, there exists 𝐹

𝑥
∈ F such that 𝑥 ∈ 𝐹

𝑥
.

Hence,𝑈 = ⋃
𝑥∈𝑈
{𝑥} ⊆ ⋃

𝑥∈𝑈
𝐹
𝑥
⊆ ⋃F ⊆ 𝑈.Thus⋃F = 𝑈.

Since F is a family of nonempty subsets of 𝑈 and F ̸= 0, we
know 0 ∉ 𝐹. Therefore, we have proved that F is a covering
of 𝑈.

Theorem 13 indicates that the closure of any single-point
set is an atom of lattice L(𝑀(C)). Based on the fact, we
obtain all the atoms of the lattice from covering 𝐶 directly.

Definition 14 (see [20]). Let C = {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
} be a

covering of a finite set 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. One defines

(i) 𝐴 = {𝐾
𝑖
− ⋃
𝑚

𝑗=1,𝑗 ̸= 𝑖
𝐾
𝑗
: 𝐾
𝑖
− ⋃
𝑚

𝑗=1,𝑗 ̸= 𝑖
𝐾
𝑗
̸= 0, 𝑖 ∈

{1, 2, . . . , 𝑚}} = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑠
};

(ii) 𝐵 = 𝑈 − ⋃𝑠
𝑖=1
𝐴
𝑖
.

Remark 15. For all 𝑖 ∈ {1, 2, . . . , 𝑠} and 𝑥 ∈ 𝐴
𝑖
, there exists

only one block of covering 𝐶 such that 𝑥 belongs to it, and
there exist at least two blocks of covering 𝐶 such that 𝑦
belongs to them for all 𝑦 ∈ 𝐵.

One example is provided to illustrate the above definition.

Example 16. Let 𝑈 = {1, 2, 3, 4, 5} and C = {𝐾
1
, 𝐾
2
, 𝐾
3
},

where 𝐾
1
= {1, 3}, 𝐾

2
= {2, 3}, and 𝐾

3
= {3, 4, 5}. Then

𝐾
1
− 𝐾
2
⋃𝐾
3
= {1, 3} − {2, 3, 4, 5} = {1}. In this way, we can

obtain𝐴 = {{1}, {2}, {4, 5}} and𝐵 = 𝑈−⋃𝐴 = 𝑈−{1, 2, 4, 5} =
{3}.

In fact, the closure of any singleton set of universe 𝑈 in
matroid𝑀(C) is an element of𝐴 or a single-point set of 𝐵. In
order to reveal the fact better, we need the two lemmas below.

Lemma 17. LetC be a covering of𝑈. For all 𝑥 ∈ 𝑈, there exists
𝐾 ∈ C such that 𝑐𝑙

𝑀(C)(𝑥) ⊆ 𝐾.

Proof. For all 𝑥 ∈ 𝑈, we take that 𝐾 ∈ C satisfies 𝑥 ∈ 𝐾 then
cl
𝑀(C)(𝑥) ⊆ 𝐾. In fact, for all 𝑦 ∉ 𝐾, there exists 𝐾 ̸= 𝐾 such

that 𝑦 ∈ 𝐾 because C is a covering of 𝑈. That implies that
{𝑥, 𝑦} is an independent set because there exist 𝐾,𝐾 ∈ C
such that 𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐾. Thus, 𝑟

𝑀(C)({𝑥, 𝑦}) = 2 ̸= 1 =

𝑟
𝑀(C)(𝑥) which implies that 𝑦 ∉ cl

𝑀(C)(𝑥). Therefore, we
prove the result.

Lemma 18. Let C be a covering of 𝑈. For all 𝑥 ∈ 𝑈, if
|𝑐𝑙
𝑀(C)(𝑥)| ≥ 2, then there exists only one block 𝐾 of C such

that 𝑐𝑙
𝑀(C)(𝑥) ⊆ 𝐾.

Proof. According to Lemma 17, we know there exists 𝐾 ∈ C
such that cl

𝑀(C)(𝑥) ⊆ 𝐾 for all 𝑥 ∈ 𝑈. Now, we need to prove
the uniqueness of 𝐾. Suppose there exists the other block 𝐾
such that cl

𝑀(C)(𝑥) ⊆ 𝐾
. We claim that cl

𝑀(C)(𝑥) = {𝑥};
otherwise, there exists 𝑦 ̸= 𝑥 such that 𝑦 ∈ cl

𝑀(C)(𝑥) because
we have had 𝑥 ∈ cl

𝑀(C)(𝑥). That implies that 𝑟
𝑀(F)({𝑥, 𝑦}) =

𝑟
𝑀(C)(𝑥) = 1. However, there exist two blocks 𝐾 and 𝐾
such that cl

𝑀(C)(𝑥) is contained in them.Thus 𝑟
𝑀(C)({𝑥, 𝑦}) =

2, which implies a contradiction! Hence cl
𝑀(C)(𝑥) = {𝑥},

that is, |cl
𝑀(C)(𝑥)| = 1, which contradicts the assumption

|cl
𝑀(C)(𝑥)| ≥ 2.

Proposition 19. Let C be a covering of 𝑈. Then {cl
𝑀(C)(𝑥) :

𝑥 ∈ 𝑈} = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑠
}⋃{{𝑥} : 𝑥 ∈ 𝐵}.

Proof. For all cl
𝑀(C)(𝑥) ∈ {cl𝑀(C)(𝑥) : 𝑥 ∈ 𝑈}, if |cl𝑀(C)(𝑥)| =

1, then cl
𝑀(C)(𝑥) = {𝑥} because 𝑥 ∈ cl

𝑀(C)(𝑥). Since C is a
covering, there exists a block 𝐾 ofC such that 𝑥 ∈ 𝐾. If 𝐾 is
a unique block ofC such that 𝑥 ∈ 𝐾, then there exists𝐴

𝑖
∈ 𝐴

such that 𝑥 ∈ 𝐴
𝑖
. Moreover, 𝐴

𝑖
= {𝑥}; otherwise, there exists

𝑦 ̸= 𝑥 such that 𝑦 ∈ 𝐴
𝑖
. According to the definition of 𝐴

𝑖
,

we have 𝑟
𝑀(C)({𝑥, 𝑦}) = 𝑟

𝑀(C)(𝑥), that is, 𝑦 ∈ cl
𝑀(C)(𝑥),

which contradicts the assumption |cl
𝑀(C)(𝑥)| = 1. Hence

cl
𝑀(C)(𝑥) = {𝑥} = 𝐴

𝑖
. If 𝐾 is not a unique block of C

such that 𝑥 ∈ 𝐾, then 𝑥 ∉ 𝐴
𝑖
for all 𝑖 ∈ {1, 2, . . . , 𝑠}.

That implies that 𝑥 ∈ 𝐵. Therefore, cl
𝑀(C)(𝑥) = {𝑥}, where

𝑥 ∈ 𝐵. If |cl
𝑀(C)(𝑥)| ̸= 1, then |cl𝑀(C)(𝑥)| ≥ 2. According to

Lemma 18, we know there exists only one block 𝐾
𝑖
such that

cl
𝑀(C)(𝑥) ⊆ 𝐾𝑖. According to the definition of 𝐴, there exists
𝐴
𝑗
∈ 𝐴 such that 𝑥 ∈ cl

𝑀(C)(𝑥) ⊆ 𝐴𝑗. For all 𝑦 ∈ 𝐴𝑗 and
𝑦 ̸= 𝑥, we know 𝑟

𝑀(C)({𝑥, 𝑦}) = 𝑟𝑀(C)(𝑥). Thus 𝑦 ∈ cl
𝑀(C)(𝑥);

that is, 𝐴
𝑗
⊆ cl
𝑀(C)(𝑥); therefore, 𝐴𝑗 = cl

𝑀(C)(𝑥). From the
above discussion, we conclude that {cl

𝑀(C)(𝑥) : 𝑥 ∈ 𝑈} ⊆

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑠
}⋃{{𝑥} : 𝑥 ∈ 𝐵}.

Next, we prove {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑠
}⋃{{𝑥} : 𝑥 ∈ 𝐵} ⊆

{cl
𝑀(C)(𝑥) : 𝑥 ∈ 𝑈}. For all 𝐴 𝑖 ∈ {𝐴1, 𝐴2, . . . , 𝐴 𝑠}, we know

there exists a unique block 𝐾 ∈ C such that 𝐴
𝑖
⊆ 𝐾. Thus

𝑟
𝑀(C)(𝐴 𝑖) = 1. Pitch𝑦 ∈ 𝐴 𝑖. SinceC is a covering, 𝑟

𝑀(C)(𝑦) =

1. Thus 𝑟
𝑀(C)(𝐴 𝑖) = 𝑟𝑀(C)(𝑦). Utilizing Lemma 12, we have

cl
𝑀(C)(𝑦) = cl

𝑀(C)(𝐴 𝑖), which implies that 𝐴
𝑖
⊆ cl
𝑀(C)(𝑦).

For all 𝑥 ∈ cl
𝑀(C)(𝑦), 𝑟𝑀(C)({𝑥, 𝑦}) = 1; that is, there

exists a unique block 𝐾 of C such that {𝑥, 𝑦} ⊆ 𝐾. Thus
𝑥 ∈ 𝐴

𝑖
. Therefore cl

𝑀(C)(𝑦) ⊆ 𝐴
𝑖
which implies that

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑠
} ⊆ {cl

𝑀(C)(𝑥) : 𝑥 ∈ 𝑈}. For all 𝑥 ∈ 𝐵, we
claim that cl

𝑀(C)(𝑥) = {𝑥}. Since {𝑥} ⊆ cl
𝑀(C)(𝑥), we just

need to prove cl
𝑀(C)(𝑥) ⊆ {𝑥}; otherwise, there exists 𝑦 ∈ 𝑈

and 𝑦 ̸= 𝑥 such that 𝑦 ∈ cl
𝑀(C)(𝑥). Utilizing Lemma 18, there

is only one block 𝐾 of C such that {𝑥, 𝑦} ⊆ 𝐾. According to
the definition of 𝐴

𝑖
(𝑖 ∈ {1, 2, . . . , 𝑠}), we know there exists

𝐴
𝑗
(𝑗 ∈ {1, 2, . . . , 𝑠}) such that 𝑥 ∈ 𝐴

𝑗
, thus 𝑥 ∉ 𝐵 which

contradicts the assumption that 𝑥 ∈ 𝐵.

The following result is the combination ofTheorem 13 and
Proposition 19. It presents the atoms of lattice (L(𝑀(C)), ⊆)
from covering 𝐶 directly.
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Corollary 20. Let C be a covering of 𝑈. {𝐴
1
, 𝐴
2
, . . . ,

𝐴
𝑠
}⋃{{𝑥} : 𝑥 ∈ 𝐵} is the family of atoms of lattice (L(𝑀(C)),

⊆).

Corollary 20 can also be found in [20]. It provides a
method to obtain the atoms of the geometric lattice induced
by a covering from the covering directly. We obtain the result
from the other different perspective in this paper.

Example 21 (continued from Example 16). Based on
Corollary 20, the collection of the atoms of lattice
(L(𝑀(C)), ⊆) is {{1}, {2}, {3}, {4, 5}}.

3.2. Atoms Characterization for the Geometric Lattice Induced
by a Covering. In Section 3.1, we have studied the atoms
of the geometric lattice induced by a covering and have
provided a method to obtain the atoms from the covering
directly. As we know, any element of a geometric lattice can
be expressed as the joint of some atoms of the lattice. In this
subsection, we characterize the geometric lattice induced by
a covering through the atoms of it by the union operation.
In fact, any element of the lattice can be indicated as the
union of all closures of single-point sets in the element. At the
beginning of this subsection, we define two operators from
the viewpoint of matroids.

Definition 22. Let𝑀 be a matroid on 𝑈 and𝑋 ⊆ 𝑈. One can
define the following two operators:

𝐿
𝑀
(𝑋) = {𝑥 ∈ 𝑈 : cl

𝑀
(𝑥) ⊆ 𝑋} ,

𝐻
𝑀
(𝑋) = {𝑥 ∈ 𝑈 : cl

𝑀
(𝑥)⋂𝑋 ̸= 0} .

(2)

One call the two operators are lower and upper approxima-
tion operators induced by𝑀.

In fact, cl
𝑀
(𝑥) can be regarded as the successor neigh-

borhood of 𝑥 with respect to the relation 𝑅
𝑀

defined as
𝑥𝑅
𝑀
𝑦 ⇔ 𝑦 ∈ cl

𝑀
(𝑥). It is clear that 𝑅

𝑀
is a reflexive and

transitive relation. When𝑀 = 𝑀(C), the relation 𝑅
𝑀(C) is

an equivalence relation on 𝑈. Therefore, 𝐿
𝑀(C) = (𝑅𝑀(C))∗

and𝐻
𝑀(C) = (𝑅𝑀(C))

∗. In the following discussion, we study
the relationship between the two operators and the elements
of the lattice L(𝑀(C)). Then, based on the relationship, we
realize the purpose to characterize the lattice through the
atoms of it by using union operator. Firstly, we have the
following lemma.

Lemma 23. Let 𝑅 be an equivalence relation of 𝑈. For all𝑋 ⊆
𝑈, if 𝑅

∗
(𝑋) = 𝑋, then 𝑅∗(𝑋) = 𝑋.

Proof. It is clear that 𝑋 = {𝑥 ∈ 𝑈 : [𝑥]
𝑅
⊆ 𝑋} ⊆ {𝑥 ∈

𝑈 : [𝑥]
𝑅
⋂𝑋 ̸= 0} = 𝑅

∗

(𝑋). For all 𝑦 ∈ 𝑅∗(𝑋), [𝑦]
𝑅
⋂𝑋 ̸= 0.

Suppose 𝑧 ∈ [𝑦]
𝑅
⋂𝑋. Then 𝑦 ∈ [𝑦]

𝑅
= [𝑧]
𝑅
⊆ 𝑋; hence

𝑅
∗

(𝑋) ⊆ 𝑋.

In fact, any closed set of the matroid induced by a
covering is a fixed point of the two operators induced by the
covering.

0

{3}{2}{1}

U

{4, 5}

{3, 4, 5}
{2, 4, 5}{1, 4, 5} {2, 3}{1, 3}

{1, 2}

Figure 1: The geometric lattice of (L(𝑀(C)), ⊆).

Proposition 24. Let C be a covering of 𝑈. If 𝑋 ∈ L(𝑀(C)),
then 𝐿

𝑀(C)(𝑋) = 𝑋 = 𝐻𝑀(C)(𝑋).

Proof. Utilizing Lemma 23, we need prove that 𝑋 =

𝐿
𝑀(C)(𝑋). For all 𝑦 ∈ 𝐿𝑀(C)(𝑋), 𝑦 ∈ cl

𝑀(C)(𝑦) ⊆ 𝑋; thus
𝐿
𝑀(C)(𝑋) ⊆ 𝑋. Conversely, according to (2) of Proposition 5,

we know for all 𝑦 ∈ 𝑋, cl
𝑀(C)(𝑦) ⊆ 𝑋. Thus 𝑋 ⊆ 𝐿

𝑀(C)(𝑋).
Hence𝑋 = 𝐿

𝑀(C)(𝑋).

Based on the above result, any element of the geometric
lattice induced by a covering can be expressed as the union of
all closures of single-point sets in the element.

Theorem 25. LetC be a covering of𝑈. For all𝑋 ∈L(𝑀(C)),
𝑋 = ⋃

𝑥∈𝑋
𝑐𝑙
𝑀(C)(𝑥).

Proof. It is obviouswhen𝑋 = 0. According to Proposition 24,
we have 𝑋 = {𝑥 ∈ 𝑈 : cl

𝑀(C)(𝑥) ⊆ 𝑋}. Then 𝑥 ∈ cl
𝑀(C)(𝑥) ⊆

𝑋 for all 𝑥 ∈ 𝑋. Thus 𝑋 = ⋃
𝑥∈𝑋
{𝑥} ⊆ ⋃

𝑥∈𝑋
cl
𝑀(C)(𝑥) ⊆ 𝑋.

Therefore𝑋 = ⋃
𝑥∈𝑋

cl
𝑀(C)(𝑥).

Example 26. Suppose C is the one shown in Example 16.
According to Example 21 and Proposition 19, we have
cl
𝑀(C)(0) = 0, cl𝑀(C)(1) = {1}, cl𝑀(C)(2) = {2}, cl𝑀(C)(3) =
{3}, and cl

𝑀(C)(4) = cl
𝑀(C)(5) = {4, 5}. Since 𝑋 = ⋃

𝑥∈𝑋

cl
𝑀(C)(𝑥) for all 𝑋 ∈ L(𝑀(C)), we obtain L(𝑀(C)) =
{0, {1}, {2}, {3}, {4, 5}, {1, 2}, {1, 3}, {1, 4, 5}, {2, 3}, {2, 4, 5}, {3,

4, 5}, {1, 2, 3, 4, 5}}, and the geometric lattice (L(𝑀(C)),⊆) is
shown in Figure 1.

4. Application of Geometric Lattice in
Attribute Reduction

In Section 3, we have studied the geometric lattice structure
induced by a covering in detail. In this section, we study how
to apply the lattice to attribute reductions from an expanded
perspective. Considering the fact that an information system
can be converted to a dependence space, the fact that studying
the reduction issues of the dependence space is equal to
studying the issues of the information system, and the fact
that a geometric lattice is the lattice of all the closed sets
of a finite matroid, hence we take the following measures
to realize our purpose. First, we construct one dependence
space through a matroid and obtain all the reducts of the
space. Second, we built the other dependence space from
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an information system. Through making these two spaces
equal, we realize the purpose to apply geometric lattices to
the issues of attribute reduction of information systems.

4.1. Application of Geometric Lattice in the Reduction Issue of
Dependence Space. In this subsection,we apply the geometric
lattices to the reduction problems of dependence spaces. First,
we make certain that what is dependence space. The concept
of dependence space can be found in [40]; the following
lemma introduces it from the viewpoint of set theory.

Lemma 27 (see [40]). Let 𝑈 be a finite nonempty set. For all
T ⊆ 2

𝑈, denote

Γ (T) = {(𝐵
1
, 𝐵
2
) ∈ 𝑃 (𝑈) × 𝑃 (𝑈) : 𝐵

1
⊆ 𝑋

⇐⇒ 𝐵
2
⊆ 𝑋, ∀𝑋 ∈ T} .

(3)

Then (𝑈, Γ(T)) is a dependence space.

For a geometric lattice induced by a matroid, one can
use its coatoms, namely the hyperplanes of the matroid, to
induce a dependence space (𝑈, Γ(H(𝑀))). Before studying
the reduction issues of the dependence space, we review the
concepts of consistent sets and reducts defined in dependence
spaces.

Let (𝑈,Θ) be a dependence space. A subset 𝐵(⊆ 𝑈) is
called a consistent set if𝐵 isminimal with respect to inclusion
in itsΘ-class. A subset𝐵 is called a reduct of (𝑈,Θ), if (𝐵, 𝑈) ∈
Θ and 𝐵 is a consistent set.

In fact, the issue of reduction of dependence space
(𝑈, Γ(T)) has been discussed in detail in [40].

Lemma 28 (see [40]). 𝐵(⊆ 𝑈) is a reduct of (𝑈, Γ(T)) if and
only if 𝐵 ∈ Min({𝐷 ⊆ 𝑈 : 𝐷⋂𝐷



̸= 0 (for all 𝐷 ∈ T)}),
whereT = {𝐷 ̸= 0, 𝑈 − 𝐷 ∈ T}.

Therefore, we can obtain the following result. It indicates
that a subset of a finite nonempty set is a reduct of the
dependence space induced by the coatoms of a geometric
lattice if and only if it is a minimal set with respect to
the property of containing an element from each nonempty
complement of any coatom of the lattice. The symbol Com
appearing in the proposition below is defined as Com(A) =
{𝑋 ⊆ 𝑈 : 𝑈 − 𝑋 ∈ A}, whereA is a family of subsets of 𝑈.

Proposition 29. 𝐵 is a reduct of (𝑈, Γ(H(𝑀))) if and only if
𝐵 ∈ Min({𝐵 ⊆ 𝑈 : 𝐵⋂𝐶 ̸= 0 (for all 𝐶 ∈ Com(H(𝑀))}).

Proof. According to the definition of hyperplane, we know
𝑈 ∉ H(𝑀). It implies that 0 ∉ Com(H(𝑀)). Combining
Proposition 33 and Lemma 28, we obtain the result.

Example 30. Suppose lattice is the one shown in
Example 26. Then the coatoms H(𝑀) of the lattice
are {{1, 2}, {1, 3}, {2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}} and
Com(H(𝑀)) = {{3, 4, 5}, {2, 4, 5}, {1, 4, 5}, {2, 3}, {1, 3}, {1,

2}}. They are all nonempty sets. According to
Proposition 29, the set of all the reducts of (𝑈,T(H(𝑀))) is
{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}}.

Considering that geometric lattices have a closed relation
with matroids, we define the other dependence space from
the viewpoint of matroids. It is interesting that the depen-
dence space is equal to the one (𝑈, Γ(H(𝑀))), which provides
us with the other approach to realize the purpose to apply the
geometric lattice to attribute reduction in Section 4.2.

Definition 31. Let 𝑀 be a matroid on 𝑈. One can define an
equivalence relation on 2𝑈 as follows: for all 𝐵, 𝐶 ⊆ 𝑈,

𝐵Θ
𝑀
𝐶 ⇐⇒ cl

𝑀
(𝐵) = cl

𝑀
(𝐶) . (4)

Lemma32 (see [30]). Let𝑀 be amatroid on𝑈. For all𝑋 ⊆ 𝑈,

cl
𝑀
(𝑋) = {

𝑈 𝑟
𝑀
(𝑋) = 𝑟

𝑀
(𝑈) ,

⋂ {𝐻 ∈H (𝑀) : 𝑋 ⊆ 𝐻} 𝑟
𝑀
(𝑋) ̸= 𝑟

𝑀
(𝑈) .

(5)

Proposition 33. Let 𝑀 be a matroid on 𝑈. (𝑈,Θ
𝑀
) is a

dependence space and Γ(H(𝑀)) = Θ
𝑀
.

Proof. If (𝐵
1
, 𝐵
2
) ∈ Γ(H(𝑀)), then 𝐵

1
⊆ 𝐻 ⇔ 𝐵

2
⊆ 𝐻 for all

𝐻 ∈ H(𝑀). We know 𝑟
𝑀
(𝐵
1
) ̸= 𝑟
𝑀
(𝑈) ̸= 𝑟

𝑀
(𝐵
2
). According

to Lemma 32, we have cl
𝑀
(𝐵
1
) = ⋂{𝐻 ∈H(𝑀) : 𝐵

1
⊆ 𝐻} =

⋂{𝐻 ∈ H(𝑀) : 𝐵
2
⊆ 𝐻} = cl

𝑀
(𝐵
2
). Thus (𝐵

1
, 𝐵
2
) ∈ Θ

𝑀

which implies that Γ(H(𝑀)) ⊆ Θ
𝑀
. If (𝐵

1
, 𝐵
2
) ∈ Θ

𝑀
, then

cl
𝑀
(𝐵
1
) = 𝑐𝑙

𝑀
(𝐵
2
). For all 𝐻 ∈ H(𝑀), if 𝐵

1
⊆ 𝐻, then

cl
𝑀
(𝐵
1
) ⊆ cl

𝑀
(𝐻) = 𝐻. Thus 𝐵

2
⊆ cl
𝑀
(𝐵
2
) = cl

𝑀
(𝐵
1
) ⊆ 𝐻.

Similarly, we can prove the result: for all 𝐻 ∈ H(𝑀), if
𝐵
2
⊆ 𝐻, then 𝐵

1
⊆ 𝐻.Therefore,Θ

𝑀
⊆ Γ(H(𝑀)). According

to Lemma 27, we know (𝑈,Θ
𝑀
) is a dependence space.

4.2. An Application to Information Systems. In Section 4.1,
we propose two methods to solve the problems of reduction
in dependence spaces from matroids and geometric lattices,
respectively. In this subsection, we apply the methods to
information systems. First, we introduce the concept of
information systems.

Definition 34 (information system [40]). An information
system is a quadruple form (𝑈, 𝐴, 𝐹, 𝑉), where 𝑈 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is a nonempty finite set of objects, 𝐴 =

{𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
} is a nonempty finite set of attributes,𝑉

𝑗
∈ 𝑉 =

{𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑚
} is the domain of attribute 𝑎

𝑗
, and 𝐹 = {𝑓

𝑗
:

𝑗 ≤ 𝑚} is a set of information function such that 𝑓
𝑗
(𝑥
𝑖
) ∈ 𝑉
𝑗

for all 𝑥
𝑖
∈ 𝑈.

In an information system, 𝐹, which describes the connec-
tion between 𝑈 and 𝐴, is a basis for knowledge discovery.
Here, we assume that the information system is complete. Let
(𝑈, 𝐴, 𝐹, 𝑉) be an information system. For any 𝐵 ⊆ 𝐴, the
indiscernibility relation is defined as

𝑅
𝐵
= {(𝑥

𝑖
, 𝑥
𝑗
) ∈ 𝑈 × 𝑈 : 𝑓

𝑙
(𝑥
𝑖
) = 𝑓
𝑙
(𝑥
𝑗
) , ∀𝑎
𝑙
∈ 𝐵} . (6)

Specifically, for any attribute 𝑏 ∈ 𝐴,

𝑅
𝑏
= {(𝑥

𝑖
, 𝑥
𝑗
) ∈ 𝑈 × 𝑈 : 𝑓

𝑏
(𝑥
𝑖
) = 𝑓
𝑏
(𝑥
𝑗
)} . (7)
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It is obvious that 𝑅
𝐵
= ⋂
𝑏∈𝐵
𝑅
𝑏
and 𝑅

𝐵
, 𝑅
𝑏
are equivalence

relations of 𝑈. Based on the above two equivalence relations,
we have the following two equivalence relations:

𝑅 = {(𝐵
1
, 𝐵
2
) ∈ 2
𝐴

× 2
𝐴

: 𝑅
𝐵
1

= 𝑅
𝐵
2

} ,

𝑅
0
= {(𝑏, 𝑐) ∈ 𝐴 × 𝐴, 𝑅

𝑏
= 𝑅
𝑐
} .

(8)

It was noted in [40] that 𝑅 is an equivalence relation on𝐴
and the pair (𝐴, 𝑅) is a dependence space. In an information
system, 𝐵 is referred to as a consistent set if 𝑅

𝐵
= 𝑅
𝐴
,

and if 𝐵 is a consistent set and 𝑅
𝐵−{𝑏}

̸= 𝑅
𝐴
(for all 𝑏 ∈ 𝐵),

then 𝐵 is referred to as a reduct of the information system.
We find that the reducts defined in the information system
are the reducts defined in the dependence space (𝐴, 𝑅). In
the following discussion, we solve the issues of attribute
reduction of information systems starting with the operator
𝑅
∗

0
. As we know, the upper approximation operator 𝑅∗

0
is a

closure operator of a matroid. Similar to Definition 31, we
have the following equivalence relation.

Definition 35. Let 𝐴 be a finite nonempty set. For all 𝑋,𝑌 ⊆
𝐴, one can define an equivalence relation Θ of 2𝐴 as follows:

𝑋Θ𝑌 ⇐⇒ 𝑅
∗

0
(𝑋) = 𝑅

∗

0
(𝑌) . (9)

According to Proposition 33, we know (𝐴, Θ) is a depen-
dence space, and we can obtain all the reducts of the space
through Proposition 29. Next, we want to find out all the
reducts of (𝐴, 𝑅) with the aid of the space (𝐴,Θ). The
proposition below establishes the relation between Θ and 𝑅.

Proposition 36. For all 𝑋,𝑌 ⊆ 𝐴, if 𝑅
𝑋
= 𝑅
𝑌
⇒ 𝑅
∗

0
(𝑋) =

𝑅
∗

0
(𝑌), then Θ = 𝑅.

Proof. We need to prove 𝑅∗
0
(𝑋) = 𝑅

∗

0
(𝑌) ⇒ 𝑅

𝑋
= 𝑅
𝑌
.

If 𝑅
𝑋
̸= 𝑅
𝑌
, then we may as well suppose that there exists

(𝑥
𝑖
, 𝑥
𝑗
) ∈ 𝑅

𝑋
− 𝑅
𝑌
. Thus for all 𝑎 ∈ 𝑋, (𝑥

𝑖
, 𝑥
𝑗
) ∈ 𝑅

𝑎
and

there exists 𝑏 ∈ 𝑌 such that (𝑥
𝑖
, 𝑥
𝑗
) ∉ 𝑅

𝑏
. Consequently,

𝑅
𝑏
̸= 𝑅
𝑎
for all 𝑎 ∈ 𝑋. That implies that 𝑏 ∉ 𝑅∗

0
(𝑋) = {𝑥 ∈

𝐴, [𝑥]
𝑅
0

⋂𝑋 ̸= 0}. It is clear that 𝑏 ∈ 𝑅∗
0
(𝑌) because 𝑏 ∈ 𝑌 and

𝑏 ∈ [𝑏]
𝑅
0

. Therefore, 𝑅∗
0
(𝑋) ̸= 𝑅

∗

0
(𝑌), a contradiction! Hence

we have 𝑅∗
0
(𝑋) = 𝑅

∗

0
(𝑌) ⇒ 𝑅

𝑋
= 𝑅
𝑌
. According to the

assumption, we have 𝑅
𝑋
= 𝑅
𝑌
⇒ 𝑅
∗

0
(𝑋) = 𝑅

∗

0
(𝑌). Therefore

Θ = 𝑅.

When an information system satisfies the condition
presented in Proposition 36, then we can find and prove a
method to attribute reduction of the information system.The
method is described as follows: arbitrarily select an element
in each 𝑃

𝑖
(∈ 𝐴/𝑅

0
) to compose a new set, which is just the

reduct of the information system.

Proposition37. Let (𝑈, 𝐴, 𝐹, 𝑉) be an information systemand
𝐴/𝑅
0
= {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑠
}. For all 𝑋,𝑌 ⊆ 𝐴, if 𝑅

𝑋
= 𝑅
𝑌
⇒

𝑅
∗

0
(𝑋) = 𝑅

∗

0
(𝑌), then the following condition holds: 𝐵 is a

reduct of (𝑈, 𝐴, 𝐹, 𝑉) if and only if 𝐵 = {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑠
}, where

𝑝
𝑖
∈ 𝑃
𝑖
, 1 ≤ 𝑖 ≤ 𝑠.

Proof. Suppose 𝑅∗
0
is a closure operator of matroid 𝑀. It

is clear that H(𝑀) = {𝐴 − 𝑃
𝑖
: 𝑖 = 1, 2, . . . , 𝑠}.

Table 1: An information system.

𝑈 Outlook (𝑎
1
) Temperature (𝑎

2
) Humidity (𝑎

3
)

𝑥
1

Sunny Hot High
𝑥
2

Rain Mild Normal
𝑥
3

Rain Cool Normal
𝑥
4

Rain Hot Normal

According to Propositions 29 and 36, we have that 𝐵 is a
reduct of (𝑈, 𝐴, 𝐹, 𝑉) if and only if 𝐵 ∈ Min({𝐵 ⊆ 𝐴 :

𝐵⋂𝐶 ̸= 0 (for all 𝐶 ∈ Com(H(𝑀)))}) = Min({𝐵 ⊆ 𝐴 :

𝐵⋂𝐶 ̸= 0 (for all 𝐶 ∈ 𝐴/𝑅
0
)}) = {𝐵 ⊆ 𝐴 : |𝐵⋂𝑃

𝑖
| = 1, 𝑖 =

1, 2, . . . , 𝑠}.
A relation table entirely determines an information sys-

tem.The following example presents how to use above results
to find all the reducts of an information system.

Example 38. Let (𝑈, 𝐴, 𝐹, 𝑉) be an information system which
is shown in Table 1. It is obvious that 𝑈/𝑅

𝑎
1

= 𝑈/𝑅
𝑎
3

=

𝑈/𝑅
{𝑎
1
,𝑎
3
}
= {{𝑥
1
}, {𝑥
2
, 𝑥
3
, 𝑥
4
}}, 𝑈/𝑅

𝑎
2

= {{𝑥
1
, 𝑥
4
}, {𝑥
2
}, {𝑥
3
}},

and 𝑈/𝑅
{𝑎
1
,𝑎
2
}
= 𝑈/𝑅

{𝑎
2
,𝑎
3
}
= 𝑈/𝑅

{𝑎
1
,𝑎
2
,𝑎
3
}
= {{𝑥
1
},{𝑥
2
}, {𝑥
3
},

{𝑥
4
}}. Then 𝑅

0
= {{𝑎
1
, 𝑎
3
}, {𝑎
2
}}. It is easy to check that any

two subsets 𝑋 and 𝑌 of 𝐴 satisfy the condition: 𝑅
𝑋
= 𝑅
𝑌
⇒

𝑅
∗

0
(𝑋) = 𝑅

∗

0
(𝑋). Hence we can obtain that all the reducts of

(𝑈, 𝐴, 𝐹, 𝑉) are {𝑎
1
, 𝑎
2
} and {𝑎

2
, 𝑎
3
}.

5. Conclusions

In this paper, we have constructed a geometric lattice from
a covering through the transversal matroid induced by the
covering and have used atoms of the lattice to characterize
the lattice. Furthermore, we have applied the lattice to the
attribute reduction issues of information systems. Though
some works have been studied in this paper, there are also
many interesting topics deserving further investigation. In
the future, we will study algorithm implementations of the
attribute reduction issues in information systems through
geometric lattices.
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