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APPROXIMATE TAYLOR POLYNOMIALS
AND DIFFERENTIATION OF FUNCTIONS
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Dedicated to Jean Leray

1. Introduction and preliminaries

Let D be a Lebesgue measurable set in R™ and k a positive integer. A
real measurable function u defined on D is said to have the Lusin property
of order k if for any € > 0 there is a C*-function g defined on R™ such that
{z € D : u(z) # g(z)}| < e, where |A| denotes the Lebesgue measure of a set A
in R™. For a C*-function g, the polynomial

Po(my) =D — D"‘g(w)(y—w)"
|a]<k

is called the k-Taylor polynomial of g at z. Polynomials of this form are some-
times referred to as polynomials centered at z. We refer to 8, p. 2] for the
standard notations concerning multi-indices. If u has the Lusin property of or-
der k on D, then it is clear that for almost every z of D there is a C*-function
g such that the set {z € D : u(z) = g(z)} contains z and has density one at z.
Thus the following condition holds at almost every point z of D:

) ap lim [u(y) — pE(z; )| _o

y—z ly — z|
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and hence so does the condition

_ mk—1{p
@ ap lim sup lu(y) — p5~ (z;9)

< +00.
y—z ly — x|

We recall that aplim, ., u(y) = | means that the set {y € D : |u(y) — | < ¢}
has density one at z for any ¢ > 0 and that ap limsup,_,, u(y) is the infimum of
all those A € R such that the set {y € D : u(y) > A} has density zero at .

Now some definitions are in order. A function u defined on D is said to have
an approzimate (k — 1)-Taylor polynomial at z if there is a polynomial p(z;y)
centered at z and of degree at most k£ — 1 such that

(3) ap lim sup (43 ~ P V)]

< )
y—T Iy — l:lk +00;

while u will be said to be approzimately differentiable of order k at z if there is
a polynomial p(z;y) centered at = and of degree at most k such that

- u(y) - p(zsy)| _
(4) ap 31_:3 = ofF =0.

If (4) is replaced by

(5) N 1) e C3) WY
vy af

then u is said to be differentiable of order k at z. From (1) and (2), if u has the
Lusin property of order k on D, then it is approximately differentiable of order
k and has an approximate (k — 1)-Taylor polynomial at almost every point of
D. If u is approximately differentiable (differentiable) of order 1 at z, it will be
simply said to be approzimately differentiable (differentiable) at x.

It is our purpose in this note to relate the properties of functions defined
above. Our main result is the following theorem:

THEOREM 1. For a measurable function u defined on D the following state-
ments are equivalent:

(I) u has the Lusin property of order k on D.
(I1) u has an approzimate (k — 1)-Taylor polynomial at almost every point
of D.
(II1) w is approzimately differentiable of order k at almost every point of D.

The proof of Theorem 1 will be given in the next section. As a consequence
of Theorem 1 we now establish the following theorem:
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THEOREM 2. In order for u to be differentiable of order k almost everywhere
on D it is necessary and sufficient that for almost every point of D there is a
polynomial p(x;y) centered at x and of degree at most k — 1 such that

(6) lim sup —*l u(y) p(i vl < 4o00.
y—z ly — x|

PROOF. That the extence of a polynomial p(z;y) centered at z and of degree
at most k — 1 such that (6) holds for almost every z € D is necessary for u to
be differentiable of order k almost everywhere in D is obvious. We show that it
is also sufficient. Under this condition, since (6) implies (3), statement (I) of
Theorem 1 holds; hence by Theorem 1, u has the Lusin property of order k on
D. Thus given € > 0, there is a C*-function g on R™ such that if E is the set
on which u = g, then |[D \ E| < &. We then choose a closed subset F of E with
|D\ F| < & and with each of its points being a point of density of E. Then (6)
holds for £ € F' with p(x;y) replaced by p’;“l(z; y). For each positive integer j
let

={zeF:|u(y) —pt Y (z;y)| <jly—z|* forall ye DN B(z;1/4)},

where B(z;1/j) = {y € R" : [y — z| < 1/j}. It is clear that each C; is a closed
set and hence is measurable Since (6) (with p(x; y) replaced by p’; Y(z;y)) holds
at every point z of F, | J;2] C; = F;; as {C;} is an increasing sequence of sets,
[F\Cj| > 0asj— +oo we can choose jo such |D\ Cj,| < . Thus we can
replace F' by Cj, and still call it F' and assume that forz € Fand y € B(z;1/jo)
we have
: luy) — P (z;9)|

™ o g —ap

Let z € I’ be a point of density of F. We now show that u is differentiable
of order k at z. For y € D let d(y) be the distance from y to F and let z € F be
such that d(y) = |y — 2|. Since z is a point of density of F,

< Jo-

(8) d(y) =y — 2| = o(ly — zl) as y — .

For y € DN B(z;1/jo), by writing u(y) — ps(z;y) = u(y) — pf(z;y) + ph(z; ) —
pE(z;y) and using (7) (note that 2 € F and |y — 2| < |y — a:l < 1/3o), we have

9) [u(y) — pE(z;9)| < Joly — 2* + Ipf(2:9) — pE(z; ).

By writing the polynomial pS(z; y) as a polynomial centered at = we have

> sl ) 00 )} -2)%| = oly—2i®)

lal<k

(10) 1Pk (2 y)—pf(z;y)| =

where we write g, for D®g. It then follows from (8), (9) and (10) that w is
differentiable of order k at z.
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Since € > 0 is arbitrary and almost every point of F isa point of density of
F, the proof is complete.

Theorem 2 is a generalization of a well-known result of Rademacher [3] and
Stepanoff 6] to differentiability of higher order. Theorem 2 is also more general
in that we do not assume D to be open.

In the remaining part of this section, we make some preparations for the proof
of Theorem 1 will be considered. We remark first that if » has an approximate
(k — 1)-Taylor polynomial at z € D and if z is a point of density of D, then the
polynomial p(z;y) in (3) is uniquely determined. Indeed, if g(x;y) is another
polynomial centered at x for which (3) holds with p(z;y) replaced by g(z;y),

then
ap lim sup lp(ziy) — a(=z;9)|
y—z ly — x|
where y — z through D. This is impossible unless p(z;y) — g(z;y) is a zero
polynomial, because p(z;y) — ¢(z;y) is a polynomial of degree strictly less then
k and z is a point of density of D. Hence for such £ we can express the unique

polynomial p(z;y) for which (3) holds by
1 [s4
) pEr)= Y Staln)y—o)*

|| <k—1

< +o00,

Thus if u has an approximate (k — 1)-Taylor polynomial at almost every point of
D, there are functions u,, |a| < k—1, each of which is defined almost everywhere
on D such that if p(z;y) is defined by (11) then (3) holds for almost every z
in D. It is not obvious that the functions u, are measurable, but we will prove

that in the next section.
We now quote a lemma from [1] for our later use in the proof of Theorem 1.

This lemma is due to De Giorgi.

LEMMA 1. Let E be a measurable subset of the ball B(x;r) such that |E| >
Ar™ for some constant A > 0. Then for each positive integer k there is a positive
constant C depending only on n, k and A such that

o C
D) < e ||

for all polynomials p of degree at most k.

_ )Ip(y)ldy

B

2. The proof of Theorem 1

We now prove Theorem 1. That (I) implies (III) and (III) implies (II) is
obvious. It remains to show that (II) implies (I). We prove first that (I) holds
under the assumption that (II) holds and all u,, |a| < k — 1, are measurable;
then we complete the proof by showing that the u, are indeed measurable if (II)
holds.
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Now suppose that (II) holds and all u,, |a| < k — 1, are measurable. Let
p= [B@ily —2)) 0 Blyily — )|

ly —z|”
then p is independent of x and y. For a positive integer j, z € D, and r > 0 let

, z,y Rz £y

Wj(z;r) = B(z;r) \ {y € D : [u(y) — p(z;9)| < jly — =/*},
where p(z;y) is defined by (11). Each W;(z;r) is a measurable set. Consider
the set
T={(z,y) €D xD: e~y <nluly) - pz;9)| > jlz — y|*}.

Since all u, are measurable T is measurable in R”xR™. It is clear that W;(z;r) =
{y € D : (z,y) € T}, hence it follows from the Fubini Theorem that |W;(z; )]
is a measurable function of z. For a positive integer j we now let

Bj={z e D:|Wj(z;r)| < pr"/4, r <1/5}N{z € D : Jua(z)| < j, |o| < k};

since Wj(z;r) is monotone in 7, r only has to run through a dense sequence
in the interval (0, 1/7] in the definition of B;, hence B; is measurable. We see
readily that B; is increasing and |D \ |J; B;| = 0.
Consider two different points z, y of B; with |z —y| < 1/j and for r = |z —y|
let
S(z,y;r,5) = [B(z;m) N B(y; r)] \ [Wi(z;m) UW(y; 7).
Then

1S(2, y;r, )| 2 |B(z,7) N B(y; )| — [Wj(z;r)| — [Wi(y;r)| = pr™ /2.
For z € S(z,y;r,j) we have for q(z) = p(y; 2) — p(z; z) the estimate
l9(2)| < Ip(z; 2) — u(2)| + [u(z) — py; 2)] < §(1z — 2|* + |y - 2I¥) < 2%,

we now apply Lemma 1 with E = S(z,y;r,j) to obtain
@ c : “la
ID70@)] = ualy) = D@ < ey [ fae)lds < 20l
r S(z,yir.d)

where w,, is the volume of unit balls in R™ and C is the constant in Lemma 1
which depends only on n, k, and p and hence only on n and k. Given € > 0,
choose jo so that D\ Bj,| < £/2 and then choose a closed subset F of B;, such
that |D\ F| < e. For z, y in F, the last estimate assures that

(12) [ualy) — Dp(z; y)| < Mrr=lel,

where M is a constant depending only on 7, k, and jp. From (12) and the fact
that |us(z)|.< jo for z € F, we may apply the Whitney Extension Theorem (see
[4, p. 177]) to find a C*-function g on R™ such that g(z) = u(z) for z € F. This
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shows that (I) holds. We have thus shown that if (IT) holds and all functions u,
|a| < k — 1, are measurable then (I) holds.

It remains to show that if (IT) holds then the u, are measurable. We do
this by induction on k. When k = 1, p(z;y) = u(z) for almost every z in D,
i.e. uis ue with |@| = 0; but u is measurable. Suppose now that for a positive
integer k, the functions u,, |@| < k — 1, are measurable when (II) holds. Let
now u have an approximate k-Taylor polynomial at almost every point of D.
We show that the functions u,, |a| < k, are measurable. Since u obviously
has an approximate k — 1-Taylor polynomial at almost every point of D, by our
inductive assumption the functions u,, |o| < k —1, are measurable. Hence from
what we have shown in the first part of the proof it follows that » Lusin property
of order k on D, i.e. for any given £ > 0 there is a C*-function g on R™ such
that |[{zx € D : u(z) # g(x)}| < e. Let A be the set of all points z € D with the
property that the set {y € D : u(y) = g(y)} has density one at z, u(z) = g(z)
and u has an approximate k-Taylor polynomial at z. For z € A let p(z;y) be
the polynomial centered at z defined by

p(zmy) =) éua(m)(y—w)“-

lee| <k
Then
aplilzlj;.lp E—%ﬁ—g’l—y)l < 400,
and hence
ap liI;ljrp %_;ﬁ%y)l < +00,

from which we infer that

o) —p(z;9)| _
(13) apz}er; = afF =0.

It follows from (13) that p(z; y) is the k-Taylor polynomial of g at z, i.e. ua(z) =
D2g(z) for z € A and |a| < k. From the defining properties of the set A we infer
then that the functions u,, |a| < k, are approximately continuous at each point
of A. Since |D\ A| < € and € > 0 is arbitrary, the functions u,, |o| < k, are
approximately continuous almost everywhere on D and hence are measurable.
The proof of Theorem 1 is thus complete.

3. Miscellaneous remarks

We first give some remarks concerning Theorem 1. When k = 1 the equiva-
lence of statements (I) and (III) in Theorem 1 is due to Whitney [7], while the
equivalence of statement (II) to both (I) and (III) is new even in this case. In
[2], equivalence of (I) and (III) is established under the additional assumption
in (III) that each u, is measurable and is approximately differentiable of order
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k — |a| almost everywhere. Results of the form of statement (I) are called by
Stein and Zygmund [5] splittings of functions; it is interesting at this point to
mention the following result in [4, VIII(4.2.3)]:

THEOREM 3. Suppose that u is defined in a neighborhood of D and is lo-
cally integrable there and suppose that u has derivative in the harmonic sense
everywhere on D. If the following condition holds everywhere on D:

” i sup 1202 ) + 1@ — ) — 2u

z)|
< +o00,
ly]—0 |y

then u is differentiable almost everywhere on D.

The assumption that v is locally integrable in a neighborhood of D is required
for derivative in the harmonic sense (see [4, p. 246]) and the assumption of
existence of derivative in the harmonic sense is to assure the splitting of u on D,
i.e. to assure that u has the Lusin property of order 1 on D [4, p. 248]. Since a
function which is approximately differentiable almost everywhere on D has the
Lusin property of order 1 on D, the proof of Theorem 3 in [4] establishes the
theorem below:

THEOREM 4. If a measurable function u defined on D is approzimately dif-
ferentiable almost everywhere on D and if (14) holds at almost every x € D,
then u is differentiable almost everywhere on D.

Condition (14) is a symmetric form of condition (6) in Theorem 2 when k — 1,
but if we replace (6) by (14), Theorem 2 (with k = 1) fails. Actually, in [4, p.
148] there is exhibited a nowhere differentiable function for which (14) holds
everywhere. By Theorem 4 this function is not approximately differentiable on
a set of positive measure. Hence condition (14) is much weaker than condition

(6).
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