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1. Introduction

In this paper we study a two-point boundary value problem for the nonlinear
system

(1.1) −(A(t)x′(t))′ = f(t, x(t), x′(t)), t ∈ I,

where A : I = [0, 1] → Mn(R) is a continuous matrix-valued function from [0,1]
to the space of all n × n matrices over R, f : I × Rn × Rn → Rn is a mapping
satisfying the Carathéodory conditions (C1)–(C3):

(C1) for a.e. t ∈ I, the mapping (x, y) 7→ f(t, x, y) is continuous;
(C2) for every (x, y) ∈ Rn × Rn, the mapping t 7→ f(t, x, y) is measurable;
(C3) for every r > 0, there exists gr ∈ L1(I, R+) such that, for every x, y

with |x| ≤ r, |y| ≤ r and a.e. t ∈ I,

|f(t, x, y)| ≤ gr(t),

and x(t) satisfies the following boundary conditions:

(BC) x(0)−A0x
′(0) = 0, x(1) + A1x

′(1) = 0,

where A0 and A1 are n× n matrices.
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194 H. Y. Chern

By a solution to the above problem we mean a function x(t) ∈ C1(I, Rn)
for which Ax′ is absolutely continuous and which satisfies (1.1) for almost every
t ∈ I and satisfies the boundary conditions (BC). Let ( · , · ) denote the inner
product in Rn, ‖ · ‖p denote the Lp norm in Lp(I, Rn), and

‖x‖Ck = max
α≤k

sup
t∈I

|x(α)(t)|

for x ∈ Ck(I, Rn). We shall refer to ‖ · ‖Ck as the Ck-norm. For a matrix B, we
write B > 0 if B is positive definite, and B ≥ 0 if B > 0 or B = 0.

In the next section, we find the Green matrix for our problem subject to suit-
able conditions on A,A0 and A1. Some technicalities will be necessary because
the function f need not be continuous. Moreover, f may not be Lebesgue inte-
grable and the matrix-valued function A(t) is not necessarily symmetric, hence
the existence of the Green matrix is not trivial. We present the existence and
uniqueness theorems for our problem under suitable conditions in Sections 3
and 4.

2. Green matrix

We first define the Green matrix for our problem. We assume that A(t) is a
continuous n × n matrix-valued function on I with A(t) invertible for all t ∈ I

and that A0, A1 are n× n matrices. We denote by T the matrix
∫ 1

0
A−1(s) ds +

A0A
−1(0) + A1A

−1(1) and assume that T is invertible. We call the following
matrix G(t, s) the Green matrix for our problem:

G(t, s) = −H(t− s)
∫ t

s

A−1(u)du +
( ∫ t

0

A−1(u)du

)
B(s) + C(s),

where

H(t− s) =

{
1 if t ≥ s,

0 if t < s,

B(s) = In×n − T−1

[
A0A

−1(0) +
∫ s

0

A−1(u)du

]
, C(s) = A0A

−1(0)B(s).

Here In×n denotes the n× n identity matrix.

Lemma 2.1. The Green matrix G(t, s) has the following properties:

(a) for any fixed s ∈ I, G(t, s) is a continuous function of t;
(b) ∂

∂tG(t, s) is a continuous function of t except at the point t = s, and
∂

∂t
G(t, s) = −H(t− s)A−1(t) + A−1(t)B(s) for t 6= s;

(c) there exists a positive number k such that

sup
s,t∈I

|Gi,j(t, s)| ≤ k, sup
s 6=t∈I

∣∣∣∣ ∂

∂t
Gi,j(t, s)

∣∣∣∣ ≤ k,

for all i, j, where Gi,j(t, s), 1 ≤ i, j ≤ n, are the entries of G(t, s);
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(d) if 0 < s < 1, then

G(0, s)−A0
∂

∂t
G(0, s) = 0 and G(1, s) + A1

∂

∂t
G(1, s) = 0;

(e)
∂

∂t

(
A(t)

∂

∂t
G(t, s)

)
= 0 for all t 6= s.

Proof. The conclusions (a), (b), (c) are immediate consequences of our
assumptions, so we only need to prove (d) and (e).

(d) If 0 < s < 1, then

G(0, s)−A0
∂

∂t
G(0, s) = C(s)−A0A

−1(0)B(s) = 0,

and

G(1, s) + A1
∂

∂t
G(1, s) = −

∫ 1

s

A−1(u) du +
( ∫ 1

0

A−1(u) du

)
B(s)

+ A0A
−1(0)B(s) + A1(−A−1(1) + A−1(1)B(s))

= TB(s)−A1A
−1(1)−

∫ 1

s

A−1(u) du

= T −A0A
−1(0)−

∫ s

0

A−1(u) du−A1A
−1(1)

−
∫ 1

s

A−1(u) du

= 0.

(e) Since

A(t)
∂

∂t
G(t, s) = −H(t− s)In×n + B(s) =

{
−In×n + B(s) if t > s,

B(s) if t < s,

we have
∂

∂t

(
A(t)

∂

∂t
G(t, s)

)
= 0

for all t 6= s. �

The proof of the following lemma is based on the Leibniz rule for differenti-
ation of integrals.

Lemma 2.2. Let y ∈ C(I, Rn) and x(t) =
∫ 1

0
G(t, s)y(s) ds. Then

(a) x, Ax′ ∈ C1(I, Rn);
(b) −(A(t)x′(t))′ = y(t) for all t ∈ I;
(c) x(0)−A0x

′(0) = 0 and x(1) + A1x
′(1) = 0.
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Proof. For each t ∈ I, we have

x′(t) =
d

dt

∫ 1

0

G(t, s)y(s) ds

=
d

dt

( ∫ t

0

G(t, s)y(s) ds +
∫ 1

t

G(t, s)y(s) ds

)
=

∫ t

0

∂

∂t
G(t, s)y(s) ds + G(t, t−)y(t)

+
∫ 1

t

∂

∂t
G(t, s)y(s) ds−G(t, t+)y(t)

=
∫ t

0

∂

∂t
G(t, s)y(s) ds +

∫ 1

t

∂

∂t
G(t, s)y(s) ds

=
∫ 1

0

∂

∂t
G(t, s)y(s) ds,

and so

A(t)x′(t) =
∫ 1

0

(
A(t)

∂

∂t
G(t, s)

)
y(s) ds.

Thus, we have

(A(t)x′(t))′ =
d

dt

∫ 1

0

(
A(t)

∂

∂t
G(t, s)

)
y(s) ds

=
d

dt

[ ∫ t

0

+
∫ 1

t

](
A(t)

∂

∂t
G(t, s)

)
y(s) ds

=
∫ t

0

∂

∂t

(
A(t)

∂

∂t
G(t, s)

)
y(s) ds +

(
A(t)

∂

∂t
G(t, t−)

)
y(t)

+
∫ 1

t

∂

∂t

(
A(t)

∂

∂t
G(t, s)

)
y(s) ds−

(
A(t)

∂

∂t
G(t, t+)

)
y(t)

= A(t)
(

∂

∂t
G(t, t−)− ∂

∂t
G(t, t+)

)
y(t)

= A(t)(−A−1(t))y(t) = −y(t),

which proves (b).
Since (A(t)x′(t))′ = −y(t), we have Ax′ ∈ C1(I, Rn). Since A−1 ∈

C(I,Mn(R)), it follows that x′ ∈ C(I, Rn), which proves (a).
Finally, we have

x(0)−A0x
′(0) =

∫ 1

0

G(0, s)y(s) ds−A0

∫ 1

0

∂

∂t
G(0, s)y(s) ds

=
∫ 1

0

[
G(0, s)−A0

∂

∂t
G(0, s)

]
y(s) ds = 0
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by Lemma 2.1(d), (c). Similarly,

x(1) + A1x
′(1) =

∫ 1

0

G(1, s)y(s)ds + A1

∫ 1

0

∂

∂t
G(1, s)y(s) ds

=
∫ 1

0

[
G(1, s) + A1

∂

∂t
G(1, s)

]
y(s) ds = 0,

which proves (c). �

Lemma 2.3. Let y ∈ L1(I, Rn) and x(t) =
∫ 1

0
G(t, s)y(s) ds. Then

(a) x ∈ C1(I, Rn) and Ax′ is absolutely continuous;
(b) −(A(t)x′(t))′ = y(t) a.e. on I;
(c) x(0)−A0x

′(0) = 0 and x(1) + A1x
′(1) = 0.

Proof. Since y ∈ L1(I, Rn), there exists a sequence of C(I, Rn) functions
{ym}∞m=1 such that ym → y in L1(I, Rn). For each m ∈ N, let xm(t) =∫ 1

0
G(t, s)ym(s) ds. Then, by Lemma 2.2, xm ∈ C1(I, Rn), Ax′m is continuously

differentiable and xm(0)−A0x
′
m(0) = 0, xm(1) + A1x

′
m(1) = 0.

Now, for each t ∈ I,

|xm(t)− x(t)| =
∣∣∣∣ ∫ 1

0

G(t, s)(ym(s)− y(s)) ds

∣∣∣∣ ≤ nk‖ym − y‖1 → 0 as m →∞.

That is, xm → x uniformly, where k is the constant in Lemma 2.1(c).
If we let z(t) =

∫ 1

0
∂
∂tG(t, s)y(s) ds, then for each t ∈ I, we have

|x′m(t)− z(t)| =
∣∣∣∣ ∫ 1

0

∂

∂t
G(t, s)(ym − y)(s) ds

∣∣∣∣
=

∣∣∣∣( ∫ t

0

+
∫ 1

t

)
∂

∂t
G(t, s)(ym − y)(s) ds

∣∣∣∣
≤ nk

( ∫ t

0

+
∫ 1

t

)
|ym − y|(s) ds

= nk‖ym − y‖1 → 0 as m →∞.

Thus, x′m → z uniformly.
Since xm ∈ C1(I, Rn) for all m ∈ N and x′m → z uniformly and xm(t) → x(t)

for all t ∈ I, it follows that x′(t) = z(t) and x ∈ C1(I, Rn). Moreover, x′(t) =∫ 1

0
∂
∂tG(t, s)y(s) ds. Since xm(0) − A0x

′
m(0) = 0 and xm(1) + A1x

′
m(1) = 0,

letting m →∞, we get (c).
Finally, since Ax′m is continuously differentiable for all m ∈ N,

−A(t)x′m(t) + A(0)x′m(0) = −
∫ t

0

(A(s)x′m(s))′ ds =
∫ t

0

ym(s) ds
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for all t ∈ I. Then, since ym → y in L1(I, Rn), we obtain

−A(t)x′(t) + A(0)x′(0) =
∫ t

0

y(s) ds

for all t ∈ I. Consequently, Ax′ is absolutely continuous and

−(A(t)x′(t))′ = y(t) a.e. on I.

The proof is complete. �

3. Existence theorems

The existence theorems in this paper are based on the following nonlinear
alternative theorem of A. Granas [2].

Lemma 3.1. Assume that U is a relatively open subset of a convex set K in
a Banach space E. Let N : U → K be a compact map, and assume that 0 ∈ U .
Then either

(1) N has a fixed point in U ,

or

(2) there is a point u ∈ ∂U and a number λ ∈ (0, 1) such that u = λNu.

We shall apply Lemma 3.1 with E = C1(I, Rn) equipped with the C1-norm,
K = C1

B(I, Rn) = {x ∈ E : x(0) − A0x
′(0) = 0, x(1) + A1x

′(1) = 0}, and with
N : K → K being the mapping defined by

(Nx)(t) =
∫ 1

0

G(t, s)f(s, x(s), x′(s)) ds

for all t ∈ I and x ∈ K. That N is completely continuous is known when f

is continuous [7]; we shall establish this fact for f satisfying the Carathéodory
conditions.

Lemma 3.2. N is completely continuous.

Proof. Let Z be any bounded set in K. Then there is a constant r > 0
such that ‖x‖C1 ≤ r for all x ∈ Z. Since f satisfies the Carathéodory conditions,
there is a Lebesgue integrable function gr such that

|f(s, x(s), x′(s))| ≤ gr(s)

for almost every s ∈ I and for all x ∈ Z. Hence

|(Nx)(t)| =
∣∣∣∣ ∫ 1

0

G(t, s)f(s, x(s), x′(s)) ds

∣∣∣∣ ≤ nk‖gr‖1

and

|(Nx)′(t)| =
∣∣∣∣ ∫ 1

0

∂

∂t
G(t, s)f(s, x(s), x′(s)) ds

∣∣∣∣ ≤ nk‖gr‖1
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for all t ∈ I and x ∈ Z, where k is the constant in Lemma 2.1(c). Therefore
N(Z) is uniformly bounded in K.

Since G(t, s) is continuous on [0, 1]2, it is also uniformly continuous. There-
fore, for any ε > 0 there is δ = δ(ε) > 0 such that, for t1, t2, s1, s2 ∈ [0, 1],

|G(t1, s1)−G(t2, s2)| <
ε

n(‖gr‖1 + 1)

whenever |t1− t2|, |s1− s2| < δ. Hence, if |t1− t2| < δ and t1, t2 ∈ [0, 1], we have

|(Nx)(t1)− (Nx)(t2)| ≤ n

∫ 1

0

|G(t1, s)−G(t2, s)| · |f(s, x(s), x′(s))| ds

≤ ε

‖gr‖1 + 1

∫ 1

0

|f(s, x(s), x′(s))| ds

≤ ε

‖gr‖1 + 1
‖gr‖1 < ε

for all x ∈ Z. Therefore {Nx : x ∈ Z} is equicontinuous.

Finally, for any ε > 0, since gr ∈ L1(I, R+), there is δ1 = δ1(ε) > 0 such
that, for any set Ω ⊂ [0, 1] with |Ω| < 3δ1,∫

Ω

gr(s) ds <
ε

6kn2
,

where k is the constant in Lemma 2.1(c). Since ∂
∂tG(t, s) is uniformly continuous

on S1 = {(t, s) ∈ [0, 1]2 : s ≤ t − δ1}, there is δ2 = δ2(ε) > 0 such that for
(t1, s1), (t2, s2) ∈ S1,∣∣∣∣ ∂

∂t
G(t1, s1)−

∂

∂t
G(t2, s2)

∣∣∣∣ <
ε

3n(‖gr‖1 + 1)

whenever |t1 − t2|, |s1 − s2| < δ2. Similarly, there is δ3 = δ3(ε) > 0 such that for
(t1, s1), (t2, s2) ∈ {(t, s) ∈ [0, 1]2 : s ≥ t + δ1},∣∣∣∣ ∂

∂t
G(t1, s1)−

∂

∂t
G(t2, s2)

∣∣∣∣ <
ε

3n(‖gr‖1 + 1)

whenever |t1 − t2|, |s1 − s2| < δ3. Letting δ = min{δ1, δ2, δ3}, for 0 ≤ t2 − t1 < δ

and t1, t2 ∈ [0, 1] we have

I = |(Nx)′(t1)− (Nx)′(t2)|

≤ n

∫ 1

0

∣∣∣∣ ∂

∂t
G(t1, s)−

∂

∂t
G(t2, s)

∣∣∣∣|f(s, x(s), x′(s))| ds = I1 + I2 + I3,
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where

I1 = n

∫ max{t1−δ1,0}

0

∣∣∣∣ ∂

∂t
G(t1, s)−

∂

∂t
G(t2, s)

∣∣∣∣|f(s, x(s), x′(s))| ds,

I2 = n

∫ min{t2+δ1,1}

max{t1−δ1,0}

∣∣∣∣ ∂

∂t
G(t1, s)−

∂

∂t
G(t2, s)

∣∣∣∣|f(s, x(s), x′(s))| ds,

I3 = n

∫ 1

min{t2+δ1,1}

∣∣∣∣ ∂

∂t
G(t1, s)−

∂

∂t
G(t2, s)

∣∣∣∣|f(s, x(s), x′(s))| ds.

Without loss of generality we may assume that δ1 ≤ t1 ≤ t2 ≤ 1− δ1. We have

I1 = n

∫ t1−δ1

0

∣∣∣∣ ∂

∂t
G(t1, s)−

∂

∂t
G(t2, s)

∣∣∣∣|f(s, x(s), x′(s))| ds

≤ ε

3(‖gr‖1 + 1)

∫ 1

0

|f(s, x(s), x′(s))| ds

≤ ε

3(‖gr‖1 + 1)
‖gr‖1 ≤

ε

3
;

I3 = n

∫ 1

t2+δ1

∣∣∣∣ ∂

∂t
G(t1, s)−

∂

∂t
G(t2, s)

∣∣∣∣|f(s, x(s), x′(s))| ds

≤ ε

3(‖gr‖1 + 1)

∫ 1

0

|f(s, x(s), x′(s))| ds

≤ ε

3(‖gr‖1 + 1)
‖gr‖1 ≤

ε

3
;

and

I2 = n

∫ t2+δ1

t1−δ1

∣∣∣∣ ∂

∂t
G(t1, s)−

∂

∂t
G(t2, s)

∣∣∣∣|f(s, x(s), x′(s))| ds

≤ 2n2k

∫ t2+δ1

t1−δ1

|f(s, x(s), x′(s))| ds

≤ 2n2k

∫ t2+δ1

t1−δ1

gr(s) ds <
2n2kε

6n2k
=

ε

3
.

It follows that I < ε and {(Nx)′ : x ∈ Z} is equicontinuous. Therefore, by the
Ascoli theorem, N(Z) is relatively compact in K, which establishes the lemma.�

Now, let λ be in [0, 1] and S(λ) be the set of C1 functions x : I → Rn which
satisfy

(3.1λ)


−(A(t)x′(t))′ = λf(t, x(t), x′(t));

x(0)−A0x
′(0) = 0,

x(1) + A1x
′(1) = 0.

Then we have the following lemma.
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Lemma 3.3. If there is r > 0 such that for each λ ∈ (0, 1), we have

‖x‖ ≤ r, ‖x′‖ ≤ r

for all x ∈ S(λ), then S(1) is not empty.

Proof. Let U = {x ∈ K : ‖x‖C1 < r + 1}. Then N : U → K is a compact
map by Lemma 3.2. Suppose that there is a point u ∈ ∂U and a number
λ ∈ (0, 1) such that u = λNu. Then u(t) = λ

∫ 1

0
G(t, s)f(s, u(s), u′(s)) ds,

‖u‖C1 = r + 1. Now f(s, u(s), u′(s)) is a Lebesgue integrable function by (C3)
and therefore, by Lemma 2.3, u(t) = λ

∫ 1

0
G(t, s)f(s, u(s), u′(s)) ds ∈ S(λ). This

implies ‖u‖C1 ≤ r, which is a contradiction. Therefore, it follows from Lemma
3.1 that N has a fixed point in U . Repeating the argument with λ replaced by
1 we infer that S(1) is not empty. �

We now establish our main results as follows:

Theorem 3.1. Assume that f : I×Rn×Rn → Rn is a mapping satisfying the
Carathéodory conditions, A : I → Mn(R) a continuous matrix-valued function,
and A0, A1 n× n matrices satisfying the following conditions (1)–(3):

(1) there exists a positive number µ such that (ξ,A(t)ξ) ≥ µ|ξ|2 for all
ξ ∈ Rn and t ∈ I;

(2)
∫ 1

0
A−1(s) ds + A0A

−1(0) + A1A
−1(1) is invertible;

(3) one of the following conditions holds:
(i) A0 = A1 = 0;
(ii) A0 = 0 and A>(1)A1 > 0;
(iii) A1 = 0 and A>(0)A0 > 0,
where A> is the transpose of A.

Suppose, moreover, that

(4) there exist nonnegative numbers a, b such that a + b < µ and g ∈
L1(I, R+) such that for every (x, y) ∈ Rn × Rn, we have

(x, f(t, x, y)) ≤ a|x|2 + b|x||y|+ g(t)|x| for a.e. t ∈ I;

(5) there exist c ≥ 0 and h ∈ L1(I, R+) such that for every x ∈ Rn with
|x| ≤ (µ− a− b)−1‖g‖1 and every y ∈ Rn, we have

|f(t, x, y)| ≤ c|y|2 + h(t) for a.e. t ∈ I.

Then the problem

(3.2)


−(A(t)x′(t))′ = f(t, x(t), x′(t));

x(0)−A0x
′(0) = 0,

x(1) + A1x
′(1) = 0,

has a solution.
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Proof. Consider the family of problems

(3.2λ)


−(A(t)x′(t))′ = λf(t, x(t), x′(t));

x(0)−A0x
′(0) = 0,

x(1) + A1x
′(1) = 0.

Let x be a solution of (3.2λ) for some λ ∈ (0, 1). Then for a.e. t ∈ I, we have

−(x(t), (A(t)x′(t))′) = λ(x(t), f(t, x(t), x′(t)))

≤ a|x(t)|2 + b|x(t)||x′(t)|+ g(t)|x(t)|.

Since

(A(t)x′(t), x(t))′ = ((A(t)x′(t))′, x(t)) + (A(t)x′(t), x′(t)) a.e. on I,

by integrating over I, we obtain

µ‖x′‖22 ≤ (A(t)x′(t), x(t))|10 −
∫ 1

0

(x(t), (A(t)x′(t))′) dt

≤ (A(t)x′(t), x(t))|10 + a‖x‖22 + b‖x‖2‖x′‖2 + ‖g‖1‖x‖C0

= I1 + I2,

where I1 = (A(t)x′(t), x(t))|10 = (A(1)x′(1), x(1)) − (A(0)x′(0), x(0)) and I2 =
a‖x‖22 + b‖x‖2‖x′‖2 + ‖g‖1‖x‖C0 .

Now, we claim that I1 ≤ 0. If A0 = A1 = 0, then x(0) = x(1) = 0, which
implies I1 = 0. If A0 = 0 and A>(1)A1 > 0, then x(0) = 0 and x(1) = −A1x

′(1),
which implies I1 = −(A(1)x′(1), A1x

′(1)) = −(x′(1), A>(1)A1x
′(1)) ≤ 0. If

A1 = 0 and A>(0)A0 > 0, then x(1) = 0 and x(0) = A0x
′(0), which implies

I1 = −(A(0)x′(0), A0x
′(0)) = −(x′(0), A>(0)A0x

′(0)) ≤ 0.

Since x(t) = x(0) +
∫ t

0
x′(s) ds = x(1)−

∫ 1

t
x′(s) ds for all t ∈ I, we have

|x(t)| ≤ |x(0)|+
∫ 1

0

|x′(s)| ds and |x(t)| ≤ |x(1)|+
∫ 1

0

|x′(s)| ds

for all t ∈ I. Hence
‖x‖2 ≤ ‖x‖C0 ≤ ‖x′‖2,

so
µ‖x′‖22 ≤ I2 ≤ a‖x′‖22 + b‖x′‖22 + ‖g‖1‖x′‖2,

and consequently

‖x‖C0 ≤ ‖x′‖2 ≤ (µ− a− b)−1‖g‖1 ≡ r1,

where r1 is independent of x. Thus, by assumption, there exist c ≥ 0 and
h ∈ L1(I, R+) such that

|f(t, x(t), x′(t))| ≤ c|x′(t)|2 + h(t)
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for a.e. t ∈ I. Hence∫ 1

0

|f(t, x(t), x′(t))| dt ≤ c

∫ 1

0

|x′(t)|2 dt +
∫ 1

0

h(t) dt

≤ c‖x′‖22 + ‖h‖1 ≤ cr2
1 + ‖h‖1 ≡ r2,

where r2 is also independent of x.
Finally, let us estimate ‖x′‖C0 . If A0 = A1 = 0, then x(0) = x(1) = 0, and

x(t) = −λ

∫ t

0

A−1(s)
∫ s

0

f(u, x(u), x′(u)) du ds +
( ∫ t

0

A−1(s) ds

)
Q,

where Q = λ(
∫ 1

0
A−1(s)ds)−1(

∫ 1

0
A−1(s)

∫ s

0
f(u, x(u), x′(u)) du ds). Hence

x′(t) = −λA−1(t)
∫ t

0

f(u, x(u), x′(u))du + A−1(t)Q,

and
|x′(t)| ≤ nM‖f( · , x( · ), x′( · ))‖1 + n3M2P‖f( · , x( · ), x′( · ))‖1

≤ c(A, I, A0, A1, n)‖f( · , x( · ), x′( · ))‖1 ≤ cr2 ≡ r3

for all t ∈ I, where

P = sup
1≤i,j≤n

∣∣∣∣(( ∫ 1

0

A−1(s)ds

)−1)
i,j

∣∣∣∣, M = sup
1≤i,j≤n

t∈I

|(A−1)i,j(t)|.

Thus ‖x′‖C0 ≤ r3 (independent of x).
From

A(t)x′(t) = A(0)x′(0) +
∫ t

0

(A(s)x′(s))′ ds

= A(0)x′(0)− λ

∫ t

0

f(s, x(s), x′(s)) ds,

if A1 = 0 and A>(0)A0 > 0, we have

x′(t) = A−1(t)A(0)A−1
0 x(0)− λA−1(t)

∫ t

0

f(s, x(s), x′(s)) ds.

Therefore

|x′(t)| ≤ nM1|x(0)|+ nM‖f( · , x( · ), x′( · ))‖1 ≤ nM1r1 + nMr2 ≡ r3,

where
M1 = sup

1≤i,j≤n
t∈I

|(A−1(t)A(0)A−1
0 )i,j | < ∞,

and r3 depends only on n, A0, A1, A(t) and I. We can conclude that ‖x′‖C0 ≤ r3.

The same result can be obtained if A0 = 0 and A>(1)A1 > 0. Hence ‖x‖C1 < r

if we set r = 1 + r1 + r3. This completes the proof. �
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Theorem 3.2. Assume that f : I×Rn×Rn → Rn is a mapping satisfying the
Carathéodory conditions, A : I → Mn(R) a continuous matrix-valued function,
and A0, A1 n× n matrices satisfying the following conditions (1)–(3):

(1) there exists a positive number µ such that (ξ, A(t)ξ) ≥ µ|ξ|2 for all
ξ ∈ Rn and t ∈ I;

(2)
∫ 1

0
A−1(s) ds + A0A

−1(0) + A1A
−1(1) is invertible;

(3) A>(1)A1 > 0 and there is a positive number ν such that

(ξ,A>(0)A0ξ) ≥ ν|ξ|2 for all ξ ∈ Rn.

Suppose, moreover, that

(4) there exist nonnegative numbers a, b such that 2a+ 3
2b < µ, 2a+ 1

2b+µ ≤
ν/(n2M2) and there exists g ∈ L1(I, R+) such that for every (x, y) ∈
Rn × Rn, we have

(x, f(t, x, y)) ≤ a|x|2 + b|x||y|+ g(t)|x| for a.e. t ∈ I,

where M = sup1≤i,j≤n |(A0)i,j |;
(5) there exist c ≥ 0 and h ∈ L1(I, R+) such that for every x ∈ Rn with

|x| ≤ µ−1
[
(4a + 3b)

(
µ− 2a− 3

2b
)−1 + 2

]
‖g‖1,

and for every y ∈ Rn, we have

|f(t, x, y)| ≤ c|y|2 + h(t) for a.e. t ∈ I.

Then problem (3.2) has a solution.

Proof. Consider the family of problems (3.2λ) and let x be a solution of
(3.2λ) for some λ ∈ (0, 1). From the proof of the previous theorem, we know that

µ‖x′‖22 ≤ I1 + I2,

where I1 = (A(t)x′(t), x(t))|10 and I2 = a‖x‖22 + b‖x‖2‖x′‖2 + ‖g‖1‖x‖C0 . From
assumption (3), we have

I1 = −(x′(1), A>(1)A1x
′(1))− (x′(0), A>(0)A0x

′(0)) ≤ −ν|x′(0)|2.

Since x ∈ C1(I, Rn), we may write x(t) = x(0) +
∫ t

0
x′(s) ds for all t ∈ I, so

|x(t)| ≤ |x(0)| +
∫ t

0
|x′(s)| ds for all t ∈ I, and ‖x‖2 ≤ ‖x‖C0 ≤ |x(0)| + ‖x′‖2.

Consequently,

µ‖x′‖22 ≤ I1 + I2

≤ − ν|x′(0)|2 + a‖x‖22 + b‖x‖2‖x′‖2 + ‖g‖1‖x‖C0

≤ − ν|x′(0)|2 + a(|x(0)|+ ‖x′‖2)2 + b(|x(0)|+ ‖x′‖2)‖x′‖2
+ ‖g‖1‖x‖C0

≤ − ν|x′(0)|2 + 2a(|x(0)|2 + ‖x′‖22) + 1
2b(|x(0)|2 + ‖x′‖22)

+ b‖x′‖22 + ‖g‖1‖x‖C0

≤
(
2an2M2 + 1

2bn2M2 − ν
)
|x′(0)|2 +

(
2a + 3

2b
)
‖x′‖22 + ‖g‖1‖x‖C0 .
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Since 2a + 1
2b + µ ≤ ν/(n2M2) and 2a + 3

2b < µ, we have(
µ− 2a− 3

2b
)
‖x′‖22 ≤ ‖g‖1‖x‖C0 ,

and so
‖x′‖22 ≤

(
µ− 2a− 3

2b
)−1‖g‖1‖x‖C0 .

Consequently,

µ‖x‖2C0 ≤ 2[µ|x(0)|2 + µ‖x′‖22]
≤ 2

[
µn2M2|x′(0)|2 +

(
2an2M2 + 1

2bn2M2 − ν
)
|x′(0)|2

+
(
2a + 3

2b
)
‖x′‖22 + ‖g‖1‖x‖C0

]
≤ (4a + 3b)‖x′‖22 + 2‖g‖1‖x‖C0

≤
[
(4a + 3b)

(
µ− 2a− 3

2b
)−1 + 2

]
‖g‖1‖x‖C0 .

Thus ‖x‖C0 ≤ µ−1[(4a + 3b)
(
µ − 2a − 3

2b
)−1 + 2]‖g‖1 ≡ r1 (independent of x).

Then, by assumption, we have c ≥ 0 and h ∈ L1(I, R+) such that

|f(t, x(t), x′(t))| ≤ c|x′(t)|2 + h(t)

for a.e. t ∈ I, which implies∫ 1

0

|f(t, x(t), x′(t))| dt ≤ c

∫ 1

0

|x′(t)|2 dt +
∫ 1

0

h(t) dt

≤ c
(
µ− 2a− 3

2b
)−1‖g‖1‖x‖C0 + ‖h‖1

≤ c
(
µ− 2a− 3

2b
)−1‖g‖1r1 + ‖h‖1 ≡ r2,

where r2 is also independent of x.
From

A(t)x′(t) = A(0)x′(0) +
∫ t

0

(A(s)x′(s))′ ds

= A(0)x′(0)− λ

∫ t

0

f(s, x(s), x′(s)) ds,

we have

x′(t) = A−1(t)A(0)A−1
0 x(0)− λA−1(t)

∫ t

0

f(s, x(s), x′(s)) ds.

Therefore

|x′(t)| ≤ nM1|x(0)|+ nM‖f( · , x( · ), x′( · ))‖1 ≤ nM1r1 + nMr2 ≡ r3,

where

M1 = sup
1≤i,j≤n

t∈I

|(A−1(t)A(0)A−1
0 )i,j | < ∞, M = sup

1≤i,j≤n
t∈I

|(A−1)i,j(t)|

and r3 depends only on n, A0, A1, A(t), and I.
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Thus, ‖x′‖C0 ≤ r3 and eventually we get ‖x‖C1 < r if we set r = 1+ r1 + r3,
which completes the proof. �

Remark. If condition (3) of Theorem 3.2 is replaced by

(3′) A>(0)A0 > 0 and there is a positive number ν such that (ξ,A>(1)A1ξ)
≥ ν|ξ|2 for all ξ ∈ Rn,

and M (in condition (4)) is redefined as M = sup1≤i,j≤n |(A1)i,j |, then the same
conclusion holds.

4. Uniqueness theorems

Theorem 4.1. Assume that f : I×Rn×Rn → Rn is a mapping satisfying the
Carathéodory conditions, A : I → Mn(R) a continuous matrix-valued function,
and A0, A1 n× n matrices satisfying the following conditions (1)–(3):

(1) there exists a positive number µ such that (ξ,A(t)ξ) ≥ µ|ξ|2 for all
ξ ∈ Rn and t ∈ I;

(2)
∫ 1

0
A−1(s) ds + A0A

−1(0) + A1A
−1(1) is invertible;

(3) one of the following conditions holds:
(i) A0 = A1 = 0;
(ii) A0 = 0 and A>(1)A1 > 0;
(iii) A1 = 0 and A>(0)A0 > 0,
where A> is the transpose of A.

Suppose, moreover, that

(4) there exist nonnegative numbers a, b such that a + b < µ and

(x− u, f(t, x, y)− f(t, u, v)) ≤ a|x− u|2 + b|x− u||y − v|

for every x, y, u, v ∈ Rn and a.e. t ∈ I;
(5) there exist c ≥ 0 and h ∈ L1(I, R+) such that for every x ∈ Rn with

|x| ≤ (µ− a− b)−1‖f(t, 0, 0)‖1 and every y ∈ Rn, we have

|f(t, x, y)| ≤ c|y|2 + h(t) for a.e. t ∈ I.

Then problem (3.2) has a unique solution.

Proof. By (4) with u = v = 0, we have

(x, f(t, x, y)) ≤ a|x|2 + b|x||y|+ |f(t, 0, 0)||x|

for every x, y ∈ Rn and a.e. t ∈ I, which together with Theorem 3.1 implies the
existence. Now, if x and u are two solutions of (3.2), we have

− ((x− u)(t), A(t)x′(t)−A(t)u′(t))

= ((x− u)(t), f(t, x(t), x′(t))− f(t, u(t), u′(t)))

for a.e. t ∈ I.
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Since A(x− u)′ is absolutely continuous and x− u ∈ C1(I, Rn), we have

(A(t)(x− u)′(t), (x− u)(t))′

= ((A(t)(x− u)′(t))′, (x− u)(t)) + (A(t)(x− u)′(t), (x− u)′(t))

for a.e. t ∈ I. Thus, by condition (1) and by integrating over I, we have

µ‖x′ − u′‖22 ≤ (A(t)(x− u)′(t), (x− u)(t))|10

+
∫ 1

0

|(f(t, x(t), x′(t))− f(t, u(t), u′(t)), (x− u)(t))| dt

≤ (A(t)(x− u)′(t), (x− u)(t))|10 + a‖x− u‖22 + b‖x− u‖2‖x′ − u′‖2
= I1 + I2,

where

I1 = (A(t)(x− u)′(t), (x− u)(t))|10, I2 = a‖x− u‖22 + b‖x− u‖2‖x′ − u′‖2.

Now, we claim I1 ≤ 0. If A0 = A1 = 0, then x(0) = x(1) = u(0) = u(1), thus
I1 = 0. If A0 = 0 and A>(1)A1 > 0, then x(0) = u(0) and so

I1 = (A(1)(x− u)′(1), (x− u)(1)) = −((x− u)′(1), A>(1)A1(x− u)′(1)) ≤ 0.

If A1 = 0 and A>(0)A0 > 0, then x(1) = u(1) and so

I1 = −(A(0)(x− u)′(0), (x− u)(0)) = −((x− u)′(0), A>(0)A0(x− u)′(0)) ≤ 0.

Finally, since x− u ∈ C1(I, Rn), we have

|x(t)− u(t)| ≤ |x(0)− u(0)|+
∫ 1

0

|(x′ − u′)(s)| ds

and

|x(t)− u(t)| ≤ |x(1)− u(1)|+
∫ 1

0

|(x′ − u′)(s)| ds,

for all t ∈ I. If A0 = 0 or A1 = 0, then x(0) = u(0) = 0 or x(1) = u(1) = 0, thus
we always have ‖x − u‖2 ≤ ‖x′ − u′‖2 and this implies I2 ≤ (a + b)‖x′ − u′‖22.
Hence µ‖x′ − u′‖22 ≤ (a + b)‖x′ − u′‖22. Thus, if a + b < µ, we have x′ = u′ and
so x = u for x(0) = u(0) or x(1) = u(1). �

Similarly, corresponding to Theorem 3.2, we have the following uniqueness
theorem.

Theorem 4.2. Assume that f : I×Rn×Rn → Rn is a mapping satisfying the
Carathéodory conditions, A : I → Mn(R) a continuous matrix-valued function,
and A0, A1 n× n matrices satisfying the following conditions (1)–(3):

(1) there exists a positive number µ such that (ξ, A(t)ξ) ≥ µ|ξ|2 for all
ξ ∈ Rn and t ∈ I;

(2)
∫ 1

0
A−1(s) ds + A0A

−1(0) + A1A
−1(1) is invertible;
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(3) A>(1)A1 > 0 and there is a positive number ν such that

(ξ,A>(0)A0ξ) ≥ ν|ξ|2 for all ξ ∈ Rn.

Suppose, moreover, that

(4) there exist nonnegative numbers a, b such that 2a+ 3
2b < µ, 2a+ 1

2b+µ ≤
ν/(n2M2), and

(x− u, f(t, x, y)− f(t, u, v)) ≤ a|x− u|+ b|y − v|

for every x, y, u, v ∈ Rn and a.e. t ∈ I, where M = sup1≤i,j≤n |(A0)i,j |;
(5) there exist c ≥ 0 and h ∈ L1(I, R+) such that for every x ∈ Rn with

|x| ≤ µ−1
[
(4a + 3b)

(
µ− 2a− 3

2b
)−1 + 2

]
‖f(t, 0, 0)‖1,

and for every y ∈ Rn, we have

|f(t, x, y)| ≤ c|y|2 + h(t) for a.e. t ∈ I.

Then problem (3.2) has a unique solution.

5. Remarks

(1) If A = In×n, A0, A1 ≥ 0, then conditions (1), (2) of Lemma 2.1 hold.
(2) If A = In×n, A0 = A1 = 0, Theorem 3.1 reduces to a result of J. Mawhin

[8]. For related work with A = In×n, we refer to [3] and [5]–[8].
(3) Suppose we have more general (nonhomogeneous) boundary conditions

y(0)−A0y
′(0) = r0, y(1) + A1y

′(1) = r1,

for given vectors r0, r1 in Rn and the equation

−(Ay′)′ = g(t, y, y′),

where
∫ 1

0
A−1(s) ds + A0A

−1(0) + A1A
−1(1) is invertible together with

A(t) for all t ∈ I. This problem reduces to the homogeneous problem
−(Ax′)′ = f(t, x, x′);

x(0)−A0x
′(0) = 0,

x(1) + A1x
′(1) = 0,

by a transformation x(t) = y(t) + v1 + (
∫ t

0
A−1(s) ds)v2, where v1 and

v2 are suitably chosen in Rn.
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