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The main contribution of this paper is the homogenization of the linear parabolic equation 𝜕
𝑡
𝑢
𝜀
(𝑥, 𝑡) − ∇ ⋅ (𝑎(𝑥/𝜀

𝑞1 , ..., 𝑥/𝜀
𝑞𝑛 ,

𝑡/𝜀
𝑟1 , ..., 𝑡/𝜀

𝑟𝑚 )∇𝑢
𝜀
(𝑥, 𝑡)) = 𝑓(𝑥, 𝑡) exhibiting an arbitrary finite number of both spatial and temporal scales. We briefly recall some

fundamentals of multiscale convergence and provide a characterization of multiscale limits for gradients, in an evolution setting
adapted to a quite general class of well-separated scales, which we name by jointly well-separated scales (see appendix for the
proof). We proceed with a weaker version of this concept called very weak multiscale convergence. We prove a compactness result
with respect to this latter type for jointly well-separated scales. This is a key result for performing the homogenization of parabolic
problems combining rapid spatial and temporal oscillations such as the problem above. Applying this compactness result together
with a characterization ofmultiscale limits of sequences of gradients we carry out the homogenization procedure, wherewe together
with the homogenized problem obtain 𝑛 local problems, that is, one for each spatial microscale. To illustrate the use of the obtained
result, we apply it to a case with three spatial and three temporal scales with 𝑞

1
= 1, 𝑞

2
= 2, and 0 < 𝑟

1
< 𝑟

2
.

1. Introduction

In this paper, we study the homogenization of

𝜕
𝑡
𝑢
𝜀
(𝑥, 𝑡) − ∇ ⋅ (𝑎 (

𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡))

= 𝑓 (𝑥, 𝑡) in Ω
𝑇
,

𝑢
𝜀
(𝑥, 𝑡) = 0 on 𝜕Ω × (0, 𝑇) ,

𝑢
𝜀
(𝑥, 0) = 𝑢

0
(𝑥) in Ω,

(1)

where 0 < 𝑞
1
< ⋅ ⋅ ⋅ < 𝑞

𝑛
and 0 < 𝑟

1
< ⋅ ⋅ ⋅ < 𝑟

𝑚
. Here

Ω
𝑇
= Ω × (0, 𝑇), where Ω is an open bounded subset of

R𝑁 with smooth boundary and 𝑎 is periodic with respect to
the unit cube 𝑌 = (0, 1)

𝑁 in R𝑁 in the 𝑛 first variables and
with respect to the unit interval 𝑆 = (0, 1) in the remaining
𝑚 variables. The homogenization of (1) consists in studying
the asymptotic behavior of the solutions 𝑢𝜀 as 𝜀 tends to zero
and finding the limit equation which admits the limit 𝑢 of

this sequence as its unique solution. The main contribution
of this paper is the proof of a homogenization result for (1),
that is, for parabolic problemswith an arbitrary finite number
of scales in both space and time.

Parabolic problems with rapid oscillations in one spatial
and one temporal scale were investigated already in [1] using
asymptotic expansions. Techniques of two-scale convergence
type, see, for example, [2–4], for this kind of problems were
first introduced in [5]. One of the main contributions in
[5] is a compactness result for a more restricted class of
test functions compared with usual two-scale convergence,
which has a key role in the homogenization procedure.
In [6], a similar result for an arbitrary number of well-
separated spatial scales is proven and the type of convergence
in question is formalized under the name of very weak
multiscale convergence.

A number of recent papers address various kinds of
parabolic homogenization problems applying techniques
related to those introduced in [5]. [7] treats a monotone
parabolic problem with the same choices of scales as in [5]
in the more general setting of Σ-convergence. In [8], the case
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with two fast temporal scales is treated with one of them
identical to a single fast spatial scale. These results with the
same choice of scales are extended to a more general class of
differential operators in [9] and in [10], the two fast spatial
scales are fixed to be 𝜀

1
= 𝜀, 𝜀

2
= 𝜀

2, while only one fast
temporal scale appears. Significant progress was made in [11],
where the case with an arbitrary number of temporal scales
is treated and none of them has to coincide with the single
fast spatial scale. A first study of parabolic problems where
the number of fast spatial and temporal scales both exceeds
one is found in [12], where the fast spatial scales are 𝜀

1
= 𝜀,

𝜀
2
= 𝜀

2 and the rapid temporal scales are chosen as 𝜀󸀠
1
= 𝜀

2,
𝜀
󸀠

2
= 𝜀

4, and 𝜀
󸀠

3
= 𝜀

5. Similar techniques have also been
recently applied to hyperbolic problems. In [13] the two fast
spatial scales are well separated and the fast temporal scale
coincides with the slower of the fast spatial scales and in [14]
the set of scales is the same as in [8, 9]. Clearly all of these
previous results include strong restrictions on the choices of
scales. Our aim here is to provide a unified approach with the
choices of scales in the examples above as special cases. The
homogenization procedure for (1) covers arbitrary numbers
of spatial and temporal scales and any reasonable choice of the
exponents 𝑞

1
, . . . , 𝑞

𝑛
and 𝑟

1
, . . . , 𝑟

𝑚
defining the fast spatial

and temporal scales, respectively. The key to this is the result
on very weak multiscale convergence proved in Theorem 7
which adapts the original concept in [6] to the appropriate
evolution setting. Let us note that techniques used for the
proof of the special case with 𝜀

1
= 𝜀, 𝜀

2
= 𝜀

2 in [10] do
not apply to the case with arbitrary numbers of scales studied
here.

The present paper is organized as follows. In Section 2
we briefly recall the concepts of multiscale convergence and
evolution multiscale convergence and give a characterization
of gradients with respect to this latter type of convergence
under a certain well-separatedness assumption. In Section 3
we consider very weak multiscale convergence in the evolu-
tion setting and give the key compactness result employed in
the homogenization of (1), which is carried out in Section 4.
In this final section, we also illustrate how this general
homogenization result can be used by applying it to the
particular case governed by 𝑎(𝑥/𝜀, 𝑥/𝜀2, 𝑡/𝜀𝑟1 , 𝑡/𝜀𝑟2)where 0 <
𝑟
1
< 𝑟

2
.

Notation. 𝐹
♯
(𝑌) is the space of all functions in 𝐹loc(R

𝑁
) that

are 𝑌-periodic repetitions of some function in 𝐹(𝑌). We
denote 𝑌

𝑘
= 𝑌 for 𝑘 = 1, . . . , 𝑛, 𝑌𝑛 = 𝑌

1
× ⋅ ⋅ ⋅ × 𝑌

𝑛
,

𝑦
𝑛
= 𝑦

1
, . . . , 𝑦

𝑛
, 𝑑𝑦𝑛 = 𝑑𝑦

1
. . . 𝑑𝑦

𝑛
, 𝑆

𝑗
= 𝑆 for 𝑗 = 1, . . . , 𝑚,

𝑆
𝑚
= 𝑆

1
× ⋅ ⋅ ⋅ × 𝑆

𝑚
, 𝑠𝑚 = 𝑠

1
, . . . , 𝑠

𝑚
, 𝑑𝑠𝑚 = 𝑑𝑠

1
. . . 𝑑𝑠

𝑚
, and

Y
𝑛,𝑚

= 𝑌
𝑛
×𝑆

𝑚.Moreover, we let 𝜀
𝑘
(𝜀), 𝑘 = 1, . . . , 𝑛, and 𝜀󸀠

𝑗
(𝜀),

𝑗 = 1, . . . , 𝑚, be strictly positive functions such that 𝜀
𝑘
(𝜀) and

𝜀
󸀠

𝑗
(𝜀) go to zero when 𝜀 does. More explanations of standard

notations for homogenization theory are found in [15].

2. Multiscale Convergence

Our approach for the homogenization procedure in Section 4
is based on the two-scale convergence method, first intro-
duced in [2] and generalized to include several scales in [16].

Following [16], we say that a sequence {𝑢𝜀} in 𝐿2(Ω) (𝑛 + 1)-
scale converges to 𝑢

0
∈ 𝐿

2
(Ω × 𝑌

𝑛
) if

∫
Ω

𝑢
𝜀
(𝑥) V(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

)𝑑𝑥

󳨀→ ∫
Ω

∫
𝑌
𝑛

𝑢
0
(𝑥, 𝑦

𝑛
) V (𝑥, 𝑦𝑛) 𝑑𝑦𝑛 𝑑𝑥

(2)

for any V ∈ 𝐿2(Ω; 𝐶
♯
(𝑌

𝑛
)) and we write

𝑢
𝜀
(𝑥)

𝑛+1

⇀ 𝑢
0
(𝑥, 𝑦

𝑛
) . (3)

This type of convergence can be adapted to the evolution
setting; see, for example, [12].We give the following definition
of evolution multiscale convergence.

Definition 1. A sequence {𝑢𝜀} in𝐿2(Ω
𝑇
) is said to (𝑛+1,𝑚+1)-

scale converge to 𝑢
0
∈ 𝐿

2
(Ω

𝑇
×Y

𝑛,𝑚
) if

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) V(𝑥, 𝑡,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝑑𝑥𝑑𝑡

󳨀→ ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑢
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑡, 𝑦𝑛, 𝑠𝑚) 𝑑𝑦𝑛 𝑑𝑠𝑚 𝑑𝑥 𝑑𝑡

(4)

for any V ∈ 𝐿2(Ω
𝑇
; 𝐶

♯
(Y

𝑛,𝑚
)). We write

𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ 𝑢
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) . (5)

Normally, some assumptions are made on the relation
between the scales. We say that the scales in a list {𝜀

1
, . . . , 𝜀

𝑛
}

are separated if

lim
𝜀→0

𝜀
𝑘+1

𝜀
𝑘

= 0 (6)

for 𝑘 = 1, . . . , 𝑛 − 1 and that the scales are well-separated if
there exists a positive integer 𝑙 such that

lim
𝜀→0

1

𝜀
𝑘

(
𝜀
𝑘+1

𝜀
𝑘

)

𝑙

= 0 (7)

for 𝑘 = 1, . . . , 𝑛 − 1.
We also need the concept in the following definition.

Definition 2. Let {𝜀
1
, . . . , 𝜀

𝑛
} and {𝜀󸀠

1
, . . . , 𝜀

󸀠

𝑚
} be lists of well-

separated scales. Collect all elements from both lists in one
common list. If from possible duplicates, where by duplicates
we mean scales which tend to zero equally fast, one member
of each such pair is removed and the list in order of
magnitude of all the remaining elements is well-separated,
the lists {𝜀

1
, . . . , 𝜀

𝑛
} and {𝜀󸀠

1
, . . . , 𝜀

󸀠

𝑚
} are said to be jointly well-

separated.

In the remark below, we give some further comments on
the concept introduced in Definition 2.
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Remark 3. To include also the temporal scales alongside with
the spatial scales allows us to study a much richer class
of homogenization problems such as all the cases included
in (1). For a more technically formulated definition and
some examples, see Section 2.4 in [17]. Note that the lists
{𝜀
𝑞
1 , . . . , 𝜀

𝑞
𝑛} and {𝜀𝑟1 , . . . , 𝜀𝑟𝑚} of spatial and temporal scales,

respectively, in (1) are jointly well-separated for any choice of
0 < 𝑞

1
< ⋅ ⋅ ⋅ < 𝑞

𝑛
and 0 < 𝑟

1
< ⋅ ⋅ ⋅ < 𝑟

𝑚
.

Below we provide a characterization of evolution mul-
tiscale limits for gradients, which will be used in the proof
of the homogenization result in Section 4. Here 𝑊1

2
(0, 𝑇;

𝐻
1

0
(Ω), 𝐿

2
(Ω)) is the space of all functions in 𝐿2(0, 𝑇;𝐻1

0
(Ω))

such that the time derivative belongs to 𝐿2(0, 𝑇;𝐻−1
(Ω)); see,

for example, Chapter 23 in [18].

Theorem 4. Let {𝑢𝜀} be a bounded sequence in 𝑊
1

2
(0, 𝑇;

𝐻
1

0
(Ω), 𝐿

2
(Ω)) and suppose that the lists {𝜀

1
, . . . , 𝜀

𝑛
} and

{𝜀
󸀠

1
, . . . , 𝜀

󸀠

𝑚
} are jointly well-separated. Then there exists a

subsequence such that

𝑢
𝜀
(𝑥, 𝑡) 󳨀→ 𝑢 (𝑥, 𝑡) in 𝐿2 (Ω

𝑇
) ,

𝑢
𝜀
(𝑥, 𝑡) ⇀ 𝑢 (𝑥, 𝑡) in 𝐿2 (0, 𝑇;𝐻1

0
(Ω)) ,

(8)

∇𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ ∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
) , (9)

where 𝑢 ∈ 𝑊1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)), 𝑢

1
∈ 𝐿

2
(Ω

𝑇
×𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/

R) and 𝑢
𝑗
∈ 𝐿

2
(Ω

𝑇
×Y

𝑗−1,𝑚
; 𝐻

1

♯
(𝑌

𝑗
)/R) for 𝑗 = 2, . . . , 𝑛.

Proof. See Theorem 2.74 in [17] and the appendix of this
paper.

3. Very Weak Multiscale Convergence

A first compactness result of very weak convergence type
was presented in [5] for the purpose of homogenizing linear
parabolic equations with fast oscillations in one spatial scale
and one temporal scale. A compactness result for the case
with oscillations in 𝑛well-separated spatial scales was proven
in [6], where the notion of very weak convergence was
introduced. It states that for any bounded sequence {𝑢𝜀} in
𝐻
1

0
(Ω) and the scales in the list {𝜀

1
, . . . , 𝜀

𝑛
} well-separated it

holds up to subsequence that

∫
Ω

𝑢
𝜀
(𝑥)

𝜀
𝑛

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)𝜑(
𝑥

𝜀
𝑛

)𝑑𝑥

󳨀→ ∫
Ω

∫
𝑌
𝑛

𝑢
𝑛
(𝑥, 𝑦

𝑛
) V (𝑥, 𝑦𝑛−1) 𝜑 (𝑦

𝑛
) 𝑑𝑦

𝑛
𝑑𝑥

(10)

for any V ∈ 𝐷(Ω; 𝐶∞
♯
(𝑌

𝑛−1
)) and 𝜑 ∈ 𝐶∞

♯
(𝑌

𝑛
)/R, where 𝑢

𝑛
is

the same as in the right-hand side of

∇𝑢
𝜀
(𝑥)

𝑛+1

⇀ ∇𝑢 (𝑥) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑦

𝑗
) , (11)

the original time independent version of the gradient charac-
terization in Theorem 4, that is found in [16]. In Theorem 7
below we present a generalized result including oscillations
in time with a view to homogenizing (1). First we define very
weak evolution multiscale convergence.

Definition 5. We say that a sequence {𝑔𝜀} in𝐿1(Ω
𝑇
) (𝑛+1,𝑚+

1)-scale converges very weakly to 𝑔
0
∈ 𝐿

1
(Ω

𝑇
×Y

𝑛,𝑚
) if

∫
Ω
𝑇

𝑔
𝜀
(𝑥, 𝑡) V(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝜑(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡

󳨀→ ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑔
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑦𝑛−1)

× 𝑐 (𝑡, 𝑠
𝑚
) 𝜑 (𝑦

𝑛
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡

(12)

for any V ∈ 𝐷(Ω; 𝐶∞
♯
(𝑌

𝑛−1
)), 𝜑 ∈ 𝐶∞

♯
(𝑌

𝑛
)/R and 𝑐 ∈ 𝐷(0, 𝑇;

𝐶
∞

♯
(𝑆
𝑚
)). A unique limit is provided by requiring that

∫
𝑌
𝑛

𝑔
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
= 0. (13)

We write

𝑔
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀
V𝑤

𝑔
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) . (14)

The following proposition (see Theorem 3.3 in [16]) is
needed for the proof of Theorem 7.

Proposition 6. Let V ∈ 𝐷(Ω; 𝐶∞
♯
(𝑌

𝑛
)) be a function such that

∫
𝑌
𝑛

V (𝑥, 𝑦𝑛) 𝑑𝑦
𝑛
= 0, (15)

and assume that the scales in the list {𝜀
1
, . . . , 𝜀

𝑛
} are well-sepa-

rated. Then {𝜀−1
𝑛
V(𝑥, 𝑥/𝜀

1
, . . . , 𝑥/𝜀

𝑛
)} is bounded in𝐻−1

(Ω).

We are now ready to state the following theorem which is
essential for the homogenization of (1); see alsoTheorem 7 in
[19] andTheorem 2.78 in [17].

Theorem 7. Let {𝑢𝜀} be a bounded sequence in 𝑊
1

2
(0, 𝑇;

𝐻
1

0
(Ω), 𝐿

2
(Ω)) and assume that the lists {𝜀

1
, . . . , 𝜀

𝑛
} and

{𝜀
󸀠

1
, . . . , 𝜀

󸀠

𝑚
} are jointly well-separated. Then there exists a

subsequence such that

𝑢
𝜀
(𝑥, 𝑡)

𝜀
𝑛

𝑛+1,𝑚+1

⇀
𝑣𝑤

𝑢
𝑛
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) , (16)

where, for 𝑛 = 1, 𝑢
1
∈ 𝐿

2
(Ω

𝑇
× 𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/R) and, for 𝑛 = 2,

3, . . ., 𝑢
𝑛
∈ 𝐿

2
(Ω

𝑇
× Y

𝑛−1,𝑚
; 𝐻

1

♯
(𝑌

𝑛
)/R) are the same as in

Theorem 4.
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Proof. Wewant to prove that for any V ∈ 𝐷(Ω; 𝐶∞
♯
(𝑌

𝑛−1
)), 𝑐 ∈

𝐷(0, 𝑇; 𝐶
∞

♯
(𝑆
𝑚
)) and 𝜑 ∈ 𝐶∞

♯
(𝑌

𝑛
)/R,

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡)

𝜀
𝑛

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝜑(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡

󳨀→ ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑢
𝑛
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑦𝑛−1)

× 𝑐 (𝑡, 𝑠
𝑚
) 𝜑 (𝑦

𝑛
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡

(17)

for some suitable subsequence. First we note that any 𝜑 ∈

𝐶
∞

♯
(𝑌

𝑛
)/R can be expressed as

𝜑 (𝑦
𝑛
) = Δ

𝑦
𝑛

𝑤 (𝑦
𝑛
) = ∇

𝑦
𝑛

⋅ (∇
𝑦
𝑛

𝑤 (𝑦
𝑛
)) (18)

for some 𝑤 ∈ 𝐶
∞

♯
(𝑌

𝑛
)/R (see, e.g., Remark 3.2 in [7]). Fur-

thermore, let

𝜓 (𝑦
𝑛
) = ∇

𝑦
𝑛

𝑤 (𝑦
𝑛
) (19)

and observe that

∫
𝑌
𝑛

𝜓 (𝑦
𝑛
) 𝑑𝑦

𝑛
= ∫

𝑌
𝑛

∇
𝑦
𝑛

𝑤 (𝑦
𝑛
) 𝑑𝑦

𝑛
= 0 (20)

because of the 𝑌
𝑛
-periodicity of 𝑤. By (18), the left-hand side

of (17) can be expressed as

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡)

𝜀
𝑛

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)(∇
𝑦
𝑛

⋅ 𝜓) (
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡

= ∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) V(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)∇ ⋅ (𝜓(
𝑥

𝜀
𝑛

))𝑑𝑥𝑑𝑡.

(21)

Integrating by parts with respect to 𝑥, we obtain

− ∫
Ω
𝑇

∇𝑢
𝜀
(𝑥, 𝑡) ⋅ V(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝜓(
𝑥

𝜀
𝑛

)

+ 𝑢
𝜀
(𝑥, 𝑡) ∇

𝑥
V(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

) ⋅ 𝜓(
𝑥

𝜀
𝑛

)

+

𝑛−1

∑

𝑗=1

𝑢
𝜀
(𝑥, 𝑡) 𝜀

−1

𝑗
∇
𝑦
𝑗

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

) ⋅ 𝜓(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡.

(22)

To begin with, we consider the first term. Passing to the mul-
tiscale limit usingTheorem 4, we arrive up to subsequence at

− ∫
Ω
𝑇

∫
Y
𝑛,𝑚

(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))

⋅ V (𝑥, 𝑦𝑛−1) 𝑐 (𝑡, 𝑠𝑚) 𝜓 (𝑦
𝑛
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡,

(23)

and due to (20) all but the last term vanish. We have

− ∫
Ω
𝑇

∫
Y
𝑛,𝑚

∇
𝑦
𝑛

𝑢
𝑛
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
)

⋅ V (𝑥, 𝑦𝑛−1) 𝑐 (𝑡, 𝑠𝑚) 𝜓 (𝑦
𝑛
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡.

(24)

Moreover, (8) means that the second term of (22) up to a
subsequence approaches

− ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑢 (𝑥, 𝑡) ∇
𝑥
V (𝑥, 𝑦𝑛−1) 𝑐 (𝑡, 𝑠𝑚)

⋅ 𝜓 (𝑦
𝑛
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡

= −∫
Ω
𝑇

∫
Y
𝑛−1,𝑚

𝑢 (𝑥, 𝑡) ∇
𝑥
V (𝑥, 𝑦𝑛−1) 𝑐 (𝑡, 𝑠𝑚)

⋅ (∫
𝑌
𝑛

𝜓 (𝑦
𝑛
) 𝑑𝑦

𝑛
)𝑑𝑦

𝑛−1
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡 = 0,

(25)

where the last equality is a result of (20).
It remains to investigate the last term of (22). We write

𝑛−1

∑

𝑗=1

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) 𝜀

−1

𝑗
∇
𝑦
𝑗

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

) ⋅ 𝜓(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡

=

𝑛−1

∑

𝑗=1

𝜀
𝑛

𝜀
𝑗

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) 𝜀

−1

𝑛
∇
𝑦
𝑗

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

) ⋅ 𝜓(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡.

(26)

Clearly, {𝜀−1
𝑛
∇
𝑦
𝑗

V(𝑥, 𝑥/𝜀
1
, . . . , 𝑥/𝜀

𝑛−1
)⋅𝜓(𝑥/𝜀

𝑛
)} is bounded

in 𝐻−1
(Ω) for 𝑗 = 1, . . . , 𝑛 − 1 by Proposition 6. Observing

that {𝑢𝜀} is assumed to be bounded in 𝐿2(0, 𝑇;𝐻1

0
(Ω)), this
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means that, for any integer 𝑗 ∈ [1, 𝑛 − 1], there are constants
𝐶
1
, 𝐶

2
, 𝐶

3
> 0 such that

(
𝜀
𝑛

𝜀
𝑗

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) 𝜀

−1

𝑛
∇
𝑦
𝑗

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

) ⋅ 𝜓(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡)

2

= (
𝜀
𝑛

𝜀
𝑗

)

2

(∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) 𝜀

−1

𝑛
∇
𝑦
𝑗

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

) ⋅ 𝜓(
𝑥

𝜀
𝑛

)𝑑𝑥𝑑𝑡)

2

≤ 𝐶
1
(
𝜀
𝑛

𝜀
𝑗

)

2

∫

𝑇

0

(∫
Ω

𝑢
𝜀
(𝑥, 𝑡) 𝜀

−1

𝑛
∇
𝑦
𝑗

V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛−1

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

) ⋅ 𝜓(
𝑥

𝜀
𝑛

)𝑑𝑥)

2

𝑑𝑡

≤ 𝐶
1
(
𝜀
𝑛

𝜀
𝑗

)

2

× ∫

𝑇

0

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜀
−1

𝑛
∇
𝑦
𝑗

V(⋅,
⋅

𝜀
1

, . . . ,
⋅

𝜀
𝑛−1

) ⋅ 𝜓(
⋅

𝜀
𝑛

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻−1(Ω)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝜀
(⋅, 𝑡) 𝑐 (𝑡,

𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻1
0
(Ω)

)

2

𝑑𝑡

≤ 𝐶
2
(
𝜀
𝑛

𝜀
𝑗

)

2

∫

𝑇

0

󵄩󵄩󵄩󵄩𝑢
𝜀
(⋅, 𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1

0
(Ω)
𝑑𝑡

= 𝐶
2
(
𝜀
𝑛

𝜀
𝑗

)

2

󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝐿
2(0,𝑇;𝐻10 (Ω))

≤ 𝐶
3
(
𝜀
𝑛

𝜀
𝑗

)

2

.

(27)

Hence, all the terms in the sum (26) vanish as 𝜀 → 0 as a
result of the separatedness of the scales. Then (24) is all that
remains after passing to the limit in (22). Finally, integrating
(24) by parts, we obtain

∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑢
𝑛
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑦𝑛−1) 𝑐 (𝑡, 𝑠𝑚) ∇

𝑦
𝑛

⋅ 𝜓 (𝑦
𝑛
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡

= ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑢
𝑛
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑦𝑛−1)

× 𝑐 (𝑡, 𝑠
𝑚
) 𝜑 (𝑦

𝑛
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡,

(28)

which is the right-hand side of (17).

Remark 8. Thenotion of very weakmultiscale convergence is
an alternative type ofmultiscale convergence. It is remarkable
in the sense that it enables us to provide a compactness

result of multiscale convergence type for sequences that are
not bounded in any Lebesgue space. In fact, it deals with
the normally forbidden situation of finding a limit for a
quotient, where the denominator goes to zero while the
numerator does not. The price to pay for this is that we
have to use much smaller class of admissible testfunctions.
In the set of modes of multiscale convergence usually
applied in homogenization that we find in Definition 1 and
Theorem 4, very weak multiscale convergence provides us
with the missing link. As we will see in the homogenization
procedure in the next section Theorems 4 and 7 give us the
cornerstones for the homogenization procedure that allows
us to tackle all appearing passages to limits in a unified
way by means of two distinct theorems and without ad
hoc constructions. Moreover, Theorem 7 provides us with
appropriate upscaling to detect microoscillations in solutions
of typical homogenization problems, which are usually of
vanishing amplitude, while the global tendency is filtered
away as a result of the choice of test functions. See [12].

4. Homogenization

We are now ready to give the main contribution of this paper,
the homogenization of the linear parabolic problem (1). The
gradient characterization in Theorem 4 and the very weak
compactness result from Theorem 7 are crucial for proving
the homogenization result, which is presented in Section 4.1.
An illustration of how this result can be used in practice is
given in Section 4.2.

4.1. The General Case. We study the homogenization of the
problem

𝜕
𝑡
𝑢
𝜀
(𝑥, 𝑡) − ∇ ⋅ (𝑎 (

𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡))

= 𝑓 (𝑥, 𝑡) in Ω
𝑇
,

𝑢
𝜀
(𝑥, 𝑡) = 0 on 𝜕Ω × (0, 𝑇) ,

𝑢
𝜀
(𝑥, 0) = 𝑢

0
(𝑥) in Ω,

(29)

where 0 < 𝑞
1
< ⋅ ⋅ ⋅ < 𝑞

𝑛
, 0 < 𝑟

1
< ⋅ ⋅ ⋅ < 𝑟

𝑚
, 𝑓 ∈ 𝐿

2
(Ω

𝑇
),

𝑢
0
∈ 𝐿

2
(Ω) and where we assume that

(A1) 𝑎 ∈ 𝐶
♯
(Y

𝑛,𝑚
)
𝑁×𝑁.

(A2) 𝑎(𝑦𝑛, 𝑠𝑚)𝜉 ⋅ 𝜉 ≥ 𝛼|𝜉|2 for all (𝑦𝑛, 𝑠𝑚) ∈ R𝑛𝑁
× R𝑚, all

𝜉 ∈ R𝑁 and some 𝛼 > 0.
Under these conditions, (29) allows a unique solution 𝑢𝜀 ∈
𝑊

1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)) and for some positive constant 𝐶,
󵄩󵄩󵄩󵄩𝑢

𝜀󵄩󵄩󵄩󵄩𝑊1
2
(0,𝑇;𝐻

1

0
(Ω),𝐿
2
(Ω))

< 𝐶. (30)

Given the scale exponents 0 < 𝑞
1
< ⋅ ⋅ ⋅ < 𝑞

𝑛
and 0 <

𝑟
1
< ⋅ ⋅ ⋅ < 𝑟

𝑚
, we may define some numbers in order to

formulate the theorem below in a convenient way. We define
𝑑
𝑖
(the number of temporal scales faster than the square of

the spatial scale in question) and 𝜌
𝑖
(indicates whether there

is nonresonance or resonance), 𝑖 = 1, . . . , 𝑛, as follows.
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(i) If 2𝑞
𝑖
< 𝑟

1
, then 𝑑

𝑖
= 𝑚, if 𝑟

𝑗
≤ 2𝑞

𝑖
< 𝑟

𝑗+1
for some

𝑗 = 1, . . . , 𝑚−1, then 𝑑
𝑖
= 𝑚−𝑗, and if 2𝑞

𝑖
≥ 𝑟

𝑚
, then

𝑑
𝑖
= 0.

(ii) If 2𝑞
𝑖
= 𝑟

𝑗
for some 𝑗 = 1, . . . , 𝑚, that is we have

resonance, we let 𝜌
𝑖
= 1; otherwise, 𝜌

𝑖
= 0.

Note that from the definition of 𝑑
𝑖
we have in fact in the

definition of 𝜌
𝑖
that 𝑗 = 𝑚 − 𝑑

𝑖
in the case of resonance.

Finally, we recall that the lists {𝜀𝑞1 , . . . , 𝜀𝑞𝑛} and {𝜀𝑟1 , . . . ,
𝜀
𝑟
𝑚} are jointly well-separated.

Theorem 9. Let {𝑢𝜀} be a sequence of solutions in 𝑊1

2
(0, 𝑇;

𝐻
1

0
(Ω), 𝐿

2
(Ω)) to (29). Then it holds that

𝑢
𝜀
(𝑥, 𝑡) 󳨀→ 𝑢 (𝑥, 𝑡) in 𝐿2 (Ω

𝑇
) ,

𝑢
𝜀
(𝑥, 𝑡) ⇀ 𝑢 (𝑥, 𝑡) in 𝐿2 (0, 𝑇;𝐻1

0
(Ω)) ,

∇𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ ∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
) ,

(31)

where 𝑢 ∈ 𝑊1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)) is the unique solution to

𝜕
𝑡
𝑢 (𝑥, 𝑡) − ∇ ⋅ (𝑏 (𝑥, 𝑡) ∇𝑢 (𝑥, 𝑡)) = 𝑓 (𝑥, 𝑡) in Ω

𝑇
,

𝑢 (𝑥, 𝑡) = 0 𝑜𝑛 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) in Ω

(32)

with
𝑏 (𝑥, 𝑡) ∇𝑢 (𝑥, 𝑡)

= ∫
Y𝑛,𝑚

𝑎 (𝑦
𝑛
, 𝑠
𝑚
)

× (∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))𝑑𝑦

𝑛
𝑑𝑠

𝑚
.

(33)

Here 𝑢
1
∈ 𝐿

2
(Ω

𝑇
× 𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/R) and 𝑢

𝑗
∈ 𝐿

2
(Ω

𝑇
×Y

𝑗−1,𝑚
;

𝐻
1

♯
(𝑌

𝑗
)/R), 𝑗 = 2, . . . , 𝑛, are the unique solutions to the system

of local problems

𝜌
𝑖
𝜕
𝑠
𝑚−𝑑𝑖

𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
) − ∇

𝑦
𝑖

⋅ ∫
𝑆
𝑚−𝑑𝑖+1

⋅ ⋅ ⋅ ∫
𝑆
𝑚

∫
𝑌
𝑖+1

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑎 (𝑦
𝑛
, 𝑠
𝑚
)

× (∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))

× 𝑑𝑦
𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑖+1
𝑑𝑠

𝑚
⋅ ⋅ ⋅ 𝑑𝑠

𝑚−𝑑
𝑖
+1
= 0,

(34)

for 𝑖 = 1, . . . , 𝑛, where 𝑢
𝑖
is independent of 𝑠

𝑚−𝑑
𝑖
+1
, . . . , 𝑠

𝑚
.

Remark 10. In the case 𝑑
𝑖
= 0, we naturally interpret the

integration in (34) as if there is no local temporal integration
involved and that there is no independence of any local
temporal variable.

Remark 11. Note that if, for example, 𝑢
1
is independent of

𝑠
𝑚
the function space that 𝑢

1
belongs to simplifies to 𝑢

1
∈

𝐿
2
(Ω

𝑇
×𝑆

𝑚−1
; 𝐻

1

♯
(𝑌

1
)/R) and when 𝑢

1
is also independent of

𝑠
𝑚−1

, we have that 𝑢
1
∈ 𝐿

2
(Ω

𝑇
× 𝑆

𝑚−2
; 𝐻

1

♯
(𝑌

1
)/R) and so on.

Proof of Theorem 9. Since {𝑢
𝜀
} is bounded in 𝑊

1

2
(0, 𝑇;

𝐻
1

0
(Ω), 𝐿

2
(Ω)) and the lists of scales are jointly well-

separated, we can apply Theorem 4 and obtain that, up to a
subsequence,

𝑢
𝜀
(𝑥, 𝑡) 󳨀→ 𝑢 (𝑥, 𝑡) in 𝐿2 (Ω

𝑇
) ,

𝑢
𝜀
(𝑥, 𝑡) ⇀ 𝑢 (𝑥, 𝑡) in 𝐿2 (0, 𝑇;𝐻1

0
(Ω)) ,

∇𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ ∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
) ,

(35)

where 𝑢 ∈ 𝑊1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)), 𝑢

1
∈ 𝐿

2
(Ω

𝑇
×𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/

R), and 𝑢
𝑗
∈ 𝐿

2
(Ω

𝑇
×Y

𝑗−1,𝑚
; 𝐻

1

♯
(𝑌

𝑗
)/R), 𝑗 = 2, . . . , 𝑛.

To obtain the homogenized problem, we introduce the
weak form

∫
Ω
𝑇

−𝑢
𝜀
(𝑥, 𝑡) V (𝑥) 𝜕

𝑡
𝑐 (𝑡)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ ∇V (𝑥) 𝑐 (𝑡) 𝑑𝑥 𝑑𝑡 = ∫
Ω
𝑇

𝑓 (𝑥, 𝑡) V (𝑥) 𝑐 (𝑡) 𝑑𝑥 𝑑𝑡

(36)

of (29) where V ∈ 𝐻1

0
(Ω) and 𝑐 ∈ 𝐷(0, 𝑇), and letting 𝜀 → 0,

we get usingTheorem 4

∫
Ω
𝑇

−𝑢 (𝑥, 𝑡) V (𝑥) 𝜕
𝑡
𝑐 (𝑡)

+ ∫
Y
𝑛,𝑚

𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))

⋅ ∇V (𝑥) 𝑐 (𝑡) 𝑑𝑦𝑛 𝑑𝑠𝑚 𝑑𝑥 𝑑𝑡

= ∫
Ω
𝑇

𝑓 (𝑥, 𝑡) V (𝑥) 𝑐 (𝑡) 𝑑𝑥 𝑑𝑡.

(37)

We proceed by deriving the system of local problems (34) and
the independencies of the local temporal variables. Fix 𝑖 =
1, . . . , 𝑛 and choose

V (𝑥) = 𝜀𝑝V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
) , 𝑝 > 0,

𝑐 (𝑡) = 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
) , 𝜆 = 1, . . . , 𝑚

(38)

with V
1
∈ 𝐷(Ω), V

𝑗
∈ 𝐶

∞

♯
(𝑌

𝑗−1
) for 𝑗 = 2, . . . , 𝑖, V

𝑖+1
∈

𝐶
∞

♯
(𝑌

𝑖
)/R, 𝑐

1
∈ 𝐷(0, 𝑇) and 𝑐

𝑙
∈ 𝐶

∞

♯
(𝑆
𝑙−1
) for 𝑙 = 2, . . . , 𝜆+1.
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Here 𝑝 and 𝜆 will be fixed later. Using this choice of test
functions in (36), we have

∫
Ω
𝑇

−𝑢
𝜀
(𝑥, 𝑡) 𝜀

𝑝V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× (𝜕
𝑡
𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
)

+

𝜆+1

∑

𝑙=2

𝜀
−𝑟
𝑙−1𝑐

1
(𝑡)

× 𝑐
2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑙−1

𝑐
𝑙
(

𝑡

𝜀𝑟𝑙−1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
))

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ (𝜀
𝑝
∇V

1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

+

𝑖+1

∑

𝑗=2

𝜀
𝑝−𝑞
𝑗−1V

1
(𝑥)

×V
2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ ∇

𝑦
𝑗−1

V
𝑗
(
𝑥

𝜀
𝑞
𝑗−1

) ⋅ ⋅ ⋅ V
𝑖+1
(
𝑥

𝜀𝑞𝑖
))

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
) 𝑑𝑥 𝑑𝑡

= ∫
Ω
𝑇

𝑓 (𝑥, 𝑡) 𝜀
𝑝V

1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
) 𝑑𝑥 𝑑𝑡,

(39)

where, for 𝑙 = 2 and 𝑙 = 𝜆 + 1, the interpretation should be
that the partial derivative acts on 𝑐

2
and 𝑐

𝜆+1
, respectively, and

where the 𝑗 = 2 and 𝑗 = 𝑖 + 1 terms are defined analogously.
We let 𝜀 → 0 and usingTheorem 4, we obtain

lim
𝜀→0

∫
Ω
𝑇

−𝑢
𝜀
(𝑥, 𝑡) 𝜀

𝑝V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

×

𝜆+1

∑

𝑙=2

𝜀
−𝑟
𝑙−1𝑐

1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
)

⋅ ⋅ ⋅ 𝜕
𝑠
𝑙−1

𝑐
𝑙
(

𝑡

𝜀𝑟𝑙−1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅

𝑖+1

∑

𝑗=2

𝜀
𝑝−𝑞
𝑗−1V

1
(𝑥) V

2
(
𝑥

𝜀𝑞1
)

⋅ ⋅ ⋅ ∇
𝑦
𝑗−1

V
𝑗
(
𝑥

𝜀
𝑞
𝑗−1

) ⋅ ⋅ ⋅ V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
) 𝑑𝑥 𝑑𝑡 = 0,

(40)

and extracting a factor 𝜀−𝑞𝑖 in the first term, we get

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡)

×

𝜆+1

∑

𝑙=2

𝜀
𝑝+𝑞
𝑖
−𝑟
𝑙−1V

1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑙−1

𝑐
𝑙
(

𝑡

𝜀𝑟𝑙−1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅

𝑖+1

∑

𝑗=2

𝜀
𝑝−𝑞
𝑗−1V

1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ ∇

𝑦
𝑗−1

× V
𝑗
(
𝑥

𝜀
𝑞
𝑗−1

) ⋅ ⋅ ⋅ V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
) 𝑑𝑥 𝑑𝑡 = 0.

(41)

Suppose that 𝑝 + 𝑞
𝑖
− 𝑟

𝜆
≥ 0 and 𝑝 − 𝑞

𝑖
≥ 0 (which

also guarantees that 𝑝 > 0 as required above); then, by
Theorems 7 and 4, we have left

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡) 𝜀

𝑝+𝑞
𝑖
−𝑟
𝜆V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝜆

𝑐
𝜆+1

(
𝑡

𝜀𝑟𝜆
)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ 𝜀
𝑝−𝑞
𝑖V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖
(
𝑥

𝜀𝑞𝑖−1
)∇

𝑦
𝑖

V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
) 𝑑𝑥 𝑑𝑡 = 0,

(42)

which is the point of departure for deriving the local problems
and the independency.

We distinguish four different cases where 𝜌
𝑖
is either zero

(nonresonance) or one (resonance) and 𝑑
𝑖
is either zero or

positive.

Case 1. Consider 𝜌
𝑖
= 0 and 𝑑

𝑖
= 0. We choose 𝜆 = 𝑚 and

𝑝 = 𝑞
𝑖
. This means that 𝑝 + 𝑞

𝑖
− 𝑟

𝜆
= 2𝑞

𝑖
− 𝑟

𝑚
> 0 since

𝑑
𝑖
= 𝜌

𝑖
= 0 and 𝑝 − 𝑞

𝑖
= 𝑞

𝑖
− 𝑞

𝑖
= 0. This implies that (42) is

valid. We get

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡) 𝜀

2𝑞
𝑖
−𝑟
𝑚V

1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑚

𝑐
𝑚+1

(
𝑡

𝜀𝑟𝑚
)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)
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⋅ 𝜀
0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖
(
𝑥

𝜀𝑞𝑖−1
)∇

𝑦
𝑖

V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝑚+1
(
𝑡

𝜀𝑟𝑚
)𝑑𝑥𝑑𝑡 = 0,

(43)

wherewe let 𝜀 → 0 andobtain bymeans ofTheorems 7 and 4

∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))

⋅ V
1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖
(𝑦

𝑖−1
) ∇

𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
) 𝑐

1
(𝑡)

× 𝑐
2
(𝑠
1
) ⋅ ⋅ ⋅ 𝑐

𝑚+1
(𝑠
𝑚
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡 = 0.

(44)

By the Variational Lemma, we have

∫
𝑌
𝑖

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))

⋅ ∇
𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑖
= 0,

(45)

a.e. inΩ
𝑇
×𝑆

𝑚
×𝑌

1
× ⋅ ⋅ ⋅ ×𝑌

𝑖−1
for all V

𝑖+1
∈ 𝐶

∞

♯
(𝑌

𝑖
)/R and by

density for all V
𝑖+1

∈ 𝐻
1

♯
(𝑌

𝑖
)/R. This is the weak form of the

local problem in this case. In what followsTheorems 7 and 4,
the variational lemma and the density argument are used in
a corresponding way.

Case 2. Consider 𝜌
𝑖
= 1 and 𝑑

𝑖
= 0. We again choose 𝜆 = 𝑚

and 𝑝 = 𝑞
𝑖
. We then have 𝑝 + 𝑞

𝑖
− 𝑟

𝜆
= 2𝑞

𝑖
− 𝑟

𝑚
= 0 since

𝑑
𝑖
= 0 and 𝜌

𝑖
= 1 and 𝑝 − 𝑞

𝑖
= 𝑞

𝑖
− 𝑞

𝑖
= 0 which implies that

we may again use (42). We get

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡) 𝜀

0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑚

𝑐
𝑚+1

(
𝑡

𝜀𝑟𝑚
)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ 𝜀
0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖
(
𝑥

𝜀𝑞𝑖−1
)∇

𝑦
𝑖

V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝑚+1
(
𝑡

𝜀𝑟𝑚
) 𝑑𝑥 𝑑𝑡 = 0

(46)

and, passing to the limit,

∫
Ω
𝑇

∫
Y
𝑛,𝑚

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
) V

1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖+1
(𝑦

𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(𝑠
1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑚

𝑐
𝑚+1

(𝑠
𝑚
)

+ 𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))

⋅ V
1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖
(𝑦

𝑖−1
) ∇

𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
) 𝑐

1
(𝑡)

× 𝑐
2
(𝑠
1
) ⋅ ⋅ ⋅ 𝑐

𝑚+1
(𝑠
𝑚
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡 = 0.

(47)

By the variational lemma

∫
𝑆
𝑚

∫
𝑌
𝑖

⋅ ⋅ ⋅ ∫
𝑌
𝑛

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
) V

𝑖+1
(𝑦

𝑖
) 𝜕

𝑠
𝑚

𝑐
𝑚+1

(𝑠
𝑚
)

+ 𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚
))

⋅ ∇
𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
) 𝑐

𝑚+1
(𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑖
𝑑𝑠

𝑚
= 0

(48)

a.e. for all V
𝑖+1

∈ 𝐻
1

♯
(𝑌

𝑖
)/R and 𝑐

𝑚+1
∈ 𝐶

∞

♯
(𝑆
𝑚
), which is the

weak form of the local problem in this second case.

Case 3. Consider 𝜌
𝑖
= 0 and 𝑑

𝑖
> 0. Let 𝜆 be fixed and

successively be 𝑚, . . . , 𝑚 − 𝑑
𝑖
+ 1. Choose 𝑝 = 𝑟

𝜆
− 𝑞

𝑖
which

immediately yields that 𝑝+𝑞
𝑖
− 𝑟

𝜆
= 0. Furthermore, 𝑝−𝑞

𝑖
=

𝑟
𝜆
− 2𝑞

𝑖
> 0 by the restriction of 𝜆 and the definition of 𝑑

𝑖
.

Thus we have from (42)

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡) 𝜀

0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝜆

𝑐
𝜆+1

(
𝑡

𝜀𝑟𝜆
)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ 𝜀
𝑟
𝜆
−2𝑞
𝑖V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖
(
𝑥

𝜀𝑞𝑖−1
)∇

𝑦
𝑖

V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
)𝑑𝑥𝑑𝑡 = 0.

(49)

We let 𝜀 tend to zero and obtain

∫
Ω
𝑇

∫
Y
𝑖,𝜆

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝜆
) V

1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖+1
(𝑦

𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(𝑠
1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝜆

𝑐
𝜆+1

(𝑠
𝜆
) 𝑑𝑦

𝑖
𝑑𝑠

𝜆
𝑑𝑥 𝑑𝑡 = 0

(50)

and we have left

∫
𝑆
𝜆

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝜆
) 𝜕

𝑠
𝜆

𝑐
𝜆+1

(𝑠
𝜆
) 𝑑𝑠

𝜆
= 0, (51)

a.e. for all 𝑐
𝜆+1

∈ 𝐶
∞

♯
(𝑆
𝜆
). This means that 𝑢

𝑖
is independent

of 𝑠
𝜆
; thus, 𝑢

𝑖
does not depend on 𝑠

𝑚−𝑑
𝑖
+1
, . . . , 𝑠

𝑚
. Next we
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choose𝑝 = 𝑞
𝑖
and𝜆 = 𝑚−𝑑

𝑖
.Wehave𝑝+𝑞

𝑖
−𝑟

𝜆
= 2𝑞

𝑖
−𝑟

𝑚−𝑑
𝑖

>

0 and 𝑝 − 𝑞
𝑖
= 0 and we may again use (42). We have

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡) 𝜀

2𝑞
𝑖
−𝑟
𝑚−𝑑𝑖 V

1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑚−𝑑𝑖

𝑐
𝑚−𝑑
𝑖
+1
(

𝑡

𝜀
𝑟
𝑚−𝑑𝑖

)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ 𝜀
0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖
(
𝑥

𝜀𝑞𝑖−1
)∇

𝑦
𝑖

V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝑚−𝑑
𝑖
+1
(

𝑡

𝜀
𝑟
𝑚−𝑑𝑖

) 𝑑𝑥 𝑑𝑡 = 0,

(52)

where a passage to the limit yields

∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚−𝑑
𝑖))

⋅ V
1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖
(𝑦

𝑖−1
) ∇

𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(𝑠
1
) ⋅ ⋅ ⋅ 𝑐

𝑚−𝑑
𝑖
+1
(𝑠
𝑚−𝑑
𝑖

) 𝑑𝑦
𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡 = 0,

(53)

and finally

∫
𝑆
𝑚−𝑑𝑖+1

⋅ ⋅ ⋅ ∫
𝑆
𝑚

∫
𝑌
𝑖

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑎 (𝑦
𝑛
, 𝑠
𝑚
)

× (∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚−𝑑
𝑖))

⋅ ∇
𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑖
𝑑𝑠

𝑚
⋅ ⋅ ⋅ 𝑑𝑠

𝑚−𝑑
𝑖
+1
= 0,

(54)

a.e. for all V
𝑖+1

∈ 𝐻
1

♯
(𝑌

𝑖
)/R, which is the weak form of the

local problem.

Case 4. Consider 𝜌
𝑖
= 1 and 𝑑

𝑖
> 0. Let 𝜆 be fixed and

successively be𝑚, . . . , 𝑚 − 𝑑
𝑖
+ 1. Choose 𝑝 = 𝑟

𝜆
− 𝑞

𝑖
directly

implying that 𝑝 + 𝑞
𝑖
− 𝑟

𝜆
= 0. Moreover, 𝑝 − 𝑞

𝑖
= 𝑟

𝜆
− 2𝑞

𝑖
> 0

by the restriction of 𝜆 and the definition of 𝑑
𝑖
and 𝜌

𝑖
. Hence

using (42), we obtain

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡) 𝜀

0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝜆

𝑐
𝜆+1

(
𝑡

𝜀𝑟𝜆
)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ 𝜀
𝑟
𝜆
−2𝑞
𝑖V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖
(
𝑥

𝜀𝑞𝑖−1
)∇

𝑦
𝑖

V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝜆+1
(
𝑡

𝜀𝑟𝜆
)𝑑𝑥𝑑𝑡 = 0.

(55)

Passing to the limit, we get

∫
Ω
𝑇

∫
Y
𝑖,𝜆

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝜆
) V

1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖+1
(𝑦

𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(𝑠
1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝜆

𝑐
𝜆+1

(𝑠
𝜆
) 𝑑𝑦

𝑖
𝑑𝑠

𝜆
𝑑𝑥 𝑑𝑡 = 0.

(56)

That is,

∫
𝑆
𝜆

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝜆
) 𝜕

𝑠
𝜆

𝑐
𝜆+1

(𝑠
𝜆
) 𝑑𝑠

𝜆
= 0 (57)

a.e. for all 𝑐
𝜆+1

∈ 𝐶
∞

♯
(𝑆
𝜆
), and hence 𝑢

𝑖
is independent of 𝑠

𝜆
.

Next we choose 𝑝 = 𝑞
𝑖
and 𝜆 = 𝑚 − 𝑑

𝑖
in (42). Thus we have

𝑝 + 𝑞
𝑖
− 𝑟

𝜆
= 2𝑞

𝑖
− 𝑟

𝑚−𝑑
𝑖

= 0 and 𝑝 − 𝑞
𝑖
= 0 and we get

lim
𝜀→0

∫
Ω
𝑇

−𝜀
−𝑞
𝑖𝑢
𝜀
(𝑥, 𝑡) 𝜀

0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑚−𝑑𝑖

𝑐
𝑚−𝑑
𝑖
+1
(

𝑡

𝜀
𝑟
𝑚−𝑑𝑖

)

+ 𝑎 (
𝑥

𝜀𝑞1
, . . . ,

𝑥

𝜀𝑞𝑛
,
𝑡

𝜀𝑟1
, . . . ,

𝑡

𝜀𝑟𝑚
)∇𝑢

𝜀
(𝑥, 𝑡)

⋅ 𝜀
0V
1
(𝑥) V

2
(
𝑥

𝜀𝑞1
) ⋅ ⋅ ⋅ V

𝑖
(
𝑥

𝜀𝑞𝑖−1
)∇

𝑦
𝑖

V
𝑖+1
(
𝑥

𝜀𝑞𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(
𝑡

𝜀𝑟1
) ⋅ ⋅ ⋅ 𝑐

𝑚−𝑑
𝑖
+1
(

𝑡

𝜀
𝑟
𝑚−𝑑𝑖

)𝑑𝑥𝑑𝑡 = 0.

(58)

We let 𝜀 go to zero obtaining

∫
Ω
𝑇

∫
Y
𝑛,𝑚

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚−𝑑
𝑖) V

1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖+1
(𝑦

𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(𝑠
1
) ⋅ ⋅ ⋅ 𝜕

𝑠
𝑚−𝑑𝑖

𝑐
𝑚−𝑑
𝑖
+1
(𝑠
𝑚−𝑑
𝑖

)

+ 𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚−𝑑
𝑖))

⋅ V
1
(𝑥) V

2
(𝑦

1
) ⋅ ⋅ ⋅ V

𝑖
(𝑦

𝑖−1
) ∇

𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
)

× 𝑐
1
(𝑡) 𝑐

2
(𝑠
1
) ⋅ ⋅ ⋅ 𝑐

𝑚−𝑑
𝑖
+1
(𝑠
𝑚−𝑑
𝑖

) 𝑑𝑦
𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡 = 0

(59)

and finally we arrive at

∫
𝑆
𝑚−𝑑𝑖

⋅ ⋅ ⋅ ∫
𝑆
𝑚

∫
𝑌
𝑖

⋅ ⋅ ⋅ ∫
𝑌
𝑛

−𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚−𝑑
𝑖) V

𝑖+1

× (𝑦
𝑖
) 𝜕

𝑠
𝑚−𝑑𝑖

𝑐
𝑚−𝑑
𝑖
+1
(𝑠
𝑚−𝑑
𝑖

)

+ 𝑎 (𝑦
𝑛
, 𝑠
𝑚
)(∇𝑢 (𝑥, 𝑡) +

𝑛

∑

𝑗=1

∇
𝑦
𝑗

𝑢
𝑗
(𝑥, 𝑡, 𝑦

𝑗
, 𝑠
𝑚−𝑑
𝑖))

⋅ ∇
𝑦
𝑖

V
𝑖+1
(𝑦

𝑖
) 𝑐

𝑚−𝑑
𝑖
+1
(𝑠
𝑚−𝑑
𝑖

) 𝑑𝑦
𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑖
𝑑𝑠

𝑚
⋅ ⋅ ⋅ 𝑑𝑠

𝑚−𝑑
𝑖

= 0

(60)

a.e. for all V
𝑖+1

∈ 𝐻
1

♯
(𝑌

𝑖
)/R and 𝑐

𝑚−𝑑
𝑖
+1
∈ 𝐶

∞

♯
(𝑆
𝑚−𝑑
𝑖

), the weak
form of the local problem.
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Remark 12. The result above can be extended to any mean-
ingful choice of jointly well-separated scales by means of
the general compactness results in Theorems 4 and 7 and
are hence not restricted to scales that are powers of 𝜀; see,
for example, [11] for the case with an arbitrary number of
temporal scales but only one spatial micro scale. To make the
exposition clear, we have assumed linearity, but the result can
be extended to monotone, not necessarily linear, problems
using standard methods.

Remark 13. The wellposedness of the homogenized problem
follows from 𝐺-convergence; see, for example, Sections 3
and 4 in [20]. See also Theorem 4.19 in [17] for an easily
accessible description of the regularity of the 𝐺-limit 𝑏. The
existence of solutions to the local problems follows from
the fact that they appear as limits in appropriate conver-
gence processes. Concerning uniqueness, the coercivity of
the elliptic part follows along the lines of the proof of
Theorem 2.11 in [16] and for those containing a derivative
with respect to some local time scale general theory for linear
parabolic equations apply, see, for example, Section 23 in [18].
Normally multiscale homogenization results are formulated
as in Theorem 9 without separation of variables and if we
study slightlymore general problems, for example, those with
monotone operators where the linearity has been relaxed,
such separation is not possible. However, in Corollary 2.12
in [16], a technique similar to separation of variables of
the type sometimes used for conventional homogenization
problems is developed. Here one scale at the time is removed
in an inductive process and the homogenized coefficient is
computed. We believe that a similar procedure could be
successful also for the type of problem studied here but would
be quite technical.

4.2. Illustration of Theorem 9. To illustrate the use of
Theorem 9, we apply it to the 3, 3-scaled parabolic homog-
enization problem

𝜕
𝑡
𝑢
𝜀
(𝑥, 𝑡) − ∇ ⋅ (𝑎 (

𝑥

𝜀
,
𝑥

𝜀2
,
𝑡

𝜀𝑟1
,
𝑡

𝜀𝑟2
)∇𝑢

𝜀
(𝑥, 𝑡))

= 𝑓 (𝑥, 𝑡) in Ω
𝑇
,

𝑢
𝜀
(𝑥, 𝑡) = 0 on 𝜕Ω × (0, 𝑇) ,

𝑢
𝜀
(𝑥, 0) = 𝑢

0
(𝑥) in Ω,

(61)

where 0 < 𝑟
1
< 𝑟

2
, 𝑓 ∈ 𝐿

2
(Ω

𝑇
), 𝑢0 ∈ 𝐿

2
(Ω), and the

structure conditions

(B1) 𝑎 ∈ 𝐶
♯
(Y

2,2
)
𝑁×𝑁

(B2) 𝑎(𝑦2, 𝑠2)𝜉 ⋅ 𝜉 ≥ 𝛼|𝜉|
2 for all (𝑦2, 𝑠2) ∈ R2𝑁

× R2, all
𝜉 ∈ R𝑁 and some 𝛼 > 0

are satisfied.

Table 1: 𝑑
𝑖
and 𝜌

𝑖
for 𝑖 = 1.

𝑟
1
and 𝑟

2
relative to 2𝑞

1
= 2 𝑑

1
𝜌
1

0 < 𝑟
1
< 𝑟

2
< 2 0 0

0 < 𝑟
1
< 𝑟

2
= 2 0 1

0 < 𝑟
1
< 2 < 𝑟

2
1 0

2 = 𝑟
1
< 𝑟

2
1 1

2 < 𝑟
1
< 𝑟

2
2 0

Table 2: 𝑑
𝑖
and 𝜌

𝑖
for 𝑖 = 2.

𝑟
1
and 𝑟

2
relative to 2𝑞

2
= 4 𝑑

2
𝜌
2

0 < 𝑟
1
< 𝑟

2
< 4 0 0

0 < 𝑟
1
< 𝑟

2
= 4 0 1

0 < 𝑟
1
< 4 < 𝑟

2
1 0

4 = 𝑟
1
< 𝑟

2
1 1

4 < 𝑟
1
< 𝑟

2
2 0

We note that the assumptions of Theorem 9 are satisfied
in this case. Hence the convergence results in (31) hold and,
for the homogenized matrix,

𝑏 (𝑥, 𝑡) ∇𝑢 (𝑥, 𝑡)

= ∫
Y
2,2

𝑎 (𝑦
2
, 𝑠
2
) (∇𝑢 (𝑥, 𝑡) + ∇

𝑦
1

𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠
2
)

+∇
𝑦
2

𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠
2
)) 𝑑𝑦

2
𝑑𝑠

2
.

(62)

Furthermore, 𝑢
1
∈ 𝐿

2
(Ω

𝑇
× 𝑆

2
; 𝐻

1

♯
(𝑌

1
)/R) and 𝑢

2
∈ 𝐿

2
(Ω

𝑇
×

Y
1,2
; 𝐻

1

♯
(𝑌

2
)/R) are the unique solutions to the system of

local problems

𝜌
𝑖
𝜕
𝑠
2−𝑑𝑖

𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
2
) − ∇

𝑦
𝑖

⋅ ∫
𝑆
2−𝑑𝑖+1

⋅ ⋅ ⋅ ∫
𝑆
2

∫
𝑌
𝑖+1

⋅ ⋅ ⋅ ∫
𝑌
2

𝑎 (𝑦
2
, 𝑠
2
)

× (∇𝑢 (𝑥, 𝑡) + ∇
𝑦
1

𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠
2
)

+∇
𝑦
2

𝑢
2
(𝑥, 𝑡, 𝑦

2
, 𝑠
2
))

× 𝑑𝑦
2
⋅ ⋅ ⋅ 𝑑𝑦

𝑖+1
𝑑𝑠

2
⋅ ⋅ ⋅ 𝑑𝑠

2−𝑑
𝑖
+1
= 0

(63)

for 𝑖 = 1, 2, where 𝑢
𝑖
is independent of 𝑠

2−𝑑
𝑖
+1
, . . . , 𝑠

2
.

To find the local problems and the independencies explic-
itly, we need to identify which values of 𝑑

𝑖
, and 𝜌

𝑖
to use. To

find 𝑑
𝑖
, we simply count the number of temporal scales faster

than the square of the 𝑖th spatial scale for different choices
of 𝑟

1
and 𝑟

2
. Moreover, resonance (𝜌

𝑖
= 1) occurs when

the square of the 𝑖th spatial scale coincides with one of the
temporal scales.

First we consider the slowest spatial scale; that is, we let
𝑖 = 1. Note that 2𝑞

1
= 2. If 2𝑞

1
= 2 < 𝑟

1
, then 𝑑

1
= 2, if 𝑟

1
≤

2 < 𝑟
2
then 𝑑

1
= 1 and if 2 ≥ 𝑟

2
, then 𝑑

1
= 0. Regarding

resonance, if 𝑟
1
= 2 or 𝑟

2
= 2; then 𝜌

1
= 1; otherwise, 𝜌

1
= 0.

For lucidity, we present which values of 𝑟
1
and 𝑟

2
that give the

different values of 𝑑
1
and 𝜌

1
in Table 1.

In a similar way as above, we get for 𝑖 = 2 Table 2.
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We start by sorting out the independencies of the local
temporal variables. As noted, for 𝑖 = 1, 2, 𝑢

𝑖
is independent

of 𝑠
2−𝑑
𝑖
+1
, . . . , 𝑠

2
, which means that if 𝑑

𝑖
= 1, then 𝑢

𝑖
is

independent of 𝑠
2
and if 𝑑

𝑖
= 2, then 𝑢

𝑖
is independent of

both 𝑠
1
and 𝑠

2
. In terms of 𝑟

1
and 𝑟

2
, we have that for 𝑟

2
> 2,

𝑢
1
is independent of 𝑠

2
and for 𝑟

1
> 2 also independent of 𝑠

1
,

for 𝑟
2
> 4, 𝑢

2
is independent of 𝑠

2
and moreover, for 𝑟

1
> 4 it

holds that 𝑢
2
is also independent of 𝑠

1
.

To find the local problems, we examine all possible
combinations of (𝑑

1
, 𝜌

1
) and (𝑑

2
, 𝜌

2
), where 13 are realizable

depending on which values 𝑟
1
and 𝑟

2
may assume. Each

row in the tables gives rise to a local problem via (63). This
means that each combination gives two local problems. If a
row occurs in several combinations, the same local problem
reappears. If we start by choosing the first row in the second
table, that is (𝑑

2
, 𝜌

2
) = (0, 0), this can be combined with

all five rows from the first table, which means that the local
problem descending from (𝑑

2
, 𝜌

2
) = (0, 0) is common to

these combinations. By (63), this common local problem is

−∇
𝑦
2

⋅ (𝑎 (𝑦
2
, 𝑠
2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
)) = 0. (64)

If we combine (𝑑
2
, 𝜌

2
) = (0, 0) with (𝑑

1
, 𝜌

1
) = (0, 0) we have

in terms of 𝑟
1
and 𝑟

2
that 0 < 𝑟

1
< 𝑟

2
< 2. The other local

problem in this case is

−∇
𝑦
1

⋅ ∫
𝑌
2

𝑎 (𝑦
2
, 𝑠
2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
= 0. (65)

In combination with (𝑑
1
, 𝜌

1
) = (0, 1), that is, 0 < 𝑟

1
< 𝑟

2
= 2,

we obtain instead

𝜕
𝑠
2

𝑢
1
− ∇

𝑦
1

⋅ ∫
𝑌
2

𝑎 (𝑦
2
, 𝑠
2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
= 0,

(66)

and for (𝑑
1
, 𝜌

1
) = (1, 0), which means that 0 < 𝑟

1
< 2 < 𝑟

2
<

4, we have

−∇
𝑦
1

⋅ ∫
𝑆
2

∫
𝑌
2

𝑎 (𝑦
2
, 𝑠
2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
𝑑𝑠

2
= 0.

(67)

The fourth possible combination, that is, with (𝑑
1
, 𝜌

1
) =

(1, 1), that is 𝑟
1
= 2 < 𝑟

2
< 4, gives

𝜕
𝑠
1

𝑢
1
− ∇

𝑦
1

⋅ ∫
𝑆
2

∫
𝑌
2

𝑎 (𝑦
2
, 𝑠
2
)

× (∇𝑢 + ∇
𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
𝑑𝑠

2
= 0

(68)

and finally for (𝑑
1
, 𝜌

1
) = (2, 0), that is 2 < 𝑟

1
< 𝑟

2
< 4, the

second local problem is

−∇
𝑦
1

⋅ ∫
𝑆
2

∫
𝑌
2

𝑎 (𝑦
2
, 𝑠
2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
𝑑𝑠

2
= 0.

(69)

Next we consider (𝑑
2
, 𝜌

2
) = (0, 1) in Table 2, which

corresponds to 0 < 𝑟
1
< 𝑟

2
= 4 and gives the local problem

𝜕
𝑠
2

𝑢
2
− ∇

𝑦
2

⋅ (𝑎 (𝑦
2
, 𝑠
2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
)) = 0. (70)

Here we have three possible combinations, namely with
(𝑑

1
, 𝜌

1
) = (1, 0), (1, 1), and (2, 0). We note that we have

already derived the local problems corresponding to these
rows.Thus, the second local problem for 𝑟

2
= 4 and 0 < 𝑟

1
< 2

is given by (67) for 𝑟
2
= 4 and 𝑟

1
= 2 by (68) and for

2 < 𝑟
1
< 𝑟

2
= 4 by (69).

We proceed by choosing (𝑑
2
, 𝜌

2
) = (1, 0) in Table 2,

yielding

−∇
𝑦
2

⋅ ((∫
𝑆
2

𝑎 (𝑦
2
, 𝑠
2
) 𝑑𝑠

2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
)) = 0.

(71)

The choice (𝑑
2
, 𝜌

2
) = (1, 0) can be combined with three

different rows from Table 1, (𝑑
1
, 𝜌

1
) = (1, 0), (1, 1), and (2, 0).

In combinationwith (𝑑
1
, 𝜌

1
) = (1, 0), whichmeans that 𝑟

2
> 4

and 0 < 𝑟
1
< 2, we have

− ∇
𝑦
1

⋅ ∫
𝑌
2

(∫
𝑆
2

𝑎 (𝑦
2
, 𝑠
2
) 𝑑𝑠

2
)

× (∇𝑢 + ∇
𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
= 0,

(72)

which is essentially the same as (67) but with the integration
over 𝑆

2
directly on 𝑎(𝑦

2
, 𝑠
2
) since both 𝑢

1
and 𝑢

2
are

independent of 𝑠
2
. For (𝑑

1
, 𝜌

1
) = (1, 1), that is, 𝑟

2
> 4 and

𝑟
1
= 2, we have

𝜕
𝑠
1

𝑢
1
− ∇

𝑦
1

⋅ ∫
𝑌
2

(∫
𝑆
2

𝑎 (𝑦
2
, 𝑠
2
) 𝑑𝑠

2
)

× (∇𝑢 + ∇
𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
= 0,

(73)

which is the same as (68), but where wemay integrate directly
on 𝑎(𝑦

2
, 𝑠
2
) in the same manner as above. For the third

possibility, (𝑑
1
, 𝜌

1
) = (2, 0), 2 < 𝑟

1
< 4 < 𝑟

2
, we get

− ∇
𝑦
1

⋅ ∫
𝑆
1

∫
𝑌
2

(∫
𝑆
2

𝑎 (𝑦
2
, 𝑠
2
) 𝑑𝑠

2
)

× (∇𝑢 + ∇
𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
𝑑𝑠

1
= 0,

(74)

the same as (69), except for the position of the integration
over 𝑆

2
.

The next row in Table 2 to consider is (𝑑
2
, 𝜌

2
) = (1, 1),

which can be combined only with (𝑑
1
, 𝜌

1
) = (2, 0). This

combination corresponds to 4 = 𝑟
1
< 𝑟

2
and gives

𝜕
𝑠
1

𝑢
2
− ∇

𝑦
2

⋅ ((∫
𝑆
2

𝑎 (𝑦
2
, 𝑠
2
) 𝑑𝑠

2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
)) = 0

(75)

and again (74).
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Figure 1: The 13 cases depicted in the 𝑟
1
𝑟
2
plane in the order of

appearance.

Finally, for the row (𝑑
2
, 𝜌

2
) = (2, 0) together with

(𝑑
1
, 𝜌

1
) = (2, 0), that is, 4 < 𝑟

1
< 𝑟

2
, we get

−∇
𝑦
2

⋅ ((∫
𝑆
2

𝑎 (𝑦
2
, 𝑠
2
) 𝑑𝑠

2
) (∇𝑢 + ∇

𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
)) = 0,

− ∇
𝑦
1

⋅ ∫
𝑌
2

(∫
𝑆
2

𝑎 (𝑦
2
, 𝑠
2
) 𝑑𝑠

2
)

× (∇𝑢 + ∇
𝑦
1

𝑢
1
+ ∇

𝑦
2

𝑢
2
) 𝑑𝑦

2
= 0,

(76)

where the latter is essentially the same as (69) and (74).
Thus, having considered all possible combinations of 𝑟

1

and 𝑟
2
, we have obtained 13 different cases, A–M in Figure 1,

governed by two local problems each.
In the figure, cases B, D, F, H, J, and L (straight line

segments) correspond to single resonance, whereas in the
case G (a single point), there is double resonance. In the
remaining cases (open two-dimensional regions), there is no
resonance.

Remark 14. Note that for a problem with fixed scales the
finding of the local problems is very straightforward. For
example, if we study (61) with 𝑟

1
= 2 and 𝑟

2
= 17, we have

𝑚 = 2, 𝑛 = 2, 𝑑
1
= 1, 𝜌

1
= 1, 𝑑

2
= 1, and 𝜌

2
= 0. We

obtain that both 𝑢
1
and 𝑢

2
are independent of 𝑠

2
. Inserting

𝑑
1
= 1, 𝜌

1
= 1 in (34) immediately gives the problem (73) and

𝑑
2
= 1, 𝜌

2
= 0 results in (71). The example chosen above with

variable time scale exponents revealsmore of the applicability
and comprehensiveness of the theorem.

Remark 15. The problem (61) was studied already in [17, 19],
but usingTheorem 9, the process is considerably shortened.

Appendix

Proof of Theorem 4

This section is devoted to the proof of Theorem 4. The
theorem was first formulated and proven in a detailed
preprint version from 2010 of [11]. It was also given as
Theorem 2.74 in [17] together with the proof. We first need
the following fundamental compactness result; see also, for
example, Theorem 2.66 in [17]. Observe that the concept of
jointly separated scales amounts to the obvious modification
of jointly well-separated scales.

Theorem A.1. Let {𝑢𝜀} be a bounded sequence in 𝐿2(Ω
𝑇
) and

suppose that the lists {𝜀
1
, . . . , 𝜀

𝑛
} and {𝜀󸀠

1
, . . . , 𝜀

󸀠

𝑚
} are jointly

separated. Then there exists 𝑢
0
in 𝐿2(Ω

𝑇
× Y

𝑛,𝑚
) such that,

up to a subsequence,

𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ 𝑢
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) . (A.1)

Proof. Introduce the spatiotemporal variable 𝑥 = (𝑥, 𝑡) in
Ω̃ = Ω

𝑇
and let the corresponding local variable 𝑦𝑛+𝑚−𝑘 ∈

𝑌̃
𝑛+𝑚−𝑘

= (𝑌 × 𝑆)
𝑛+𝑚−𝑘, where 𝑘 is the number of pairs of

duplicates, that is, scales which tend to zero equally fast (see
Definition 2), be defined in the following manner. Suppose
that the resulting combined spatiotemporal list generated
from the lists {𝜀

1
, . . . , 𝜀

𝑛
} and {𝜀󸀠

1
, . . . , 𝜀

󸀠

𝑚
} is {𝜀

1
, . . . , 𝜀

𝑛+𝑚−𝑘
}.

Fix 𝑙 = 1, . . . , 𝑛+𝑚−𝑘; then, we have threemutually exclusive
possibilities for the spatiotemporal scale 𝜀

𝑙
. Firstly, if 𝜀

𝑙
tends

to zero equally fast as 𝜀
𝑖
for some 𝑖 = 1, . . . , 𝑛 but not equally

fast as 𝜀󸀠
𝑗
for any 𝑗 = 1, . . . , 𝑚, then 𝑦

𝑙
= (𝑦

𝑖
, 𝑠
∗

𝑖
) where

𝑠
∗

𝑖
∈ 𝑆

∗

𝑖
= 𝑆 is a temporal “ghost” variable. Secondly, if 𝜀

𝑙

tends to zero equally fast as 𝜀󸀠
𝑗
for some 𝑗 = 1, . . . , 𝑚 but not

equally fast as 𝜀
𝑖
for any 𝑖 = 1, . . . , 𝑛, then 𝑦

𝑙
= (𝑦

∗

𝑗
, 𝑠
𝑗
) where

𝑦
∗

𝑗
∈ 𝑌

∗

𝑗
= 𝑌 is a spatial “ghost” variable. Finally, if 𝜀

𝑙
tends

to zero equally fast as both 𝜀
𝑖
and 𝜀󸀠

𝑗
for some 𝑖 = 1, . . . , 𝑛 and

𝑗 = 1, . . . , 𝑚, then 𝑦
𝑙
= (𝑦

𝑖
, 𝑠
𝑗
). We collect the introduced

𝑛 + 𝑚 − 2𝑘 “ghost” variables in the total “ghost” variable
𝑦
∗
∈ 𝑌̃

∗ where 𝑌̃∗ is a Cartesian product of 𝑛 − 𝑘 copies of 𝑆
and𝑚 − 𝑘 copies of 𝑌.

Within the framework of spatiotemporal quantities as
introduced above, let

𝑢̃
𝜀
(𝑥) = 𝑢

𝜀
(𝑥, 𝑡) ,

Ṽ (𝑥, 𝑦𝑛+𝑚−𝑘) = V (𝑥, 𝑡, 𝑦𝑛, 𝑠𝑚)
(A.2)

for any V ∈ 𝐿
2
(Ω

𝑇
; 𝐶

♯
(Y

𝑛,𝑚
)). Note that the sequence {𝑢̃𝜀}

is bounded in 𝐿
2
(Ω̃) and that Ṽ ∈ 𝐿

2
(Ω̃; 𝐶

♯
(𝑌̃

𝑛+𝑚−𝑘
)) is

independent of the local “ghost” variables.
We have by definition

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) V(𝑥, 𝑡,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝑑𝑥𝑑𝑡

= ∫
Ω̃

𝑢̃
𝜀
(𝑥) Ṽ(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛+𝑚−𝑘

)𝑑𝑥.

(A.3)
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Since {𝜀
1
, . . . , 𝜀

𝑛+𝑚−𝑘
} is separated, Theorem 2.4 in [16]

ensures that, up to a subsequence the sequence {𝑢̃𝜀} does
(𝑛 + 𝑚 − 𝑘 + 1)-converge to 𝑢̃

0
∈ 𝐿

2
(Ω̃ × 𝑌̃

𝑛+𝑚−𝑘
); that is,

∫
Ω̃

𝑢̃
𝜀
(𝑥) Ṽ(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛+𝑚−𝑘

)𝑑𝑥

󳨀→ ∫
Ω̃

∫
𝑌̃
𝑛+𝑚−𝑘

𝑢̃
0
(𝑥, 𝑦

𝑛+𝑚−𝑘
) Ṽ (𝑥, 𝑦𝑛+𝑚−𝑘) 𝑑𝑦𝑛+𝑚−𝑘𝑑𝑥

= ∫
Ω
𝑇

∫
Y
𝑛,𝑚

(∫
𝑌̃
∗

𝑢̃
0
(𝑥, 𝑦

𝑛+𝑚−𝑘
) 𝑑𝑦

∗
)

× V (𝑥, 𝑡, 𝑦𝑛, 𝑠𝑚) 𝑑𝑦𝑛 𝑑𝑠𝑚 𝑑𝑥 𝑑𝑡

= ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑢
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑡, 𝑦𝑛, 𝑠𝑚) 𝑑𝑦𝑛 𝑑𝑠𝑚 𝑑𝑥 𝑑𝑡

(A.4)

as 𝜀 tends to zero where

𝑢
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) = ∫

𝑌̃
∗

𝑢̃
0
(𝑥, 𝑦

𝑛+𝑚−𝑘
) 𝑑𝑦

∗ (A.5)

belongs to 𝐿2(Ω
𝑇
×Y

𝑛,𝑚
) due to the fact that

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿2(Ω

𝑇
×Y
𝑛,𝑚
)
≤
󵄩󵄩󵄩󵄩𝑢̃0

󵄩󵄩󵄩󵄩𝐿2(Ω̃×𝑌̃𝑛+𝑚−𝑘) < ∞ (A.6)

by Jensen’s inequality. To conclude, we have shown (A.1) and
we are done.

Remark A.2. In the proof above in the case when all spatial
and temporal scales can be matched into pairs, we naturally
interpret the formal instances of integration over the empty
set 𝑌̃∗ as if there is no local spatiotemporal “ghost” integration
involved.

We are now prepared to give the main proof of the
appendix.

Proof of Theorem 4. Since {𝑢𝜀} is bounded in𝑊1

2
(0, 𝑇;𝐻

1

0
(Ω),

𝐿
2
(Ω)),

𝑢
𝜀
(𝑥, 𝑡) ⇀ 𝑢 (𝑥, 𝑡) in 𝐿2 (0, 𝑇;𝐻1

0
(Ω)) (A.7)

for some unique 𝑢 ∈ 𝐿2(0, 𝑇;𝐻1

0
(Ω)) and, by Lemmas 8.2 and

8.4 in [21],

𝑢
𝜀
(𝑥, 𝑡) 󳨀→ 𝑢 (𝑥, 𝑡) in 𝐿2 (Ω

𝑇
) . (A.8)

From Theorem A.1 and again using the boundedness of {𝑢𝜀}
in𝑊1

2
(0, 𝑇;𝐻

1

0
(Ω), 𝐿

2
(Ω)) we have, up to a subsequence,

∇𝑢
𝜀
(𝑥, 𝑡)

𝑛+1,𝑚+1

⇀ 𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) (A.9)

for some 𝑤
0
in 𝐿2(Ω

𝑇
×Y

𝑛,𝑚
)
𝑁.

We will now characterize 𝑤
0
in terms of gradients. Let

V ∈ 𝐷(Ω; 𝐶
∞

♯
(𝑌

𝑛
)
𝑁
) ∩ H and 𝑐 ∈ 𝐷(0, 𝑇; 𝐶

∞

♯
(𝑆
𝑚
)) where

H is the subspace of generalized divergence-free functions
in 𝐿2(Ω × 𝑌

𝑛
)
𝑁 defined according to

H = {𝜓 ∈ 𝐿
2
(Ω; 𝐿

2

♯
(𝑌

𝑛
)
𝑁

)

: ∫
𝑌
𝑘+1

⋅ ⋅ ⋅ ∫
𝑌
𝑛

∇
𝑦
𝑘

⋅ 𝜓 (𝑥, 𝑦
𝑛
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑘+1
= 0,

𝑘 = 1, . . . , 𝑛 − 1} .

(A.10)

Using V𝑐 as a test function in (A.9) we get, up to a subse-
quence,

∫
Ω
𝑇

∇𝑢
𝜀
(𝑥, 𝑡) ⋅ V(𝑥,

𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

) 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝑑𝑥𝑑𝑡

󳨀→ ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) V (𝑥, 𝑦𝑛)

× 𝑐 (𝑡, 𝑠
𝑚
) 𝑑𝑦

𝑛
𝑑𝑠

𝑚
𝑑𝑥 𝑑𝑡.

(A.11)

Using partial integration on Ω, the fact that 𝑢𝜀 and V vanish
on 𝜕Ω (we only need that one of them does, though) and that
∇
𝑦
𝑛

⋅ V = 0, the left-hand side of (A.11) may be written

− ∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡) (∇ +

𝑛−1

∑

𝑘=1

𝜀
−1

𝑘
∇
𝑦
𝑘

)

⋅ V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

) 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝑑𝑥𝑑𝑡.

(A.12)

We claim now that ∇
𝑦
𝑘

⋅ V ∈ E
𝑘+1

where

E
𝑟
= {𝜙 ∈ 𝐷 (Ω; 𝐶

∞

♯
(𝑌

𝑛
))

: ∫
𝑌
𝑟

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝜙 (𝑥, 𝑦
𝑛
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟
= 0} ,

(A.13)

𝑟 = 1, . . . , 𝑛. Indeed, for any 𝑘 = 1, . . . , 𝑛 − 1, we have ∇
𝑦
𝑘

⋅ V ∈
𝐷(Ω; 𝐶

∞

♯
(𝑌

𝑛
)) and

∫
𝑌
𝑘+1

⋅ ⋅ ⋅ ∫
𝑌
𝑛

∇
𝑦
𝑘

⋅ V (𝑥, 𝑦𝑛) 𝑑𝑦
𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑘+1
= 0, (A.14)

where we have simply employed the definition of V being
in H making the multiple integrals to vanish, so ∇

𝑦
𝑘

⋅

V ∈ E
𝑘+1

. Thus, by Corollary 3.4 in [16], we have that
{𝜀
−1

𝑘+1
∇
𝑦
𝑘

⋅ V(𝑥, 𝑥/𝜀
1
, . . . , 𝑥/𝜀

𝑛
)} is bounded in 𝐻−1

(Ω) for all
𝑘 = 1, . . . , 𝑛 − 1. This boundedness yields an estimation
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
Ω
𝑇

𝑢
𝜀
(𝑥, 𝑡)

𝑛−1

∑

𝑘=1

𝜀
−1

𝑘
∇
𝑦
𝑘

⋅ V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

)

× 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝑑𝑥𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
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≤ 𝑇∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
Ω

𝑢
𝜀
(𝑥, 𝑡)

×

𝑛−1

∑

𝑘=1

𝜀
−1

𝑘
∇
𝑦
𝑘

⋅V(𝑥,
𝑥

𝜀
1

, . . . ,
𝑥

𝜀
𝑛

) 𝑐(𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 𝑇∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨

𝑛−1

∑

𝑘=1

𝜀
−1

𝑘
∇
𝑦
𝑘

⋅ V(⋅,
⋅

𝜀
1

, . . . ,
⋅

𝜀
𝑛

) ,

𝑢
𝜀
(⋅, 𝑡)𝑐 (𝑡,

𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)⟩

𝐻
−1
(Ω),𝐻

1

0
(Ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 𝑇∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛−1

∑

𝑘=1

𝜀
−1

𝑘
∇
𝑦
𝑘

⋅ V(⋅,
⋅

𝜀
1

, . . . ,
⋅

𝜀
𝑛

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
−1
(Ω)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝜀
(⋅, 𝑡)𝑐 (𝑡,

𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
1

0
(Ω)

𝑑𝑡

≤ 𝐶
1
(

𝑛−1

∑

𝑘=1

𝜀
𝑘+1

𝜀
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜀
−1

𝑘+1
∇
𝑦
𝑘

⋅ V(⋅,
⋅

𝜀
1

, . . . ,
⋅

𝜀
𝑛

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻−1(Ω)

)

2

× ∫

𝑇

0

󵄩󵄩󵄩󵄩𝑢
𝜀
(⋅, 𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
1

0
(Ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑐 (𝑡,
𝑡

𝜀󸀠
1

, . . . ,
𝑡

𝜀󸀠
𝑚

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ 𝐶
2
(

𝑛−1

∑

𝑘=1

𝜀
𝑘+1

𝜀
𝑘

)

2

󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩
2

𝐿
2(0,𝑇;𝐻10 (Ω))

≤ 𝐶
3
(

𝑛−1

∑

𝑘=1

𝜀
𝑘+1

𝜀
𝑘

)

2

󳨀→ 0,

(A.15)

where we in the first inequality have utilized the Hölder
inequality and in the last step have used that the scales are
separated. We thus conclude that the left-hand side of (A.9)
converges to

− ∫
Ω
𝑇

∫
Y
𝑛,𝑚

𝑢 (𝑥, 𝑡) ∇ ⋅ V (𝑥, 𝑦𝑛) 𝑐 (𝑡, 𝑠𝑚) 𝑑𝑦𝑛 𝑑𝑠𝑚 𝑑𝑥 𝑑𝑡

= ∫
Ω
𝑇

∫
Y
𝑛,𝑚

∇𝑢 (𝑥, 𝑡) ⋅ V (𝑥, 𝑦𝑛) 𝑐 (𝑡, 𝑠𝑚) 𝑑𝑦𝑛 𝑑𝑠𝑚 𝑑𝑥 𝑑𝑡

(A.16)

for all V ∈ 𝐷(Ω; 𝐶∞
♯
(𝑌

𝑛
)
𝑁
) ∩H and all 𝑐 ∈ 𝐷(0, 𝑇; 𝐶∞

♯
(𝑆
𝑚
)).

Hence, from the right-hand side of (A.11), we obtain

∫

𝑇

0

∫
𝑆
𝑚

(∫
Ω

∫
𝑌
𝑛

(𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) − ∇𝑢 (𝑥, 𝑡))

⋅V (𝑥, 𝑦𝑛) 𝑑𝑦𝑛 𝑑𝑥) 𝑐 (𝑡, 𝑠𝑚) 𝑑𝑠𝑚 𝑑𝑡 = 0.

(A.17)

By the Variational Lemma and utilizing the density property
(i) of Lemma 3.7 in [16] it holds for every V ∈H that

∫
Ω

∫
𝑌
𝑛

(𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) − ∇𝑢 (𝑥, 𝑡)) ⋅ V (𝑥, 𝑦𝑛) 𝑑𝑦𝑛 𝑑𝑥 = 0.

(A.18)

that is𝑤
0
−∇𝑢 is in the orthogonal ofH almost everywhere in

(0, 𝑇)×𝑆
𝑚. By property (ii) of Lemma 3.7 in [16],We conclude

that

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) − ∇𝑢 (𝑥, 𝑡) =

𝑛

∑

𝑘=1

∇
𝑦
𝑘

𝑢
𝑘
(𝑥, 𝑡, 𝑦

𝑘
, 𝑠
𝑚
) ,

(A.19)

where 𝑢
1

∈ 𝐿
2
(Ω;𝐻

1

♯
(𝑌

1
)/R) and 𝑢

𝑘
∈ 𝐿

2
(Ω × 𝑌

𝑘−1
;

𝐻
1

♯
(𝑌

𝑘
)/R) for 𝑘 = 2, . . . , 𝑛 almost everywhere in (0, 𝑇) × 𝑆𝑚.

What remains is to prove that𝑢
1
∈ 𝐿

2
(Ω

𝑇
×𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/R)

and 𝑢
𝑘
∈ 𝐿

2
(Ω

𝑇
×Y

𝑘−1,𝑚
; 𝐻

1

♯
(𝑌

𝑘
)/R) for 𝑘 = 2, . . . , 𝑛. We will

perform a proof by induction accomplished in two steps: the
Base Case followed by the Inductive Step.

Base Case. We show that 𝑢
1
∈ 𝐿

2
(Ω

𝑇
× 𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/R). We

have, almost everywhere inΩ
𝑇
×Y

1,𝑚
,

∇
𝑦
1

𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠
𝑚
)

= ∫
𝑌
2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

∇
𝑦
1

𝑢
1
(𝑥, 𝑡, 𝑦

1
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

2

= ∫
𝑌
2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑛

∑

𝑖=1

∇
𝑦
𝑖

𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

2

= ∫
𝑌
2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

(𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) − ∇𝑢 (𝑥, 𝑡)) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

2

= ∫
𝑌
2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

2
− ∇𝑢 (𝑥, 𝑡) ,

(A.20)

where the second equality follows from the fact that 𝑢
𝑖
is 𝑌

𝑖
-

periodic. Thus,
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×𝑆
𝑚
;𝐻
1

♯
(𝑌
1
)/R)

=
󵄩󵄩󵄩󵄩󵄩
∇
𝑦
1

𝑢
1

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
1,𝑚
)
𝑁

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑌
2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

2
− ∇𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
1,𝑚
)
𝑁

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑌
2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
1,𝑚
)
𝑁

+ ‖∇𝑢‖
𝐿
2
(Ω
𝑇
×Y
1,𝑚
)
𝑁 .

(A.21)

Clearly, ∇𝑢 ∈ 𝐿2(Ω
𝑇
)
𝑁, and since 𝑤

0
∈ 𝐿

2
(Ω

𝑇
×Y

𝑛,𝑚
)
𝑁, we

have that

∫
𝑌
2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

2 (A.22)
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belongs to 𝐿2(Ω
𝑇
×Y

1,𝑚
)
𝑁 by the Hölder inequality. We get

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩𝐿2(Ω

𝑇
×𝑆
𝑚
;𝐻
1

♯
(𝑌
1
)/R)

< ∞, (A.23)

and the Base Case is verified.

Inductive Step. Fix 𝑟 = 1, . . . , 𝑛 − 1 where 𝑛 > 1. Assume
that 𝑢

1
∈ 𝐿

2
(Ω

𝑇
× 𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/R) and, provided that 𝑟 > 1,

that 𝑢
𝑗
∈ 𝐿

2
(Ω

𝑇
× Y

𝑗−1,𝑚
; 𝐻

1

♯
(𝑌

𝑗
)/R) for all 𝑗 = 2, . . . , 𝑟.

We must show that this assumption implies that 𝑢
𝑟+1

∈

𝐿
2
(Ω

𝑇
×Y

𝑟,𝑚
; 𝐻

1

♯
(𝑌

𝑟+1
)/R). We have, almost everywhere in

Ω
𝑇
×Y

𝑟+1,𝑚
,

∇
𝑦
𝑟+1

𝑢
𝑟+1

(𝑥, 𝑡, 𝑦
𝑟+1
, 𝑠
𝑚
)

= ∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

∇
𝑦
𝑟+1

𝑢
𝑟+1

(𝑥, 𝑡, 𝑦
𝑟+1
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

= ∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑛

∑

𝑖=1

∇
𝑦
𝑖

𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

− ∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑟

∑

𝑖=1

∇
𝑦
𝑖

𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

= ∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

(𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) − ∇𝑢 (𝑥, 𝑡)) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

−

𝑟

∑

𝑖=1

∇
𝑦
𝑖

𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
)

= ∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

− ∇𝑢 (𝑥, 𝑡) −

𝑟

∑

𝑖=1

∇
𝑦
𝑖

𝑢
𝑖
(𝑥, 𝑡, 𝑦

𝑖
, 𝑠
𝑚
) ,

(A.24)

where the second equality follows from the fact that 𝑢
𝑖
is 𝑌

𝑖
-

periodic. We get the estimation

󵄩󵄩󵄩󵄩𝑢𝑟+1
󵄩󵄩󵄩󵄩𝐿2(Ω

𝑇
×Y
𝑟,𝑚
;𝐻
1

♯
(𝑌
𝑟+1
)/R)

=
󵄩󵄩󵄩󵄩󵄩
∇
𝑦
𝑟+1

𝑢
𝑟+1

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
𝑟+1,𝑚

)
𝑁

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

−∇𝑢 −

𝑟

∑

𝑖=1

∇
𝑦
𝑖

𝑢
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
𝑟+1,𝑚

)
𝑁

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
𝑟+1,𝑚

)
𝑁

+ ‖∇𝑢‖
𝐿
2
(Ω
𝑇
×Y
𝑟+1,𝑚

)
𝑁 +

𝑟

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
∇
𝑦
𝑖

𝑢
𝑖

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
𝑟+1,𝑚

)
𝑁

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω
𝑇
×Y
𝑟+1,𝑚

)
𝑁

+ ‖∇𝑢‖
𝐿
2
(Ω
𝑇
×Y
𝑟+1,𝑚

)
𝑁 +

𝑟

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝐿2(Ω

𝑇
×Y
𝑖−1,𝑚

;𝐻
1

♯
(𝑌
𝑖
)/R)

.

(A.25)

Using the same arguments as in the Base Case,∇𝑢 ∈ 𝐿2(Ω
𝑇
)
𝑁

and

∫
𝑌
𝑟+2

⋅ ⋅ ⋅ ∫
𝑌
𝑛

𝑤
0
(𝑥, 𝑡, 𝑦

𝑛
, 𝑠
𝑚
) 𝑑𝑦

𝑛
⋅ ⋅ ⋅ 𝑑𝑦

𝑟+2 (A.26)

belongs to 𝐿2(Ω
𝑇
×Y

1,𝑚
)
𝑁. By the inductive assumption, we

have that 𝑢
1
∈ 𝐿

2
(Ω

𝑇
× 𝑆

𝑚
; 𝐻

1

♯
(𝑌

1
)/R) and 𝑢

𝑗
∈ 𝐿

2
(Ω

𝑇
×

Y
𝑗−1,𝑚

; 𝐻
1

♯
(𝑌

𝑗
)/R) for all 𝑗 = 2, . . . , 𝑟. Thus

󵄩󵄩󵄩󵄩𝑢𝑟+1
󵄩󵄩󵄩󵄩𝐿2(Ω

𝑇
×Y
𝑟,𝑚
;𝐻
1

♯
(𝑌
𝑟+1
)/R)

< ∞, (A.27)

and the Inductive Step is complete and we are done.
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