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Introduction

I. The asymptotically homogeneous problem. In the theory of semi-
linear elliptic equations of the type

(P) { Au+ g(z,u)=h in §,

u=0 on 09},

where  is a bounded open subset of RY, g : @ x R — R and h: Q — R are
given functions, a very important role is played by asymptotically homogeneous

equations, which are characterized by the conditions

lim M = and lim M =

8——00 ] s—+o0 S

Indeed, these equations constitute, in some sense, a connection between the
(classical) case —0o0 < @ < A; and —oo < 8 < Aq, where A; is the first eigenvalue
of the Dirichlet problem

Au+du=10 in Q,
u=0 on 092,

the “superlinear” case @ = # = +o0o and many intermediate cases, which have
b

been object of several papers, often not related one to another.
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Hence the study of asymptotically homogeneous equations can help to exhibit
some components of a comprehensive theoretic framework.

Of course there are several other types of problems, for example when suitable
conditions on the mutual position of , 8 and g} (z, 0) are imposed (see [2]), which
are, at this stage, outside at this direction of studies.

A fascinating point of view in the study of these equations is the variational
one: it is well known that if g satisfies suitable assumptions, then solutions of
(P) are stationary points of the functional f : H}(2) — R defined by

flw) = /n (%|Vu|2 — G(z,u) + h'u) dz,

where G(z, s) = fos g(z,0)do and the space H}(R) is equipped with the usual
scalar product (u,v) = [, VuVu.

We are particularly interested in the geometric properties of the functional f.

There is an evident connection between the geometric behaviour of f and the
positions of a and 8 with respect to the eigenvalues of the Dirichlet problem on
. We denote by A; these eigenvalues and by e; the corresponding eigenfunctions
(A < A2 € A3 <...). We put H; = span(ey,...,e) and H = (H.-)'L.

If, for example, we consider the case —0o €< @ < A; and —oo £ 8 < Ap, then
limyjy )~ 400 f(u) = 00; therefore the existence of a minimum of f can be shown
by using elementary geometrical tools. '

If, on the contrary, @ = 8 = 400, then lim;_, 400 f(fu) = —co for every u # 0
and the existence of critical points (assuming, for example, g(z,0) = 0) is due
to the contrast between the asymptotic properties of f and the properties of
f"(0) (which has in any case some positive eigenvalues) (see [6] and [20]). The
geometric behaviour of f is particularly interesting when both a and 3 belong to
the interval |A;, Aiy1[ for some #; in such a case f is a functional of the “saddle”

type:

lim f(u)=—o00 and lim f(u) =+4o0o0.
u€H; ueH{
flul—oco flull—oo0

Hence the functional is the object of one of the most beautiful and most
expressivé theorems (see [36]) concerning the existence of critical points which
will be recalled below.

One important tool for proving the existence of critical points of a functional
by means of some information on its sublevels is the so-called Palais-Smale con-
dition, which we briefly recall.

Let X be Hilbert space and F : X — R be a C! function. We say that F
satisfies the Palais-Smale (P.S.) condition if for any real a and b and for any
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sequence (uy)nen in X such that ¢ < F(u,) < b and lim, VF(u,) = 0 in X,

there exists a convergent subsequence.

THEOREM. Let X; and X3 be two closed subspaces of X such that dimX; <
oo and X = X; & Xo. Assume thal there exists R > 0 such that
sup F(u) < inf F(u)

wEX, ueXs
ull=R

and F satisfies (P.S.). Then F has at least one critical point.

II. Some known results for problems with jumping nonlineari-
ties. The situation becomes more complex if o and g fall between some eigen-
values JA; of the Dirichlet problem on ).

In the first, to our knowledge, paper in this direction [4], the authors consid-

ered the problem

(P) { Au+ g(z,u) = hg + tey in £,

u=20 on 922,

where g € C2(R), hg € L?(2), 1 > 0in 2 and t € R. The following result holds.

THEOREM. Let §} be a bounded, connected and smooth open set in R". Let
g € C%(R,R) be such that g"(s) > 0 for all s € R, g(0) = 0 and

0<B= lim ¢g'(8) <A <a= lim g'(s) <A,
s——o0 8s—+o00

Then there ezists a map ¢ : Hi — R such that the problem (P,) with hy € Hi
has ezactly two solutions if t > p(hy), exractly one solution if t = p(hy) and no
solution if t < p(hg).

The proof of the theorem does not use variational tools, but it is based on an
accurate analysis of the singular points and a further argument, which. gives the
global result. A variational approach to improve the above result can be found
in [3].

If we assume that some other eigenvalues, in addition to Ay, fall between a
and &:

(1,i) ,B(/\1</\2S...S/\i<01<)\,;+1,

the problem (P) has been studied by several authors and it turns out to be a
rather complex one.

When §? is an interval, for example 2 = |0, x[, it is possible to establish the
exact numbers of solutions (see [24], [39] and [10]).
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TuroreM. The problem

{ uw”’ + g(u) = tsinz, z € [0, 7],
©(0) = u(7) =0,

when g € C'Y(R) and im0 g'(8) < A1 < A2 £ ... € A < limy 400 9'(8) <
Xiy1 (under the supplementary hypothesis: go(u) = g(u) — aut + Bu~ is a
continuous sublinear function and (3 is positive) has at least 2i solutions if t is
positive and large enough. Moreover, if g(u) = aut — fu™ then for t positive

and large enough it has exactly 2i solutions.
When © € RY with N > 1, the following example is really interesting (see
[14]).

THEOREM. Assume that Q is a ball in RY with N > 1 and let us consider

the problem
Au+out — pu~ = hg + teg in Q
u € H} Q)
with B <A <Az =...=My41 <@ < Ayy2 and hp € Cz(Q), ho = 0 on 89,

ho € Ker (A + A2I), hy # 0. Then for t positive and large enough the problem

has only four solutions.

Several other interesting papers (we mention [1], [11], [19], [21], [22], [23],
[38], [41] and [42]) concern the problem (P) under assumption (1,4). Under
assumptions (1,7) the whole picture is not yet completely clear. In this paper
we do not take direct interest in this case.

Now we consider the assumption:
(h,7) S < <MLL S <a< A

Among some interesting known results, we wish to quote the following “alterna-
tive” theorem (see [26] and [13]), because of its generality.

We define “resonance set”
Za={(a,B) € R? | 3u € Hy (), u # 0 such that Au + aut — fu™ =0}.

THEOREM. Assume g € CH(R), limy_, oo ¢'(8) = B and lim,_, 400 9'(5) = a.
If (h,i) is satisfied and (o, 3) € ZLq, then the following alternative holds for the
problem (I,): either (P;) has at least two solutions for t >> 0 and t K 0, or (Py)
has at least one solution for L > 0 and three solutions for t € 0, or (P,) has at
least three solutions for t > 0 and one solution for t < 0.

In [26] theorem was obtained by an analysis of the degree of solutions (under
stronger assumptions on g), while in [13] the Rybakowski index was considered.
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The assumption (e, 8) & X, appears in all the papers that we know about
(P:), under condition (h,i) with i > 2, and it is automatically fullfilled if (e, 3)
satisfies (1,7). From the variational point of view, this assumption ensures the
Palais-Smale condition. However, the study of Xg turns out to be difficult,
except when 2 is an interval in R (see [17]).

A real progress in this direction was made in the following theorem (see [15]).
Let Q9 be an open bounded smooth subset of RY, a € 0, 1] and Q be an open
neighbourhood of Qy. For € > 0 and ¢ € ]0, 1] we set

V={®eC*(Q,R")|®|c2 <&}

We choose € > 0 such that I + @ is a dillcomorphism for any & € V.

THEOREM. There erists a dense subset Z of V (with respect to || ||cs.s) such
that if ® € Z and = (1+ ®)Qy then Ly = 0.

Roughly speaking, by slight perturbations of 2 and of (a, 3), we get (a, 8) ¢
2 and so (P.S.) holds.

IT1. Results of this paper. As far as the Palais-Smale condition is con-
cerned, in Section 2 we will give some sufficient conditions without requiring
that (@, ) € Zq. This allows us to obtain various existence theorems, under
conditions on g which are easily verifiable.

Concerning the existence theorems, we will study the case & > A\j and 8 > Ay,
even if some results hold true also when o > Ay and 8 < A).

We will locate some regions in the zone {(o, 3) € R*|a > Ay, B > A} to
which there correspond at least one, two or three solutions of (P;) for ¢ positive
and large enough. The figure below summarizes our results. We think that our
map in the (o, ) plane, which is at [irst stage, will be enriched and improved.

In particular a theorem on existence of one solution will be shown in Sec-
tion 3. Theorems on existence of two and three solutions will be proved in
Section 4 (in the case oo < () and in Section 6 (in the case a > 3).

As we can see in the figure, the region corresponding to at least two solutions
is “very large”. Moreover, an infinite number of unbounded regions are contained
in the set corresponding to at least three solutions.

The technical lemmas which enable us to prove the existence theorems are
collected in Sections 5 and 7.

Concerning the geometric behaviour of the functional f;, we point out that
the existence of two or more solutions is connected with the fact that the func-

tional f; (see Definition 1.2) has more and more complex topological properties
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i
Ak+41
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I:I =1 solution = 2 solutions

[:] = 3 soiutions . = 4 solutions

with regard to more and more restricted regions of the (o, 8) plane. From the
first topological “key” (f: separates two splitting spheres in a symmetrical way),
which ensures the existence of one solution, it will be possible to develop some
topological properties, progressively more complex (f; separates a pair of linked
spheres with suitable bounds and f; separates two pairs of linked spheres in di-
mensional scale with suitable bounds), which ensures the existence of two and
three solutions.

Abstract variational theorems which connect the topological properties of f;
with the existence and multiplicity of solutions will be shown in Section 8.

Finally, in Section 9 we will give a theorem on existence of four solutions and
we will draw a “submap” which implies and describes the “alternative” theorem

(without the assumption (a, 8) € Zgq).

1. Problem, assumptions and notation

Let Q be an open bounded subset of RY and G : 2 x R — R be a Carathéo-
dory function. Without loss of generality we can suppose G(z,0) = 0. If G(z, 5)
is a C! function with respect to s, we set g(z, s) = G(z, s).
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1.1. The following conditions on GG will be allernalively considered
(G) |G(z,8)| < a(z) + bls|? for all s € R, a.e. in Q, where a € L'(Q) and
beR.
(G,@) lims 400 2G(z,5)/8 =2 € R a.e. in Q.
(G,a,B) lims_, 100 2G(z,8)/5%> = @ € R and lim,_._ 2G(z,5)/s®> = B € R a.e.
in 2.
(9) G is a C! function in s for a.e. z in Q,
lg(x, )| < a1(x) + b1]s|9 for all s € R and a.e. in 2, where a; € LP(Q)
withp 22N/ (N+2) (f N=2,p>1;if N=1,p>1), b) € R and
15 N2
G = N2
Set
Golz, 5) = G(z, 5) — —;-a(s"')z - %ﬂ(s")z.
If (g) is satisfied we will consider the problem

(P) Ay+g(m,u)=tel+hg in 91
¢ u=20 on 092,

where t € R, hg € L?(0) and e, is a positive eigenfunction associated with the
first eigenvalue of the Dirichlet problem Au + Au = 0, ©u = 0 on 0. Without
loss of generality we will assume hg = 0.

In general, we are interested in the variational nature of the problem (F;).
For this purpose, we make the following definition.

DEFINITION 1.2. Let f; : H}(2) — R be defined by
filu) = / (%Wulz — G(z,u) + telu) dz.
o

The Hilbert space Hj(S2) is equipped with the usual norm ||u|| = ([, |Vul?)1/?
and the usual scalar product (u,v) = [, VuVu.

REMARK 1.3. It is known that if (@) holds then the functional f; is well
defined. Moreover, if (g) holds, then it is a C! functional and its critical points
are exactly the solutions of the problem (P;).

We introduce some functionals which will be used later.
DEFINITION 1.4, Let v and A be real numbers. For « € H1(Q) set
Qa(w) =5 [(Vul* - an?)
and 1
Qup(w) = 5 [ IVl - a(w)? - A,
where u*(z) = u(z) V0 and u~(z) = —u(z) A 0.

Finally, the following classical notations will be useful.
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DEFINITION 1.5. Let (An)n>1 be the sequence of eigenvalues of the problem
Au+du=0,uc H(N). Werecall that 0 < A\; < A2 < ... < A < ... and
lim, A, = 00. Let €, be an eigenfunction corresponding to A, with |lenlz2(0) =
1. We can choose e; such that e; > 0 in .

Moreover, set H; = span(ey, . .. ,e;) and H = {w € H}(Q) | (u,w) =0Vu €
H;}.

2. The Palais-Smale condition

As we said in Whe introduction the classical Palais-Smale condition plays an

essential role in studying problem (). Let us recall its definition.

DEFINITION 2.1. Let X be a Hilbert space and F € CY(X,R). If c € R we
say that F satisfies the Palais-Smale condition at level c (i.e. (P.S.). holds) if for
every sequence (y)nen in X with lim, F(u,) = ¢ and lim,, VF(u,) = 0, there
exists a convergent subsequence.

In the following, for the sake of simplicity, we will say that F satisfies (P.S.)
if (P.S.). holds for any ¢ € R.

It is well known that if limg— 400 9(x,8)/8 = @ < Ap or lim,,_ g(z,8)/s =
B < A and g satisfies the “natural” asymptotic conditions |g(x, s)| < a)(x) +
by|s|, a.e. in Q, for all s € R, with a; € L*(Q2) and b; € R, then the Palais-Smale
condition holds.

In this section we will produce two different groups of assumptions which
ensure the (P.S.) condition also when both a and 8 are greater than A;.

The first, which is classical, has been recalled in the introduction. In this case
we assume that (a,3) does not belong to the “resonance set” (see (2.4)). The
second is stated in Theorem 2.5 and it does not need the condition that (o, 3)
does not belong to the “resonance set”, whereas some supplementary conditions
on g are required.

We recall the definition of the “resonance set”.

(2.2) Yo {(n ) CRH| hc HYSY), w /0, with Aw | on' 0}.

The following result is classical.

PROPOSITION 2.3. Assume the following conditions:

(2.4)
lg(z, 8)] < a1(zx) + b1ls|, a.e. in Q, Vs € R, with a; € L*(Q), b, € R;
lim g—(m—’i)=ﬂ and lm g—(ﬂfl=a;
8——00 S s—+o0 S

(at ,B) ¢ Lo
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Then for every t, f; satisfies (P.S.).

From this result we can easily deduce that if 8 < A; or o < X; then (P.S))
holds for the functional f;.

We would like to emphasize that (2.1) ensures that every sequence (tn)nen
such that lim, Vfi(u,) = 0 have a convergent subsequence in H}(f), even if
(ft(un))nen is unbounded.

In the introduction we have recalled an important theorem concerning o
(see [15]), which, roughly speaking, states that by means of little perturbation of
Q we get ';?.n = ). So this theorem makes the assumptions (2.4) more concrete.

As we stated at the beginning of this section, we can give some sufficient

conditions to ensure (P.S.), without requiring that (o, 3) € Tq.

THEOREM 2.5 (an explicit condition which ensures (P.S.)). Assume:

(a) lg(z,s)| < a1(x) + b1|s] V s € R, a.e. in Q, where a; € L3(Q)
and b; € R;

(b) s_lir_'r_loog(m,s)/s =a € R and SE?wg(z,s)/.s =f# €R ae in
Q, with (a,8) # (A, Ai) if i 2 2;

(2.6) < (c) 12G(z,s) — g(, 9)s| < ao(x)|s| + bo(z) Vs € R, a.e. in Q, with

ao € LP(Q), p>2N/N+2 (if N=2 thenp> 1 and if N =1

then p > 1) and by € L(Q); or, more generally: if 3 > o and

B > A1, then 2G(z,s) — g(x, 8)s < ao(x)|s| +by(x), and if a > 8

and a > Ay, then 2G(x, ) — g(x, 8)s > —aq(x)|s| — by(x).

\

Then there ezists to > 0 such that if t > to then the functional f, satisfies (P.S.).

PROOF. Let (us)nen be in HY() such that:
lim fy(un) =c and limVfi(u,) =0 in H}(Q).

We argue by contradiction and suppose limy, [|u,| = co. By (2.6) (a), (b}, using
standard arguments, we obtain

lim "Z—"” =u in H}(Q), lul =1 and Au+ aut — fu~ = 0.

On the other hand, we have

lim (Vft(u"), “Z—"”) =0,

1
lim——(/ |Vu,.|2—/g(.’n,un)un+t/e1un) =0.
n luall \ Jo 9} Q

that is



298 A. MARINO — A. M. MICHELETTI — A. PIsTO1A

1
n lunll

(2ft(un) + /9(20(.1:,11,,) —g(z,un)u,) - t./nelun) =0.

Since lim,, fi(uy)/||s]] = 0, we have
. 1
lim T [ (26(8,un) - 9o, un)un) = [ exa
n luali Jao Q

Now if, for example, 8 > o and 8 > A, then [,e;u > A, by Lemma 2.7(b). By
(c), using the Holder inequality, it is easy to see that there exist real numbers @
and b so that

[ (260 - gl up) <alull +5 vue HY@)
Q
This implies that

limi/@G(:cu )—g(z,up)up) <@

n |Iun” o y ¥n g y “n n; = 2

Finally, if tA > @ we get a contradiction. ]
It is easy to prove the following lemma.

LEMMA 2.7, Let (a,8) # (M, M) fori > 2.
(a) If there ezists u € HY (), u # 0 such that Au + aut — fu~ =0, then

ﬂ>a_andﬂ>)\1=>/uel= ﬂ_a/u+el>0;
o) 9]

B—M
B~a _
a>fanda> A\ => | ue = -u"e; <0.
0 Q—Al 0

(b) If 3> a and B > Ay then

A=inf{/uel
Q

Ifa>p and a > )\ then

—A =sup {/ ey
n

Finally, we exhibit a class of functions g which satisfy (2.6).

Au+aut - fu” =0, |jul| = 1} > 0;

Autout —fu” =0, |u| = 1} < 0.



A NONSYMMETRIC ASYMPTOTICALLY LINEAR ELLIPTIC PROBLEM 299

ExAMPLE 2.8. If § > o and 8 > )\ then the function
9(z,8) = ast — Bs7 — i (sH)17 4 y5(s7) 72 4 go(a, ),

where |go(z, 5)| < Yo(z) with 70 € L2(Q), 7 € R and ¢; € ]0,1] for 4
satisfies (2.6). If @ > A and a > A, then so does the function

1.2,

9(z,5) = as® — Bs™ + 41(sT) 7 — (5717 + gy (i, 5),

where |go(z, s)| < 0(x) with 49 € L2(R), v; € R* and ¢, € 10,1] for i = 1,2.

(I > 0 for i = 1,2, it is enough to assume lgn(z, 8)| < yo(x) + Ols|! ¢ with
1>e>¢g fori=1,2)

REMARK 2.9. In Theorem 2.5 we can replace the vector e1 in the functional
fi by any vector e € Hj() such that [, eu # 0 for every u € H}(Q), u #0, for
which Au+ aut ~ fu~ = 0. In this case, assumption (a, 8) # ()i, A;) has to be
dropped.

3. The existence of one solution. ft separates
two splitting spheres in a symmetrical way

We first point out a feature of the behaviour of the functional ft which is

also important for the existence theorems of the following sections.

LEMMA 3.1. Assume (G) and (G, ).
(a) There ezists ¢ € R such that if u € H}(Q) then

o) - Qulw)] < c(1 + [ [ (Gola )] ).

1
b) lim —-/ Go(z,ut)| = 0.
®) e Tl Jy Cel vl

We will use in the equivalent form:

lim — sup /IG()(iL‘ ut

t=too t2 Iullst
PROOF. (a) From (G) and (G, a), we get
o) ~ Qalu)] = ‘ [ 6@ +atwyy2- Gt 1))
< llallpaa + (b + Jal/2) /” (w )2+ /n Golz. u).



300 A. MARINO — A. M. MICHELETTI — A. PIsTOIA

(b) Let (2n)nen and (un)nen be such that {u,l| < &, and lim, ¢, = +oo.
We will show that lim;, [|Go(z, u}})|1(q)/t2 = 0. We can suppose lim, u} /t, =
u € HYQ) ae. in Q and in L2(N) with v > 0 in Q. Now if z is such that
u(z) > 0, then lim, Go(z, u}(z))/t2 = 0; this follows from (G, a) by observing
that lim, u} (z) = +o00 and

Go(z,wf) _ Go(z,uf) [u}(=)]?
2 T li@Pr 4

Moreover, if z is such that u(z) = 0, we get again lim, Go(z,u}(x))/t2 = 0,
Go(z,ut)| _ a() o) [ud ()2
< —_— —
| Tt g ) T

By (G)using the Lebesgue’s theorem the assertion follows.

since

LEMMA 3.2. Assume (G)and (G,a). Let s; = t/{a— A1) witht > 0 and
a> .
(a) There ezists ¢ € R such that if z € H}(Q)

fi(ster + z) — fi(seer) = Qa(2) + R(t, 2),
where

|R(t, 2)| Sc(l + /ﬂ((s,e] +2)7)2 + /{; |Go(x, ste1)|
+‘/Q|Gn(a:,(ste1+z)+)|).

(b) If 7(t) = supy, <t Jq |Golz, (ste1 + 2)1)|, then lim;_, o ¥(2)/t? = 0.
(c) There erist 6,p > 0 such that if z € HL(Q)
/((stel +2)7)? < 5%||2||*(meas{z € Q| siex(z) + 2(z) < 0})7,
Q

(if N > 3 then S is the Sobolev constant for the embedding H}(Q2) —
LAN/(N-2)(Q)). Moreover, for any € > 0 there ezists o € [0,1] such
that if ||z|| < ot then (meas{z € Q|sie1(z) + 2(z) < 0})? < € for any
t>0.

PROOF. (a) If z € H}(§2) then we have
fi(sier + 2) ~ fi(sie1)

= (Qa(stel + z) +t/9(s:el + z)el) - (Qa(ste1) +t/03tel2)
+ (fo(ster + 2) — Qa(seer + z) — (fo(sie1) — Qa(see1))

=Qa(2) + (fo(ste1 + 2) — Qalsier + 2)) — (fo(ste1) — Qa(seer)),
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since fn (V(ste1)Vz — asierz + te;z) = 0; from Lemma 3.1(a) we deduce the
assertion.

(b) Tf ||z]| <t then ||(sces + 2)*|| < sehy +¢ = at/(a - A)); the assertion
follows by Lemma 3.1(b).

(c) If, for example, N > 3, then by using the Holdér inequality we get

/((3t€1 +2)7)? < / (z7)°
Q
{z€?| sty (x)+2(x)<0}
<=

i,N,(N_,,m)(meas{m € Q| sie1(x) + z(z) < 0}V

< S2||z)2(meas{x € 0| sye;(z) + z(x) < 0}V,

Moreover, if t = 1 and (2, ),en is such that lim,, [|zn]| = 0, we obtain lim,, zn(z) =
0 a.e. in £ and hence lim, (meas{z € Q| s;e;(z) + 2,(z) < 0}) = 0. O

By means of the previous result, we are now able to show that, for t large

enough, the functional f, “separates two splitting spheres in a symmetrical way”.

THEOREM 3.3 (“splitting spheres”). Leti > 1. Assume (G) and (G, a) with
Ai < 0 < Aiy1. There exist og,ty > 0 such that if t >ty then

sup fi(sie1 + ’U) < inf  fi(siey + w)
H wel;

veH;
(3.4) floll=oot lell<aot
- < sup fi(ster +v) < inf  fy(sier + w).
vel; wellF
leli<oot lheli=oot

More precisely, there exists og > 0 such that for any o € |0,0¢] there ezists
to > 0 such that if t > ty then (3.4) holds (where oq is replaced by o).

H,=span(ey,... ,&,)

H'=span(e,41,...)
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Proor. If z € H}(Q) with ||z|| < t, then from Lemma 3.2 we deduce that
fi(sie1 + z) — fi(seer) = Qa(z) + R(t, 2)

e |R(t,2)| < ¢ (1 + /n ((seer + z)‘)2) + 27(t).

By Lemma 3.2(c), given & > 0 there exists og € ]0,1] such that if o € ]0, gq,
t > 0 and ||z|| < ot we obtain ¢ [,((seer + 2)7)? < 6]|z||* < 6022, 1f 0 €0, 09
is fixed, then by Lemma 3.2(1)) there exists £ > 0 such that if ¢ > ¢y then
27(t) < 60?2, Finally, we see that for any o € ]0,0¢] there exists ty > 0 such
that if £ > #p and ||z < ot:

|R(t, 2)| < ¢ + 260%t%.

Now if w € H} and ||w]| = ot:

1
fi(ster + w) — fi(sier) 2 {1 - 2 Vo2 —260U% —c.
2 i+l
On the other hand if v € H; and ||v}] < ot
fe(seer +v) — fi(sier) < R(t,v) <c+ 26022,

In order to obtain the right inequality in (3.4), the following one has to be

verified:

L 1- 2 Vo212~ 2602 —c>c+ 26022,
2 Ait1

1 lo
~{1- — 46 )o%t% > 2
(2( /\i+1) )a Z

which holds if § > 0 is small enough. The left inequality in (3.4) can be proved

that is,

in the same way. 0

Roughly speaking, the inequalities (3.4) hold because the spheres
S = {ste1 + v|v € H;, |[v|| = ot}

and
St = {siey + w|w € H;, |Ju| = ot}
and the balls B; = convS;” and B} = convS;" are in the “neighbourhood” of
the positive functions cone and so, in this area, the functional f;, for ¢t positive
and large enough, is, substantially, Q,,(u) + tfu e,
By the previous result and the variational statement 8.1, we will obtain the

following existence theorem.
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THEOREM 3.5 (existence of one solution). Assume:
(a) (9), (G), (G,a) and (P.8.) for the functional f, for t large enough;
(b) a> A anda# X; ifi > 1.
Then for t large enough the functional f, has at least one critiral value and hence

the problem (P,) has at least one solution.

We would like to point out that assumptions (a) can be replaced by (2.4) or
by the more explicit conditions (2.6).

Moreover, if a = A; with i > 2, we are again able to show the existence of a
critical value for the functional f; by replacing (G, @) with the (G, e, j3).

THEOREM 3.6 (existence of one solution). Assume
(a) (9), (G), (G,a, B) and (P.S.) for the functional f, for t large enough;
(b) a> ;.
Then for t large enough the functional f, has at least one critical value and hence

the problem (P,) has at least one solution.

PROOF. Let a = A;. It is enough to use Lemma 4.5 (if 4 > X;) or Lemma
6.3 (if 8 < A;), which describe the behaviour of f;, and the classical “saddle”
theorem of Rabinowitz (see [36]).

Also in this case we emphasize that assumptions (a) can be replaced by the
conditions (2.4) or (2.6).

4. The existence of two and three solutions if B> a.
Jt separates two linked spheres. f; separates
two pairs of linked spheres in dimensional scale

In this section we will set out some existence theorems for the problem (F;)
for ¢ positive and large enongh under assumptions (G,a, 3) with 3 > . In order
not to make the presentation of the existence results too heavy, we postpone the
proofs of some technical lemmas and some variational abstract statements to
Sections 5 and 8 respectively.

First of all, we point out a useful connection hetween the functionals fo and

Qa’ﬁ'
PROPOSITION 4.1. Assume (G) and (G,a, 3). Then

Jo(u) — Qqp(u) = — /Q Go(x,u) for allu € H(}(Q)
and

 JalGo(m )| _

fall—oo  |Jul?
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PROOF. It is similar to the proof of Lemma 3.1(b). O

We observe that if s; = t/(c — A1) then the function s:e; is a critical point
of the functional u — Qq a(u) +t [, e1u.

In order to study the behakur of the functional f;, the increments fi(s:e; +
z) — fi(sse1) will be considered as in Section 3.

REMARK 4.2. (a) Ift >0, @ > A and z € H}(f2) then

(Qa(3t€1 +Z)+t/n(8te1+z)el) (Qa(stel)+t/ 3te1)

=Qu(@) + 3@ [ ((ser +2))?
~Qusld) + 5@ =8) [ (seer+2)7 = P

since sie; > 0 and [,(V(s:e1)Vz — asie 2z + te12) = 0.
(b) If z € H}(R2) then

/ (((ex +2)7) = (=7)?)
Q

= / (€3 + 2eq2) — / 2%,
{z€n| z(z)< —e1 ()} {zeQ| —ei(z)<2(x)<0}
and

- e1z” e 2)7)2 - (27)? .
2[ e < [(@+2)7) =) <0

DEFINITION 4.3. Let ¢ > 1. Given a,3 € R and p > 0, set

M@0 = s {@u) + 5@ =) [ (4072},

mpad=_ ot {@uw - [ (@rw) ],

E; = {(o, ) € R? | < B, 3p; > 0 such that M;(e, 8) < mi(pi, a, B)}.

From Lemma 5.1, which describes the properties of M; and m;, we can easily
deduce the following result.

LEMMA 4.4.
(a) Ifi > 2 then E; is an open set and
{(a, ) eR?|a < B, s La< A1} CEi C{(o,08) €R?|a < Ai1}.
Moreover, if (o, B) € E; then max,en;, ||ofj=1 @a,6(v) < 0.
(b) By = {(a,B8) e R?|a < B, A1 S < A},

Now from Proposition 4.1 we can deduce a basic inequality for the functional

fi, which enables us to prove the existence of more than one solution.
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LEMMA 4.5 (“saddle”). Let i > 1. Assume (G) and (G, 8) with a > A1.
If (@, B) € E; then there exist p;,ty > 0 so that if t > 1, then

(4.6) sup fi(sier +v) < inf fi(siey +w)
veH; weH;
lwll=pis.

(pi 1s in the definition of E;).

PROOF. Given z € H}(Q2), put v = z/s,. By Proposition 4.1 and Remark
4.2 we get

(4.7)  fi(sier + 2) — fi(seer)
1 - _
= #(Quatw + 5@=8) [ (e + 07~ 0) + Rt
where R(t,z) = fn(Go(x, sie1) — Go(z, sier + 2)). From Proposition 4.1 we also
deduce that for any £ > 0 there exists d > 0 so that
(4.8) |R(t,2)[ < e(llseer + 2] + ||sien[1?) + d.
Moreover, since M;(e, 8) < 0o, by Lemma 5.1(bs) we obtain
—c= max Qa,s(v) < 0.
lvll=1
Now, if v € H;, then from Lemma 4.2(b) we have
fi(seer +v) — fi(sie1) < —cfjv)|® + |8 - 0"/ sie1v” + 3edrs? + 2elfv)|? + d
)
and also
fi(sier +v) — fi(sie1) < s2M;(a, B) + 3eM;s? + 2¢||v||? + d.
By using the first of the previous inequalities for ||v]| > s,p, with p, = %f_"—z‘y)-,
we obtain
fi(seey +v) — fi(sie1) < 3ery82 + d;
by using the second inequality for ||v]| < s;p,, we obtain
(4.9) fe(sier +v) — fi(seer) < s2(M;i(a, B) + 3e); + 2ep?) + d.
Therefore, since M;(a, 8) > 0, we see that (4.9) holds for any v € H;.
On the other hand if w € H} with |Jw|| = ps,, where p > 0, then by (4.8) we get
(4.10) fi(ster + w) — fi(sier) > s2(mi(p,a, B) — 3eA; — 2ep?) — d.

By assumption there exists p > 0 such that M;(a, 8) < m;(p, &, 3). This allows
us to choose £ so small that the coefficient of s? in (4.9) is less than the one in
(4.10). Finally, by taking ¢ positive and large enough the assertion follows. [J

Now we observe that for particular pairs (cv, 3) the sublevels of the functional
Jft have a sort of “topological complexity”, which is connected with the “saddle”

of Lemma 4.5.
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DEFINITION 4.11. Let i > 1. Given e € H}, e # 0. and a € R set:

i (e)={z=oe+uvlllz] =1, ve Hi o 20},

Qi1 = SUP {/ [Vul? | u € H;, / =1, u> 0},
0 Q

ti1(e) = inf {B eR| inf max Qqa(z) < 0}.
e€H! 2€X] (e)
e#£0

ut
A
7
e H,=span(e;,... ,c,)
- s, 0 T -
rd
¢ _,_,.—/
| == =)

The following result can be easily deduced from Lemma 5.4 ((d) follows from

Lemma 5.1(by)).

LEMMA 4.12. Leti > 1.

(a) pip1(a) e R & o> oy

(b) pit1 : Jait1,00[ — Jeip1,00[ is a continuous decreasing function such
that:

Pir1(Dig1) = Aig1, Hig1 0 piy1 = identity  and a_ljg!H pit1(a) = +oo.
(C) az =\ and \ < i1 < Ai fOT'i > 2.
(d) Ifi>2 and (o, ) € E; then a > a; and § > pi(a).

By Lemmas 4.5 and 4.12 we will obtain two different results about the be-
haviour of f; and also two theorems on existence of two and three solutions, with
regard to suitable unbounded regions of the halfspace {(a,3) € R?|a < 3}
With this in view the regions E; and the graphs of j; have been introduced.
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H

We first show that if the pair (@, ) belongs to the region E; above the graph
of the function g;41, then the functional ft “separates two linked spheres” with
suitable bounds.

"THEOREM 4.13 (“links and bounds”). Leti > 1. Assume (G) and (G, a, B)
with (o, ) € E; ( hence o > aiyy) and B > ti+1{a). There erist 3; > 0,
pi > 0 (it is in the definition of E), tg >0 ande € Hi, e # 0, such that
7 > pif (o — A1) and if we set, for o; > 7; and t > 1o,

X ={stes +v|veH, |v| <o}
U{sier +v+oelveH;, 020, [[v+aoe| = oit},

then the following inequalities hold:
(a) sup fe < inf  fi(sie1 + w);
5= wEH,-J'

! flwlt=pis.

(b) inf  fi(sie1 +w) > —00 and sup  fi(s:ie; + v+ oe) < oo.
wEH;L vEH;,0>0
llwli<pise lv+oe)<ost

PROOF. By Lemma 4.5 there exists to > 0 such that if ¢ > to then (4.6)
holds. It is enough to show that if ¢ is large enough then there exists e H},
e # 0, and g; > 0 such that for ¢ sufficiently large

fi(ster +2) — fi(sie1) <0 ifz=v+o0e, 0>0, veH, and llzl| = oyt.

Since B > piy1(cr) (see Lemma 4.12) there exists e € H, e #0, so that —c =
maxE‘—(e) Qa’ﬂ < 0-

By (4.7) and (4.8) we see that for any € > 0 there exists d > 0 such that if
z=v+ oe with ¢ > 0 and v € H; then

fi(sier + 2) — fi(sier)

2
sz(—c
s

2

2
)+

a
+|ﬁ—a|/e1—+eue1||2+e
4] S

z
€1+ —
St
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Now if we choose € small enough and ||z/s¢|| = o; large enough then the coeffi-
cient of s? is negative; hence for ¢ large enough, (a) follows.
The proof of (b) is trivial. O

The previous lemma enables us to obtain two different existence theorems
for the problem (P;), regarding the existence of either two or three solutions.

First of all by using Theorem 8.2 we easily get the following one.

THEOREM 4.14 (existence of two solutions). Assume:

(a) (9), (G), (G,a,B) and (P.S.) for the functional f; for t large enough;
(b) @ > Ay and B > pj(), where A; is the minimum eigenvalue strictly

greater than c.

Then, for t large enough, the functional f; has at least two critical values and
hence the problem (P;) has ot least two solutions.

Ak41

Aj=Ag
i<k

i

2

At

0 AL Az Aj-1 A=Ak Ak a
i<k

We would like to emphasize that assumptions (a) can be replaced by (2.4)
or by the more explicit (2.6).

PROOF OF THEOREM 4.14. Tt is enough to observe that by (b) the pair
(o, 3) belongs to F;_y with j > 2; thus the conditions of Theorem 4.13 hold
(with i replaced by j — 1). By Theorem 8.2 the assertion follows. O

By using Theorem 4.13 for two different values of ¢, we obtain further infor-
mation about f;, which allows us to show the existence of three solutions of the

problem (P;) for suitable pairs (o, §).
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We start by pointing out an easy consequence of Lemmas 4.4 and 4.12.

REMARK 4.15. Let X, A; and A4 be three consecutive {(possibly multi-
ple) eigenvalues: Ajo1 < Aj=...= A < Apyy with &> § > 2. The set of pairs
(o, B) such that (a,8) € Ex N E; ; (hence a > a; and 3 > ji;(«) by Lemma
4.12(d)) and B > pg41(e) (that is, (a, B) satisfies the conditions of Lemma 4.13
for both i = k and i = j — 1) is an open and non-empty set. More precisely: for
every 8 > pr41(Ax) there exists § > 0 such that [\, — 6, Ar[ x {8} is contained
in that set.

Now we show that if (a, ) satisfies the assumptions of Remark 4.15, then
the functional f; “separates two pairs of linked spheres in dimensional scale”
with a suitable lower bound.

THEOREM 4.16 (“links in scale and bounds”). LetA;_y, \; and Aryq be three
consecutive (possibly multiple) eigenvalues: Aj_y < Aj = ... = )\, < Ay with
k2 j>2. Assume (G) and (G,q,B) with (a,8) € By N E;_y and 8 > ppqy (cx)
(see Remark 4.15). There exist Ok Pky0j~1,Pj—1.to0 > 0 and e € H;é-, e # 0,
such that o > pr/(a — A1), @j_1 > pj-1/(a— A1), 0j_1 < o4 and if we set, for
t > to,

T ={ste1 +v|v e Hj_y, |jv|| £ oj_1t}
U{ster +v+oe;|veH;_y, 020, ||[v+oe) = gj-1t},
I, ={sie1 +v|v € Hy, |v|| < ont}
U{ster +v+oe|veHy, 020, |jlv+oel = axt).

then the following inequalities hold:

(a) sup fi < inf; fi(ster +w) <supfe < inf  fi(se + w);
=, weH;,; b weHE
’ lwll=p;_15 llwll=pk s
(b) inf fi(sier + w) > —o0.
weH;‘_l

Hwlt<pj—1s:

PROOF. We will show the first inequality of (a). Since (n,8) € E;_; by
Lemma 4.5 there exist pj_1,fo > 0 so that if ¢ > t3 then

sup fi(sier+v) < inf  fi(seer +w).
veH;_; weH{ |

lwll=p;-18:

Since (@, 8) € Ej by Lemma 4.4 we have max,ep,, juj=1 Qa,a(v) < 0; in
particular, MaXp- (o)) Qap <0.
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HE
= _ 4
S_;t—l €= a-—A.el
+
/ BF \F
+ +

span(e;,ejt1,...,€k)

Hjx

Hif

On the other hand by using (4.7) and a similar argument to that in Theorem
4.13, we are able to show that for any o;_; and ¢q large enough, if ¢ > ¢y then

fi(sie1 + 2) < fi(steq) for z=v+oe;, 020, veH;_y, |z]| =0;_1t.

So we can choose o;_1 > pj_1/(a — A1) and the inequality is proved.

Since (a,) € Ex and 8 > pg41(a), by Theorem 4.13, we have the last
inequality of (a) for suitable p; > 0, e € Hif, e # 0, o) > 0 with o > pp/a — A\
and g1 < gy and ¢ large enough.

The proof of (b) is trivial. O

At this point by using Theorems 8.4 and 4.16 we get the following result.

THEOREM 4.17 (existence of three solutions). Assume:

(a) (9), (G), (G,a,f3) and (P.S.) for the functional f; for t large enough;

(b) (a,8) € Ex NE;_; and 8 > pry1(cr), where A\j_y, A; and Mgy are
three consecutive (possibly multiple) eigenvalues: A\j_1 < \; = ... =
Ak < Apy1 with k > j > 2 (see Remark 4.15).
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Ak41

A=Ak
i<k

Al

Then, for t large enough, the functional f, has at least three critical values and
hence the problem (P,) has at least three solutions.

Also in this case assumptions (a) can be replaced by (2.4) or (2.6).

REMARK 4.18. We point out that if A;), ..., Ay, and A, ,, are A+ 1 con-
secutive eigenvalues and if (a,8) € E;, N...N E;, and 8 > p;,,, () then the
functional f, “separates h pairs of linked spheres in dimensional scale”. In this
case (see Remark 8.5) if ¢ is large enough then f, has h + 1 critical values and
hence the problem (P;) has h + 1 solutions.

The following problem arises: do there exist any pairs (c, 3) with that prop-
erty?

5. Some technical lemmas for 8 > «

In this section we will study the functions m; and M; (see Definition 4.3), in
order to prove Lemma 4.4, and also the functions defined in Definition 4.11, in

order to verify Lemma 4.12.

LEMMA 5.1.
(a') If’l >1 and /\i fa < ﬁ then Mi(a,ﬂ) = (.
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(b) Ifi>2 then:

(b1) M;i(e, B) = 00 in a neighbourhood of the half-space {(a, B8) € R?|
a< M};

(b2) if A1 < a < B then M;(a, B) < 00 & maxyen, jv)j=1 @a,8(v) < 0;
(b3) if M1 < a < B and M{a,B) < oo then M; is a continuous function
at (a, 8).

(c) If i > 2 and B > X; then M; is a continuous function at (X;, 8) (and
M; (A, 8) = 0).

(d) Ifi > 1 then m; is a continuous function and

p—0 p 2 Ait1

ProoF. (a) This follows clearly by definition of M;.
(bi) Set v = ae; + bey with a,b > 0 and set R = a/b. It follows that

Qulo) + 3@ =8) [ ((er+0))?

- %b’*’(Rz(,\l )+ (h-a)+ (a—ﬂ)/n ((Ebl‘ e +62)—)2)’

Fix 8. If R is so large that (Re; + e2)~ = 0 and « is such that R*(\; — a) +
(A2 — a) > 0, then if b tends to +o0o the assertion follows.

(b2) First of all it is clear that if max,en;, jju|=1 @a,s(v) < 0 then Mji(a,8) <
o0, because -2 [, e;v™ < [, (((e1+v)7)2—(v™)?) < 0 (see Remark 4.2(b)). It is
also easy to see that if max, e, |juj=1 @a.s(v) > 0 then M;(a, 8) = +oo. Finally,
if there exists vg € H;, [jvg|| = 1, such that max,cH,, jv)j=1 Qa.8(v) = Qa.a(v0) =
0, then by Lemma 5.2 we deduce vy # 0. Hence by Remark 4.2(b) we have

Jm_ Qup(tun) + 5@ ) [ (e + 1)) - (1057

1 ' e
> Jim g [ G ) <o
{x€Q|tvo(z)<—e1(x)}

because 5
a +261'v) = —-2[ eyvg < 0.
t o
{z€Q|vo(z)<~e1(x)/t}
From Remark 4.2(a) we see that A;(a,3) = +00.
(bs) Suppose Ay < a < 8 and AM;(a, ) < co. So there exist ¢, § > 0 such that
if la—a’| < 6and |B- | < 6 then Qu g (v) £ —c||v]|? for every v € H;. Hence
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the maximum points in H; of the functions » — Qg (1) + o =) Jo(((ex +
v)~)% —(v™)?) are uniformly bounded. Moreover, if (a/, ') tends to (a, B) these
functions converge uniformly on honnded sets and the assertion follows.

(c) The statement follows from (a) and (bs).

(d) The continuity of m; is clear. To prove the second assertion we notice
that

1 o
inf Qu(w)== 2(1——).
wer‘Q w) 2f Ait1
lell=p

So it is enough to prove that

1 .
lim = sup / (1 +w)")2 =0.
p—0 p? weHE n(

llwli=p

But this follows

ferors [ @y
Q
{reQfw(x)<—e1 (x)}
< S?||w|*(meas{z € Q| e1(x) + w(x) < 0})P,

for suitable positive p and S. ]

LEMMA 5.2. Leti>1and a > A1. Ifvg € Hy, ||vo|l = 1, and

max Qnr,ﬂ('”) = Qrv.ﬂ('“()) = 01
vEH;
llvli=1

then vy # 0.

PROOF. There exists A € R such that

/(V’UQV’U —avgv+ Puyv) = ,\/ VuyVu Yo € H;.
Q Q

Setting v = vp we obtain A = 0. If y; = 0 then we get S (Ve Vo - avgu) =0
for any v € H; and so a = ;. O

Now the properties stated in Lemma 4.4 follow easily from Lemma 5.1.
In order to study the curves p; we recall that for i > 1 we sct, in Defini-

tion 4.11
Qi1 = sup {/ IV“|2
Q

and for e € Hi}, e # 0,

u € H;, w=1, u > 0}
Q

Lie)={e=cet+v||z]l=1 veH, a>0}

It is useful to introduce the functions ;.
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DEFINITION 5.3. Let: > 1. If a € R and 8 € R we set

ni+1{a, f) = infl max Qq,p(2)
ecHy zeX (e)
lfell=1

(X; (e) is defined in (4.11)).

LEMMA 5.4, Leti > 1.

(a) miv1(e, B) = 1i41(8, @) and 141 (Ait1, Ait1) = 0.

(b) 741 is Lipschitz continuous.

(¢) If @ <A1 or B < A then n41(0, 8) > 0.

(d) In {(e,8) € R? | @ > 0,8 > 0} we have nit1(cr, 8) < 1 and moreover

Ti+1 18 strictly indecreasing with respect to both o and B.
(e) Ifa > 0 then limﬂ_..'.oo 'I'h'+1((¥, ﬁ) = %(1 - a/a,-+1).
(f) g = A and A\ < i < by ’l,f 12> 2.

PRrOOF. (a) The first equality follows from Q4 g(u) = Qp,«(—u). We notice
that if @« = @ and e € H} then MaXg- () Qop = Qa ple) and hence 7:41(a, f) =
Qa s(ei+1), which is equal to 0 if @ = 8 = Ay4-

(b) If e € H, |le]l = 1 and 2 € £ (e) then

—_ " At +132 - —\2
1Qup(2) = Qe (2)] < | “'/n" Y418 BI/Q(Z)
< 5-la-da|V[s- gl
1

Thus for any e € H the function (a, 3} — maxy - ) Qa.p is Lipschitz continuous
with Lipschitz constant 1/A;. The assertion follows.

(c) Indeed, nit1(a; B) 2 Qn,pler/llerll) V Qa,a(—e1/llerll). Soif or < Ay or
8 < A1 we obtain the assertion.

If, for example, a = Xl, from Remark 5.5 we have

Ni+1(A1, B) > Qx, 5 (e1/|lea]]) = O.

(d) If @ > 0 and 3 > 0 we have 7;4+1(a, 3) < 1. Moreover, there exists a se-
quence (un)nen in Hi" such that [jus || = 1 and lim, maxg-(, ) Qa,p = Mi+1(e, B).
If # > B and 2, is a maximum point for Q4 g on X; (u,), since Qqa g (2n) <
maxg-(, ) Qa,5, We can assume that sup, Qa.p(z2) < 1. So, from Lemma
5.6(b), we get [ = inf,, [,(2,)? > 0. On the other hand,

11(2,8) < Qs (2n) = Q) = 506~ ) [ (22
< max Qg — %(ﬂ’ —ﬂ)‘/n(z;)z.

b (us)
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Passing to the limit as n — co we obtain:
1
Ni+1(e, B') < niga (e, B) - 5([1’ = BN < Migalex, B).
(e) First of all we prove that:

lim #41(0,8)= inf max Q,,
B—+oo ecH T7 (e)nK+
llell=1

where K+ = {u € H}(Q)|u(z) > 0 a.e. in Q}. Clearly,

lim Ti+1 (ai 13) 2 inf max Q(n
—+oo ecH; L (e)NK+
llell=1

B

since for any e € H} with ||e/| = 1 we have MaXg— (o)np+ Qu < MaXy -~ () Qa.s-

On the other hand if (3n)ner satisfies lim, 8, = +00 and (2, )nen is the se-
quence of maximum points of Q, g, on I (e), we can assume that lim,, z, = z in
H§ () (because dim H; < 00), 2z € E; (¢) and z € Kt (otherwise lim, Qas, (z0)
= —o00); finally,

Qun(on) = 5 [[(Vanl? = a(eh P = (e ) < [ (900 ~ ),

with ]
lim —/(IVznllz —a22)=Qu(2) £ max Q,.
n 2 Jq S (eNK+
Thus
Him #41(e,8) < inf  max
—+4co

e€H; T (e)NK+
llell=1

B

and so the equality is proved.
Now let us prove that

1
inf max Qa=max{Q.(2)|zeH;nK"*, |z| = 1}(: —(1 . ))
ﬁen‘* =7 (e)NK+ 2 e 7F%]
ell=1

Also in this case it i3 enough to prove the inequality

inf max Q, <max{Q.(z)|ze H;nK*, |z| =1},
e€H} T (e)nK+
llell=1
because the other one follows easily. Let us remark that there exists u* € H}(Q)
such that u + eu* ¢ K+ for any € > 0 and for any v € H; (if n > 2 it is enough
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to choose u* with ess inf u* = —oo, while if n = 1 we take u* = dist(z, Q)"
with 1/2 < vy < 1).

If e* denotes the component of u* on H} normalized in H}(f2) we have

max Q. =max{Q.(2)|z€e ;N KT, |z|| =1}.
7 (e )NK+

(f) The first inequality is trivial. The second one follows since

/\g=sup{/|Vu|2 u € H;, /u2=1}
Q 0
>/ |Vul? Vu € H; with /u2=1and /elu;éO.
Q Q )

On the other hand max{ [, |[Vu|*|u € H;n K*, [, u? =1} < A;, because the
set {u € H;NK*| [, u? =1} is compact and [; e;u > 0 for all u in it. O

REMARK 5.5. If a > 0 (resp. § > 0) then ex/Jler| (resp. —ex/lle) s
strict minimum point of Q, 4 on the sphere § = {u € H}(Q)|||u|| = 1}.
Indeed .
Qayp(4) = Q) + 5(a = ) /,, (w)>.

Moreover, it is known that there exist p, o > 0 such that
2

2
2 €1 €1 . e1
uS/(—) —oflu— —— VuESw1th“u—— <p;
./n a \lledll lleall lleall '
hence )
e1 o €1
Qa(u)ZQn(_)+_ U— 7| -
leall )~ 2 llesl]
Finally, we easily have
(3] ~ne
«rs [ ((5n))
/n llexll
{zeRu(x)<0}
2
< S8%u - II:_IH (meas{z € Q|u(z) < 0})?,
1
with p and S suitable positive constants. So the assertion follows. a

LEMMA 5.6. Leti > 1.
(a) Ife € Hi and z € £] (e) is a mazimum point for Q. g on X (e); then

(o 3(-2)) [ @ 36-2)) [

(b) Ifa,B > 0 then for anye > 0

inf { /ﬂ(z-)2

Qap(z) = zr:rlf?x) Qapy Qap(z) L1—¢, e€ H,-l, lle]| = 1} > 0.
i e
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The same inequality holds with z~ replaced by z*.

PROOF. (a) If 2 is a maximum point of Q, 4 on I (¢) then there exists
A € R such that

/(Vsz —aztv+ Bz v)=A [ V2Vu Vv € H; @ span (z).
Q Q

Setting v = z we obtain A = 2Q, g(z). Setting v = e; we have the inequality,
recalling that

2(1-5) = 9ua(jay) o 2(1-5) = (- o)

(b) Let (€:)nen be a sequence in Hy* with lmen =1 and let (z,),ecn be the
sequence of maximum points for Qa5 on £; (¢€,,). Suppose that lim,, Joz)2=0
and (which is always possible) that lim, z, = z in L2(Q). From (a) and since
infn, Qa,8(2n) > Qa,ple1/|le1]]) by Remark 5.5, it follows that lim,, Jozta =0
and so 2zt = 0. Hence lim,, Jo(zF)? = 0 and then lim,, Q,,. slzn) = L a

Finally, the functions p; (see Lemma 4.11) can be defined in terms of the

functions 7; in the following way.

REMARK 5.7. Let i > 1. Then
Ni+1(,B) <0 & a > aiyr and B> pip(a).

Now the statement of Lemma 4.12 of the previous section follows immediately

from Lemma 5.4.

6. The existence of two and three solutions if 3 < a.
ft separates two linked spheres. f; separates
two pairs of linked spheres in dimensional scale

In this section we will set out some existence theorems for the problem ()
for 1 positive and large enough under assumptions (G, o, /3) with 8 < . As in
Section 4, the technical results and variational abstract statements used in this
section, will be shown in Sections 7 and 8, respectively.

We would like to point out the surprising analogy between the results which
were obtained in Section 4 when 8 > o and the ones which will be shown in this
section when 8 < o. We emphasize that t is positive and large encugh in both
cases.
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DEFINITION 6.1. Let i > 1. Given a,8 € R and p > 0, set

Ni(pasf) = sup {Qu(0) + 3= 5) [ ((er+0)2},
lofi=r

m(a)= i, {Qulw) + 3@ =0) [ (r+w))?),
F;={(e,8) € R?*| 8 < a, 3p; > 0 with Ni(ps, @, f) < ng(e, B)}.

The functions N; and n; have properties (see Lemma 7.1) similar to the ones
of the functions M; and m; defined in Definition 4.3. The following result can

be easily deduced from Lemma 7.1.

LEMMA 6.2. Leti > 1. Then F; is an open set and
{(a,ﬂ) EIR2|,H<a, Ai<a< Ai+1} C F, c {(Ot,ﬂ) €R2|a> A,’}.

Moreover, if (a, B) € F;, then inf,eyz juj=1 Qa,a(w) > 0.

To the regions F; correspond an inequality for the functional f; which can
be shown similarly to (4.6).

LEMMA 6.3 (“saddle™). Leti > 1. Assume (G) and (G,a,f). If (a,B) € F;
then there exist p;,tq > 0 so that if t > i

sup fi(sier +v) < inf fi(sier + w).
vEH; wEH‘.l
[lull=pis:

(p: is in the definition of F;.)

DEFINITION 6.4. Let i > 1. Given e € H;, e # 0 and o € R set
THe)={z=oe+wl|lzll =1, we H}, o >0},

vi(a) = sup {ﬁ €R| sup inf Qup(2) > 0}.
ee;(l].- z€Lt (e)

The functions »; have properties similar to the ones of the functions p; (see
Lemma 4.12). They can be easily deduced from Lemma 7.3 ((e) follows from
Lemma 7.1(by)).

LEMMA 6.5. Leti > 1.

(a) vi(a) € R for any a € R.
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(b) i : R — R is a continuous decreasing function in [\, c0{ such that
vi(Ai) = i, viow; = id and limg_, 4 o vi(a) = —oo0.

(c) Ifi > 2 then v (A1) > A

(d) vi(a) = A1 if At € a < Ay +¢, for suitable £ > 0.

(e) If (a,8) € Fi then B < vi1(a).
Moreover, the following relationship between u; and v; holds. Let Aj-1, Aj and
Ak+1 be three consecutive (possibly multiple) eigenvalues A1 <A = =<
Ak4+1 with k > 7 > 2. Then

(f) w(a) 2 pila) if pi(a) € [Aj-1, Aet] and vi(a) € (A1, Aegs)-

By using a similar argument to that used in Section 4, the curves v; and the
regions F; will allow us to characterize some pairs (o, 3) corresponding to a more
involved “topological behaviour” of f;.

The following result can be proved by reasoning as in Theorem 4.13 and
we deduce that the functional f; “separates two linked spheres” with suitable
bounds.

THEOREM 6.6 (“links and bounds”). Leti > 1. Assume (G) and (G, q, )
with (o, ) € F; and B < vifa). Then there exist 3; > 0, p; > 0 (see the
definition of F;), to > 0 and e € H;, e # 0, such that 5; > pi/(a — A1) and if we
set, for o; > G; and t > ty,

ot ={sie1 + w|w e H}, |lw| < o4t}
U{sies +w+oe|weHE, 020, |[w+oe| = ot}

then the following inequalities hold:
(a) sup fi(sier+v) < g’fft;

vEH; i
lvli=p:se
(b) inf  fi(sier +w+0e) > —co and sup  fi(sie; +v) < +oo.
weH; o >0 veH;
llwtoel| <ot ol <oise

Now this result will be used to obtain both a theorem on existence of two
solutions and of three solutions for the problem (7).

First of all by using Theorems 6.6 and 8.2 and a similar argument to that in
Theorem 4.14, we easily get the following result.

THEOREM 6.7 (existence of two solutions). Assume:

(a) (9), (G), (G,,B) and (P.S.) for the functional f, for t large enough;
(b) @ > A1 end B < vi(a), where Ay is the mazimum eigenvalue strictly
smaller than «.
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Then, for t large enough, the funciional f; has at least two critical values and
hence the problem (P;) has at least two solutions.

We point out that assumptions (a) can be replaced by (2.4) or (2.6).

By Theorem 6.6 we can also obtain a theorem on existence of three solutions
of (P;) for suitable pairs («, 3).

We start by emphasizing an easy consequence of Lemmas 6.2 and 6.5.

REMARK 6.8. Let A;_1, A; and Arq be three consecutive (possibly multiple)
eigenvalues: A\j_; < A\j =...= At < App1 With b 2> 5 > 2.

The set of pairs (o, 8) such that (a,B) € Fr N Fj_; (hence 8 < v(a), by
Lemma 6.5(e)) and 8 < v;_;(a) (that is, (@, §) satisfies the conditions of (6.6)
both for i = k and ¢ = j — 1) is an open and non-empty set. More precisely, for
all 3 < vj_1(A;) there exists 6 > 0 such that JA;, A; + 6] x {8} is contained in
this set.

Now we claim that if (c, 3) satisfies the conditions of Remark 6.8, then the
functional f; exhibits a very interesting behaviour from a “topological” point of
view. It can be shown that, as in Theorem 4.16, the functional f; “separates two

pairs of linked spheres in dimensional scale” and satisfies a suitable lower bound.

THEOREM 6.9 (“links in scale and bounds”). Let Aj_;, A; and Agy1 be three
consecutive (possibly multiple) eigenvalues: A\j_1 < A\j = ... = Ap < Apy1 with
k>3 >2 Assume (G) and (G, o, [3) with (a,f) € F NF; .y and B < v; 1(a)
(see Remark G.8). There exist oy, pr,0j—1,pj—1,t0 > 0 and e € H;_1, e #0,
such that o > pr/a— Ay, 0j_1 > pj_i/a— AL, o < 01 and if we set, for
t 2 to,

2;’_1 ={s;e; +tw|w € Hjl_l, llw]| € oj-1t}
U{sie1 +w+ae|w e Hjl_l, 020, |lw+oe|| =0;_1t},
¢ ={sie1 + w|w € HE, |jw]| < o4t}
U{sier + w+oep |we Hi, 020, ||w+oe = oxt},

then the following inequalities hold:

(a) sup vem;_, fi(sie1+v) < Elff ft £sup uen, fi(sier+v) < izﬂfft;
k

lvll=p;—15¢ 31 [lvll=p st
(b) inf wEH_,J-'_l ft(stel + ’lL’) > —00.
fwll<pj—12:
The proof is similar to the one of Theorem 4.16.
Finally, by means of Theorems 8.4 and 6.9 we are able to establish the fol-

lowing theorem.
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THEOREM 6.10 (existence of three solutions). Assume:
(a) (9), (@), (G,a, B) and (P.S.) for the functional f, for t large enough;
(b) (a,8) € FrNF;_1 and B < v;_i(c), where Aj_y, A; and Apy1 are three
consecutive (possibly multiple) eigenvalues: \j_; < A\j = ... = A <
Ary1 with k > j > 2 (see Remark 6.8).
Then, for t large enough, the functional f; has at least three critical values and
hence the problem (P,) has at least three solutions.

Also in this case assumptions (a) can be replaced by (2.4) or (2.6).

REMARK 6.11. As in Remark 4.18, we point out that if A;,., ..., Ai, and
Aiy41 are h+1 consecutive eigenvalues and if (, 8) € F;,N.. .NF,, and 3 < v, ()
then the functional f; “separates h pairs of linked spheres in dimensional scale”.
In this case (see Remark 8.5) if ¢ is large enough then f; has h 4 1 critical values
and hence the problem (/%) has A + 1 solutions.

Also in this case the following problem arises: do there exist any pairs (a, 3)

with that property?

7. Some technical lemmas for a > 3

In order to prove Lemma 6.2 we need the following lemma (whose proof is

similar to the one of Lemma 5.1).

LLEMMA 7.1. Leti > 1.
(a) If B < a £ Ait1 then ni(o, 8) = 0.
(b) Ifa > g then:
(b1) ni(e, 8) > —00 & infeq, juj=1 Qea(w) > 0;
(b2) if ni(a, B) > —oo then n; is a continuous function at (o, 3).
(c) In particular, if B < Aiy1 then n; is continuous af (A\41.3) (and
ni(Aiy1, 8) = 0).
(d) N; is a continuous function and

. Ni(p)aaﬁ) _ 1 @
gl—% p? 2 ! i)

In order to prove Lemma 6.2 we need the following definition and lemma.

DEFINITION 7.2. Let ¢ > 1. For a, 3 € R we set

0-,'((!,,3) = 8sup inf Qn.ﬂ(z)‘
i st
ell=

(Zf is defined in Definition 6.4.)
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LEMMA 7.3. Leti>1.

(a) 6i(a, B) = 6:(B, @) and 6;(\;, ;) = 0.

(b) 0; is Lipschitz continuous.

(c) limg_,o0 0i(e, B) = —00 and limg_,_ 0i(ar, B) = 1 for any a € R.

(d) Ifi > 2 then 8;(\ip1, A1) > O.

() 0; is decreasing with respect to both o and (3; moreover, in {(a,f) €

R?|6:(a, ) = 0, \; < @} 0; is strictly decreasing with respect to S.
(f) If My < o < Ay + € for suitable € > 0, then 8;(a, A\;) = 0.

PROOF. (a) and (b): These are trivial (and analogous) to (a) and (b) of
Lemma 5.4.

(c) Note that 8;(e, 8) < Qa.a(€i+1) and e;"+1 # 0; s0 limg_, o 0;{ax, B) = —o00.
For the other limit, we observe that

N inf Qas < 0i(a, 8) < infl Qa,s(w).
zH(-e1/lesll) weH;

Ifoll=1
We have
lim inf Qaps=1 and lim inf Qup(w)=1.
Bo—comt(—e1/llesl)) A——o0 weH}
lwli=1

Indeed, first of all we note that i“fz,.*(—e,/ue,u) Qo5 < 1, since in H;" there exist
functions with Hj(2)-norm equal to 1 and L?(Q)-norm as small as we want.

Now let (8,)nen be such that lim, 8, = —00 and (uy)nen be a sequence in
£ (—e1/ller]])). If liminf, fn(u;)2 > 0, then lim, Qq.4, (un) = +oo. Otherwise
we can suppose that liminf, [,(u;)? = 0, and since £} (—e;/||e1|) does not
contain positive functions, lim, u,, = 0 in L?(Q) and so liminf, Qa g, (un) > 1.
Finally,

lim inf Qap=1.
B——oo st (e, /|lell) P

The proof of the other limit is analogous.

(d) We have to verify that if @ = A\;;; and @ = )} then there exists e € H;,
e # 0, such that i“fz'f(e) Rap > 0.

If 6 > 0, w € Hif and e € H;, e # 0, then we can easily verify that for any
e >0,

Qusloe-+u) 2 Qup(w) +0°Qu(e) = 5(a =) [ (2oetu* + (et

2 Qaslw) - (o= A)e* [ w?

Q

rat(@pte) - a-m(1+ %) [9?).
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Now if € is small enough there exists c(a, 8) > 0 such that
1
Qusw) = 5(a=B)e* [ w? 2 (e, )l
Q

since @ = A;4; and @ < « (see Lemma 6.2).
On the other hand for suitable ¢ > 0,

2

QM (e) Z qle

el 1|I

(the quadratic form @y, has —e; /||e1|| as an eigenfunction corresponding to the
minimum eigenvalue).
So, it is easy to verify that

2
€1
fers (e+——)
e
@ {z€ | e(z)>0} “ l"

< Se+ —— e(z) > 0})7,

€1
Tleall
with p and S suitable positive constants. Hence if ||e+ e, /||e1]| is small enough,
then for =X, anda >3

1 1
d(a,ﬂ) = Qg(e) - E(a — ﬂ) (1 + Ez—) /n(g+)2 > (.
Finally, if @ = A;+1 and 8 = Aq, then we still have
Qap(oe +w) > cla, Allw]? + d(a, Alo*  with c(ax. 6), d(a, §) > 0

The assertion follows.

(d) The weak monotonicity of §; with respect to oo and 3 is obvious. Now
let & and § satisfy A; < o and 6;(a,3) = 0 and let @ > 5. Since the function
e — infzz-( e) Qa,p is continuous in H;, there exists eg € H;, ||eg|| = 1, such that
infot ) Qap = bia, 3.

If mf2+(e )Qa 8" < 0, the statement is proved. If mf,3+(e yQa,a = 0, there
exists zo € I7 (eg) such that Qq s(20) = 0, since we have mfv+(e ) @a,s = 0.
Hence there exists A € R such that

/(VzOV'w —azdw+ Bz w) = /\/ VzVw  Vw € H @ span(z).
Q Q

Setting w = 29 we obtain A = 0. If 25 = 0 then we get Jo(Vz2Vw — azqw) =0
for any w € Hi* @ span(z;). Hence we deduce that zp € H;, and so 29 = ep.
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Moreover, a < a;41 since [(|Vz|? — azf) = 0. Finally, if & > A; then z5 # 0
and so

E-}-sz Qa Nl < Qnt ﬁ’(zo) < Qa,ﬂ(zﬂ) =0.
0

If 3’ < B then it is enough to interchange 4’ and 3 in the previous inequality.
(f) If 8= A1 and « > Ay then #;(a, A1) < 0, since Qa,x, (€1/]e1]) < 0 and
Qo (—er/[lea]) < 0.

Let us prove that for suitable e > 0

inf Q,,,‘,\l =0 if A <a< i +e.
sH(—er/lleall)

If 0 > 0 and w € H} then
Qa,A (—a—+w) =0 Q)\ ( )+QOA
7 el '\ Tl ()

+l(a—/\ )/ ((w+)2— ((——ae—1+w)+)2)
2 Y Ja lel]

2 C;.)ru./\l (“J)
1 2 2 1 —\2

== | (IVu|]* —aw*) + —(a - X)) [ (w™)2
2 Jq 2 Q

Now it is easy to verify that for 6,k > 0 we get
c=inf{/(w-)2|nwu =1, we HE, Qupw) <14, |a| + 1] < k} >0
Q

because if w € H then w™ # 0. So

1
Qn,)‘]( +m) > —(1— i—!—(oz—/\l)c)“w”z.
” 1|| A2

This proves the assertion.
(e) The assertion follows by Lemma 7.4. O

Finally, the functions v; (see Lemma 6.5) can be defined in terms of the
functions 6; in the following way.

REMARK 7.4. Let i > 1. Then
Oi(a,ﬂ) >0 08< u,-(a).
Now the statement of Lemma 6.5 follows immediately from Lemma 7.3.

The following lemma is useful in order to understand the link between our
curves p; and v; and the curves introduced in [16], [19] and [28]. More precisely,
let A\j_1, A; and Mgy be three eigenvalues: Aj—1 < Aj <. € A < Agqq with
k > j > 2. Then in the square [A;_1, Ax41]? the curves i; and v, coincide with
the ones examined in [19] and [28]. Moreover, the curve us, coincides with the

one considered in [16].
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LEMMA 7.5. Let Aj_1, Aj and A4 be three eigenvalues: Aj_; < ); <... <
A < Mipr with k 2 3 2 2. Assume (a,8) € |1, A [, Set

M(a, B) = {u € Hy(2)| Q4 5(t)(v) =0 Vv € H;_1},
N(a, B) = {u € Hy(Q) | Qo p(u)(w) =0 Vw € Hy},
Z(a, ) = {u € Hy(2) | Qo p(u)(2) =0 Vz € H;_1 & Hy ).

It is known that M(a, 3), N'(a, B) and Z(a, B) are manifolds in H}(Q). More-
over:
(a) Yu € HY(Q) I1v € Hj_; such that u+v € M(n, 3),
u € M(a, ) @ Qa,p(u) > Qup(u+v)VveH;_y;
(b) Yu € H}(Q) J1w € Hi such that u+ w € N(a, ).
©€N(a,f) & Qap(u) < Qaplu+w)Vwe Hi;
(c) Yu € HY(R) 31z € Hj_; such that u+ z € Z(a, B);
(d) ue Z(a,8) =>ut #0and u= #0;
(e) B < pj(a) & Qa,p(u) >0 Vu € M(a, §) \ {0}
& Qa,g(u) > 0 Vu € Z(a,8) \ {0};
(f) B> vi(a) ¢ Qa,p(u) <0 Vu € N(a, B) \ {0}
& Qa,p(u) <0 Vue Z(a,8)\ {0}.
(8) B <ipj(e) = (a,P) ¢ Ta (see (2.2));
B > vip(a) = (o, 8) ¢ Zq (see (2.2));
(h) (e, pj(a)) € Zg and (o, vi(@)) € Zq.

PROOF. (a), (b) and (c) follow by definition of M, A and Z (see for example
[29] and [28]).

To prove (d) it is enough to observe that if z € Z(a, ) then Az+azt -3z €
span(e;, .. .,ex); so, by contradiction, if z > 0 then z € span(e;,...,ex), which
is absurd.

Now we show (e). The second equivalence follows by (a) and (c). Moreover,
it is easy to verify, by using the definition of x; and (a), that if Q. 5(u) > 0 for
all u € M(a, 8) \ {0}, then B < p;(a). By the definition of y; and (a), it also
easily follows that if 8 < ;(a) then Q. g(u) > 0, for all ©w € M(c, 3)\ {0}, that
is, Qa,s(u) > 0 for all w € Z(a,B) \ {0} . The assertion follows from the fact
that if ' < B then Qu g(u) > 0, u # 0 for all u € Z(, ') \ {0}. (This is an
easy consequence of the strict convexity of Qaps on H;\,L and its strict concavity
on H;_;.)

The proof of (f) is similar to that of (e).

We show (g). If, for example, 8 < p;(a), then Q. 4(u) > 0 for all v €
M(a,B) \ {0} by (e). On the other hand, if (o,3) € Zq, then there exists
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u € Hj(Q), u # 0, such that Au + aut — fu~ = 0, hence u € M(a, 8), and
Qa,p(u) = 0. So we get a contradiction.
We show (h). If, for example, 3 = vi(a), then

0= "rrel"*;;): Qa,p(z +v(2))
z|l=1

(we recall that N(a, f) is the graph of a map + : Hy — H{). Therefore there
exists 20 € Hx, z0 # 0, such that Q, 5(z0 + ¥(20))(2) = A [, V2o Vz for all
z € Hy and ug = zg + v(z0) € N(a, B) \ {0}. Then Aug + aug' — fug =0 and
the assertion follows.

8. The variational setting

In this section we present some abstract variational theorems, from which we
have obtained the existence theorems in Sections 3, 4 and 6. Theorems 8.1 and
8.2 have already been introduced in [29)].

The existence Theorem 3.5 is based on the fact that the hypothesis on the
functional f; implies that f, “separates two splitting spheres in a symmetrical

way” (as is proved in Theorem 3.3) and on the following theorem.

THEOREM 8.1 (“splitting spheres”). Let X be a Hilbert space which is the
topological direct sum of subspaces X, and Xa. Let F € CY(X,R). Moreover,
suppose that there exist py, py > 0 such that

sup F(u)<a= inf F(u)<b= sup F(u)< in){ F(u).

ueX, u€Xs weX; u€EXg
leli=p1 Il <p2 lx] <py llull=p2

If (P.S.). holds for any c € [a,b] and at least one of the two spaces X; and X3 has
finite dimension, then there erists at least one critical point ug for the functional
F such that a < F(ug) <b.

PROOF. We set B; = {u € X;|||u|| < p;} and we denote by 8B; the bound-
ary of B; in X; for i = 1,2. We assume that dim X; < co.

By contradiction suppose that every ¢ with a = infg, F < ¢ < supg, F =
is a regular value. Then by the deformation lemma the set F°~¢ is a strong
deformation retract of F® for £ small enough; hence there exists a deformation
n:[0,1] x F® — F® such that

7(0,u) = u Yu € F?,
n(t,u) =u vVt e [0,1], Yu € F*~°F,
n(l,u) € F°° Yu € FP.
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Since By C F® we have (1, B;) C F% ¢. On the other hand, from the as-
sumptions, B, N F%~¢ = @, and so n(1, B;) N B; = §. Now we will get the
contradiction by showing n(1, B1) N B2 # . We consider the continuous map
¢ :[0,1] x By — R* x X; defined by ¢(t,u) = (| Pan(t, )|/ p2. Pin(t, u)), where
P, and P are the orthogonal projections of X onto X; and X, respectively.

By the assumptions and the properties of 1 we easily see that

¢(0au) = (0,u) Vu € By,
o(t,u) = (0,u) vt € [0,1], Yu € 9By,
(1,0) ¢ Im(g), because 3B, N F* = §.

Thus there exist o € [0,1] and v € B; such that ¢(1,u) = (5,0). In fact, by
the properties of ¢, the homotopy @ : [0,1] x [-1,1] x B; — R x X, defined by
®(t, s,u) = ¢(t,u)+(s,0) is such that $(0, -) is the identity and (0,0) ¢ ®(]0, 1] x
d([—1,1] x B1)); hence, by homotopy invariance, we obtain deg(®(1,-),[-1,1} x
B1,(0,0)) = 1 and thus there exist ¢ € [0,1] and u € B; such that ¢(1,u) =
(o,0).

Finally, this fact implies that there exists u € By such that n(1,u) € B; and
this concludes the proof. a

We remark that, as usual, the hypothesis of finite dimension for one subspace
can be replaced by a suitable hypothesis on VF'.

Theorem 4.14 in the case a < (# and Theorem 6.7 in the case 3 < o provide
the existence of at least two critical points for the functional f;. These theorems
are based on the fact that f, “separates two linked spheres with suitable bounds”
(see Theorems 4.13 and 6.6) and on the following theorem.

THEOREM 8.2 (“links and bounds™). Let X be a Hilbert space which is the
topological direct sum of subspaces X; and Xo. Let F € C'(X,R). Moreover,
suppose that there exist e € X1, e # 0, and p1, p2 > 0 such that

(a) lp2 — 1| < lell < p2 + o1,

(b) supyp, F < infsp, F,

(c) —oo < a=infp, F and b= supy, F < oo,
where By denotes the ball in X, centered at 0 with radius p1, 0B, is its boundary
in X1 and By denotes the ball in Xo @ span(e) centered at e with radius p; and
0By is its boundary in Xy @ span(e). If (P.S.). holds for any ¢ € [a,b] and at
least one of the two spaces X, and X5 has finite dimension, then there erist at
least two critical levels ¢, and ¢y for the functional F such that

inf F<ecy<supF < inf F<¢; <supkF.
B, 331 832 B,
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PROOF. We assume that dim X; < oco. The existence of ¢; follows by the
classical linking theorem (see [36]).

We are going to show the existence of the critical value ¢3. By contradiction
suppose that every ¢ between a’ = sup,p F and a = infp, F is a regular value.
Then F? ¢ is a strong deformation retract of F* for ¢ small enough by means
of the deformation #: [0,1] x F* — F’ such that

7(0,u) =u Yu e F®,
n(tu) =u Vi€ [0,1], Vu € Fo ¢,
n(l,u) € F*~¢ Vu e Fe.

Since B, C F*' and By N F7~¢ = ), we have 7(1,8B1) N Bz = 0. We will get
the contradiction by showing 5(1,88;) N By # 0.

Let P : X — span(e) ¢ X, and @ : X — X* be the orthogonal projections,
where X* is such that X; = X* @ span(e). Let ¢ : [0,1] x 8B; — H, be a
continuous map defined by ¢(f,u) = Qn(t,u) + |Py(t,u) — e|le/|le||. First of
all pse/|le|| ¢ Tm(¢). Otherwise we will find 5(t,u) € OB, with v € 8By and
t € [0,1], while (b) implies 9B, N F*' = 0.

Consider now the continuous map @ : [0,1] x 8B; — S defined by ®(t,u) =
nd(t,u), where S = B(pse/|le||,1)NH; and 7 : Hy \ {p2€/|lel|} — S is the radial
projection. By well known properties of degree, we get deg(®(0,-)) # 0, since if
w € span(e) NS, by (a) there exists a unique v € B, such that $(0,u) = w. By
the homotopy invariance property, if deg(®(0,-)) # 0 then deg(®(1,-)) # 0 and
therefore ®(1,0B,) = §. Thus there exists v € 8B such that ¢(1,u) = ge/|le|
with ¢ < py and hence (1, u) € B,. This completes the proof. O

In order to compare this theorem and the classical result of Rabinowitz (see
[36]), suppose (to fix ideas) that dim X; < oo. Then the classical linking theorem
gives the existence of the critical level ¢y, but not of ¢5.

Also in the case of Theorem 8.2 we can remark that the assumption that X,
or X3 has finite dimension can be replaced by a suitable assumption on VF.

Finally, let us remark that in Theorem 4.13 the sphere 8B, is replaced by
Y, and in Theorem 6.6 the sphere B, is replaced by E,?L . It is obvious that
this modification does not change the assertion of Theorem 8.2.

The theorems on existence of three solutions (4.7) and Theorem 6.10 are
based on Theorems 4.16 and 6.9 and on the following abstract variational the-
orem, where a functional that “separates pairs of spheres in dimensional scale”
with suitable bounds is considered.

It is useful to make the following definition.
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DEFINITION 8.3. Let X be a Hilbert space, Y a subspace, p >> Oend e € X\Y,
e #0. Set
Bu(Y) ={z € Y| |lalix < s},
8,(Y) = {x € Y| |lzllx = o},
Ap(e,Y)={z=0e+v]0 20, ve Y, [loe+ullx < p},
Eo(e,Y)={z=0e+v]|c>0, veEY, |oe+v|x = p}
Ufvlve, flvfx < p}.

THEOREM 8.4 (“links in scale and bounds”). Let X be a Hilbert space which
is the topological direct sum of four subspaces Xo, Xy, Xy and Xy. Let F e
CY(X,R). Moreover, assume that
(a) dim X; < oo fori=0,1,2;
(b) there ezist p, R > 0 and e € Xy, e # 0, such that

p<R and sup F< inf F (first link);
S (Xo®X18X2) Zr(eXs3)

(c) there exist p', R’ > 0 and ¢’ € X3, € # 0, such that

p <R and sup F< F  (second link);

inf
8! (Xo®X1) Th(e"X28X3)

(d) R< R’ (he'n.ce = AR(B, X3) C E'R(e',Xg (37 X:})),‘
(e) —co<a= infay (e,x,0%5) F (lower bound);
(f) (P.S.). holds for any c € [a,b], where b = SUPp, (Xo1iX 1 Xa) F-

Then there exist three critical levels ¢, c; and c3 for the functional F such that

a3 sup F< inf F< inf F
5, (Xo®X1) Tg(e,X29Xs) Ag(e,Xs)
S s sup F< _inf F<e <b
Sp(Xo®X 10X2) BrleXy)

PROOF. From (a), (b), (e) and (f) using Theorem 8.2, substituting S,(Xo &
X1 @ X3) for the sphere dB; and Lg(e,X3) for the sphere 3B, we obtain the
existence of critical values c; and ¢2 of F such that

inf F<eg< sup F< inf F<eg< sup F.
AR(e:x.’!) SP(XU$xl®Xg) ER(G,X3) Bp(XIJ:DXIG‘xZ)

From (a), (c), (e) and (f) using Theorem S.é, substituting S7,(Xo & X,) for 4B,
and Xy (€', X2 @ X3) for B3 we obtain the existence of critical values ¢, and ©g
of F such that

inf F<g < sup Fc inf F<g< sup F
AL (e, X29Xa) 57 (Xo®X,) Zh(e' X2®Xs) B!(X20X3)



330 A. MARINO — A. M. MICHELETTI — A. PIsTOIA
By hypothesis (d) it follows that

inf F< inf F,
e/ Xa@X,) AR(e,X3)

and the assertion follows. |

REMARK 8.5. Of course we can consider a dimensional scale of h pairs
of linked spheres S; and X; separated by F (that is, supg, F < infx, F') with
dim S;41 < dim S; < 0o for i = 1,... , h, with A; C ;41 (where A; is the con-
vex generated by X;) and with —oo < infa, F. If F satisfies the Palais-Smale

condition, then F has at least h + | critical values.

Finally, we point out that in Theorem 4.17 the notations S; and X; are

interchanged.

9. The existence of four solutions and some other results

We are able to draw a “submap” of the map of the Introduction, which also

implies an “alternative theorem”.

REMARK 9.1. We recall that in [23], [24] and [8] some regions of the (a, §)
plane, to which at least three solutions of (P,) for ¢ large enough correspond, are
shown. In substance they show that if A;_1, A; and Agy; are three consecutive
(possibly multiple) eigenvalues A\j_1 < Aj = ... = A < Mgy with k > j > 2
and either (o, 8) € | Ak, Apa[ X JAj -1, Aj[ with 8 < pj(e) or (o, B) € A1, Aj %
1Ak, Ak41[ with 8 > vi(a), under suitable conditions on g, then the problem (P,)
has at least three solutions if ¢ is large enough. (In these cases the nonlinearity
g does not depend on = and a bound of (g(s1) — g(s2))/(s1 — s2) with respect
to the eigenvalues A;j_; and Agy; is required.)

A different statement was proved in [29].

THEOREM 9.2. Let j > 2 and Ajo1 < Aj. Assume (g), (G) and:
(a) there exists k > 0 such that

G(z,s) = %(s“L)2 + g(s_)2 + Go(z, 8)

a.e. in Q and for |s| > k, where |Go(z, s)| < co(z) with g € L1(Q);
moreover, a > A; and A\j_y < § < pj(a);
(b) there exist 3 and v such that

(2.81) —9(@,83)

Aj-1 <p<?
81 — S92

a.e. in §), and for any 1. 3z with 8; # s3.
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8
3
A e
k+1 i
Vi \
A=A &
i<k N\ Ky
A_-,'..[ 3 ey
3N
N
RN
s B>
0 )\1 Ag /\1_1 A_,‘:/\k Ak+| 44
i<k

Then, for t large enough, the functional f; has at least two critical values and at

least three critical points, so the problem (I;) has at least three solutions.

PROOF. By (b) the set
M(f:) = {u € Hy(Q)| f;(u)(v) = 0 Vv € H,}

is the graph of a Lipschitz function v, : H} — Hj.
By Lemma 7.5 we see that Qq,ps(u) > 0 for u € M(a,B) \ {0}, hence we
obtain easily
li = 00.
weim | fi(u) = oo

flull—oc

Thus infM(_f‘) fi > —o0.
Now let i > j be such that A\; < a < ;1. By Lemma 6.3 we can easily
deduce that for ¢ positive and large enough,

sup fy < inf f,
Spft M+(ft)f'

where
8 = {u+ () |u € span(e,..., &), [lull = p}

and
M+(ft) = M(ft) n (HJ (2] Hzl)
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Finally, it is obvious that f; restricted to the manifold M(f,) satisfies (P.S.) (see
Lemma 7.5).

Thus we get the existence of two critical points, which are at levels less than
supg fi, since S is not contractible in M(f;) \ M*(f;). Morcover, there is also
a critical level greater than supg f,, since the functional f; restricted to M(fy)

has a “saddle” point (see Lemma 6.3). a

A similar tool was used in [32].
The previous theorem ensures the existence of three solutions when o > 3.

Of course a similar result holds when a < 3.

REMARK 9.3. We point out that in the three solutions region {(a, 8)|A; <
a, Aj—1 < B < pj(e)} it is possible to find pairs (o, 3) such that many eigenvalues
fall between o and 3. This is true, for example, for the unbounded region
{(a,B)| A1 < @, Ay < B < pa(a)}. An analogous statement holds for the
function vy if Ay < Ag41. This type of result was obtained in [34], where weaker
assumptions than (b) of Theorem 9.2 are required.

Theorem 9.2 and the theorems on existence of one solution (see Theorem 3.6)
and of two solutions (see Theorems 4.14 and 6.7) allow us to give the following
version of the “alternative theorem”, recalled in the introduction, without the
assumption (o, 8) € Zqa.

To this end we introduce an exceptional one-dimensional subset of the (a, 3)

plane. For any eigenvalue A; such that Ay < Agyq, with k£ > 2, we set
Ny = {(a, ) € R?| B = vi(a) < A1, @ < Mg}

and for any eigenvalue A; such that A\;_; < A;, with j > 2
M = {(a,8) e R*[Aj-1 £ B =p;(a), a2 X1}

Finally, we set
Ta = (U]\Q)U(UN,“)
jz22 k22
COROLLARY 9.4. Assume (2.6) with a,8 > M\ and (a,8) € Tq. Moreover,
assume that there ezist @ and 3 such that a.e. in Q and for any sy, sy with

81 # 82

(95) Aj—l < E < g(:r,s:) —i(za 52) <a< Ak—f—l,
81 — 52

where Aj_; = max{A;|a,8 > A} and Agy1 = min{A; |, 8 < X\;}. Then the
following alternative holds for the equation (P,): either (P,) has at least two
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i)

h] Al Ag r\j...] A_«,‘:Ak Ak+1 @
i<k

The “alternative map”

solutions for t large positive and t small negative, or (P;) has at least one solution
for t large positive and three solutions for t small negative, or (P;) has at least

three solutions for t large positive and one solution for t small negative.

PRrRoOOF. The assertion follows from Theorem 9.2 by replacing the function
g(:,s), when s is negative and small enough, with the function —g(-, —s). il

We emphasize that assumption (9.5) is stronger than necessary and it can
be dropped or reduced with regard to the pair (o, 3). More precisely, if, for
example, Ay < a < Agy1 and vi(a) < B < A; then it is enough to assume the

inequality

g9(z,81) — g(z,82)
81 — 82 -
Moreover, if the pair (a, 8) does not belong to any “curvilinear triangle”, like

those considered in Theorem 9.2, then Theorem 9.5 can be removed.

a < Ak+1.

Now we will give a theorem on existence of four critical points for the func-
tional f;. In order to simplify the notation, we make the following definition.

DEFINITION 9.6. If A;_1, A; and Axy1 are three consecutive (possibly mul-
tiple) eigenvalues: Aj_1 < A\j =...= Ax < Agqq with k > j > 2 then we set (see
Theorem 6.10)

Rii = {(a,B) € R? |1 < B < pa(e), (@, B) € Fj—1N Fie, B < vj-a(a)}.
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THEOREM 9.7 (existence of four solutions). Let Aj_1, A; and Mgty be three
consecutive (possibly multiple) eigenvalues: Aj_1 < A\j = ... = A < Apt1 with
k>j=>2. Assume:

(a) (g9) and (G, a,B) with (o, B) € Rjk;
(b) there ezist B and vy such that a.e. in Q and for any sy, s, with 8; # 89

a <F< o) =slme)
81 — 82

Then there ezists an open bounded subset ﬁ-,k contained in R; ) such that if
(a, B) € I—i,-,k and if t is large enough, then the functional f, has at least three
critical values and at least four critical points, hence the problem (P,) has at least

four solutions.

More precisely, we will show that the region .ﬁj,k is like the dark one sketched
in the figure in the Introduction. Indeed, we will observe that

(9.8) {for each 3 € |A1, u2(A)| there exists § > 0 such that

if o€ )Ak, A+ 6] then (o, 8) € Rjp.

ProOOF. By (b) the set
M(fe) = {u € H5(Q) | fi(u)(v) =0 Vv € Hy}

is the graph of a Lipschitz function v, : Hi- — H;. By Lemma 7.5 we find that
Qa,p(u) > 0 for u € M(e, B) \ {0}, hence by Lemma 9.12 we have

I = +o0.
uehiry 7108 = +o0

[l —o00

Thus inf rq(y,) fi > —o0. Hence f; has a minimum point on M(f;). On the other
hand, by Theorems 6.10 and 8.4, if ¢ is large enough f; has three critical values
c1, ¢z and c3; more precisely, there exist p;_1, pr > 0, E;—1 and E: (see notation
in Theorem 6.10) such that

c3<  sup fi(sier +2) < i1+1f fi < inf fi <eg
z€H; -1 AL
llzll=pj-15¢
< sup fi(ster +v) <inf fy < ¢
veHy, =f
Hvll=pxa:
< sup fi(sier +0),

vEH,
llell<prse
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where
A} ={oe+w|weH, 020, |joe+w| <ok}

(2;L is its boundary). Moreover, it is trivial that f; restricted to the manifold
M(f.) satisfies (P.S.) (see Lemma 7.5). Finally, by Lemma 9.9, if («, 8) belongs
to a suitable set B; x (Rjx = Aj_1,5N Rjx, see (9.9) and (9.6)) then there exists
p > 0 such that

sup fi < inf fi(se1 +w) < inf ,
5(p) ' weHj:, ule ) M(f!)n(H1®H;‘_l)ft

where S(p) = {2 +m(2) |z € H, |1zl = p}-
Now by using Lemma 6.6 and taking into account (o, 8) € Fj_; and 8 <

v;(a) we obtain inequalities

sup f; < inf f; < es.
5(p) 2

Finally, thére exist two critical points which are at level less than Supg(,) fts
since S(p) is not contractible in M(f) \ (Hy & Hy-,). O

LEMMA 9.9. There exists an open subset A;_1 . contained in F;_; N F} such
that if (o, ) € Aj_1,x then there exists p > 0 so that

sup f; < inf  fi(sie; + w),
S(p) 'mell;il__1

where
S(p) = {z +m(2) |z € HY, |l2ll = p}.

Proor. By definition of ; we get

fi(w +n(w)) 2 fi(w + sie1) 2 w‘si]r{lﬁ Ji(ster +w).

-1

Moreover, by the definition of n;_; (see Definition 6.1), arguing as in Lemmas
4.5 and 6.3, we see that for any € > 0 there exist d. and p such that

(9.10) inf  fi(sger + w) > fi(seer) + s2(nj—1(a, B) — 3eAs — 2ep?) — de.

wWE HJJ.'_ N

Moreover, since the Lipschitz constant L of v; does not depend on £ and

[|7:(0) — sexll < pj-18¢
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(pj—1 is defined for F;._;, see Definition 6.1), if ||u]| = pj_18; then
P?—ls? < flu+ ye(u) — sees |® < (2L% + 3).0?—133-

Now if v = u+ v (u) — s,€1, then arguing as in Lemmas 4.5 and 6.3, we see that

for any € > 0 there exists d; such that
2
) +ae
where

Nj-1(p,a, f) = JSup {Qa(v)+%(a—ﬂ)L((e1+v)—)2}_
p<Ilvl< VL)

(9.11) ft(stel + 'U) - ft(stC]) < .S‘tz (ﬁj_l(pj_l,a,ﬂ) + 3€A1 + 2¢ 82
t

Now we define the set
Aj—l,k = {(avﬂ) e R2|ﬂ <a HP > 0 with ﬁj—l(P: @, ,B) < nj—l(ayﬁ)}'
By the properties of n;_; (see Lemma 7.1) and by the fact that

. ﬁj—l(p,’\jaﬂ) __l ’\j
Fl’l—l»l}l > T2 1 Aj-1 <0,

arguing as in Lemma 6.2 we find that A;_; ; is an open set with the property
(9.8).

Finally, if (o, 8) € Aj_1,x we can choose £ small enough so that the coefficient
of s? in (9.11) is less than the one in (9.10). Therefore if t is large enough, the

assertion follows. 0

LEMMA 9.12. Ifa > A and A\ < B < ua(a) then

lim = 400
wezy Fv) ’
llul]—oo0

where

M(f:) = {u € Hy(Q)| fi(u)(v) =0 Vv € Hy}.
PROOF. Let us recall that the manifold (see Lemma 7.5)
M((a, ) = {u € Hy(Q) | Q4,p(u)(v) = 0 Vv € Hy},

is the graph of a Lipschitz function ~ : H{f — H;. By definition of ; we get

Folz + 1(2) 2 fulz +1(2)) = Quplz +7(2)) - /n Golz,u) + 1t fn e17(2).
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By Lemma 4.1, since v is Lipschitz, it is enough to show that

lim w)_} > 0.
it 111> '

Arguing by contradiction and taking into account that (see Lemma 7.5)

Qo,(u) >0 for any u € M(a, )\ {0},

we can easily obtain the assertion. O
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