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GEOSTROPHIC ASYMPTOTICS OF THE
PRIMITIVE EQUATIONS OF THE ATMOSPHERE
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Dedicated to Jean Leray

Introduction

The various components of the motion and state of the atmosphere are gov-
erned by the general thermodynamic and hydrodynamic equations of a com-
pressible fluid. Thanks to the fact that the vertical scale of the atmosphere is
much smaller than the horizontal one, the vertical momentum equation of the
atmosphere can be well approximated by the hydrostatic equation. The result-
ing system is called the primitive equations of the atmosphere (the PEs). By
retaining in the vertical momemtum equation the viscosity terms, one can also
obtain the primitive equations with vertical viscosity (the PEV2s) of the atmo-
sphere. These systems of equations are now considered to be the fundamental
equations of the atmosphere and serve as starting points of dynamic meteorol-
ogy and climatology. The mathematical and theoretical numerical analysis of
these equations have been conducted in our previous articles (see J.-L. Lions,
R. Temam and S. Wang [24] and S. Wang [39)).

Another important characteristic of the atmosphere is the rutating effect of
the earth. The rotation of the earth introduces an apparent force into the equa-

tions of the atmosphere, i.e. the Coriolis force. The Coriolis force or acceleration
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is important for motion whose period is not very short as compared to the ref-
erence temporal scale of the order of one day. By scale analysis, for the motion
with large horizontal spatial scale and with temporal scale comparable with the
reference temporal scale, we can see that the dominant terms in the horizontal
momentum equations are generally the pressure gradient and the Coriolis terms.
Reducing the general hydrodynamic momentum equations to include only these

terms and the hydrostatic equation mentioned before, we obtain the following:
1
(0.1) 2Qcosfk x v + ;Vp =0,

where v is the horizontal velocity of the air, p the pressure, p the density, §2 the
angular velocity of the earth, # the colalitude, z is the height above the sea level,
and V is the horizontal gradient. Equations (0.1) are termed the geostrophic
wind relations, the geostrophic wind being the hypothetical wind resulting from
a perfect balance between the Coriolis and pressure gradient forces.

The emphasis on the importance of the rotation effects of the earth and their
study should be traced back to the work of Laplace [17] in the eighteenth century.
He recognized the importance of rotation in his theory of the tides and developed
the appropriate equations, describing the rotation effects. However, the question
of how a fluid adjusts in a uniformly rotating system was not completely dis-
cussed until the time of Rossby (1938), when Rossby considered the process of
adjustment to the geostrophic equilibrium. This process is now referred to as the
Rossby adjustment. Roughly speaking the Rossby adjustment process explains
why the atmosphere and ocean are always close to geostrophic equilibrium, for
if any force tries to upset such an equilibrium, the gravitational restoring force

quickly restores a near geostrophic equilibrium.

The main objective of this article is to justify from the mathematical stand-
point the Rosshy adjustment, and to obtain a systematic asymptotic analysis re-
lated to the Rossby adjustment process, leading to the quasi-geostrophic equations.
The quasi-geostrophic equations (abbreviated as QGs) were first introduced by
J. Charney [4].

In this article, we intend to derive and study the Geostrophic and Quasi-
geostrophic equations. The derivation is made by asymptotic analysis from the
PEs equations, first in a formal way in Section 2, then in a more rigorous, albeit
not complete way in Section 4.

We start in Section 1 by recalling the general atmospheric equations (namely
the primitive equations, PEs), based on the hydrostatic equation
02) %
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This equation allows the utilization of the p-coordinate system, where the vertical
coordinate is the pressure p, whereas the horizontal coordinates are the colatitude
0 and the eastward longitude . The resulting equations, namely the PEs, are
given by (1.1)--(1.4) in Section 1 of this article.

Then we nondimensionalize the PEs equations in a way appropriate for the
asymptotic analysis we have in view, which we call here the Rosshy asymptotics.

The following two points are important here:

(i) Noticing that the Coriolis parameter f = 2cos# is close to zero near
the equator, we restrict ourselves to the mid-latitude regions, where the Coriolis
parameter is bounded away from zero, and the Coriolis force is the dominant
force. With this in mind, we form a nondimensional parameter called the Rossby

number:

(0.3) e=Ro= v 1% = 2Q cos 6,

= Lfo’

where U is the typical horizontal velocity and I is the typical horizontal length
scale, namely the east-west size of the domain uncler consideration, and g is the
colatitude value of a latitude in the specified mid-latitude region. The Rosshy
number represents essentially the ratio of the characteristic scales of the accel-
eration U2/L to the characteristic Coriolis force 20 cos 81/.

(ii) Another important character needed for the scaling concerns the Coriolis
parameter f = 2Qcosf. Restricting ourselves to the mid-latitude regions and
using the Taylor expansion, we have
sindy

(0.4) f =2cosf = 2cosé [1 -

= (0—00)+...}

cos Oy
8y being a specific (fixed) colatitude in the mid-latitude region. The essential
assumption for the Rossby asymptotics is to consider the mid-latitude region
such that

L U
- <—-—=m=eg=Ro=—.
(0.5) |0 — 6p] < S ~E Ro 7
Therefore we can expand f/(2 as
(0.6) f/=1"+ e+ f2? + ...

Taking the above discussions into consideration, we obtain a systematic (for-
mal) Rossby asymptotics in Section 2 of this article. The zeroth order approx-
imation of the PEs provides the geostrophic equations (cf. ( 2.3) in Section 2);
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while the first order approximation establishes the quasi-geostrophic equations.
Let us point out here that the derivation of the geostrophic and quasi-geostrophic
equations is essentially classical (see e.g. (4], [13], [31], [33] and [34]). Namely
we introduce a small parameter € (= Ro here) and we “filter” the equations
accordingly; then we (try to) develop an asymptotic analysis based on this for-
mulation. Here we depart from the classical approach since we start from the
primitive equations and proceed in a systematic way. As we know the viscosity
of the atmosphere has to be taken into consideration if the prediction period
extends to three or four days (cf. [5] and the discussion about the PEV2s below).
The geostrophic asymptotics for local strong solutions for the 3D Navier-Stokes
equations of an incompressible fluid were studied from the mathematical point
of view in [3].

We also study in Section 2 (and then in Section 4) the Rosshby asymptotics
for the primitive equations with vertical viscosity (PEV?s). Indeed, empha-
sizing the viscosity term in the vertical momentum equations, i.e. replacing
the hydrostatic equation by the hydrostatic equation with vertical viscosity, we
also studied in [24] the primitive equations with vertical viscosity (the PEV?s).
The Rossby asymptotics of the PEV?s leads to the same geostrophic and quasi-
geostrophic equations as the PEs. Roughly speaking, from the physical point of
view, the geostrophic and the quasi-geostrophic equations filter out the high fre-
quency gravitational waves, and provide models with vanishing vertical velocity.
Therefore it is very natural to obtain the same geostrophic and quasi-geostrophic
equations from both the PEs and the PEV?s.

Whereas the previous asymptotic expansion were performed in a formal way,
directly from the equations, we aim at performing in Sections 3 and 4 a rigor-
ous asymptotic expansion in the appropriate function spaces. Some results are
rigourosly proven, others lead to open questions (and reasonable conjectures).

In Section 3 we recall the functional formulation of the PEs and PEVZs
and the corresponding results of existence of solutions; these results are essen-
tially borrowed from [24]. Then we introduce the functional framework for the
geostrophic and quasi-geostrophic equations which appeared in Section 2; un-
usual and interesting function spaces appear, raising new functional analysis
questions. In particular, we show how the kernel and the range of certain lin-
ear operators are related to certain auxiliary unknown functions appearing as
Lagrange multipliers in the equations. We also obtain a decomposition of the
function space for the PEs into the function space of geostrophic motions and
that of nongeostrophic motions. This decomposition shows how the general
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motion and state of the atmosphere are related to the geostrophic and non-
geostrophic motions and states. Finally, we establish the existence of solutions
of the quasi-geostrophic equations, obtained in a standard manner hy Galerkin
approximation.

In Section 4 we write the asymptotic expansion of the PEs and the PEV2s. in
the function space, starting this time from the weak (functional) formulation of
the equations. We show in a rigorous way that the solutions of the PEs and the
PEV?s converge, as € — 0, to functions satisfying the geostrophic relations.
We are not able to show the similar result for the QGs (next terms in the
asymptotic expansions); this difficulty which is related to the appearance of an
antisymmetric penalization operator (see Remark 4.3) may be caused perhaps
by persistent oscillations. We prove nevertheless some partial results, namely
the corresponding convergences for the linearized PEs (and PEVZs) equations
and for the stationary nonlinear equations.

A huge number of interesting papers are devoted to the questions enconntered
in the present paper. We confine ourselves to add to the Bibliography mentioned
in the text, the papers by A. F. Bennett and P. E. Kloeden [1], [2]. . Constantin,
A. Majda and G. E. Tabak [9], {10] and I. Constantin |8] and the references

therein.

1. The primitive equations of the atmosphere

1.1. The equations. In this article we study the atmospheric equations in
mid-latitude regions, using the so-called S-plane approximation. The horizontal
coordinates are then the Cartesian coordinates » and y. directed eastward and
northward, and the vertical coordinate is the pressure, increasing downward.
We begin by recalling two systems of equations, called the primitive equations
(PEs) and the primitive equations with vertical viscosity (PEV?s). These systems
of equations are fundamental equations of the atmosphere, consisting of the
horizontal momentum equations, the hydrostatic equation. the mass continuity
equation and the thermodynamic equation. We recall from (24] and [26] the PEs
(without the underlined terms) and the PEV?2s (including the underlined terms).

in which the horizontal coordinates are replaced by the Cartesian coordinates

and y:
ov v ~ -

(1.1) 5t-+(v-V)v+w5’;+kav+V¢+L,:_0,
o T =

(1.2) 9 (BT | fw=o,

g0  p  —
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) Ow
(1.3) dive + P 0,

R? (0T oT Rw -~ ~
(1.4) c—2{5+'v-VT+wa—p}——p—+L2T—Q.

Here the vertical variable is p, and ® = gz. Hence all functions above, v,w, ®
and T, depend on t, z,y and p. As explained in the Introduction, and in order to
avoid at this time the difficulties related to geometry of the sphere, the horizontal
spatial domain is a rectangle (with periodic boundary conditions), instead of the
sphere.

The notations used in (1.1)-(1.4) are as follows:

1. The pseudo-spatial domain is given by

(1.5) M = (0,2nL) x (0,2nL) x (po, P),

where L > 0 is the horizontal scale. Since we only consider the mid-latitude
atmosphere, we have L < a, a being the radius of the earth. The constants
po (0 < pg < P) and P are the pressure of the air on the top and bottom of
the atmosphere, respectively. Namely, we study the motion of the atmosphere
between the (very high) isobar p = pg, and the isobar p = P, where P is slightly
smaller than the pressure of the surface of the earth -and the ocean so that the
isobar p = P is above the surface of the earth.

2. The unknown functions of the PEs are the (two-component) horizontal
velocity field v, the vertical component of the velocity w (in the p-variable),
the temperature function T, and the geopotential ®. As indicated before, they
depend on t,z,y and p.

3. The linear operators related to viscous effects f/l, Z2 and Z4 are defined
(see [24] and [26]) by

[~ o gp 290
L]U——p]A‘U—'Vlé;;((ﬁ) a—p),
— 3 ((gp\'oT

)
= " .0 (( 9p\bw

\ Lyw = —pj Aw _U1£(<ﬁ> d_p)

In (1.1)-(1.4) and (1.6), the differential operators A, V and div are the horizontal

(two-dimensional) Laplacian, gradient and divergence operators.

4. The constants p;,v; (i = 1,2), p and v{ are viscosity coeflicients respec-
tively in horizontal and vertical directions; R and c? in (1.4) are gas constants.
The (given) function T = T(p):

T € CN(IPO, P])
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is determined by
T T
(1.7) 2= R(i - pa—) = const,

the positive constant ¢, being the heat capacity of the air. We refer to (24], [26]
and [41] for more detailed explanations.

5. Let @ be the colatitude of the earth; then the Coriolis parameter f is given
by
(1.8) f = 2Qcos#.
Here Q) = 7.29 x 10™%rad -5~ is the angular velocity of the earth. For the study
of the mid-latitude atmosphere, we assume that 4 is close to some mid-latitude
value 8 (so that cos 6y and sin 6, are not too small in magnitude); then f~ is
close to fO = 202 cos b,

~ in 6
(1.9) f=29cost9:2ﬂcosl90[l—EE—O(B—G()) +]
cos
We then consider the corresponding Rossby number (U /L f~ ) whose value at

colatitnde § = 0, is

(1.10) €e=Ro= —;

here I is the horizontal length scale (L = 2L, see (1.5)); typically I, = 105m
and U is the horizontal velocity scale, typically 10ms~!; since @ = 7.3x10~55"!,
we see that € ~ 0.1 for e.g. cosfy = 0.68.

We now rewrite (1.9) as

f=2Qcos€=fb+£fl+62P+....

g -6,

(1.11)
ft’ = 2§ cos b, fl = 29 sin 0, pant

and this is consistent with our choice of L provided |8 — 6y| < €; indeed,

L 500

— —=——=0. .

10 =0l < 32 = Ga00 = "078 <e

Let us now recall the boundary conditions:
w =0, g—£=a,(ﬁ—T), atp= P,
ov or
— =0, = O, — = 0, t — )
(1.12) p 0, w ap at p = po

v,w,T and P are periodic with respect to .r and y
with period 27 L in each direction,
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and either

(1.13a) v=0 atp=P,

or

(1.13b) g:—; = 7,(vs — v) atp=P.

Condition (1.13b) is physically more realistic while condition (1.13a) is sometimes
conveniently simpler. Here «, and v, are given positive functions of x and y, U,
vanishes on the land and is equal to the velocity of water on the oceans; T, is

the apparent temperature of the atmosphere on the surface of the earth.!

1.2. Scaling of the primitive equations. To study the quasi-geostrophic
theory, we need to renormalize the PEs, i.e. to write them in a nondimensional
form. With the previous choice of horizontal length scale L and horizontal ve-

locity scale U, we set

(P —po)U , LUS

— g — - 7]
v=vlU, w 17 W, T & T,
(114) ® = 2cos 0()L[]Qq”, T = L.’l:’, Y = Ly',
L,
{t=—1 y =P - P - ,
gt P (P ~po)n
] -
_ i cos @ _ U
! f®  cosby’ _RO_LQ’
_ L2 0= QLQ
="z “T R
1 _ m 1 PuylLg

Reir LU’ Rex (p—po)2URT:

202 2 r3in2,, 2
(1.15) { Lm0 L=( p )L?”Zg,
Rty LUR? Rty P —pg 'TOR2U,
P . pTo\”
K = 2Q 0 bl s _k = B r— :
2 cos O[P—Po Tl] 1(n) (PT)
— LUQ
T0= R )
1 _piP—po)® 1 _ _ vig’p?
\ Rv, I3U? ' Ruy  R%(Ty)2LU?’

1In general Ty # T(P), for T, is the apparent temperature of the air on the surface
depending on the location. Of course T(P) is related to the spatial average of Ts on the
surface.
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Substituting (1.14) and (1.15) into (1.1)-(1.4) and dropping all primes in the
resulting equations, we obtain the following nondimensional PEs {without the
underlined terms) and the PEV?s (including the underlined terms):

(1.16) 5[%’2 +v-Vv—wZ—:] +fhkxv+ Vo +eliv=10,
(1.17) ea[%—f +v-VT - w%] - % +eLyT = £Q,
(1.18) divv — g—: =0,

(1.19) ?)—:I; - Klz + eLgw.

Here

( 1 1 8 0
= A-— " (K,
I RelA Rey On ( ‘lan)'

1 1 8 é]
(120) 4 Lz—-—R_tlA_R_tz%(Kla_")’

1 1 0 0
=——A-——| Kj—|.
Sl Ty ( ]07;)
The nondimensional pseudo-spatial domain is
(1.21) M=0x(0,1), O=(0,2r)

The nondimensional boundary conditions are

w =0, Z—Z;=a3(T—T,), at n =0,
v oT
==0, w=0, —=0, atnp=1,
(1.22) on =0 v 0 P at 7
v,w, P, T are periodic with respect to x
and y with period 27,
and
(1.23a) v=0 at n =0 in case (1.13a)
or
v .
(1.23b) — = 7s{v—v,) at 7 = 0 in case (1.13b).
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Here o, 7s.v;,Ts are the nondimensionalized forms of &,,7,, v, and i. Inte-
grating the diagnostic equations (1.18) and (1.19) and taking into account (1.22)
(w=0at n=1), we find

w=W() = —divM*v,

1
(1.24) divA vdn =0,
T . .
b=, 4 M(—) — eMLydiv M*v,
K, —

where the operator M and its adjoint (in the L2 sense) M* are given by

V] 1
(1.25) M1/;=/0 Pdn, M*¢=/ vy’
n

In (1.24), the function ®,, depending only on z and y, is the unknown value of
¢ = gz at the isobar p = P (7 = 0).2 Then we can rewrite the PEs (without the
underlined terms) and the PEV?s (including the underlined terms) as follows
(see [24] and 26]):

ov O]
(1.26) dFn +v-Vu-— W(v)a—m + fk x v+ Vo,
+VM(I~€—) —eVML4 div M*v+eLyv =0,
2
7 J] W (v)
cal L V- W) —|T — o =
(1.27) -a[at bu-V W (v)anJT R TelaT =@,
1
(1.28) div/ vdn =0.
0

Space periodicity in the horizontal variables x and y is assumed. The initial and

the other boundary conditions are

6_7‘ =a4(T ~T,), fornp=0,
(1.29) on
. @ =0 ?—Z =0, fornp=1
BT’ — an - Y% 77 -
and, as in (1.23),
(1.30a) v=_0 at 7 =0 in case (1.13a),

2Therefore ®,/g “gives” the geometrical altitude of the isobar p = P. But this is not
completely precise, because &, = $4(x,y,t) is defined up to an additive constant depending
on t (as usual with Lagrange multipliers). In order to remove this type of difficulty (which is
not at all essential for the goals of the present paper) we have in [29] introduced the equations
governing the altitude @, and the altitude of the ocean with respect to the reference z = 0 in
the coupled system ocean-atmosphere of [28].
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or
(1.30b) g—:; = y,(v — vs) at 7 =0 in case (1.13h).
(1.31) (v, T) lt=0= (v0, To).

REMARK 1.1. As we have already said the model (1.26) (1.31) is essentially
similar to the one in (24], [26] with mainly two differences:

(i) The boundary conditions in the horizontal variables are different. We
have considered for the sake of simplicity periodic boundary conditions.
We could as well consider other boundary conditions. Of course this
does not change the proof, given in [24], of the existence of a (weak)
solution global in time (see Remark 3.2).

(ii) We have not introduced here g, the humidity. However, this could be
done with minor modifications since the equation for ¢ is essentially

uncoupled from the other equations for velocity an temperature.

It would be interesting to introduce beside ¢ the modificd state equations
p= RpT(1+0.61q)

(cf. [31]). But this leads to a nonlinear constraint (instead of the linear con-
straints (2.3) hereafter) and the difficulty is much more important than the
previous remark related to the sole introduction of ¢, when the state equation is
still p = RpT.

2. Geostrophic asymptotics

2.1. The formal asymptotic expansion of the equations. First of all,
we study the asymptotic expansion of the PEs and PI1V2g given hy (1.26) -(1.28),
with respect to the Rossby number ¢ = Ro. As we shall see. this leads to the
geostrophic and the quasi-geostrophic equations. All the expansions are formal
at this stage; more precise results are given in Section 3.

We write
[ v=1"tev' +eR? 4.,
T=T"+eT' +&*T2 +...,

(2.1) { B, =00 4! + 202 ..,
F=f"4efl4e2f2 4 ...,
[ Q=Q°+eQ"+£%Q* +...
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The expansion of f = / £ is obtained from (1.11). Therefore, we have

° m_ I _
f0=ﬁ=1’ f _F’ n=12,...

Similarly we expand given functions u, = (v4,7Ta), ug = (vo,To) in the form

v,=v2+sv:+52vf+...,
To =T +eT} +2T2 +...,
(22) 0 4 cul 4 22
Vp=1vy+eEYt+ey+...,

To =T +eTg + T3 + ...

Substituting (2.1) into (1.26)—(1.28) we have the following approximate equations
of the PEs:

a. Zeroth order approrimation. At zeroth order, equations (1.26)—(1.28)
reduce to
{ fO% x v® + V&I + VM(T?/K,) = 0,

2.
(2:3) div M*? = 0.

Note that the first equation (2.3) amounts to saying that

o0 1 {680 89°
(23') —’UD=CUI'I (F) IF{—{E,—'—&;}, ‘pnzq)g'f‘M(To/Kz),

or

0
(2.4) ffex®+va®=0, T°= Kg%.

In fact, (2.3) is equivalent to the existence of some function ®° such that (2.4)
holds. We call the motions governed by (2.4) the geostrophic motions.

b. First order approzimation. At the first order (1.26)-(1.28) and (2.1) yield

0
(2.5) aalt + 07 Vo + fle x o + Ok x 0! + VO + VM(T/K3) + L1v° =0,
» *,.1
(2.6) a2 po0. v|poy WMV oo g,
ot K

1
(2.7) div / vldn =0.
0
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Regrouping (2.4)-(2.7), we ohtain the following quasi-geosirophic equations

(QGs):

13,0
‘;L; +07 VO + flExo® + fohx ol + VO 4 L =,
(2.8) ’ ; . .
d div M*
af o +9°- VT + “’I_, Y LT = Q"
g ] 19
¢ div " =0,
07, 0 0 _
(2.9) Jkav + Vo' =0,
) T = K. a_q;ﬂ
\ - 2 a‘r’ '

Here v! and @' are unknown functions of it,y,n and ¢ satisfving

1
(2.10) div/ vl dy = 0.
0

Of course all functions are periodic in the horizontal variables & and y; and
we also infer from (1.29)-(1.31) the following initial and boundary conditions for

the QGs equations:

( oT"
3_17 =a,(T0—T3), at n =0,
ou? aTo
- = —_— = 0, at. == 1,
(2.11) { I ooy Sl
20 =0 at 7 =0 in case (1.13a),
B'UO 0 I . .
\ a—nzfyﬂ(u —uy) at 7 =0 in case {1.13h),
(2.12) (v, T =0 = (v5. T1)).

We call the motions governed by (2.8)-(2.11) the quasi-grostrophic motlions.

REMARK 2.1. We shall show below that problem (2.8) (2.11) adnits a uni-
que solution {v”, 7°}, v! and &' playing the role of Lagrange multipliers attached
to the linear constraints (2.9). This is, in fact, an unnsual set of equations but
the role of ¥’ and ®' will be made clear in Sections 3.3.2 and 3.3.3. after we

introduce the appropriate function spaces.

REMARK 2.2. By the second equation (2.3), we find
VMLydivmM*o® = 0.

Therefore, at the zeroth and first orders, the PEVZs and the PEs lead to the

same geostrophic and quasi-geostrophic equations.
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2.2. Quasi-geostrophic equations in vorticity form. We now derive

from (2.8)—(2.10) the vorticity form of the quasi-geostrophic equations. We do

not. intend to make use of these equations in our analytical study, but our aim

in deriving the vorticity form of the QG equations is to show that following our

procedure we obtain anew (in a more rigorous fashion) what is already known

in [4], [33] and that we obtain some further results. First of all, applying the
(horizontal) curl operator to both sides of (2.8); and using the formulas after

(2.13), we obtain
213) 2(Las v A9° Odivu! + Ly (= Ady ) =0
(.)—f0 “+"Df“ +f1)+7f 1vv+4ﬁ o] =0.
In deriving (2.13), we used the following relations:

curl(k x v!) = dive?,

curl(f1k x v°) = div(f1v%) = Vo fL.

To eliminate v! from (2.13), we multiply (2.8); by K3, and differentiate the

resulting equation with respect to 5. Since K depends only on 5, we obtain
a 0 0%
14 ivo! = . K220
(2.14) divv [3t+v V] [377( 25 )}
1 a a9°
- — Al — K2 ——
Rty [311 ( "2 )]

1 af 8[. 8(, 0%
w5 (%)

Using (2.14), we infer from (2.13) that

0 0o, 9 0 26_‘1’2 1 0_
(2.15) [ +V,,o] [f0A<1> n(af Kigy ) +1!|-18°=F,

ot
where
"
o_p 0 4 052
(2.16) Lo = (f()A<I> ) + RhA[ (f Ky— an )J
1 0 g o"
* R [Kla (1 )”
J
— 09 0o 40
(2.17) F=f m)[[\gQ ]

Equation (2.15) is the guasi-geostrophic vorticity equation.
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REMARK 2.3. The linear operator L given by (2.16) is a fourth order elliptic
operator, representing the diabatic heating and friction of the atmosphere. Usu-
ally for short term weather prediction one studies the quasi-geostrophic equation

without dissipation [5], i.c.

(2.18) [()dt + 0 V] [anq,n J ( fOK2 z(')d) )+f]] = 0.

As Charney stated (5], however, when prediction is extended to three or more
days, the dissipation has to be taken into consideration. Therefore we study
in this article the quasi-geostrophic equation (2.15) with dissipation. We would
also like to mention that, as far as we know, for the first time in this article the

dissipation for the quasi-geostrophic motion is written in such an cxplicit form.

REMARK 2.4. As we mentioned before, usually one uses ( = p/P as the
vertical coordinate. We prefer here to use n = (P — p)/(P — py) since this
variable is more convenient for the equations coupling the atmosphere and the
oceans [26]-{28]. If we use ( it is easy to see (cf. [10]) that the vorticity form of

the quasi-geostrophic equations becomes, using (2.22),

ad a A - —
p g 0. oy 002 1 ol . T
wm [2as] [hawe 2 (™) ] 1w

where
(2.20)
_ 1 1 (P -p\>0 (.. O (
0 _ s o I i 0
Lo _[RE]A+R92 (—P ) ac("' C)} et
1 “ ,()'T“ 1 l"[)(] :
Ry i [ag (f YRL\TD

)
(2:21) ~ i)

Equation (2.19) can be obtained from (2.15) using the following relationship

between ¢ and #:

(2:23) 1=pe=l o K= - 3

Once again, usually one consulors the quasi-geostrophic equation withont viscos-
k) o

ity in the (-coordinate system, namely ¢ = —curl ®°/f":

2 0 0o, 0 0, »’)‘T’O
(2.23) [E+v -V} [fOAq>' (f ‘c)+f]

REMARK 2.5. The mathematical study of {he quasi-geostrophic vorticity
) { g I ]

equation was made in [40].
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3. Mathematical setting of the equations

3.1. The primitive equations. The mathematical analysis of the primi-
tive equations has been studied in [24] for the whole sphere and therefore without
boundary conditions in the # and ¢ variables. We recall here the main points
of the method followed in [24] and we show how it is adapted to the present

situation.

3.1.1. Some function spaces. We consider the PEs in the form (1.26)-(1.28)
with initial and boundary conditions (1.29)-(1.31). For simplicity, we call u the
pair {v, T},

(3.1) u=(v,T).
We write
'=T,uUrl,,
(3.2) { b
Iy=0x{0}, T,=0x{1}, O=(0,2n)2

As we did in [24], we introduce the following function spaces:

H=H xHy, V=V xV,
(3.3) H; = the closure of V; for the L?-norm, i = 1, 2,

V; = the closure of V; for the H'-norm, i = 1,2,

where

1
( Vi = {v € (C,;’j,(]\l,,))2 div f vdn = 0} in case (1.13a),
0

1
(3.4) (V= {v € (C=(M,))? div/ vdn = O} in case (1.13b),
0
v2 = Cm(AlpL

\ V=V xV,

Here C°(Ml,) is the set of all C™ functions on Al which are restrictions to
M of C* functions on R? x [0, 1], 27-periodic in directions = and y; Cu (ML)
consists of the functions in (" (A[,,) vanishing near the lower boundary I',. The
L?-norms and inner products in H; (i = 1,2) and H are denoted by | - | and
(+,-), whereas the H'-norms and inner products in V; and ¥ are all denoted by

” ' ” and ((1)) :

(9= [ soars,  ((ro)= [ Vi-vgarr
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Hence Hp = L2(M), Vo= H'(M,) and it can be proved as in Lemma 2.1 of

[24] that
)
div/ vdn =0,
0

1
/ vdny is 2m-periodic with respect 1o & and y},
0

H, = {'U = (’Ul,’UQ) € LZ(A[)Z

Vi=Via={v€ Vi, v=00nTI}} in case (1.13a),

1
Vi=Vi = {v e HY(M,)? | div / vdn = 0} in case (1.13h).
0

Here H'(M,) denotes the subspace of H'(A7) of functions periodic in directions
x and 3.3

Moreover, we also need the equivalent norms and inner products ];‘I‘l,/2 -| and
(Ag+,-) for H; (i = 1,2) and H. Here the operator A is defined by

(3.5) Apu = (v, aT), Agv = v, AT = aT.

3.1.2. Some functionals. We define some functionals and their associated
operators as follows; the terms underlined appear in case (1.13a) but not in case
(1.13b) (where they vanish):

K| v oOv

. ~ ~ 1 -
(3.6) a(u, %) = (Au, ) = /M {E;Vv VT + Teadn o

1 ~ K, 0T OT
R v/ A v/ AV NS W |
*®mG P R oy i }' !
1 ~
P K, TTdr,

+ th ./rb [ 7Y%

~ ~ 1 S
(3.7) a1(ug ) = — Y. Kqvs - vdly, — —/ a K\ T, Tdr.
'y

R62 ry th

(3.8) b(w, T, @) = (B(u, ), %)

= / {[u -Vo+ (divM*v_](,r)—i—’} -7
M My

+ a[n VT + (divM*v)QT] ’[V'}dl’\[,
on

3The trace on Iy of funciions v in Hy is not defined and is nat required Lo vanish; sec.
however, a related but different situation in Lemma 3.3 below.
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(39) e(fiu@) = (B(fsu), &) = /A _{ {(fk xv)- 7
+VMwﬂQyﬁ+£4mwayT}ML
2

The following lemmas, borrowed from {24] and [26], describe the basic prop-

erties of these functionals and operators:

LEMMA 3.1.

() < Il - Il
(3.]0) “HN

alu,u) > ||u|i2,

1
Rlnﬂ.x
where Ruyax and Ryin are defined by

{2, max{Re;, Rty | = 1,2},

3.11
( ) Roin = ¢ "‘i"{neji R'tj |.] = 112}7
C and C’ being two nbsolutc constants.

3.1.3. Weak formulation of the PEs. We now state the weak formulation of

the PEs as follows:

PROBLEM 3.1. For any given uy = (vg,To) € H, find u = (v, T) such that

(3.12) we€ L20,t; VYN L>™(0,t; H), Vt; > 0,
(3.13) sdf—l'f(/lou, @) + ealu, @) + eay(us; u) + eb(u, u, u)

+e(fiu,@)=e(Q,T), Vi=@T)eV,
(314) ‘U.If:() = Uyg.

REMARK 3.1. As shown in [24], the function ®,, depending only on x and

vy, is the Lagrange multiplier of the constraint

i1
div / vdn = 0.
Jo

It disappears in (3.13) and Problem 3.1 is indeed the weak formulation of the
PEs.

3.1.4. Existence of global weak solutions of the PEs. We now recall from [24]
an existence theorem for global weak solutions of the PEs. This result can be
proved by constructing an approximate solution with the Galerkin method and

using a priori estimates on the approximate solutions.
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THEOREM 3.1. There exists at least one solution for Problem 3.1, the weak
formaulation of the PFEs.

REMARK 3.3. The method of proof of existence of a weak solution global
in Lime in [24] (or for the present sysiem with different boundary conditions,
see Remark 1.1) relies on the general ideas introduced by J. Leray in [18]-[20].
Because of technical differences with the “usual™ Navier-Stokes equations we
have to rely on the technique of estimating fractional derivatives in time, as
introduced in |21]. Uniqueness of solution is still an open guestion but there is
at this time little evidence of nonuniqueness for this initial vahie problem as well

as for the three-dimensional Navier-Stokes equations.
3.2. The primitive equations with vertical viscosity.

3.2.1. Weak formulation of the PEV 2%s. We recall that the PEVZs are ob-
tained by retaining in (1.26) the underlined viscosity terms for the vertical ve-

locity. We set

Ve = ‘/lw X ‘/2,
(3.15)
V1 = the closure of V{’ for the norm || ||,
where
Ve =V )y,
(3.16) V¥ = {v eV | div M*v € G5 (M)},

loll = {llell? + 1div M]3, 1172,

the corresponding inner product being denoted by ((-,-)),,. The induced normn
and inner product for V* are still denoted by the same notations || - ||,, and
((y*))w- As before, the definition of Vj, V; and thus of V¥, V¥ and V“ is not
the same in case (1.13a) and in case (1.13b).

We then introduce

(3.17) aw(u, @) = alu, u) + I'(u,u),

where a(-.) is defined by (3.6) and I = I(u,%) is given by

(3.18) I=1I(u,n)= / {LV(divM*v) - V(div M*8)
um | Rn
K, o(divM*v)  A(div.M*7)
- ; ‘ - Al
Ruy on an

The weak formulation of the PEV?s can then be stated as
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PROBLEM 3.2 (Weak formulation of the PEV?s). For uy = (vo,Ty) € H,
find u = (u,T) such that

(3.19) w € L20,11; V)N L>(0,t3; H),  Vi; >0,
(3.20) E%(A()'M, ) + eay(u, i) + eay(uq; @) + eb(u, u, %)

+e(fiu, i) =e(Q.T), Vi=(3T)eV,
(3.21) =0 = 1y

REMARK 3.3. We have the same nonlinear functional b(-,, ) here as in the
weak formulation of the PEs. However, we have now the following improved a

priori estimates for b(-,-,-) in terms of the norm || - || ,.:
(3.22) lb(w, %, @) < ellullw - (@2 - a2 - .
as compared to the estimate

(3.23) b(re, w, )| < cllaell gpare - ||l - (2]

3.2.2. Solutions of the PEV?s. As for the PEs, we have the following exis-

tence result of global weak solutions of the PEV?s borrowed from [21]:

THFROREM 3.2. There exists at least one solution for Problem 3.2, the weak

formulation of the PEV s,

3.3. The quasi-geostrophic equations. We now consider the quasi-
geostrophic equations (2.8) -(2.10) with inijtial and boundary conditions (2.11)
and (2.12), and we start with some comments and results concerning the con-
straints (2.9).

We first observe that if v = (v°, T") € H satisfies (2.3) for some function
®? independant of #, then according to (2.4) it satisfies (2.9); moreover by, (2.3),
(2.3') and a theorem of J. Deny and J.-L. Lions [11], ®" is in H!(A,). Conversely
any $° in H!(M1,) defines with (2.3') and (2.4), u" = (1’0,7"") € H satisfying
(2.9) (and (2.3)). The remarks hold for «” € V, but for such a u", we find that
®" € H*(M,) in case (1.13b), ®" € HH*(AL,) with 9" /dx and JB"/dy vanishing
on Ty in case (1.13a); like H!(M1,), H2(M,) is defined as the set of functions in
H?(M) periodic in directions = and y together with all their first derivatives.

Now assume that u® = (1", T%) € V satisfies (2.9) for some distribution ®°.
Then (2.3) and (2.4) hold and ®” is as above (" € H2(A[,) in case (1.13b),
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Y € H?(M,) with 39"/dx and 93" /8y vanishing on ' in case (1.13a)). Tt is

then obvious that u satisfies

(3.24) e(fSu, @) =0, VieV,
or equivalently

(3.25) E(f%u") =0 in V7.

Conversely, if u? = (v°, T") € V satisfies (3.25), then the second equation (2.3)
follows readily and the first equation (2.3) follows from Lemma 2.1 in [24]. Henee
(2.3) and (2.9) are satisfied and we conclude that (2.9) is equivalent to (3.25).

For u" € I, E(f"u") is not defined and {3.25) does not make sense; iowever,
we can and will consider, equivalently, functions «" in If satisfying (2.9) or (2.3)
(2.4), for some ® in H'(ML,).

3.3.1. Some function spaces. Based on the above observations, we define the

function spaces needed for the quasi-geostrophic equations as follows:

{ Ve = the closure of V¢ for the H'-norm,

3.26 .
( ) H¢; = the closure of V; for the L2 -norm.

The function space Vg is defined by

(3.27) Vo={u=(T)eV|E({f"u) =0}
={ueV|e(f%un) = 0,VieV}

As before, V is not the same in cases (1.13a) and (1.13h).
We have the following lemma, which characterizes these function spaces:

LEMMA 3.3.
(i) The space of funclions u = (v,T) in H such that (2.9) holds for some
distribution ® is closed in H.
(i) Ifu= (v,T) € H and satisfies (2.9) for some distribution ®, the trace
ofvonT' =T, UT, is defined and belongs to H~1/%(T")2,
(iii) The spaces Hg and Vg satisfy

(3.28)
_ { {u € H | u satisfies (2.9) and v vanishes on Tt} in rase (1.13a),

Hg =
@ {ue H| satisfies (2.9)} in case (1.13h),

(3.29) Va={u=(v,T)eV | E(f*u) =0}.
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REMARK 3.1. From the above definition and Lemma 3.3, we observe that
the function spaces Hg and Vi describe exactly the geostrophic motion of the
atmosphere.

PrOOF OF LEMMA 3.3. (i) Consider a sequence of functions u, = (Vn, Tn)

which satisfy (2.9) for some ®,, namely

0P,

on’

and assume that u, converges to some limit w in H. By the theorem of [11]

Pk x v, + V&, =0, T, = K3

quoted above, we conclude that @, belongs to H'(Al,), and that, as n — oo,
®,, converges in H(M,)/R to some limit & € HY(M,), with
fPokxv4+Ve=0, T= Kz@.
On
Hence the result.

(i) As observed above ® € HY(M,); hence the trace of ® on I', = Ox
{n = mo} is defined and belongs to HY2(T,,) for every 79,0 < 70 < 1. Thus,
after modification of v on a subset of measure 0, we find that v(-,7p) is defined
and belongs to H~Y/2(T,,)? for every 09,0 < 70 < 1. In particular, for 7o = 0,1,
we obtain the trace of v on T of course the trace depends linearly on u and
continuously for the H-norm in {u € H | u satisfies (2.9}

(iii) We start with the case (1.13b) and first show that Hg is included in the
right-hand side of (3.28).

If v belongs to Hg, then u is the limit in H of a sequence of functions
un € Vg, ie. uy = (vn,Tn) € V and E(f%uy,) = 0. According to (i) and to the
previous remarks, u, satisfies (2.9) and so does u.

Conversely, if u belongs to the space on the right-hand side of (3.28), then
the corresponding function ® € H'(M,) can be approximated in HY(M,) by
functions ®,, € C®(Al,). The functions u, associated with ®, belong to Vg and
converge to u; therefore u € Hg;.

In case (1.13a), the proof is the same, except that ® € H 1(Al,) vanishes on
I', and is approximated in H'(Al,) by functions in Cio(Mp).

The proof of (3.29) is similar but simpler since, in this case, the trace of v
on Ty is obviously defined. For u = (v,T) € Vg we see that (2.9) is satisfied.
By the result of [11] already referred to, the corresponding function ¢ belongs to
H?(M), and even to H?(M1,), the function ¢ being periodic in directions z and
y. Furthermore, in case (1.13a), ¢ vanishes on I, whereas no further condition

in ¢ appears in case (1.13b). ]

Consider now Hg, the orthogonal of Hg in L2(H)?. We have the following
characterization of H3.
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LEMMA 3.4.
Hg ={u= (v,T) € LX(M)* | divy(~k x v/ [, Ky T} = 0, T, = 0}
n ease (1.13a),
Hg = {v=(v,T) € L*(A1)® | divy(~k x v/f°, K2T) = 0, Tlr,ur, = 0}
in case (1.13h).
PROOF. Let us first assume that u = (»,T) helongs to the space on the right-

hand side of the above relation. We want to show that u« € HE. and it suffices
to show that

(3.30) (@) == (v,7) + (T.T) =0,

for every & = (3,7) € Vg.
According to part (iii) in the proof of Lemma 3.3, for every v € W 1, there
exists $ € H?(M,) such that

- - 5
(3.31) fPekx 5+ Ve =0, T——-Kg;)—;/;.

and ¢ vanishes on T, in case (1.13a).
Hence (3.30) hecomes

/ {v(k x V/ %) + (KoT) - Dp/d} dA = 0,
JM
ie.
0. v5+ (1, 2@

(3.32) —(kxv/f°)-Vo+ (hzT)(T)T] dM =0,

M
and npon integration by parts
(3.33) / {divs(k x v/, — K3T)}p dM

M
+ / (K2T¢~))|n=1 da dy - / U\'szj)l,,-__»u dr dy = 0.
Jo Jo

Hence (3.30).

Conversely, if u belongs to Hg, then (3.30) holds for every 7 € Ve ie.
(3.32) holds for all the ¢ described above. Writing first (3.32) with o compactly
supported in M, we conclude that

diva(—k x v/f°, K,T) = 0.

Then we integrate by parts and (3.33) shows that T|p, = 0 in case (L.13h), and
Tlr,ur, =0 in case (1.13b). O
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3.3.2. Lagrange multipliers. Now that the appropriate function spaces have
been introduced, we can make clear the role of v', T'! and ¢! as Lagrange
multipliers for the constraints (2.9) and explain the structure of (2.8).

The key point is to study the structure of functions (1, ©) such that

(¥,v) +(6,T) = 0,

for every (v, T) satisfying (2.3) or (2.9). This has been done in Lemma 3.4 and,
with a change of notations we conclude (assuming that (¢, ©) € LZ(M)3) that

(3.34) divy(=k ¥ /[0 K20) =0,

with

O|r, =0 incase (1.13a), ©O|r,ur, =0 in case (1.13b).
According to [35, Proposition 1.3, Appendix I}, (3.34) implies that the vector
(—k x ¢/ f°,k20) belongs to Curl /'(Al)3; note that since M is simply con-
nected, the conditions in that proposition reduce to (3.34). Hence there exists a
vector of H'(AM)?, which we write in the form (w,0),w € HY(M)?,0 € H'(M),
such that

(—k x 9/ f° K20) = curl (w,0) = -k x Vo + k x %171’_) + kcurl w.
Therefore
1 ow 1
(3.35) 76"/’ = Vo — (,)—n, =% curl w.
We now set
ow
. 1 _ —k —, 1_ _ (0
(3.36) v X an ) flo
We observe that curl w vanishes on I', since © does, and therefore
. ow . 1 w1
curlw = - M curla— = —-M*curl(k x v') = —M*dive".
n
Finally,
1
(3.37) Y =—k x vl — Vo!, 0= —FM*divvl.
2

This explains the structure of (2.8).

REMARK 3.2. The proof above uses simple algebraic manipulations and de
Rham’s Theorem, which is the main ingredient in the proof of the above quoted

propositions of [35].

3.8.8. Weak formulation of the quasi-geostrophic equations.
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PROBLEM 3.3. For any given ud = (v, T9) € Hg, find u® = (+°,T°) such
that

(3.38) u® € L2(0,t1;Vg) N L2(0,t1; Hg), Vit >0,

(3.39) %(Aguo, ) + a(u?, @) + a1 (u¥; )
+b(u0, @) + e (f1 7)) = (QT), Va=@T) e Vg,

(3.40) w0 = ud.

In (3.39) above, e®(f1;u°, ) is defined by

(3.41) eO(FY;ul, u) =/ (flk x v°) TdM.
M

3.3.4. Solutions of the quasi-geostrophic equations. As for the PEs, we also
have the following existence of global weak solutions of the quasi-geostrophic
equations. This theorem can be proved using the Galerkin approximation, and

we omit the details.

THEOREM 3.3. There ezists at least one solution for Problem 3.3, the weak

formulation of the quasi-geostrophic equations.

4. Elements of the mathematical
Jjustification of the Rossby asymptotics

In this section we study in a rigorous manner the asymptotic expansions of
the PEs and the PEV?Zs, starting from the functional form of the equations. The
convergence to the geostrophic equations is fully proved. For the convergence
to the quasi-geostrophic equations we encounter some difficulties due perhaps
to the existence of persistent oscillations (see Remark 4.3); we obtain partial
asymptotic results and open questions (see Section 4.2.3).

4.1. Formal asymptotics of the weak formulations of the equa-
tions. First of all, we repeat briefly the formal asymptotics studied in Section

2 in terms of the weak formulations. We set

{u=u°+eu1+52u2+...

4.1 . o
(4.1) v = (v,77), j=0,1,...,



278 J.-L. Lions -— R. TEMAM — S. WANG
T,=T" +eT! +&*T?+...,

(1.2) Q=0Q"+eQ! +2Q%* +...,
F=f4efl+e2f2+... (fO=1).

Substituting the above relations into (3.15) and (3.22), i.e. the weak formulations
of the PEs and the PEV?s, we obtain the following:

a. Zeroth order approximation:
(4.3) e(f%u", %) =0, Vaey,

which provides the geostrophic motions. As we indicated in Section 3, the equa-
tion (4.3) is equivalent to (2.2), i.e. equations governing the geostrophic motions.

b. First order approzimation:

(44) (A0, 0) + 00, 7) + o1 (s ) + B(u, 00, @)

+e(f%ul, @) + (1540, 8) = (Q°T), VieV.
Equations (4.3) and (4.4) are called the quasi-geostrophic equations. Due to the
constraint (4.3), we only have to find solutions of (4.4) in the function space

with elements satisfying (4.3). This is accomplished by introducing the function
spaces Vg, Vg and Hg. Choosing © € Vg in (4.4), we can see that

e(f%u', @) = —e(f%8,u!) = 0.
Therefore (4.3) and (4.4) amount to finding a solution u® in L2(0,¢,Vg) N
L>=(0,ty; He) satisfying

%(Aou", ) + a(u®, &) + a1 (u®; &) + b(u®, w0, &) + O(F4; w0, )

= (Qovi)x Vi € VG'

(4.5)

Namely, we obtain here the weak formulation of the quasi-geostrophic equations

given by Problem 3.3.

4.2. Convergence of the PEs to the geostrophic and quasi-geostro-

phic equations.

4.8.1. A priori estimates. First of all, we have the following lemma, giving
some a priori estimates independent of € of the solutions of the PEs; hence they
provide some stability of the solutions of the PEs with respect to the Rossby
number € = Ro = U/ Q.
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LEMMA 4.1 (Stability). For any solution u = u, of the weak formulation of
the PEs, Problem 3.1, obtained by the Galerkin method (see Theorem 3.1), we

have
(4.6) ue belongs to a subset of L*(0,t1; V') N L*(0, ¢y; H),

bounded independently of .

ProoF. Here we only present the formal a priori estimates of the solutions,
which can be made precise by using the Galerkin procedure. Set % = u in (3.15).
We see easily that

—E—I!ll/z'uI2 +ea(u,u) + eai(uy;u) < e(@Q,T),

2 dt
ie.
LAYl + [l < (Q.T) ~ ax (i) < e+ s u]
2dt Rmax 2R nax
Hence p
gl ul + gl <,
and (4.6) follows easily. O

4.2.2. Convergence of the PEs to the geostrophic equations. We now study
the convergence of the PEs to the geostrophic equations in the sense that the
solutions of the PE converge to solutions of the geostrophic equations as the
Rossby number € = Ro goes to zero. To this end, we only consider the solutions
of Problem 3.1 (the weak formulation of the PEs) obtained by the Galerkin

method. The main convergence result is then:

THEOREM 4.1. There exists a sequence u. of solutions of Problem 3.1 (weak
formulation of the PEs) (¢' — 0) such that
in L%(0,t1; V) weakly,

4.7 ' 0
(4.7) et U { in L>°(0,t1; H) weak-star,

with u® a solution of the geostrophic equations

(4.8) E(f%u%) = 0.

Moreover, for any sequence ue of solutions of Problem 3.1 such that (4.7)
holds true, u® is a solution of (4.26).

Proor. First of all, by virtue of the e priori estimates (4.6) independent of
£, there exists a sequence v, satisfying (4.7). Now we only have to prove that

u? is a solution of the geostrophic equations (4.8).
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By (4.7), we can see easily that in the sense of distributions
' d ~ ' ~ 1 ~ ! T ]
€ E(Anuff;u) +€&'a(ue, ) + €'ay(us; @) — £'(Q,T) — 0 ase — 0.
We now consider the nonlinear term. By definition, for any # € V,
|b(uer, uer, U)| = |bver, Uy ter )| < cluer| - |uer],

with a constant ¢ independent of ¢. Hence thanks to (4.7), it is easy to see
that b(ue, ue, %) belongs to a set in L2(0,¢,) bounded independently of ¢’. This
yields that

(4.10) e'b(ue , uer, ) — 0 as e — 0.
Thanks to the expansion
F=+ef' ++...,
we find
(4.11) e(fiuer, B) = e(fO% uer, W) + (' f1 + ... s uer, B).

Passing to the limit, we deduce that

{ (e, @) — by (f%u°, %)  weakly in L2(0, ),

4.12
(1.12) el fl + ... ;uo,u) = 0  strongly in L2(0,t).

In summary, we obtain
(B(f%u°), ) = e(f%u°, @) = 0.

The proof is complete. O

4.2.3. Convergence of the linearized PEs to the linearized QGs. We have
obtained in the previous section the convergence of the PEs to the geostrophic
equations. At this time, however, we are not able to consider the next step,
namely, to pass to the limit from the PEs to the quasi-geostrophic equations (the
first order approximation). This difficulty may possibly be due to the existence of
persistent oscillations (see Remark 4.3 below). Technically the main difficulty is
thiat we are not able to establish some compactness properties of the solutions of
the I’Fos. The compactness we need is usually derived from a priori estimates of
the time derivatives of the solutions, which are not at our disposal at this time.
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Due to the lack of compactness, we cannot pass to the limit in the nonlinear
terms b(,-,-). Hence we handle here some simpler cases.
First of all, dropping the nonlinear terms in (3.15) and (4.4), we consider the
following linearized primitive equations:
d - ~ ~ 1~
ea(Aou, u) + ea(u, T) + ea1(us; ) + e(f15u, @)
(4.13) —e(Q,T), Vaev,

ult:to = ug,

and the linearized quasi-geostrophic equations

%(A()uo,fi) + a(u?, uw) + al(ug; ) + eo(fl; u?, %)
(4.14) = (@, T), VieVe,

ulg=0 = ud.

It is easy to see that for Q given in L2(0, £;; H) and ug given in H , there exists
a unique solution u = u, of (4.13). Similarly for Q° given in L%(0,1;; Hg) (or
L%(0,ty; H)), and u§ given in Hg (but not in H ), there exists a unique solution
u® of (4.14).

The component of ug in the orthogonal of Hg in H produces a boundary
layer at ¢ = 0 which will be discussed elsewhere (¢ — 0). At this point we prove
the following.

THEOREM 4.2. Assume up = ug + €uy + ... Then the solutions u = u, of
(4.13) converge to the solution u® of (4.14) in the following sense:

in L2(0,t1; V) weakly,

4.15 ’
(4.15) e U {m L™(0,ty; H) weak-star.

PROOF. Obviously, the stability estimates (4.6) hold true for solutions u =
ue of the linearized PEs (4.13). By virtue of these estimates, there exists a

sequence ¢’ — 0 such that

0 { in L?(0,t,;V) weakly,
Ugr — U
¢ in L*°(0,t,; H) weak-star.

Then we prove that u® is a solution of the linearized QGs. To see this, first of

all, we notice that

s%(AouE,'Ti) + ealue(t), ) + ea1 (us; i) — £(Q, T) — 0
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in the distribution sense. Then by definition
~ ~ ~ 0 — ~
e(f; uer, @) = e(f%uer, @) + €2(f = fO5uer, @) = e(f%ul,w), VEEV.

Hence we obtained
e(fo;uo,ﬁ) =0, Yue V.

Namely, u° provides a geostrophic motion and 0 € Vg.

On the other hand, for any % € Vg and for any continuously differentiable
scalar function ¥ € C'([0,t;]) with ¥(¢;) = 0, we multiply (4.13) by () and
integrate in i. By integration by parts, we obtain

@ - [ (e, O)d+ | atwe om0 at
v [ msemas 2 [ elriew o
t1 _
= [" @ T (o) dt-+ (oue, Wp(0)

By definition, we also have

5‘/;1 e(fiue (t), up(t)) dt
1 [ 1
=5 | Gue() @) di+ / (&' f1+ (€2 F + .. juer(2), B)p(t) di
L] 0
_ l/“ (", uer (1)) d)(t)dt+/tl (L e 24 uer(t), TY(E) dt
P o ) ) o ? ’

= /tl S+ + (), w)y(t)dt
0

31
— / (SN u(), wp(t)dt as e — 0.
0

Finally, in terms of {4.15), we deduce from (4.16) that
Ly fh
(4.17) - (Agu® (), W) (t) dt +/ a(ul(t), wp(t)) dt
0 0
ty
+/ a; (u¥; Tp(t)) dt+/
0

0

t

" eO(FL (), T(e)) db
t1 B
/0 (Q°, Fup(t)) dt + (Aoul, BYH(0).

It is obvious to see that (4.17) is equivalent to (4.14). O

REMARK 4.1 (An open problem). It is still unknown if the weak solutions of
the original (nonlinear) PEs converge to the solution of the QGs. Even though
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we have the a priori estimates (4.6) for the original PEs, we need some a priori
estimates for the time derivatives of the solutions independent of . For steady-
state solutions, however, we are able to prove the convergence of the solutions
of the PEs to some solutions of the QGs; see Section 4.2.4 hereafter.

4.2.4. Convergence of steady-state solutions of the PEs to steady-state solu-
tions of the QGs. We now consider the (nonlinear) steady-state PEs:

(4.18)  ea(u,@) + ea1(us; @) + eb(u, u, @) + e(f;u, @) = £(Q,T), VaeV,
and the (nonlinear) steady-state QGs:
(4.19) a(u®, @)+ ax(uf; @) + b(u, u’, @) + (500, B) = (Q.T), VaeVe.

As for the time dependent case, there exist solutions u = u, of (4.18) and u® of
(4.19) such that

(4.20) u=u €V, ueVg.

The following theorem establishes the convergence of the solutions u = u, of
the steady-state PEs (4.18) to solutions of the steady-state QGs (4.19):

THEOREM 4.3. There exists a sequence us of solutions of (4.18) such that

(4.21) Ugr €200 weakly in V and strongly in H,

u? being a solution of (4.19). For any sequence u.s of solutions of (4.18) satisfying
(4.21), u® is a solution of (4.19).

PROOF. As in the evolution case, it is easy to prove that for any solution

u = u, of (4.18), we have
(4.22) lue|l < ¢,

¢ being a constant independent of €. Thanks to the compactness of the embed-
ding of V into H, we readily obtain a sequence u, of solutions of (4.18) satisfying
(4.21). We then only have to prove that u® is a solution of (4.19). To this end,
we infer from (4.18) that

~ ~ 1 ~ ~ -
(4.23) a(usn,u)+a1(u,;ﬁ)+b(u5:,u5r,u)+g;e(f;u€',u) =(Q,T), Yu € Vg.
Obviously b(uer, uer, B) = ~b(uer, U, uer) — —b(u®, %, u) as ¢’ — 0, and
1 . 1 - 1 ~
celfive,u) = ge(fo;us',u) + geo(fi'f1 + o U, W)

=e(fl+efP+... un, i) €30 eO(F1;u, 7).
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Hence passing to the limit £’ -+ 0 in (4.23) implies immediately (4.19).
The proof is complete. O
REMARK 4.2. With obvious notations (see e.g. [24]), equation (3.13) can be
written in the form of a differential operational equation

d 1
(4.24) -d—tA(,u,._- + Au, + B(ue,ue) + EE(f;uE) =Q — A1 (Ts).

For ¢ — 0, equation (4.24) appears as a penalized equation, the penalty operator
being the antisymmetric operator u — FE(u). Penalization has been extensively
studied and is well understood when the penalty operator is either linear positive
definite or nonlinear and monotone (see R. Courant [7], J.-L. Lions [21], R.
Temam [35], (36]). However, little is known about other forms of penalty. The
following very simple differential system in R? shows (by explicit calculations)
that persistent oscillations can appear (A1, Az > 0):

du 1
dl £+ Mure — ~uge = fi,

(4.25) i i
dz€+/\2uze+ -1, = fa.

0 is

The corresponding geostrophic solution
(4.26) ul =u) =0,

and the corresponding quasi-geostrophic limit is the system

du?

dfl + A1u —'u%:fi),
4.27 dul)
(427 o o +ur =1,

“i = "fl:ul f2

By explicit calculation when fy = f2 = 0, we find that, for ¢ — 0,

o oot up1 — U0 iBt/e
u~e Re{ ((inl) +U02) e }
Here o = (A; — Ag)/2 > 0,ug = (uo,,uo,) is the initial data for (4.25) and 8 > 0

is a real number close to 1.

Therefore it appears that, as ¢ — 0, the solutions of (4.25) cannot converge
strongly (persistent oscillations) to the solution of (4.26)-(4.27), namely to 0.
Since the functional structure of (4.25) is the same as that of the linearized
equation (4.24), one can speculate that such oscillations also occur in (4.24) or
that more specific informations on the structure of (3.13), (4.24) are needed for
passing to the limit € — 0.

REMARK 4.3. The reader is referred to [14], [15] and [16] for related oscilla-

tory problems involving different timescales.
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4.3. Convergence of the PEV?s to the geostrophic equations. We
now study the convergence, as ¢ — 0, of the solutions of the I’12V2s to the
solutions of the geostrophic and quasi-geostrophic equations.

4.8.1. A priori estimates. In this subsection, we present some a priori esti-
mates of the solutions* v = u, of the PEV3s independently of €. As in Section
4.2.1, it is easy to establish the following estimates:

(4.28) Nluellz2(o,t;vw)nLoeoo,en;b) < €

the constant ¢ being independent of .

4.3.2. Convergence of the PEV?s to the geostrophic equations. We now state
the main theorem in this section; the proof can be carried out in the same fashion

as we did in Section 4.2:

THEOREM 4.5. There ezists a sequence u. of solutions of Problem 3.2 (weak
formulation of the PEV?s) such that as €' — 0,

in L%(0,t1; V*) weakly,

4.29 / 0
(4.29) her U { in L*(0,t1; H) weak-star,

with u® a solution of the geostrophic equation
(4.30) E(f%u® =0.

For any sequence u.: of solutions of Problem 3.2 such that (4.29) holds true,
u® is a solution of (4.26).

REMARK 4.4. As in Sections 4.2.2-4.2.3, we can also study the linearized
PEV?s and steady-state PEV?s. The corresponding results are also true here.
We omit the details.

REMARK 4.5. In a forthcoming article, we shall study the Rossby asymp-
totics of the PEs and the PEVZ2s for the whole globe, leading to the global
geostrophic equations and quasi-geostrophic equations. Similar mathematical
justifications as we did here in Section 4 hold true in that case as well. O
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