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A PARABOLIC LITTLEWOOD-PALEY INEQUALITY
WITH APPLICATIONS TO PARABOLIC EQUATIONS

N. V. KryLov

Dedicated to Jean Leray

0. Introduction

In [2] we have used a “parabolic” version of the Littlewood-Paley inequality
for the heat equation. It turns out that convolutions with the heat kernel can
be replaced by convolutions with more general functions. Here we present the
corresponding result. We also give its extension to parabolic equations with
coefficients depending only on ¢, extension based on.one rather general principle,
which might be of independent interest.

The need in the parabolic version of the Littlewood-Paley inequality can be
seen from the following. In R? consider the simplest stochastic Cauchy problem

du(t,z) = -;—Au(t,z) dt + g(t, x) dwy, t>0, u(0,z)=0,

where w; is a one-dimensional Wiener process. The solution of this problem is

known to be :
u(t,) = [ Tr-agls, )(o) s,
0
where

1 _%II|2

(0.1)  Tih(z) =t"**¢(x/Vt) *xg(z), ¢(z) = @niit
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If g is non-random (E is used for mathematical expectation), then

.
[ 196, oy

| = M) [ s |/ Vg, Vo) ] " do

van [ ][ mseor 2] dea

where ®,g(x) = t~/2(V¢)(x/vt) * g(z), and in order to prove that u € H;, we

have to estimate the last integral.

1. A generalization of the Littlewood-Paley inequality

Fix a constant K € (0,00) and let 4(z) be a C°(R?) integrable function

such that

(1.1) Rd1/)d:lf=0,

[9llL, we) + |1 219l Ly mety + V¥ l|Ly ey + 1|2 - VYL, Rey < K.

For example any first order partial derivative of ¢ from (0.1) satisfies (1.1) with
some K. Define ¥,g(z) := t~%?y(z//t) * g(z), so that the above operator ® is
a particular case of ¥, _

The classical Littlewood-Paley inequality (see, for instance, Chapter 1 in [3])

says that for any p € (1,00) and g € L, we have

no dt ‘P/z
(1.2 L[ wswr g de< s
re LJo
where the constant N depends only on d, p.
Here we want to generalize this fact by proving the following result.

THEOREM 1.1. Let H be a separable Hilbert space, p € [2,00), —0 < a <
b < oo and g € L,((a,b) x RE, H). Then

ay [, [ h [ [ 1ot @0 s ]mdtdm <v[ [ "\o(t,2)f deds,

where the constant N depends only on d,p and K.




A PARABOLIC LITTLEWOOD-I’ALEY INEQUALITY 357

REMARK 1.1. The Littlewood-Paley inequality (1.2) follows directly from
(L.3) if p > 2. Indeed, take a = 0, b = 2, g(s,x) = g(x). Then the lelt-hand side
of (1.3) equals

|Tag(t — s,-)(x)|%4 ds p/zdtdz
LI ;]
> /R ,, f1 [ / 'lwsg(m)ﬁ,f’f]pﬂdtdx
> [ oo 2] an

Thus, from (1.3) it follows that

1 9 ds p/2
/ [ / lwag(xnﬁ—] da <N [ 1ol
R 0 8 Rd

and a standard argument based on self-similarity allows us to replace the upper
limit 1 by infinity keeping the same constant N on the right.

This gives (1.2) for p > 2 for Hilbert space valued g. It is a standard fact
that from the Hilbert-space version of (1.2) for p > 2 the same inequality follows
for p € (1,2) by duality.

It is also well known that having (1.2) proved for p € (1, 2], the case p € [2, 00)
can be treated by duality. In this sense the cases p € (1,2] and p € [2,00) are
equivalent if we are only dealing with (1.2). The general inequality (1.3) does
not exibit this property.

REMARK 1.2. For p € (1,2) estimate (1.3) is not trueeven if d = 1, H = R.
Indeed, take a = 0, a finite b, ¥ = ¢', g(s,z) = ¢(z)e~** where A > 0. Then
Wig(s,2) = VE [t/ 2p(a/VE) * $la)]e ™
= Vit 1) 2 p(a/VETT e
te (14 1) "¢ (x/VE+ 1),

and as is easy to see the limit as A goes to infinity of the product of the left-hand
side of (1.3) and AP/? equals

22 Cone L1 g2 p/2
(1.4) hm // / =~ s+ 1) e e T=eF1T (g dtdz.
0 -
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Furthermore, for A > 1,

¢ 2
/ ———)lm—\e"”“’e"tf}?q""2 ds
0 21!'(1' — 8 + 1)3

t/2 t

e
0 t/2
Nz?

t/2
< me_*—h”’ / de 2 ds + e"“N:z:ze_ﬂL?’2
0
IV:L‘2 2 .2
& e 3%
~(t+2)3

This allows us to evaluate the limit in (1.4) by using the dominated convergence

theorem. We see that the limit equals

b 2 p/2
T 1 2
1.5 I T S dtdz,
(25) /.Jo [4_,,(t+1)3e ‘

which is finite and non-zero. ‘

Thus the left-hand side of (1.3) is of order A=P/2. At the same time the
right-hand side of (1.3) is of order A~!, and A~?/2 is much bigger than A~ if
p € (1,2) and A — oo.

REMARK 1.3. There is one more feature of inequality (1.3) which distin-
guishes it from (1.2). It is well known that inequality (1.2) is reversible under
mild conditions on . This is not the case for (1.3) (unless p = 2), which can be
seen from the above remark if p > 2 and b = oo (in this case the above argument
is still valid) since the integral in (1.5) is finite, and as A — oo the left-hand side
of (1.3) is much smaller than its right-hand side.

PROOF OF THEOREM 1.1. First note that by considering g(t, £)}I(44)(t) in-
stead of g(t,z) we can reduce the general case to the one in which a = —oco and
b = oo. Therefore, only this case is considered below. Next, for p = 2 application
of the Fourier transformation shows that the left-hand side in (1.3) equals

./,Rd /_: /_; [9(EvE—3)Pla(s, Ol %dtd{
B /,R f_ Z { f:o kh(EveP %]lﬁ(s,e)rﬁ, ds dt.
Here 1;(0) =0 and

FE) < 1€l19F(©)) < Nl [ 1el 106 ds,
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191 < M) [ 19wGe)) da,

so that

/0 eV ‘f-'<N(d K),

/ﬂ;d /_Z [/ W’(E\/_)Vd ]|0(9 €)% dsde < N/l;d /_: [9(s,€)[3 ds dt,

which in turn equals the right-hand side of (1.3). This proves (1.3) for p = 2 and

shows that if we introduce the operator P by the formula

' s 1172
Pyt = | [ 1o ot 2]

oQ

then P is bounded from Ly(R%*!, H) into Ly(R*+1, R).
We now make use of the parabolic sharp inequality

1fllL,®e) < NIz, wa

(see [1]), where

f#(t,.'E) = sup l |f(3’y) - f()ldS dyl

R lQ(’r)l {to,ra)+Q(7)

Q(r) = (0,7%) x {a: |z] < T}

and the supremum is taken over all 7 > 0 and (lg, xy) such that (¢, ) € (1, o)+
Q(r). Since f# is less than the parabolic maximal function of S, which has
Lz-norm controlled by that of f, we see that P# is a bounded operator from
Ly(R*' H) into Ly(R*!, R). If we show that it is also a bounded operator
rom Lo (R IT) into Lo, (R, R), then by the Marcinkiewicz interpolation
theorem it is a bounded operator from L,(R%**!, H) into L,(R*!,R) for any
p € (2,00), and owing to the above sharp inequality this will end the proof of

the theorem.

In other words, the parabolic version of the Stampacchia interpolation theo-
rem is available, and we will prove our theorem if we prove that P is a bounded
operator from Lo (R™!, H) into BMO(R™!,R). More precisely, it suffices
to show that if [g(¢,z)[y < 1 for all (t,z) € R, then for any r > 0 and
(g, o) € R%*! there exist a constant g, € P (depending on g,7,ty, ) and an
absolute constant N such that

(1.6) / |Pg(t,z) - gof? dt dz < N|Q(r)]-
(to.x0)+Q(»)
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Observe that. if ¢ is a constant # 0, then ¥,h(c:)(x) = ¥,2h(cx), and

" s 1/2
Pg(c.z-,c-)(t,x) = [[_ |\I’(t-—s)cag(c23v )(C.’L‘)I?i ti 8]

B [/'”z [Wye2_,9(8, ) cz)|% ds_s]l/z

. tc?

= Pg(c*t, cz).

This and a shift of the origin show that we only need to prove (1.6) for to = 0,
zg=0and r = 1.
Thus, take tg = 0, o = 0, 7 = 1. Also observe that for ¢t € (0, 1),

-1 1/2
Pote) < | [ st @l 25 ] [ [ emste 00 52
=: Pyg(t,z) + Pag(t,x).

1/2

A

On the other hand, obviously P;g < Pg. It follows that for any constant go,
(L.7) |Pg(t, =) — go| < |Prg(t, ) — gol + | P2g(t, z)|-

To estimate Pyg(t, ) we represent g as g; + gz, where g2 = glg(2), and we notice

that by the previous result
/Q (1)(19292)'-’ dtdz < /I; M(ng)? dtdz < N||gsl|7, ges1,my S N
Furthermore, obviously for s, |z| < 1 we have

y/\f)ldy-/ . W)l dy,

[y|2t=

W91 (s, -)@)lu < t_dﬂ/

Jy|>1

so that

2 1/2
Par(t,7) < [ { |¢(y)|dy} 9]
ly|>s-1/2 8

[ { [, |¢(y)|d,,}2ds]"2
VIFT [ i)l ds,

whence we see that Pag; is just bounded on Q(1).
Owing to (1.7) it only remains to find an appropriate constant go such that

/ |Pig(t, z) — gol* dt dx
Q(1)
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is bounded by a constant independent of g. Actually. it turns out that as g, one
can take any particular value of Pjg({,x) in Q(1). Indeed, as we will see, the
first derivatives of Pig(t,z) are bounded on Q(1).

Let us first estimate the derivatives with respect to x. By using the inequality
|V, h| < sup |h|t~1/2||Vy|[L, and by the Minkowski inequality we obiain

- 172
o s
< [/ IV, _.g(s, ) (@)]F —“:]

- ds 1/2
< IVl ey [/ (T——:)_ZJ )

which is indeed bounded on @Q(1). Oue obtains a similar estimate lor the deriv-

J
‘ﬁplg(t’x)

ative of I’ g with respect to ¢ il one notices that

0 d .
a—flI',h(:r.) = -5t "o, h(r) — Ef Y ).
where the operator ¥ is constructed as W with - V() instead of ¥ This proves

the theorem.

2. An application to solutions of parabolic equations

By taking ) = V¢ we see that under the assumptions of Theorem 1.1,

t p/2 . b
(2.1) [/ VT, _sg(s, @)% ds] dtdr < N / / ly(t, )5, di du,
[ Sl Sy

where N = N(d,p) and T; is the semigroup associated with the operator (1/2)A

This fact can be generalized.

THEOREM 2.1. Let a(t) be a d x d symmetric malviv-valued function given.
on R. Assume that a(l) > I in malric sense, where 1is the unil d x d malviz
and assume that a(l) is locally integrable on R. For sufliciently reqular funclions
h(z) and s < t define T, h(x) as the value at (1,x) of the solution v of the
initial-value problem
dv 1
o 2
v(s,x) = h{r), e R’

Then the operators T,; can b « 't nded to L,,(IR"’ H) and

b t p/2 b
(2.2) / / [/ IVTs.tQ(S,')(m)I%{ds} dfd;r<N/ / lg(t, x)|%; dt dx,
Rd Ja a

Jor any g € Ly((a,b) x RY, H) with the same constant N as in (2.1).

at ()i, i, t>s,

To prove this theorem we will apply the following general principle we were

talking about in the introduction.
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THEOREM 2.2, Let U be a set of couples of H-valued functions u = (uy,uz)
of (s,1,x) € R¥*2 N {s < t} and F be a set of couples of H-valued functions
f = (f1, f2) defined on R+, Assume that on U and F we are given functions
|- lls || - |7 Suppose that these “norms” in U and F are translation invariant:
for any continuous R*-valued function b(t) defined on R,

luls, t,b(t) + )|l = llull, 172 0(8) + )| = [If]]#-

Assume that F contains Ax A, where A is a translation invariant set of functions
g(t,x) with compact support which are continuous in (t,x) together with each
z-derivative. Also assume that U contains the set B x B, where B is a translation
invariant set of functions g(s,t,z) which are bounded and continuous in (s,t,z)
together with each z-derivative. Assume that if (Q,X, P) is a probability space,
and u(w, s,t,z) € B2 for any w € Q and u(w, 3,t,z) is measurable in w for any
(s,t,z) and if E||u|ly < o0, then Ev € U and ||[Eu|ly < E |lully.
On A? define the operators

Ry : f = (fu, f2) = Ro(f1, f2)(s, t,z) = (ﬂ—;fl(sv"’)a_/:ﬂ_rfz(h z) d’”),
R: f=(fi, f2) = R(f1, f2)(s,1,2) = (Ts,zfl(s,w),/st Tyt fa(r, ) dr),
and assume that for any f € A% we have Rof € B2 and
|1Rofllue < MIIfll,
where M is a finite constant. Then for any f € A% we have Rf € U and

IR fllee < M]|f]].

PROOF. Take a probability space (2, X, P) carrying a d-dimensional Wiener
process w; defined for all ¢ € (~o0,00). Deéfine o(t) = /a(t) — I and define the

random process
t
b(t)=/ o(r) dw,.
0

Also take a d-dimensional Wiener process B, independent of w;. It is well known
that for any s < ¢t the random vectors

b(t) — b(s) + B: — B, and /t va(r)dw,



A PARABOLIC LITTLEWOOD-PALEY INEQUALITY 363

have the same Gaussian distribution and that for bounded non-random functions
I we have

Ty oh(s,z) = Eh(s,z + B, — B,),

T, ih(s,z) =Eh (s, T+ /at \/a_(r—)-dw,) :

Next for any functions A(t, z) and g(s,t,z) define

h*b(t,z) = h(t,z  b(t)),
gib_(si t’ T) = g(s’ ta €T :t b(t))

Then for f € A? we have

E [Rof ~*1"llue < E||[Rof*)°llu = E||Rof~®lu
< ME||f~%)|x = ME||f||7 = M||f]|#-

It only remains to check that
(2.3) E[Rof*)® = Rf.
But

E[Ti-sh~b(s,2)]’ = ET—.h~b(s,z + b(t))
= Eh(s,z + b(t) — b(s) + B; — B,)

=]Eh(s,:z:+/:\/@dw,),

and the last expression coincides with 7} .i(s,z). This certainly proves (2.3)
and hence the theorem. O

PROOF OF THEOREM 2.1. The fact that the operators T, can be extended
to L,(R%, H) is well known. To derive estimate (2.2) from Theorem 2.2 and (2.1)
it suffices to take F to be the set of all couples of measurable H-valued functions
f = (f1(¢,z),0) such that

= [ [, [ 102 deas] <o

and U to be the set of all couples of measurable H-valued functions u = (u;(s, t,
z),0) such that

b t p/2 1/p
[[ulle := [/ / (/ |Vui(s, t,z)|% ds) dtd:t:] < oo.
Rd Ja a
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