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1. Introduction

The aim of this paper is to establish some existence and multiplicity results
for positive solutions of the following Dirichlet problem:

P(S) {Au+u2‘-1=o,u>o in ,
u=20 on 991,

where € is a smooth bounded domain in R™ with n > 3 and 2* = 2n/(n - 2)
(2* is the critical Sobolev exponent for the embedding H,(€2) — Lr(Q)).

It is well known that the solutions of Problem P(2) correspond to the non-
negative functions u which are constrained critical points for the functional

fw = [ 1Dufdo
Q
constrained on the manifold
V(Q) = {u € Hy*(Q) : / [u* dz = 1}.
Q

But, because of the presence of the critical Sobolev exponent, this functional
does not satisfy the well known Palais-Smale compactness condition. Thus, the
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standard variational methods to obtain critical points do not apply: even the
minimum of f on V() does not exist (see Proposition 2.2).

Indeed, the first contribution to the study of Problem P(f2) was a non-
existence result due to Pokhozhaev (see [27]): if the bounded domain (2 is star-
shaped, then P(€2) has no solution.

On the other hand, it is easy to verify (as pointed out by Kazdan-Warner
in [16]) that, if 2 is an annulus (ie. @ = {x € R*: 0 <71 < |z| < r2}), then
Problem P(f) has a radial solution. Thus, the existence of solutions for P(2)
seems to be strictly related to the geometrical properties of (.

Many important researches have been devoted to the study of the effect of
the domain shape on the existence and the multiplicity of positive solutions of
problems of this type. In this direction, a first result was obtained by Coron in
[11]: he showed that, if the domain 2 has a “hole” of sufficiently small size, then
Problem P(Q) has at least one positive solution. But the most remarkable result
in this direction is the following theorem of Bahri and Coron (see [1]): Problem
P(Q) has at least one positive solution if the domain £ has nontrivial topology,
in a suitable sense (i.e. if some homology groups are nontrivial).

Thus, the following natural question arises, which was pointed out by Brezis
in [4]: can one replace in Pokhozhaev’s Theorem the assumption “Q} is star-
shaped” by “Q has trivial topology”, in other words, are there domains {2 with
trivial topology (for example contractible domains) such that Problem P(2) has
a solution? Several papers have been devoted to this question (see, for instance,
[12], [13], [18], [8]). In [8] some nonexistence results are obtained in bounded
domains, which are contractible but not star-shaped, while in [12], [13], [18] the
existence of contractible bounded domains  where P(2) has solution is proved.
In particular, in [18] it is shown that, for every positive integer k, there exists a
contractible bounded domain € such that P(€) has at least &k distinct positive

solutions.

Notice that in [13] it is proved that, under suitable assumptions, the solution
obtained by Coron (see [11]) in a domain with a “small hole” persists with respect
to a perturbation which changes this domain into a contractible domain. More
generally, in [12] it is proved that also the solution given by Bahri and Coron (see
[1]) in nontrivial domains persists with respect to similar perturbations, which
allows one to obtain contractible domains 2 such that P(£2) has a solution. On
the contrary, in [18] we find, in the same contractible domains, a new type of
solutions which vanish as the perturbation goes to zero, while the ones obtained
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in [13] and [12] converge to the solution of the limit problem, given by [11] or [1]
(see also Remark 3.10 for more details).

In this paper we continue the research begun in [18] and we study in a system-
atic way the existence and the multiplicity of positive solutions of Problem P(Q)
depending on the shape of 2. Some results here exposed have been announced
in [18].

Let us remark that the domains considered in [18] have a radial symmetry
with respect to an axis, which plays a very important réle in the proofs given in
[18]: in fact, this symmetry allows one to obtain the solutions as local minimum
points in the subspace of the radial functions.

On the contrary, no symmetry assumption is required in the results stated
here; the solutions are obtained not by minimization techniques, but by means of
more complex topological-variational methods (similar methods were also used
in [2], 3], [9], [10] for problems with subcritical growth).

The main results obtained in this paper are stated in Theorems 2.5 and 3.1.

As it is also pointed out by means of some simple examples (see Examples
2.17 and 2.18), these results show that every perturbation of a given domain
ﬁ, which is obtained by removing a closed subset K of small capacity in such
a way that the domain Q = \ K has a different type of homotopy than ,
gives rise to a positive solution of Problem P(ﬁ \ K); moreover, this solution
converges to zero as the capacity of K goes to zero, and its existence is not
related to the solvability of Problem P({2). Notice that one can also show that
several independent perturbations of this type can give rise to several distinct
positive solutions (see Remark 3.12). It is evident that this allows one to obtain
domains 2 which have a very complex shape but a trivial topology (in particular,
contractible domains), where one can prove the existence of a number of positive
solutions arbitrarily large, without any symmetry assumption.

Finally, let us mention that in [25] one can find other existence and mul-
tiplicity results for Problem P(2) with Q = O \ K (and cap K small enough),
where we evaluate the number of positive solutions in terms of relative category
of the domain © with respect to \ K (see [14]).

2. Existence of positive solutions

Let 2 be a smooth bounded domain in R™ with n > 3 and 2* = 2n/(n — 2)
(the critical Sobolev exponent for the embedding H,2(§2) — LP()). It is easy
to verify that a function v in H2(Q), v > 0 in Q and u # 0, is a solution of
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Problem P(Q2) if and only if

‘/|Du|2d:1:=/|u|2. dz
Q Q

and ¥ = u/||u| ;2 is a critical point for the functional
fw) = [ IDufds
Q
constrained on the manifold

V(Q) = {'u, € H}(Q) - /ﬂ luf?’ dz = 1}.

So, solving Problem P({2) is equivalent to looking for constrained critical points
for f on V().

Since the embedding Hy?(€2) — L?"(Q) is only continuous but not compact,
this functional does not satisfy the well known Palais-Smale compactness condi-
tion. So it is not possible to apply directly the classical variational methods to
find constrained critical points for f on V(). In particular, the minimum of f
on V() does not exist. Indeed, the infimum

(2.1) S = 1nf{/lDu|2d:c u € H, /|u,|2 dx—l}

is a well known positive constant (the best Sobolev constant for the embedding
H}?(Q) — L?" (), whose properties can be summarized as follows:

PROPOSITION 2.2 (see [6], [27], [30], [15], [17]). Let S be the best Sobolev
constant (see (2.1)). Then:
a) S is independent of 2 C R"; it depends only on the dimension n;
b) the infimum in (2.1), which defines S, is never achieved when Q is a
bounded domain of R";
c) only when = R™ is the infimum S achieved by the function
U . 1
= ”_UHL_? with u(z) = ——*(1 n |x|2)(“—2)/2;
moreover, all the minimizing functions are of the form

Uo,zg = _ Yoo where Ug 2o (T) = u(m — IO)
l[er,z0 [l 22~ o

with o > 0 and zg € R"?;

d) if Q=R" andu € HY*(R"), u > 0, is a critical point for the functional
f constrained on V(R™), then u = Uy g, for suitable ¢ > 0 and zo in
R™.

Now, let us remind the notion of capacity.
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DEFINITION 2.3. Let D be a domain in R” and K be a subset of D. We say
that a function u € H'?(D) is nonnegative on K (u > 0 on K) in the sense of
H'2(Dy if there exists a sequence (v;); in C1(D) such that u; > 0 on K for all
i € N and (u;); converges to u in H»?(D).

If c € R, we say that u > c on K in the H%?(D) sense if u — ¢ > 0 on K in
the H'2(D) sense.

If the set

{u€ Hy*(D):u>1 on K in the H"¥(D) sense}

is nonempty, then the capacity of K with respect to D (cappK) is the following
number:

capp K = inf {/ |Dul?dz : uw € Hy*(D), u>1on K in the HY?(D) sense}.
D
Moreover, we shall put capp® = 0.
When D = R" we shall write simply cap K, instead of capgs K.

It is well known that, if the convex closed set
{u € Hy*(D): u>1o0n K in the H'2(D) sense}

is nonempty, then there exists a unique function ug € H&’Z(D) such that
/ |Dug|? dz = capp K;
D

moreover, ux = 1 on K in the sense of H%2(D).

DEFINITION 2.4. Let £ be a subset of R™ and H, £ two subsets of £). We say
that H cannot be deformed in Q into a subset of Q if does not exist a continuous
function h : H x [0, 1] — €2 such that

h(z,00=z and  h(z,1)€Q VzeH.

THEOREM 2.5. Let Q be a smooth bounded domain of R™ withn >3 and H
be a closed subset contained in ). Then there ezists € > 0 such that the following
assertion holds: if Q0 is a smooth domain contained in Q, with ca.p(ﬁ\Q) < g,
such that H cannot be deformed in 2 into a subset of 0 (see Def. 2.4), then
Problem P(Q) has at least one solution ug.

PRrROOF. For the proof, see 2.12.
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COROLLARY 2.6. Let Q be a smooth bounded domain of R™ with n > 3 and
H be a closed subset contained in € and noncontractible in Q. Then there ezists
£ > 0 such that the following assertion holds: if Q is a smooth domain contained
in © and contractible in Q and if cap(ﬁ\ﬂ) < g, then Problem P(Q) has at least
one solution ugq.

For the proof it suffices to observe that H cannot be deformed in Q into a
subset of Q (see Definition 2.4), because (2 is contractible in Q while H is not.

Examples 2.17 show some possible applications of Theorem 2.5 and Corollary

2.6.
Let us recall the following results of P. L. Lions, which will be used in the

proof of Theorem 2.5.

THEOREM 2.7 (P. L. Lions [17]). Let (u;); be a minimizing sequence for the
Sobolev constant S, that is

u; € HYA(R™), /}Rﬂ lu;|* de =1  Vi€N,

lim | |Du;|>dz=S.

i—00 JRrn
Then there ezist two sequences, (y;); in R™ and (0;); in R, such that the se-
quence (%;); in HY2(R™) defined by
ti(a) = o7 (22
is relatively compact in L (R™). Of course, (;); is also a minimizing sequence
and, if (W) — U in L¥ (R™), then

/ |Duf?dz = S.

In particular, when the functions u; in Theorem 2.7 are zero outside a
bounded domain in R?, it is easy to deduce the following proposition:

PROPOSITION 2.8. If the minimizing sequence (u;); in Theorem 2.7 is in
H}2(Q), with Q a bounded domain in R, then the sequence (0;); (see Theorem
2.7) satisfies lim; o0 0; = +00. Consequently, one can find a subsequence (ui,)j

and a point T in Q such that

lim [ vlu; 12" dz = v(Z)
700 QO

for every function v which is continuous in Q.
In order to obtain a suitable compactness property for the functional f con-
strained on V(Q), we shall use a well known result of M. Struwe which, in our

notations, can be stated as follows.
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THEOREM 2.9 (M. Struwe [29]). Let Q2 be a smooth bounded domain in R™
withn > 3. Let (u;); be a Palais-Smale sequence for the functional f constrained
on V(Q), that is

sup f(u;) < +oo and grad fly(ay(w) — 0 in H~12(Q).
ieN

Then one of the following two cases can happen: either the sequence (u;); is
relatively compact in Hé’z(Q), or there exist k solutions Uy, ... , U, (k > 1) of

the problem .
{ Au+ [u|? 2u =0, in R™,

ve HY2(R™), u#0 inR",
and a solution ugy of the problem
{ Au+u¥2u=0 inQ,
u € HY*(Q)

such that (u;); (or a subsequence) has the following properties:

k -1/2"
u; — U [Z/ a;|? dm] weakly in Hy?(Q);
=0 /R”

k k —-2/2*
lim [ |Du|dz = [Z/ lDﬁj|2d:l:] [Z/ [z;|? m]
11— 00 Q j=0 ]Rn j=0 R™

(here we consider Ty extended by zero in R™\Q).

Now we can prove the following Palais-Smale condition for the functional f
constrained on V(2).

PROPOSITION 2.10. Let Q be a smooth bounded domain in R™ withn > 3
and (u;); be a sequence in V() such that:

lim f(u;) € 15,2%/ 5],
i—00
grad flV(Q) (u,) —0 n H_I’Z(Q).

Then (u;); is relatively compact in H, 2(Q).

PROOF. Assume, by contradiction, that the sequence (u;); is not relatively
compact in Hé’2(Q); then there exist functions %o, %1, . . . , Uk with the properties
described in Theorem 2.9.

First, let us observe that

Du;|*dz = w;|¥de  Vji=0,1,....,k
7 7
R™ R
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(because @; solves the equation Au + |u[?" !y = 0).
It follows that for every j = 0,1,... ,k we have

2 . _2/2*
Sl e
=0 j=0vR"
k . 1-2/2* .
= [E/ il dz] > [/ 52 dx]
j=0vR™ R
1-2/2"
= |;/1R" IDﬂjlz dl'] :

Consequently, all the functions %, U1, . - . , U, have constant sign: otherwise, if
ﬂj-' # 0 and u; # 0, we should have, by the properties of the Sobolev constant

1-2/2*

S (see Proposition 2.2)

2/2"
/ T d:z:—/ |Dni|2da;>s(/ T d:c) ,
Rn

which implies
1-2/2*
[ mral T 2s
that is, [g. |E;-E|2’ dz > 8™/?; therefore [, [4;|* dz > 25™2, in contradiction

with the assumption that lim; oo f(u;) < 2%/™S.
Thus, property d) of Proposition 2.2 implies that, for every j = 1,2,... ,k,

" . 2/2*
/ [@;|* dz = / |Dz;|? dz = S[/ [z da:] ,
R™ R™ R
that is, [g. [T;|* dz = S™/2, which implies
2/n
lim f(u) = [ / o | dx+k:.S’"/2] :
11—+ R-n
Now, if Ty = 0, then lim;_, o f{u;) = k?/S with k € N; if T # 0, we have
. 2/n
[ / [ |2 dx+kS"/2} >(k+1)%"S  withk>1.

In any case we have a contradiction with the assumption

lim f(u;) €]8,2%"8].
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PROPOSITION 2.11. Letu € Hé’z(ﬂ) be a critical point for the functional f
constrained on V(). If f(u) < 22/"8, then the function u has a constant sign.

PROOF. Let us remark that the function u solves the equation
Au+plu* u=0 inQ, with p = f(u).

Assume, by contradiction, that ut # 0 and u~ # 0; then we have

. . 2/2*
f(u)/ 2 dx=/ |Dui|2dmzs(/ P2 d:c) .
Q Q Q

We infer that
[t de > (5750,
Q

which implies 1 > 2(S/f(u))™?, that is, f(u) > 22/*S, in contradiction with our

assumption. O

2.12. Proof of Theorem 2.5. Let 3 : V(S~2) — R™ be the “barycentre”
function defined by

Blu) = /ﬁ @ dz VueV(Q)

(every function of Hy?(£2) will be extended in \Q by zero).
Since  is a smooth bounded domain in R™, there exists ¥ > 0 such that

is a deformation retract of the domain

Ot ={zecR": dist(z, Q) < 7}.
Using Theorem 2.7 and Proposition 2.8, it is easy to verify that
(2.13) inf{f(u):ue V(Q), Bu) €N} > S
(here we put inf @ = +oo, if {u € V(Q) : B(u) ¢ 2} =0).

By the properties of the Sobolev constant S (see Proposition 2.2) it follows
that for every u > S there exists ¢ € C§°(B(0,1)) such that

/ > dz = and / |Dy|? dzx < p.
B(0,1)

In particular, we can choose g > S such that u < 2%/™$ and (see (2.13))

p < inf{f(u):ueV(Q), 3u) g0}
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For every o > 0 and y € R™, set

Poy(2) = w(m — y)

[

(here we consider ¢ extended by zero outside B(0, 1)).
Since H is a closed set contained in S~2, there exists & > 0 such that

vsy € HY?(R) WyeH.

Put Ty(p) = ¥sy/ll¢zyllzer (notice that f(Ty(¥)) = [pe1 |Dy|? dz for all
y € H).

For every 2 C Q, let 2q € HY2(R™) be the nonnegative function such that
za =1 on Q\Q in the sense of H? and

[ Dz do = cap(@\0)
(see Definition 2.3). So, we have
(1-z) Ty(p) € H?(Q) VyeH
and, moreover, for every § > 0 there exists € > 0 such that

cap(\Q) < e = SIGJ.II:r lzaTy ()]l g120) < &
Y
Consequently,
(1 - 2q) - Ty(Pllpz= ) #0 Vye H

if cap(ﬁ\ﬂ) is small enough; moreover, if we set

_ (1 —2q) - Ty(y)
(1 = 20) - Ty(@)ll e

then there exists £ > 0 such that

Do(y)

(2.14) cap(Q\Q) < & = sup{f o ®a(y) :y € H} < p.

Notice that 8o ®q(y) € B(y,0) C € for all y € H; so, the map Bo®q : H — Q
is homotopically equivalent, in £, to the identity map.

Let © be a smooth bounded domain contained in £, with cap(€\Q) < &; let
r €10, 7] be small enough such that 2 is a deformation retract of the domain

QF = {z e R" : dist(z,Q) <r}.
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From Theorem 2.7 and Proposition 2.8 we infer that
(2.15) inf{f(u) :ue€ V(Q), Bv) €N} > 8.
Moreover, we have
inf{f(u) : uw € V(), Bu) ¢ QF} < sup{f o Ba(y) : y € H},
otherwise the continuous map k : H x [0,1] — Q defined by
k(y,t) = (1 -ty +tB o &q(y) Vy € H, Vt € [0,1]

would be a deformation of H in a subset of 21; since Q is a deformation re-
tract of QF, it follows that H would be deformable in {2 into a subset of Q, in

contradiction with our assumption.
Thus, if @ C © and cap(Q\Q) < &, the topology of the sublevels of f on
V' (€2) can be described by the following inequalities:

S <inf{f(u) : ue V(Q), B(u) € 2"}
<sup{fo®a(y) : y€ H}<p
< inf{f(u) : u € V(Q), Bu) ¢ O}
< inf{f(u) : u € V(Q), Blu) € 0¥},
where p < 22/78.
In particular, these inequalities imply that, if ¢; and c¢; are two constants
satisfying
c1 <inf{f(u) : ue V(Q), B(u) & Q*},
ca =sup{foPa(y) : y€ H},
then the sublevel
fr={veV(@) : f(u) L e}

cannot be a deformation retract of
fe={ueV(Q): f(u) <c}

In fact, if, by contradiction, there exists a deformation 9 : f°2 x [0,1] — f°2 such

that
{ Hu,0) =u Yu € fe2,

19(“,1)€fc1 Vuefc27
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then it is possible to obtain a deformation h: H x [0,1] — 0 such that
h(z,0)=2z and  h(r,1)€Q VzeH,

in contradiction with the assumptions of Theorem 2.5.
The deformation h can be defined as follows:

h(z,t) = (1 —3t)z +3tBodq(z) Vrxe€H, Vtel[0,1/3]
(notice that h(z,t) € B(z,7) C Q for all t € [0,1/3]);
h(z,t) = 5o Bod(®a(z),3t —1)  Vz € H, Vt € [1/3,2/3],

where 5: Q* — Q is a continuous map such that 5(z) = z for all z € Q (notice
that B(u) € QF for every u € f°2, because c; < inf{f(u) : u € V(), B(u) &
Q+}).
Since 3(®q(x),1) € f* for all z € H and
e1 < inf{f(u) : u € V(Q), B(u) ¢ O},

it follows that
Bod(®@q(z),1) €t  VzeH.

Therefore, for a fixed continuous function p : 2 x [0,1] — QF such that
plz,00=2 and p(z,1)eQ VzeQl,
we can define
h(z,t) = po p{B o ¥Pa(z),1],3t — 2} Vz € H, Vt €2/3,1].

Now, let us recall that the functional f constrained on V() satisfies the
Palais-Smale condition in f~1(]S,2%/"S|) (see Proposition 2.10) and

S < inf{f(u) : u€ V(Q), Bu) €2}
<sup{fodaly) :yeH}<pu< 22/ng.

Therefore, the change of topology between the sublevels f¢* and f° implies the
existence of a constrained critical value in [e1, ca].
Moreover, since c; is an arbitrary constant such that

¢ < inf{f(u):u € V(Q), Bu) €N},
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we infer that there exists a constrained critical point ugq satisfying

inf{f(u) : ve V(Q), B(u) €02t} < f(ua)
<sup{fo®qa(y) : ye H} < pu < 2¥"8.

Finally, notice that ug is a function having constant sign, because f(u) < 22/"$
(see Proposition 2.11). O

REMARK 2.16. In the proof of Theorem 2.5 we can choose the constant
¢ > S arbitrarily close to § and then we must take @ C Q with cap(f\Q)
sufficiently small.

Since the constrained critical point ug satisfies f(uq) < u, this shows that

flug) > 8 as cap(Q\Q) — 0.

So, ug — 0 weakly in H&’z and concentrates near a point, as described in
Theorem 2.7 and Proposition 2.8.

2.17. Examples. Here we show some simple situations where Theorem 2.5
and Corollary 2.6 can be applied.

In particular, by using Corollary 2.6, it is easy to obtain some bounded
contractible domains, without any symmetry property, where Problem P(9) has
a solution (notice that, on the contrary, a rotational symmetry assumption on
the domains plays a very important réle in the proof of the results exposed in
[18]).

One can remark that the domains considered in the following examples do
not have a smooth boundary, as required in Theorem 1.5. However, one can
obviously obtain smooth nearby domains, with the same geometrical properties,
satisfying all the assumptions of Theorem 2.5.

On the other hand, let us remark that some technical modifications in the
proof of this theorem allow one to state an analogous existence result in domains
having only a “piecewise smooth” boundary, like the ones considered in the

following examples.

ExXAMPLE 1. Choose zg,z; in R™ with n > 3 and rg,r; in R* such that
B(z1,m1) C B(zo,70)

and put
Q= B(zo,70) \ B(z1,71)-



40 D. PASSASEO

Let us fix ¢; € B(z1,71) and yo & B(xo,70), and define
[vo, y1] = {(1 — Nyo + Ay1 : A € [0, 1]},

Q. = {z € Q: dist(z, [yo, 91]) > £}

(notice that lim,_,q+ cap(\2) = 0).
Then Problem P({2) has at least one solution u. for £ > 0 small enough.
In fact the assumptions of Corollary 2.6 are satisfied with H = 8B(z;,r) for
a suitable r > ry (H is not contractible in ﬁ, while Q. is contractible in Q for

every € > 0).
EXAMPLE 2. Let zg, %1, %2 in R” with n > 3 and rg, 71,72 in RT be chosen

in such a way that

B(z1,71) C B(wo,m0), B(z2,72) C B(xo,70), B(z1,m1) N B(z2,72) = 0.

Set )
ﬁ = B(.’L‘g,'f’g) \ U B(il,‘.i,'l".,;).
i=1

=

Let [y1,y2] be the segment joining y € B(z1,7r1) and y2 € B(zg,72), and put
Q. = {z € Q : dist(z, [y1, 42]) > €}-

Then lim,_,o+ cap(ﬁ\QE) = 0 and the assumptions of Theorem 2.5 are satisfied
with H = 8B(z,,r) for a suitable 7 > r; (H cannot be deformed in Q into a

subset of ).
Therefore Problem P((2.) has at least one solution u, if € > 0 is small enough.

EXAMPLE 3. Let n > 4, and set

C = {(z1,...,zn) €ER™ : 22+zi=1z,=0fori=3,...,n}k
L= {(z1,...,zn) ER" : s} + 23 <1, 2, =0fori=3,...,n}

(notice that cap X = 0 if n > 4);

T = {z e R" : dist(z,C) < 1/3};
(= B(0,2)\T;
Q. = {z € Q: dist(z, ) > €}

Then Problem P(£2.) has at least one solution u, for € > 0 small enough.
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In fact, we have
li O\Q) =0
Jim_cap(€\€2)
and, if we set
H = {z e R" : dist(z, C) = 1/2},
the conditions of Theorem 2.5 are satisfied (H cannot be deformed in € into a

subset of Q. for every € > 0).

EXAMPLE 4. Let 3 < k < n and set

k
Ck={(m1,...,xn)€R" : sz:l; zi=0fori=k+1,.‘.,n},

i=1

Ty = {z € R™ : dist(z, Cx) < 1/2},

2k={($1,...,$n)€Rn tz2;=0

n
fori=0,...,k—1; 0< 2, < 2; Z 1354}
i=k+1

(notice that cap Xk = 0, since k > 3).
Now, let us define Q = T} and
Qe = {z € T}, : dist(z, k) > €}.
Then, Problem P(()) has at least one solution u. for £ > 0 small enough: in
fact, for every € > 0, the set H = Cj, cannot be deformed in Q = T} into a subset
of Q. and, moreover, lim,_,q+ cap(ﬁ\ﬂs) =0.

Let us remark that in all the prev‘ious examples the domain © has nontrivial
topology in the sense of Bahri-Coron [1]; so Problem P(f2) has at least one
solution u; but % is not the limit of the solutions u. of P(£).) given by Theorem
2.5 (in fact, as € — 07, the functions u. converge weakly to zero in H!:2, as
pointed out in Remark 2.16, and concentrate near some point, as described in

Theorem 2.7 and Proposition 2.8).
Therefore, it is very plausible that Problem P().) also has another solution

e, which converges to 4 as € — 0T,

3. A multiplicity result

In this section we show that certain perturbations of the domain, which
change its topology by taking away some subsets having small capacity, can give
the existence of more than one solution.

The main result is stated in Theorem 3.1; simple examples of application are

shown in 3.8.
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THEOREM 3.1. Let A, A be two smooth bounded domains in R™, withn > 3,
and H a subset of A such that

HCACA and dist(H,d4)> 0.

Moreover, assume that H is contractible in A. Then there exists § > 0 such that,

if Q) is a smooth bounded domain with
AcQcA and cap A'\Z(‘Z\ﬁ) <6,

then

1) if H is noncontractible in (3, then Problem P(8) has at least one solu-
tion;

II) there erists € > 0 such that the following assertion holds: if 2 is a
smooth bounded domain, with @ C Q and cap(ﬁ\Q) < € and if H
cannot be deformed in Q into a subset of Q (see Definition 2.4), then
Problem P(Q) has at least two solutions.

PROOF. Choose ¢ > 0 small enough in such a way that o < dist(H, dA) and

moreover the subset
A~ ={z e A: dist(z,04) > o}

is a deformation retract of A (so, H is contractible in A~ too).

Let p € C3°(B(0,0)) be a nonnegative radial function such that ¢ =1 in a
neighbourhood of zero.

Set By(z) = @(z)/(A2 + |2|2)*~2/2 and define s = /[P [lL2» - It is well
known (see [6]) that limy—o f(¥x) = S. In particular, there exists Ao > 0 such

that
F(n) <2¥"S WA €0, A).

Let Ty, : A— — V(A) be the function defined by
Tho(W)[z] = Yr@—y) WyeA,Vzed

(we consider ¥, extended by zero outside B(0,c)).
Let Z € Hy*(A\A) be the nonnegative function such that Z =1 on A\Q in

the sense of H2(A\A) and

/g D3 de = cap (AN,
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Arguing as in [3], one can find § > 0 small enough such that, if cap A\Z(Z\ﬁ) < 6,
then
1= 2T W2 @y #0 V¥ €A™

and moreover, if we set

(1 — 5)T)\o (y)
1A =2 W)l 2y

q’)\o (y) =

we have &y, : A~ — V() and
sup{fo®y,(y) : y€ A~} < 2%/"8.

Choose 7 > 0 so small that the smooth domain Q is a deformation retract of the

domain
QF = {z e R™ : dist(z, Q) < 7}.

—~

Let 8: V(A) — R" be the “barycentre” function defined by
8 = [ alu@)* dz

(every function of H,"2 (€) will be extended by zero outside (2).
We infer from Theorem 2.7 and Proposition 2.8 that

inf{f(u) : ue V(Q), Blu) 2t} > S.
Therefore, since limy—g f(¥5) = 8, there exists A; € ]0, Ag[ such that
f(#r) < f{f(u) : u e V(Q), Blu) & X}
Now, let us remark that
F1@n@) = f(¥r) VyeH
(because % = 0 on A); so we have
sup{f o ®x, () : y € H} < inf{f(u) : w € V(Q), B(u) ¢ O}

Let us put
c1 = inf{f(u) : u € V(Q), B(u) g 0*}

and denote by ¢z the maximum of

sup{f o ®x,(y):y € A~} and sup{f(¥): A € [\, Ao]}.
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Notice that ¢; < ep: in fact, there exists § € A such that 8o @x,(7) & Qt (so
we have ¢; < f o ®,(7) < ¢2); otherwise we should have

Body, : A —QF, with Bo®y(y)=y VyeH

(because T, (y) has radial symmetry with respect toy and 7 = 0in B (y,0) C A);
consequently, the subset H, which is contractible in A~, would be contractible
in Ot (and also in Q, which is a deformation retract of Q+), in contradiction

with our assumption.

Thus S < ¢; < ¢z < 22/™S. We shall prove that in [c;,cp] there exists a
critical value for the functional f constrained on V(ﬁ).

In fact, assume, by contradiction, that [c1,cz] does not contain any critical
value for f on V({).

Since the Palais-Smale condition is satisfied in ]S,22/"S| (see Proposition
2.10), the nonexistence of critical values in [c1,cp] implies that there exists a
constant ¢j with the following properties:

a) f(in) <er <ei;
b) no critical value lies in [¢}, c3];
¢) the sublevel

fa={uev(@): flu) s}
is a deformation retract of
fr={ueV(@) : f(u) < c2}-

In particular, there exists a continuous function R : f*? — fcll such that
R(u) = u for every u € feu.
Let I': H x [0,1] — A~ be a continuous function such that

(32) F(ya 0) = F(y’ 1) =ap Vy €H

for a suitable ap € A~ (notice that such a function exists, because H is con-
tractible in A™).
Let 5: QF — ) be a continuous function such that p(y) = y for every y € Q.
Now we can define a continuous function h : H x [0, 1] —. in the following
way:
h(y,t) =poBoRo®)(y) VyeEH, Vi€ [0,1/2]
where \; = (1 — 2t)A; + 2tAg and

Dr(y)=vr(z—y) VyeH Vze€ Q;
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h(y,t) =poBoRody, oI'(y,2t—1) Vy € H, Vt € [1/2,1].
It is easy to verify that the function % is well defined: indeed, ®,,(y) and @), o
I'(y,2t — 1) lie in f°, where R is defined; R has values in f° and Bu) € O+
(where p is defined) for every u € f¢1.
Moreover, h is a continuous function (since I'(y,0) =y Vy € H ) and satisfies

h(y,1) =poBoRo®)(a) and h(y,0)=y VyecH

(notice that h(y,0) = y for y € H because ®y,(y) € f for y€ H,R(u) =u
for u € f°1 and B(®x,(y)) = y for y € H, since ®(y) has radial symmetry with
respect to y). But this is in contradiction with the assumption that H is not
contractible in €: so part I of the theorem is proved.

In order to prove part II, let us remark that

(3.3) inf{f(u) : u € V(Q), Bu) ¢ 2+}
> inf{f(u) : uw € V(Q), Bu) ¢ O},
because Q2 C €.
Let z € H'*(R") be a nonnegative function such that z = 1 on {}\Q in the
sense of H2(R™) and
/ |Dz|? dz = cap(\).
R~n
Using the same arguments as above, one can find € > 0 small enough such that,
if cap (Q\9) < ¢, then:
8) (1= 2)®x ()l () # 0 for all y € A~ .
(notice that (1 — 2)®),(y) € Hy'*(2) for all y € A7)
b) if we set @) (y) = (1 — 2)®x,(y)/[|(1 — 2)®3, W)l >* (), we have

(3.4) sup{f o) (y) : y€ A~} < 2%/"§;
¢) [I(1 = 2)@A(y)|| L2 () # O for all y € H and A € [Ay, Ag), and if we set.

(1-2)2x(y)
(1= 2)a)l L2y

®4(y) =
then
sup{f o ®)\(y) : y € H, X € [\, Ao} < 2¥/75,
sup{f o ®),(y) : y € H} <inf{f(u) : u € V(), A(u) g T*},
which implies (by (3.3))

(3.6) sup{f o @}, (y) : y € H} < inf{f(u) : u € V(Q), flu) ¢ O}

(3.5)



46 D. PASSASEO

Let us choose 7 > 0 small enough such that the smooth bounded domain Q is a

deformation retract of the domain

OF = {z e R™ : dist(z, Q) < r}.
Theorem 2.7 and Proposition 2.8 imply tha‘t
(3.7 inf{f(u) : u€ V(Q), Bu) €0t} >S.
Let us put:

& = inf{f(u) : ue V(Q), Blu) €1},
ey =sup{fo®),(y) : y € H},
Ty = inf{f(u) : u€ V(), Bu) g ).

Moreover, let us denote by €, the maximum of
sup{fo®y,(y) : y€ A7} and sup{fo@\(y) : y € H, A€ [, Ao}
If cap(€\f) < &, then
S <7 <8 <t <ty <2Y/"8.

The first inequality is just (3.7).

In order to verify that ¢; < @, let us remark that, since the subset H cannot
be deformed in Q into a subset of 2, and since the domains ﬁ, Q are deformation
retracts of Q0+, QF respectively, it follows that H cannot be deformed in QF into
a subset of QF.

In particular, this implies that there exists 7 € H such that 0 ®} () ¢ ot
otherwise the continuous map k : H x [0,1] — Q% defined by

k(y,t) = (1—t)y+tBo®)\ (v) Vy€H, Vte[0]]

would be a deformation of H in 0t into a subset of QF (notice that k(y,t) €
B(y,0) c S forall y € H and t € [0,1]).
Therefore, we have
¢ < fo®) (7) <%

The inequality ¢ < €3 is just (3.6).

In order to prove that €3 < €4, let us remark that the subset H, which is
contractible in E, is noncontractible in S~2, otherwise it would be deformable in
into a subset of {2 (here we assume, for simplicity, that Q is a connected domain).
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Since A~ and 2 are deformation retracts of A and {I* respectively, we also
see that H is contractible in A~ but noncontractible in §*.

It follows that there exists € A~ such that #o &, (7) & (*: otherwise we
should have 3o ®} (7) : A~ — Q1 and we can define the continuous function
k:Hx[0,1 — Qt by
k(y,t) = (1-2t)y+2tBo®) (v) Vye€H, Vte[0,1/2],

k(y,t) =Bo®) oDl(y,2t - 1) Vy € H, Vt e [1/2,1],

where I is a continuous map with the properties (3.2) (which exists because H
is contractible in K‘); but this is a contradiction because H is noncontractible
in QF.

Thus, €3 < f o @) (7) <.

The last inequality ¢4 < 22/"S follows by (3.4) and (3.5).

We shall prove that both intervals [¢1,;] and [¢3,T4] (Which are disjoint)
contain a critical value for the functional f constrained on V(£2). So, we obtain
two distinct solutions of Problem P(Q?), corresponding to two distinct critical
values.

Let us assume, by contradiction, that [¢1,Z;] does not contain any critical
value for f constrained on V({2). In this case, since the Palais-Smale condition
is satisfied in ]S, 22/"S[ (see Proposition 2.10), there exists ¢ €]8,¢1[ such that
no critical value lies in [¢}, ;] and the sublevel

fA={ueV(@Q: fw) <7}
is a deformation retract of
f={ueV(Q): f(u) <5}
In particular, there exists a continuous function 9 : f% x [0,1] — f%2 such that

{ I(u,0) =u for u € f°,
I(u,1) € f& forue fo.

Thus, we can define a continuous function % : H x [0,1] — Q in the following
way:
R(y,t) = (1 -3t)y+3tBo @) (y) VyeH, Vtel(0,1/3

(notice that h(y,t) € B(y,o) CQ forallye Hand t e [0,1/3]);

h(y,t)=poBod[®) (v),3t~1] VyeH, Vte(l/3,2/3]
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where 7: 1t — 1 is a continuous function such that p(x) = z for all z € Q (let
us remark that B(u) € QF for all u € f°2 because &; < T3);

R(y,t) = poplBod[®),(1),1],3t—2]  VyeH, Vte2/31],
where p: QF x [0,1] — @t is a continuous function such that
p(z,0)=z and p(z,1)€Q VzeQt

(notice that Bo9[®) (y),1] € @ for all y € H because I[P (v),1] € f4 for all
y € H and ¢} < @).

One can easily verify that the function h:Hx|[0,1 — € is well defined, is
continuous and has the following properties:

R(y,0)=y and h(y,1)€Q VyeH,

in contradiction with our assumption that H cannot be deformed in Q into
a subset of €. So, there exists in [€;,C2] a critical value for the functional f
constrained on V().

Now, we look for a constrained critical value in [€3,€4]. Let us assume, by
contradiction, that no critical value lies in [¢3,T4). In this case, since the Palais-
Smale condition holds in ]S, 22/ S[ (see Proposition 2.10), there exists T3 € |é2, 3|
such that the sublevel

fo={ueV(Q) : flu) <5
is a deformation retract of
[ ={ueV(Q): flu) <t}

In particular, there exists a continuous function R : f% — f%8 such that R(u) =

u for all u € f%.
Let T': H x [0,1] — A~ be a continuous function with the properties (3.2)

(notice that H is contractible in A0).
Let us define a continuous function hy : H X [0,1] — Q in the following way:

Ri(y,t) = (1-3t)y+3tB0o P, (y) VyeH, Vie[0,1/3]
(notice that h;(y,t) € B(y,0) C Qforye Handte[0,1/3]);

hi(y,t)=poBoRo®) (y) Vye€H, Vtel[l/3,2/3],
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where A; = (2—3t)A; + (3t — 1)Ag and 5: © —  is a continuous function such
that p(y) =y forall y € Q;

hi(y,t) =poBoRo @), o(y,3t —2) Vy € H, Vt € [2/3,1].

One can easily verify that the function h; is well defined: in fact, ®),(y) and
% ©T'(y,3t—2) lie in f% (by the definition of ¢;) and B : f* — f%; moreover,
since & < €3, we have A(u) € O+ (where p is defined) for every u € f%.
In order to verify the continuity of the function A, it suffices to remark that:
a) Ro®) (y) = 9, (y) because R(u) = u for all u € f% and ) (y) € f>
for all y € H, with &; < T;
b) pofo®) (y) = fo®) (y) for all y € H, because [ o \ (W) € Q and
plyy=yforallye
¢) D(y,0) =y forallye A~.
Moreover, the continuous function hy : H x [0,1] — Q has the following

properties:
El(y70)=y and El(y71)=ﬁoﬂoﬁoq)i\o(aﬂ) VyEH,

in contradiction with our assumption that H cannot be deformed in Q into a
subset of Q (here we assume that £ is a connected domain).
Finally, let us remark that all the solutions we obtained correspond to critical
values in |S,2%/"S[. Therefore, they have constant sign, by Proposition 2.11.
So, the proof of Theorem 3.1 is complete. O

3.8. Examples. Let B(Z,7) be a ball in R", with n > 3, such that |Z| < 7.

Let k be a positive integer such that 0 < k& < n — 3, and assume that
E=(T1,...,%n) WithZ; =0fori >n — k.

For every 6 €]0,7 — |Z|[, let us define 2k = B(Z,7) \ C¥, where

n—k
ck = {(a:l,... ,Zn) ER™ fo < 62}.

i=1
Let us put
n
5 = {(xl,... ) ER™: Y a2 <472 0< 30k <O
i=n—k+1
z;=0fori=1,... ,n—k—l}
and define

Qf, = {z € Of : dist(z,Tk) > ¢}
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Notice that cap £y = 0 (because k¥ < n — 3) and lim._,o cap(ﬁ’g\ﬂg’e) =0.
Moreover, if we choose § € 6,7 — |Z|[, the subset

n—k
H={(zl,... ,mn)eR":fo=52, z; =0 for i>n—k}

i=1

(which is contractible, of course, in B(Z, 7)) is noncontractible in ﬁ'g for every
6 > 0 and cannot be deformed in ﬁ’g into a subset of Q’g,e for every € > 0.
Thus, Theorem 3.1 allows to state that
I) there exists 8 > 0 such that Problem P(ﬁ’g) has at least one positive
solution us for every 6 €]0,6'[;
IT) for every 6 €]0,4'[ there exists £(8) > 0 such that Problem P(Qf,) has
at least two positive solutions us. , s, for every e €]0,¢(6)].

Moreover (see Remark 3.11),

. Uus
lim f| — =5,
) (uwlm)

m%f(ﬂ"’a ):s V6 €]0,87 .
E—

sl an

Therefore, the solutions us (as § — 0) and Us. (as € — 0) converge weakly
to zero in H3’2 and concentrate near a point, as described in Theorem 2.7 and
Proposition 2.8.

On the contrary, the solution us ¢, as € — 0, converges in H&’z(ﬁg) to the so-
lution us for every & €]0, 8'[ (here we consider us . extended by zero in 2F \Q% ).

Let us remark that the domains considered in this example have a boundary
which is only “piecewise smooth”, while Theorem 3.1 concerns smooth domains.
However, one can easily obtain smooth nearby domains which satisfy all the
assumptions of Theorem 3.1; on the other hand, some technical modifications in
the proof allow one to obtain an analogous existence and multiplicity result in
domains with “piecewise smooth” boundary, like the ones introduced above.

REMARK 3.9. Part I of Theorem 3.1 gives, as a particular case, the well
known existence result of Coron, concerning a domain with a “small hole” (see
[11]); notice that the domain S~]§ introduced in Examples 3.8 is just a domain of
this type when &k = 0.

However, it is evident that the assumptions of Theorem 3.1 allow domains
with “holes of small capacity”, having a more general shape than the ones of [11]
(the holes are not necessarily contained in small spheres as in [11]).
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REMARK 3.10. As a particular case of part II of Theorem 3.1 one can also
obtain the result of Ding (see [13]).

In fact, if K = 0 and Z = 0, the domain Q’g's introduced in Examples 3.8 is
just the one considered by Ding in [13].

However, let us remark that (if § > 0 is small enough and ¢ €]0,¢(6)[) in
[13] the existence of only one solution of Problem P(Qg’s) is proved; this solution
corresponds to our solution us,. (see Example 3.8). Moreover, in [13] a complete
result is stated only for n > 4 (a weaker result is obtained in the case n — 3).

On the contrary, we obtain one positive solution of Problem P(Q],), for
€ > 0 small enough, without the assumption that & is small (see Theorem 2.5,
Corollary 2.6, and 2.17 Example, 1); if, in addition, we assume that § is small
enough, then Theorem 3.1 ensures the existence of two positive solutions of
Problem P(Q.) (for 0 < § < & and £ €]0,¢(6)[).

Moreover, the method used here holds for n > 4 as well as for n = 3.

REMARK 3.11. In analogy with Remark 2.16, we can also describe the as-
ymptotic behaviour for the solutions given by Theorem 3.1.
The proof of this theorem shows that the solution % of P(£2) obtained in part

I satisfies _
u —~ o~
f(W) -85 as capz\z(A\Q) —0;
likewise, among the two solutions (@ and u) of Problem P(f), obtained in part

I1, the one corresponding to the lower critical value (say T) satisfies

f(ﬁm—) — S as cap(Q\Q) — 0.

Therefore, the solutions % (as cap ;\Z(X\ﬁ) — 0) and T (as ca,p(ﬁ\ﬂ) — 0)
converge to zero weakly in Hé'z and concentrate near a point, as described in
Theorem 2.7 and Proposition 2.8.

On the contrary, the proof of Theorem 3.1 suggests that the solution u
of Problem P(f2), which corresponds to an upper critical value, converges (as
cap(Q\02) — 0) to the solution % of Problem P(£) obtained in part I of the
theorem.

Notice that the assumption that cap A-\Z(}lv\ﬁ) is sufficiently small has been
used only to prove the existence of the solutions @ (of Problem P((2)) and u (of
Problem P(£2)); on the contrary, the existence of the solution @ of P(£) can also
be deduced from Theorem 2.5, and so it does not require this assumption, but
only that cap(Q2\§2) is small enough.
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REMARK 3.12. Theorems 2.5 and 3.1 show that the existence of positive
solutions for Problem P(€2) is related to certain perturbations of small capacity,
which modify the topological properties of the domain. Let us point out that
several independent perturbations can give rise to several positive solutions.

One can consider, for example, domains 2 having £ “holes” of suitable size
in such a way that there exist k positive solutions.

Moreover, if we connect these “holes” by means of “tunnels” which are thin
enough, the number of positive solutions increases further on.

In order to give a concrete example, consider k distinct points z3,... ,Tg in
B(0,1) and h segments X,... , Xy, pairwise disjoint, whose extremities lie in

{z1,... ,xx} or in R"\B(0,1). Let us put
T(Zi,€;) = {x € R™ : dist(z,%;) < &}

and
Q = B(0, 1)\{ [Qm] U [L:JIT(Ej,sj)} }

Then it is possible to choose the positive numbers r1,... ,7k, €1,.-- ,€n insuch a
way that Problem P(2) has at least h+k distinct solutions {and a very plausible
conjecture is that the number of positive solutions is at least 2(5+h) _1, in analogy
with a well known result of Rey [28]).

It is evident that in this way we can obtain domains 2, without any sym-
metry property, having a very complex shape but trivial topology (contractible
domains, for instance), where the number of positive solutions is arbitrarily large.
All these remarks will be developed and proved in a paper in preparation.
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