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SUPERLINEAR INDEFINITE ELLIPTIC PROBLEMS
AND NONLINEAR LIOUVILLE THEOREMS

H. BERESTYCKI — I. CAPUZZO DOLCETTA — L. NIRENBERG

A Jean Leray, en témoignage de profonde admiration

1. Introduction

We study the following elliptic boundary value problem in a bounded domain
Q in RY, with smooth boundary:

v>0, Lu+ta(z)g(u)=0 in Q,

(1.1)
Bu=20 on Of).

Here, L is a linear elliptic operator—we use summation convention—
L= aij(m)%;; + b.:(w)aiwi + ¢(z),
with a;; € C%(Q), b; € C1(R) and ¢ € L. We assume uniform ellipticity
colé|® < asj(x)6iks < Colél?, véEe RN, vz e Q,
with cg, Cp > 0. The boundary operator B is one of the following:
(1.2a) Bu :=u,

(1.2b) Bu = vjajruy, + az)u,
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where v; = (v1,...,vy) denotes the exterior unit normal on 99; o is a given
continuous nonnegative function on 052

We are interested in the case that the function @ changes sign. The problem
is then called one with indefinite nonlinearity. In case

L=A—-m(z), m e L™,

several recent papers treat the problem for special functions g, by variational
methods (see [4] and [1}, when ¢ = w?, 1 < p < (N + 2)/(N — 2), [8] treats
the problem on a compact manifold using bifurcation analysis). [1] also treats a
wider class of functions g for the Dirichlet problem, i.e., for B given by (1.2a).
In case g is odd they also obtain multiple solutions.

For general L, problem (1.1) does not admit a variational approach. We
always assume that g is a C! function on Rt with

(1.3) g(0)=¢'(0)=0 and g(s)>0 fors>s >0.

Our main result, which is proved with the aid of degree theory, is concerned with
functions g which have precise power-like growth at infinity:

(1.4) lim &:) =1>0, for some p > 1.

g—00 §

Concerning the function a, we assume it belongs to C?(Q), that
Qt:={ze€Q:a(z)>0} and Q :={z€Q: a(z)<0}

are nonempty, and that

(1.5) :=0tNQ-CcQ, with Va(z)#0Vz el

Our results depend on the sign of the principal eigenvalue A\; = A;(—L) of the
operator —L in Q under the boundary conditions Bu = 0. The eigenvalue ); is
such that there is a function ¢ satisfying

>0, (L+X)p=0 inQ,
Bp=0 on J52.
In case B is as in (1.2b), it follows easily with the aid of the Hopf lemma that

w>0 in Q.

Our main existence result is
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THEOREM 1. Assume (1.3), (1.4) and (1.5) and assume that A(=L) > 0.
Then problem (1.1) has a solution provided
(16) l<p< N*—l -

The upper bound in (1.6) is less than the usual critical exponent (N+2)/(N—
2). The limitation (1.6) is due to that in our nonlinear Liouville Theorem 4 below.
We believe that Theorem 1 should hold if 1 < pior N <2, and if N > 3, also
for p < (N +2)/(N —2).

The next existence results refer to the problem involving a parameter T < (;

u>0, (L-7)u+a(z)g(u)=0 in,

(1.7
Bu=0 on 912,
in case A1 (—L) = 0.

THEOREM 2. Assume (1.3), (1.5) and that A\j(—L) = 0. Assume further
that

(1.8) li_n"(l] % =a#0, for some g > 1,
and that
(1.9) a/ a(z)e?yY < 0,

Q

where 1 > 0 is the principal eigenfunction of the adjoint operator L* = d;ja;; —
0;bi +c, i.e. L*t =0 in Q under the adjoint boundary condition B*¢ =0, with

B*Y =19 in case (1.2a),

B*¢ = vi(ay¥); + (bivi — )i in case (1.2b).
Then there exists 7™, 0 > 7* > —00, such that for 0 > 7 > T*, problem (1.7) has
a solution, but for T < 7* it has no solution.

THEOREM 3. Assume the conditions of Theorem 2 and, in addition, that
(1.4) holds with p < (N +2)/(N —1). Then (1.7) has a solution when T = 0.

The proofs of the theorems involve several ingredients. Theorem 1 relies on
Leray-Schauder degree theory, and for this purpose it is necessary to establish a
priori estimates. These are derived in Section 3. There we obtain a bound for
the L norm of solutions of a one-parameter family of problems

P20, Lu+ta(z)gut)+p=0 in 0,
Bu=0 on 412

The bound

IA
Ql

(1.10) u
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is established, with C independent of p, but depending on L, the function a, and
on Q.

The derivation of (1.10) forms the heart of paper. The proof follows a line
of argument similar to that used in Gidas and Spruck in [6]. It is indirect: we
assume there is no such bound and then use blow up arguments to obtain a
contradiction. A number of cases must be treated. To derive the contradiction
we use two nonlinear forms of Liouville’s theorem, Theorems 1.2 and 1.3 in [6].
In addition, we establish some new nonlinear Liouville theorems. In proving
(1.10) we use the following one. (It is a consequence of a more general result of
Liouville type, Theorem 2.1 in Section 2, which we present in the belief that it
will prove useful in other problems.)

THEOREM 4. In the half space
Y={zeRY: zy >0}

let u be a nonnegative function in C2(X) which is also bounded near the origin
and satisfies

(1.11) Au+zyu? <0 n 2.
Then

_ . N+2
(1.12) u=0  provided p < N_1°

REMARKS. Note that no condition is assumed about the behaviour of u near
infinity or near {zy = 0}, except at the origin. If, in place of (1.11),

(1.13) Au+zyuP =0 inZ

holds, then we believe that the conclusion 4 = 0 should be true for a larger range
of p than given in (1.12).

For simplicity we carry out the proofs of Theorems 1-3 for L of the form
L=A—m(z);

the arguments work also for our general L which is not self-adjoint.

Tt is clear from the arguments that more general functions a could be treated.
For example, one might permit I to intersect 8Q transversally or I to have clean
self-intersections. The more general Liouville theorem of Section 2 would then
be called upon. We leave this for further consideration.

In Section 4, using the a priori estimate (1.10) we prove Theorem 1. Theo-
rem 3 is then proved in Section 5, using Theorem 1 and a bifurcation analysis.
Similar bifurcation analysis then yields small solutions of (1.7) in case 0 < —7
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is small. Finally, in Section 6, we use sub- and supersolutions to complete the
proof of Theorem 2.
In the proof of Theorem 2 we make use of the following simple

LEMMA 1. Suppose QF is nonempty and that g satisfies (1.3). Ifuis a
solution of (1.7) for some 7 < 0, then

(1.14) -r<C,
where C depends only on L, on a, and on a constant C which is such that
lg(s)| < Cs  on [0,s1].
PROOF. Let B be an open ball in Q% and let 1 be the principal eigenvalue

of —L in B under Dirichlet boundary conditions, i.e. there is a function & in B
satisfying

>0, (L+up=0 inB,
=0 on 9B.
Since @ > 0 in B, and g(u) > 0 for © > s;, we see from (1.7) that in B,
(L — 7)u= —a(z)g(u) < C||al|L~u.

Hence,
u>0, Lu—(7+C|lallt=)u<0 inB.
It follows (see [5]) that —(7 + C||a||L) < p, which yields (1.14).

‘The proof in Section 6 of Theorem 2, using sub- and supersolutions, is the
same as one in [4].

It would be interesting to obtain some information about 7*—even for the
operator A — m(z)—and to determine if (1.7) has a solution when 7 = 7*.

A FINAL REMARK. The derivation in Section 3 of the a priori estimate (1.10)
involves blow up arguments. When dealing with L = A —m(z), these arguments
lead to equations of the form

(1.15) v >0, Av+vP =0

in all of RY or in a half space, with then

(1.16) v=0 or v.Vuv=0 on the boundary.
Or else, the blow up leads to

(1.17) v>0, Av+zyvP =0 in RV,
For general L, these equations would, instead, take the form

v >0, QjkVz,e, + 07 =0
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in RY or in a half space, with then
v=0 or vjajvs, =0 on the bqundary.
Or else we would find
v>0, GjkVs;a, +0a;z;vP =0  inRY

where the a;; and a; are constants, Y |a;| > 0, with a;x8;x elliptic of course. Af-

ter a suitable linear transformation of independent variables, and multiplication

of v by a factor, we are easily reduced to the cases (1.15), (1.16) or (1.17).
Some of the results of this paper have been announced in [3].

2. Liouville theorems in cones

Let ¥ be an open connected cone in RY, N > 2, with vertex at the origin
and with ¥ # RY. Let u be a nonnegative function in C?(X), bounded near the

origin, satisfying

(2.1) Au + h(z)u? <0,

where 0 < h € C(X), bounded near the origin, and

(2.2) h(z) = a|z|” for |z| large, v > —2, a > 0.

THEOREM 2.1. Let A1 be the principal eigenvalue for the Dirichlet problem
on N SN-1 of —Ag, the Laplacian on SN~1. Define a > 0 by the identity

(2.3) A =a(N+a-2).
Assume that p satisfies
Nta+y
A4 L —— =
(2.4) <P g2 ="

Let u > 0 satisfy (2.1), with h as above. Then u = 0.
In the theorem no regularity of X is assumed and we always take a = 1.

COROLLARY 2.1. Let ¥ and u be as above. Assume that u satisfies (2.1),
where h is a positive continuous function in ¥ which is homogeneous of degree
v > —2 for |z| large. Then u =0 if
N+a+ry
2. STy
(2:5) 1<p< N+a—-2
where a is defined as in Theorem 2.1.

PROOF OF COROLLARY 2.1. Observe that h(z)|z| ™7, for large |z|, may van-
ish on 8%. Then we simply apply Theorem 2.1 in a slightly smaller cone .
Corresponding to T we may have Ay > Ag, with A; — A as small as we like (see
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[5]). For the corresponding & in (2.3), we have 0 < @ — & small, hence 0 < 0 — &
small. By the theorem, u =0 in ¥ and hence in ¥.

PROOF OF THEOREM 2.1. Set 2 = XN S¥-1 and let {€;} be an increasing
sequence of domains on $¥~1, with smooth boundaries, such that

Gy clyuc...c, Yoy =0

Let ¢; be the principal eigenfunction for the Dirichlet problem of —Ag on Q;
with principal eigenvalue );, i.e.

w;i >0 (Ag+ Aj)e; =0, in Q;,
w5 = 0 on an.

We normalize the ¢; by requiring them to equal 1 at some fixed point zy € Q.
The functions ¢; are then uniformly bounded by some fixed constant C1 (see
Theorem 2.1 and its proof in [5]).

Let X; be the cone generated by ;, with vertex at 0. With a; > 0 chosen
as in (2.3), the functions

gi = |z|*p;(z/|z|)

are positive and harmeonic in X; and vanish on 8%;.

Let ¢ be a C* function defined on [0, 00) with 0 < ¢ < 1, ¢(t)=1on|0,1/2],
() =0fort > 1. For R > 0, let Cp(z) = ¢(|z|/R). With e, R respectively
small and large positive numbers and with ¢ = p/(p — 1), set

L = / ¢L(1— &) gjhu.
X

By (2.1),
Les— [ @0-G)g0u

so that 5
hes [ wh-c)ge - [ ubch- g,

J

where v is the exterior normal to 8%;. Since a%gj < 0on 0%; we find
Lo <= [ ubh( - e
Zj

We now let € go zero. The only term which requires some care is

[uckaco.

This is integrated over z € ¥;, |z| < ¢. Since u is bounded near the origin this

term is
O(e%eN~2).
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Here is the only place where we use & > 0, in case N = 2. Consequently,
L= [ o <~ [ ub(Chay)
2 3
hence

0 o)
L — AT — — (1 g
I; < L.UQJACR 2/;1,- ua'rCRarg”

2
where 8/0r represents radial differentiation.

Using C to denote various constants independent of u, R and <, we have

c 9 C -
~2 S5 RS0 |AGIS 25 and - A(CE) < -~ AC
R r R
Hence, since %gj = g,

C _
<~ [ unecac g [ ack,
<=5 / u fi_lgj = %/ u(f{_lhl/”lwl_'ﬂpgj, for R large,
R Tir R Sir

where &; r = 3; N{z € RN : R/2 < |z| < R}.
Thus, by Hélder’s inequality,

C 1/p ) (p-1)/p
gl [ wahs] [ [ e
Zir Zj,Rr

c i/p
<g [ / upcghgj] RIN+a5=/(p=1I(p-1)/p,
,7 R

with a different C. It follows that
I}‘I/P < CRIV+ei=1/(e—-1)(p-1)/p-2,

Now let j — 0o. The functions ¢; tend to ¢, the principal eigenfunction of —Ag
in  (see Section 4 in [5]). With g = |z|*¢(z/|z|), we find that

I:= / uP(}hg < 00
by

and, furthermore

1/p
(2.6) I; < %[/ up(;’%hg] RWHe—y/(p=Dl(z-1)/p
R?| /s,

where g :=XN{z € R" : R/2 < |z| < R}. Consequently,
'-Yr < gRWN+ea—v/(p-D)l(p-1)/p-2

Condition (2.4) means that T:=[N+a—v/(p—1)]/(p—-1)/p—2<0.
If r <0, let R — oo. Then we conclude that

J:=/hgup=0
>
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Thus, u = 0 for |z| large. By the Maximum Principle it follows that » = 0.

If 7 = 0 and we let R — oo, we conclude that J < co. But then, returning
to (2.6) and letting B — oo, we find that the right-hand side in (2.6) tends to
zero. Hence, J = 0 also in this case and we conclude as before that u = 0.

PROOF OF THEOREM 4 OF INTRODUCTION. It is a special case of Corollary
2.1 when X is the half space {y > 0} and u > 0 satisfies

Au+zyu? <0 in¥
and u is bounded near the origin. In this case, g = zy and so a = 1, while
v = 1. From Corollary 2.1 it then follows that u = 0if 1 < p < (N +2)/(N —1).
The proof of Theorem 2.1 yields also the following simpler result:

THEOREM 2.2. Let u be a nonnegative function in & = RN — {0}, N > 3,
bounded near 0, and satisfying

Au+ h(z)u? <0 in X.

Here, h € C(X), h > 0 and h(z) = alz|?, a > 0, v > =2, for |z| large. If

N+
N-2'

p<

then u = 0.

3. A priori estimates

In this section, for p > 0 we derive a priori estimates, independent of p, for
the L* norm of positive solutions of the problem

p20, (A-m(z))uta(z)g(u)+p=0 inQ,

(3.1)
Bu=0 on 9.

Here, 2 is a bounded domain in RY with smooth boundary and B is one of the
following boundary operators:

(3.2a) Bu = u,
(3.2b) Bu :=d,u + a(z)u,

where v is the outer normal to 02 and o > 0 is a given continuous function on
0. We recall the assumption (1.4):
N +2

. g(s) _
(3.3) slffalo e >0 for some p, 1 <p< N_1
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By scaling we may suppose [ = 1. Recall also (1.5):
acC*Q), QM :={ze:a(zx)>0}+#0,
(3.4) Q" =0\ QF #£0,
r=0tNQ-cN and Va#£0OonT.

Thus, a neighborhood in 9 of 90 belongs either to Q1 or to Q~. We assume
m € L*. In case of (3.2b) it follows with the aid of the Hopf lemma that u > 0
in Q.

This section is devoted to the proof of

THEOREM 3.1. Let u € W24(Q), for all ¢ < 0o, be a positive solution of
(8.1). Suppose that (3.3) and (3.4) hold. Then, if |m| e < my,

(3.5) 0 < u(z) < C, Vz € Q,

where C is a constant depending only on mg, the function a, and Q, and it is
independent of p > 0.

From (3.5), with the aid of standard elliptic estimates we obtain the a priori
estimate

(3.6) lullw2e < C  for g < oo,

where C depends only on g, myg, 2, and the function a.
We need the following

LEMMA 3.1. If u is a positive solution of (3.1) with ||m||p=~ < mg, then
p < Cmaxu,
where C depends only on my and Q1.

PROOF. Since g(u) > 0 for u large, it follows from (3.1) that for some con-
stant Cy independent of p,

Au—mopu< Cy —p < —p/2 in QF
if p > 2C1. Let o be the solution of
(A-—mp)e=-1 inQt,
o=0 on 8Q7.
Clearly, o > 0 and for p > 2C}, by the maximum principle,
w:=u—§aZO in Q7.

Since C; := max o depends only on 2% and on my, it follows that p < (2/C2)u
at a maximum point of ¢ and this yields the lemma.
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PrOOF OF THEOREM 3.1. We follow the approach in [6]. The proof is by
contradiction and makes use of a blow up argument to reduce the problem of
establishing the a priori estimate (3.5) to results of Liouville type.

Step 1. Suppose that the conclusion of Theorem 3.1 is false. Then there exist
sequences m; with ||m;|[ze < mo, p; > 0 and a sequence u; € W29(Q) such
that

u; >0, (A—m;(z))u; +a(z)g(u;) +p; =0 inQ,

(3.7)
Bu; =0  on 8Q
and
(3.8) M; := maxu; — oo as j — oo.
Q

We may assume that M; = u;(z;) for some z; € Q, and that, for some z, € Q,
T; — 2o a8 j — 00. Let us introduce new scaled coordinates by setting

_r%

y= Y
The positive scale factors A; will be chosen later with A; — 0 as j — oo.
Accordingly, we define a blow up function v; by

1 1
(3.9) vj(y) = MJ—’U,J(.’L') = M]—u,()\,y + (Dj).
The function v; is well defined for y in a suitable domain and
(3.10) maxv; = v,;(0) =1, i=12,...,

On the other hand, a direct computation shows that v; satisfies

. Mvs .
(3.11) Lyv; + A} M~ (G(Ajy + ﬂ:j)ﬂM’,_,L’) + %) =0,
J 7
where
Ly = Ay — Xmi( Ay + 7).

By Lemma 3.1, in every case
(3.12) pj/M;-’ —0 as j — oo.

Observe also that for A; — 0, A2m;(\;y +z;) — 0.
To proceed with the proof we consider several cases according to the location
of the limit point zy, namely:
(1) Case A: zg €T,
(2) Case B: zp € QT UQ,
(3) Case C: zg € 9.
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Step 2. Let us deal first with Case A. Set
§; = dist(z;, ') = |z; — 2], zj €T.
Since Va # 0 on T, it follows that é;, which tends to zero, is given by
Va(z])
*Va()]
where the plus and the minus occur according as z; € Q% or z; € Q. Since
a(z;) = 0 and a € C2(f2), we find by Taylor expansion,

6; =

(zj — z4) for j large,

a(Ajy + ;) = £|Va(z;)]6; + A Va(z;) - y + O(X3|y|? + 62).

Substituting this expression into equation (3.11) we find
- &;
(3.13) Lyv; + A?Mf ! [Va(zj) -y £ A—‘;lVa.(Zj”

M V4 ) A2-pj
+O()\2| |2 )] g( J\3V2) + J =0
J Mf M;
We now choose
(3.14) A= MIPE,
Observe that equation (3.13) holds, for large j, in the ball

1 .
|y| < Edlst(mo,aﬂ).

We must now consider several cases:
Suppose

(1) 8i/A;j — o0 possibly for a subsequence.

Then set
i = (/)2 and  n:=y/ey.
Under this change of variables, equation (3.13) with A; specified by (3.14) be-
comes
[Va(z)]
o

8 \|9(Mv5) P
o224 %Y [9\WM5Y) | 2a2 P
+0()\,aJ|n| +a,-)] M;, ’A’M =0,

(3.15) Lyv; + af- [a,-Va(zj) ==

where
L, = A, — a; /\m](/\ o1 + x5).

By standard W9 theory one may obtain estimates on the v; < 1 ensuring
that, for a subsequence, v; — v locally uniformly, with v defined in all of RN
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and v € W24, for all ¢ < co. Letting j — oo in (3.15) we obtain, since z; — zo,
Aj, 85,05 — 0 and using Lemma 3.1 and (3.3), that

(3.16) Apv £ [Va(zo)|vP =0  in RV,
This should be explained in more detail. We have only to verify that

_ 9(Mjv;)

(3.17) o= i vP.

At points z where v(z) > 0 this is clear. Suppose that v(x) = 0. Since the v;
are locally uniformly continuous, the set A where v; — 0 is closed and one easily
verifies that 6; — 0 on A. Indeed, if M;v; is bounded, then o; — 0, while if, for
a subsequence, M;v; — oo, then o; — vP(z) = 0. Hence, from (3.15) it follows
that
[ oAC Va@lrc =0, ¥ € CR®Y),
R

which implies (3.16).
From (3.16) we find that v € C2. Furthermore, from (3.10),

v >0, maxv = v(0) = 1.

Because of the maximum principle, the minus sign cannot occur in (3.16), for
Va(zo) # 0. Therefore, v satisfies

v>0, Ayv+]|Va(zg)p?=0 inR",

By Theorem 1.2 in [6], this implies v = 0, a contradiction with v(0) = 1.
Consider next the case

(ii) 8;/Aj -0  for a subsequence.

Now let j — oo in (3.13). As before, for a subsequence, v; — v. The limit
equation is now

v>0, Ayv+(Va(zg) -y =0 inRV.
After a suitable rotation and rescaling, the equation reads
v>0, Aw+(yvP=0 inRV.

We now apply Theorem 4 and conclude that v = 0, again a contradiction
with v(0) = 1.
Finally, the case

(ii1) 8;/A;j = 8 >0  for some subsequence.
The limit equation is now

(3.18) v>0, Ayw+ (£6|Va(zo)|+ Va(ze) -y =0  in RY.
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The minus sign is impossible since at the maximum point y = 0, (3.18) would
imply

Ayv = 6p|Va(zo)| > 0.
After a suitable change of variables and rescaling of v, (3.18) can be written as

v>0, Acv+({nv*=0 in RV,

with v(0,...,0,h) =1 for some h > 0.
Applying once more Theorem 4 we are led again to a contradiction.
Step 3. Consider now Case B, i.e. zg € 2t UQ~. This time choose

A = MO

in (3.11). Since zo € €, the same argument—Lemma 3.1 ensures that A2p; /M; —
0—employed in the previous case leads to the limit equation

0<v<1, Ayw+a(ze)? = in all of RY.

Since v(0) = 1 = maxwv, the above and the maximum principle imply a(zg) > 0.
Once more, by Theorem 1.2 in [6], v = 0, contradicting v(0) = 1.
Step 4. We pass then to Case C, i.e. zg € 9. Here

d;j := dist(z;,00Q) — 0.
We need to consider two subcases:
(a) de](p—n/z — oo for a subsequence,
(b) de}p_l)/z — 8p > 0 for a subsequence.

Without loss of generality, we may assume that g is the origin and that the
exterior normal there is —ey = —(0,...,0,1). For all cases, we choose

A = ML,

In case (a), d;j/A; — oo. As before, letting j — oo, through a subsequence, in
(3.11), we obtain a limit function v defined, then, in all of R¥, and it satisfies

(3.19) 0<v<1=v(0), Ayv+a(ze)?=0 inR".

Since a(zg) # 0, the desired contradiction follows as in Case B.
In case (b), for a subsequence, d;/\; — 6o > 0. Going to the limit in (3.11)
we nowin fd that (3.19) holds in {y € RY : yy > —6}, and

(3.20a) v=0
or

(3.20b) vy =0,
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and, since now ¢ = ¢,
(6.3) a/ a(x)p?t! < 0.
o)

We have to prove that (5.1) has a solution when 7 = 0. For 7 > 0, (5.1) has
a solution u, and u, < C. We have only to show that, as 7 — 0, any positive
solution stays away from the origin. Then, for a sequence 7; — 0, the u,,
converge to a nonzero solution of (5.1) with 7 = 0. To show that u, stays away
from zero we carry out a standard bifurcation analysis, using Lyapunov-Schmidt
decomposition.

We show that for 0 < 7 small, there is no solution of (5.1) with small L™
norm. Suppose there were such a solution u; decompose it as a sum

(5.4) u=tp+v with _/Q'mp =0.
Then
(5.5) (—A +m)v = —7(tp +v) + a(z)g(ty + v)

and, necessarily, the right-hand side of (5.5) is'L2-orthogonal to .

For the general operator L we would take v and the right-hand side of (5.5)
orthogonal to 7.

In the space of functions orthogonal to ¢, the operator —A+m has a bounded
inverse from LP to W2? for any p in (1, 00). It follows that

(5.6) l[vllw2e < Cr(jt] + [[vl|ze) + Cllg(te + v)l| -

If the L* norm of u is small, so are |{| and the L norm of ». Consequently,
for 7 small, by (5.6),

lwllw2» < Crlt] + C([¢]* + [[v]|Le0)-
Since ¢ > 1 and ||v||p~ < C||v|lw2.», it follows that
(5.7) llollzee = [EIO(r + [¢197).

From u > 0 it follows that ¢ # 0, in fact ¢ > 0. Next, we use the condition that
the right-hand side of (5.5) is L*-orthogonal to ¢; we may now suppose [, p? = 1.
Setting v/t = w we find, on multiplying (5.5) by ¥ = ¢ and integrating,

(5.8) tr =‘/§;a(:z:)g(t(,a+tw)<p
—att [a@)p+w)io o) (v (52)
p /Q a(z)p™ + O(rt9) + o(t9)  (by (5.7)).

Since T,t > 0, we see from (5.3) that this is impossible.
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6. Proof of Theorem 2

Step 1. Using the same bifurcation analysis as above, we show first that for
0 < —7 small, (5.1) has a solution u = u, which is close to 0 (ve may assume
g(8) =0 for s < 0).

This follows from

LEMMA 6.1. Under the conditions of Theorem 2, i.e. (1.3) and (5.2), (5.3),
there is an interval I = [0,%) and a continuous function 6(t) on I, with (recall

p=1)
8(0) = &g := a/ ap?t! <0,
Q

and a C* function u(t,z) fort € I, x € Q, which for 0 < t < ty s a solution of
(5.1) with T = ¢9715(¢).

PROOF. In (5.1) write w as in (5.4). We carry out the standard Lyapunov-
Schmidt procedure. Consider the Banach spaces X = {u € W2?(Q) : Bu = 0}
and Y = LP(Q), for some fixed p > N. Let P be the L%-orthogonal projection
onto the subspace Y7 of Y consisting of functions orthogonal to ¢. We decompose
(5.1) into two pieces which are to be solved for v € X and 7 < 0, depending on
t:

(6.1) (—A +m)v = —71v + Plag(ty + v)]

(6.2) tr = /n ag(te + v)e.

The right-hand side of (6.1) lies in ¥; = PY and it is of class C' in v, 7 and
t. With the aid of the Implicit Function Theorem we may solve (6.1) uniquely
for v = v(t, ) with v(0,0) = 0. For ¢ in some small interval I, and |7| small, v
belongs to C*. Furthermore, (5.6) holds and the derivatives v; and v, vanish at
(0,0). In fact, we find from (6.1), after taking the 7 derivative,

(—A + m)v, = —v — 7v, + Plag (te + v)v,].
Using (5.6) it follows that
(6.3) |[vr[[w2e < C(t]7]| + 7).
We now substitute v(¢,7) in (6.2) and obtain
(6.3) tr = /nag(tga + (¢, 7).
This we solve for 7 in the form 7 = §t271, i.e. we solve for &,

(6.4) 5= / t‘”"’ &) _ g, 8).
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As a function of ¢ € I and of §, G(0,6) = 8. Furthermore, G is continuous in #
and of class C! in §. Indeed,
3 gltp+0(t,6t771)  g'(te +v(t, 6697 1)),
a6 4 - ¢ '
By (6.3) we see that Gs(¢,6) = O(t?"1). We may therefore use the Implicit
Function Theorem again and solve (6.4) for 6(t) with §(0) = 8,. The function
6(t) is continuous on I (possibly shortened). Then u = tp + v(t, t9715(t)) is a
solution of (5.1) with 7 = ¢971§(¢). The set of such 7 covers a small interval
(7’ 0 0) .
Step 2. Completion of the proof of Theorem 2.
In Lemma 1 we showed that for 7 large negative, problem (5.1) has no so-
lution. The last assertion of Theorem 2 then follows from Lemma 6.1 and the

following:

LEMMA 6.2. If (5.1) has a solution u,, for some 71 < 0, then it has a
solution for every r in (11,0).

PROOF. For every given 7 in (71,0) consider problem (5.1). The function
U = ur, is then a supersolution for (5.1). On the other hand, for 0 < ¢ small,
the function u» = ey is a subsolution. Furthermore, for ¢ small, 4 < w. This is
clear for the Dirichlet problem, with the aid of the Hopf lemma. For B given by
(1.2b), it holds because @ and ¢ are positive in 2.

By the well known theory of sub- and supersolutions (see for example [2]),
there is a solution u = u, of (5.1) with u < u < @.

Theorem 2 is proved.
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