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1. Introduction, notations and definitions

Throughout the paper we use standard notations except special symbols
introduced when they are defined. All spaces considered are Banach spaces
whose norms are always denoted by ‖ · ‖. For any space V we consider its dual
space V ? equipped with the strong topology. We denote by 〈·, ·〉 the duality
pairing between V and V ?. Let f : V → R ∪ {∞} be an extended-real-valued
function. Identifying extended-real-valued functions with their epigraphs

epi f = {(x, α) | x ∈ V, α ∈ R and α ≥ f(x)}

is a standard tool in convex analysis and in one-sided optimization theory. Also,
those functions with closed epigraphs are precisely the lower semicontinuous
functions on V , and as usual,

dom f := {x ∈ V | f(x) < ∞}.

We say that f is proper if dom f is nonempty. In this case lim sup f(x) and
lim inf f(x) denote the upper and lower limits of such (scalar) functions in the
classical sense. Depending on context, the symbols x

s→ y and x ⇀ y mean,
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respectively, that x tends to y with respect to the strong topology and the weak
topology on V .

The theory of variational inequalities is now well established and one of the
most famous result which has greatly contributed to its development is the Fan
minimax principle (see [9] for the original proof). It should be observed that
this principle is an immediate consequence of a two-function minimax theorem
proved independently by Ben-El-Mechaiekh, Deguire & Granas [6], Yen [27] and
Simons [24]:

Theorem 1. Let C be a nonempty compact convex subset of a topological
vector space and let f, g : C × C → R be two functions satisfying:

(i) g ≤ f on C × C;
(ii) f is quasiconcave in its first variable and g is lower semicontinuous in

its second variable.

Then
min
y∈C

sup
x∈C

g(x, y) ≤ sup
x∈C

f(x, x).

As another immediate consequence of the preceding theorem we also have:

Corollary 2. Let C be a nonempty bounded closed convex subset of a real
reflexive Banach space V . Let f, g : C × C → R be two functions satisfying:

(i) g(x, y) ≤ f(x, y) for all x, y ∈ C;
(ii) for each y ∈ C, the function x 7→ f(x, y) is concave;
(iii) for each x ∈ C, the function y 7→ g(x, y) is lower semicontinuous;
(iv) f(x, x) ≤ 0 for all x ∈ C.

Then there exists u ∈ C such that g(v, u) ≤ 0 for all v ∈ C.

Indeed, either this minimax principle or one of its equivalent forms has been
used by many authors in order to obtain existence theorems applicable to several
classes of variational inequalities.

Our aim in this paper is to use this two-function minimax theorem in a new
direction of research, namely, in the field of hemivariational inequalities, theory
introduced and developed by P. D. Panagiotopoulos [21] since the early 80s. The
aim of this theory is the treatment of nonconvex, nonsmooth energy problems
in mechanics. Since variational inequalities are based on the notion of convex-
ity and are formulated for monotone multivalued boundary conditions and/or
constitutive laws, they fail to apply to the problems listed above. The theory of
variational hemivariational inequalities has been employed by P. D. Panagiato-
poulos and his collaborators as a very efficient tool to describe the behavior of
several complex structures, such as for instance the delamination problem in
laminated composites, where the interaction between the laminae due to the
binding material is described by means of a nonmonotone, possibly multivalued
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law. Such laws express a variety of limit phenomena related to the discontin-
uous loss of resistance at the surface. For complete references on the origin
of the theory of hemivariational inequalities, a basic reference is the book of
P. D. Panagiotopoulos [20].

Let us introduce further definitions. A functional j : V → R is said to be
locally Lipschitz if for each x ∈ V , there exist a neighbourhood N (x) of x and a
constant kN > 0 such that

|j(u)− j(v)| ≤ kN ‖u− v‖, ∀u, v ∈ N .

We recall that an operator A : V → V ∗ is said to be monotone if

〈Au−Av, u− v〉 ≥ 0 ∀u, v ∈ V,

while A is declared hemicontinuous if the functional t 7→ 〈A(u + tv), w〉 is con-
tinuous on [0, 1] for all u, v, w ∈ V .

Let K be a nonempty, closed and convex subset of a reflexive Banach space V .
In order to simplify some computations we will assume that 0 ∈ K. Throughout
the paper, we assume that the assumptions (H) described below are satisfied:

(H1) A : V → V ∗ is a monotone and hemicontinuous operator;
(H2) j : V → R is a locally Lipschitz function;
(H3) Φ : V → R∪{∞} is a proper, convex and lower semicontinuous function

satisfying Φ(0) = 0;
(H4) f is given in V ∗.

For a locally Lipschitzian functional j : V → R, we denote by j◦(u; v) the Clarke
generalized directional derivative of j at u in the direction v, that is,

j◦(u; v) := lim sup
λ→0+

w→u

j(w + λv)− j(w)
λ

.

Recall also at this point that

∂j(x) := {x∗ ∈ V ∗ | j◦(x; y) ≥ 〈x∗, y〉 ∀y ∈ V }

denotes the generalized Clarke subdifferential [8].
Let K be a closed convex subset of V . A vector y is called a direction of

recession in K at x if for each positive t the vector x + ty lies in K. The
directions of recession are independent of x and form a closed convex cone called
the recession cone of K:

K∞ :=
⋂
t>0

[
K − x0

t

]
,

where x0 is arbitrary chosen in K. Equivalently, this amounts to saying that x

belongs to K∞ if and only if there exist sequences {tn}n∈N and {xn}n∈N ⊆ K

such that limn→∞ tn = ∞ and x = limn→∞ t−1
n xn. The notion of recession cone
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has been used to sharpen many of the classical results of convexity theory (see
e.g. R. T. Rockafellar [23]).

Let Φ : V → R∪{∞} be a proper, convex and lower semicontinuous function.
Then the behavior at infinity of Φ can be described by the recession function
Φ∞ of Φ which is defined by the formula

Φ∞(x) := lim
t→∞

Φ(x0 + tx)− Φ(x0)
t

,

where x0 is taken arbitrary such that Φ(x0) < ∞. It is easily observed that

epiΦ∞ = {epiΦ}∞.

In order to cover the case of nonconvex functionals, C. Baiocchi, G. Buttazzo,
F. Gastaldi and F. Tomarelli [5] have introduced a more general concept of
recession function. Let Ψ : V → R be any functional. The recession function
associated with Ψ is defined by

Ψ∞(x) := inf{lim inf
n→∞

Ψ(tnxn)/tn | tn →∞, xn
s→ x}.

By a variational hemivariational inequality H.V.I.(A, f, j,Φ, k) we mean the
problem

H.V.I. (A, f, j,Φ,K): Find u ∈ K such that

〈Au− f, v − u〉+ j◦(u; v − u) + Φ(v)− Φ(u) ≥ 0, ∀v ∈ K.

Using Corollary 2, we begin with proving an existence theorem for the class
of problems H.V.I.(A, f, j,Φ,K) involving a bounded set of constraints.

Lemma 3. Let C be a nonempty bounded closed convex subset of V such
that 0 ∈ C. Assume that the assumptions (H) are satisfied. Then there exists
u ∈ C such that

〈Au− f, v − u〉+ j◦(u; v − u) + Φ(v)− Φ(u) ≥ 0, ∀v ∈ C.

Proof. Set

f(x, y) := 〈Ay − f, y − x〉 − j◦(y;x− y) + Φ(y)− Φ(x),

g(x, y) := 〈Ax− f, y − x〉 − j◦(y;x− y) + Φ(y)− Φ(x).

The monotonicity of A yields

g(x, y) ≤ f(x, y).

For each y ∈ C, the map x 7→ j◦(y;x) is convex [8; Proposition 2.1.1] and thus
x 7→ f(x, y) is concave. The map (x, y) 7→ j◦(x; y) is upper semicontinuous as a
function of (x, y) [8; Proposition 2.1.1] and therefore the function y 7→ g(x, y) is
lower semicontinuous.
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We have f(x, x) = 0 for all x ∈ C. Hence by virtue of Corollary 2, we obtain
the existence of u ∈ C such that g(v, u) ≤ 0 for all v ∈ C. Equivalently, there
exists u ∈ C such that

(1.1) 〈Av − f, v − u〉+ j◦(u; v − u) + Φ(v)− Φ(u) ≥ 0, ∀v ∈ C.

Let y ∈ C be arbitrary. We set v := ty + (1 − t)u, 0 < t < 1. By putting v in
(1.1), we obtain

(1.2) 〈A(u + t(y − u)), t(y − u)〉+ j◦(u; t(y − u)) + Φ(u + t(y − u))− Φ(u)

≥ 〈f, t(y − u)〉.

Dividing (1.2) by t > 0 and using the convexity of Φ, we derive

(1.3) 〈A(u + t(y − u)), y − u〉+ j◦(u; y − u) + Φ(y)− Φ(u) ≥ 〈f, y − u〉.

Taking the limit as t → 0 and using the hemicontinuity of A, (1.3) yields

〈Au, y − u〉+ j◦(u; y − u) + Φ(y)− Φ(u) ≥ 〈f, y − u〉.

This ends the proof of the lemma. �

In [13], a specific recession function was introduced which will play an im-
portant role in our study. We set Ψ(x) := −j◦(x;−x) and denote by J◦∞ the
recession function associated with Ψ, that is,

J◦∞(x) = lim inf
t→∞
y

s→x

Ψ(ty)/t = inf{lim inf
n→∞

Ψ(tnyn)/tn | tn →∞, yn
s→ x}

= inf{lim inf
n→∞

−j◦(tnyn;−yn) | tn →∞, yn
s→ x}

= inf{lim inf
n→∞

−(−j)◦(tnyn; yn) | tn →∞, yn
s→ x}.

Brézis & Nirenberg [7] introduced a recession function associated with a given
nonlinear operator A : V → V ∗. They defined

rA(u) := lim inf{〈A(tv), v〉 | t →∞, v
s→ u}

= inf{lim inf
n→∞

〈A(tnvn), vn〉 | tn →∞, vn
s→ u}.

If we set Ψ(u) := 〈Au, u〉, then we can see that rA(u) = Ψ∞(u).

2. The main result

Let us introduce the set R(A, f, j,Φ,K) of asymptotic directions:

R(A, f, j,Φ,K) := {w ∈ K∞ | ∃un ∈ K, tn := ‖un‖ → ∞,

wn := un/‖un‖ ⇀ w and 〈Aun − f, un〉 − j◦(un;−un) + Φ(un) ≤ 0}.

The study of the properties of the recession set by means of recession tools
as those defined in Section 1 constitutes what is called the recession analysis.
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This approach is now the object of intensive work: see Adly, Goeleven & Théra
[1], Attouch, Chbani & Moudafi [4], Goeleven [11] and the references therein,
Goeleven & Théra [13], F. Tomarelli [26].

Theorem 4. If the set R(A, f, j,Φ,K) is empty then H.V.I.(A, f, j,Φ,K)
has at least one solution.

Proof. Set Kn := {v ∈ K | ‖v‖ ≤ n}. Using Lemma 3, we get the existence
of un ∈ Kn such that

〈Aun − f, v − un〉+ j◦(un; v − un) + Φ(v)− Φ(un) ≥ 0, ∀v ∈ Kn.

Claim 1. There exists n0 ∈ N such that ‖un0‖ < n0.

Indeed, suppose the contrary: ‖un‖ = n for each solution un of
H.V.I.(A, f, j,Φ,Kn). On relabelling if necessary, we can assume that wn :=
un/‖un‖ ⇀ w and

(2.1) 〈Aun − f, v − un〉+ j◦(un; v − un) + Φ(v)− Φ(un) ≥ 0, ∀v ∈ Kn.

By taking v = 0 in (2.1), we have

〈Aun − f, un〉 − j◦(un;−un) + Φ(un) ≤ 0.

Therefore w ∈ R(A, f, j,Φ,K), which contradicts the assumptions of Theorem 4.

Claim 2. un0 solves H.V. I.(A, f, j,Φ,K).

Since ‖un0‖ < n0, we have, for each y ∈ K, the existence of an ε > 0 such
that un0 + ε(y − un0) ∈ Kn0 . It suffices to take{

ε < (n0 − ‖un0‖)/‖y − un0‖ if y 6= un0 ,

ε = 1 if y = un0 .

We have

(2.2) 〈Aun0−f, v−un0〉+j◦(un0 ; v−un0)+Φ(v)−Φ(un0) ≥ 0, ∀v ∈ Kn0 .

If we put v = un0 + ε(y − un0) in (2.2), we obtain

〈Aun0 − f, ε(y− un0)〉+ j◦(un0 ; ε(y− un0)) + Φ(un0 + ε(y− un0))−Φ(un0) ≥ 0.

Using the convexity of Φ, we derive

(2.3) ε〈Aun0 − f, y − un0〉+ εj◦(un0 ; y − un0) + ε(Φ(y)− Φ(un0)) ≥ 0.

Dividing (2.3) by ε > 0, we finally obtain

〈Aun0 − f, y − un0〉+ j◦(un0 ; y − un0) + Φ(y)− Φ(un0) ≥ 0, ∀y ∈ K.

This completes the proof. �
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We say that R(A, f, j,Φ,K) is asymptotically compact if the sequence
{wn}n∈N which appears in the definition of this set converges strongly to w,
that is, if wn := un/‖un‖, ‖un‖ → ∞, un ∈ K and

〈Aun − f, un〉 − j◦(un;−un) + Φ(un) ≤ 0

implies that wn
s→ w.

Corollary 5. Suppose that the assumptions (H) are satisfied. Assume
that:

(i) R(A, f, j,Φ,K) is asymptotically compact;
(ii) there is a subset W of V \ {0} such that R(A, f, j,Φ,K) ⊆ W and

rA(w) + J◦∞(w) + Φ∞(w) > 〈f, w〉, ∀w ∈ W.

Then the problem H.V.I.(A, f, j,Φ,K) has at least one solution.

Proof. Suppose by contradiction that R(A, f, j,Φ,K) is nonempty. Then
we can find a sequence {un}n∈N such that tn := ‖un‖ → ∞, wn := un/tn ⇀ w

and

(2.4) 〈Aun, un〉 − j◦(un;−un) + Φ(un) ≤ 〈f, un〉.

Dividing (2.4) by tn > 0, we obtain

(2.5) 〈A(tnwn), wn〉 − j◦(tnwn;−wn) +
Φ(tnwn)

tn
≤ 〈f, wn〉.

Passing to the liminf in (2.5), we derive

(2.6) rA(w) + J◦∞(w) + Φ∞(w) ≤ 〈f, w〉.

Hence, (2.6) contradicts (ii) and the proof follows. �

3. Discussion on a robot hand grasping problem

Our main motivation in this section is given by a robot hand grasping prob-
lem which can be formulated as a variational hemivariational inequality involv-
ing monotone and singular matrices. Inequality methods in robotics were in-
troduced by A. M. Al-Fahed, G. E. Stavroulakis & P. D. Panagiotopoulos [2],
P. D. Panagiotopoulos & A. M. Al-Fahed [22] for the study of unilateral contact
effects, both frictionless and frictional ones, between the fingers of a multifin-
gered robotic hand and the manipulated object. In these papers the problem has
been reduced to appropriately defined, generally nonsymmetric linear comple-
mentarity problems. However, the linear complementarity model is not accurate
enough to take into account adhesive effects. More recently, a generalization of
the above mentioned model which includes nonmonotone adhesive effects and
nonclassical friction effects by including nonconvex yield surfaces in the linear
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complementarity model has been studied by D. Goeleven, G. E. Stavroulakis &
P. D. Panagiotopoulos [12] and G. E. Stavroulakis, D. Goeleven & P. D. Pana-
giotopoulos [25]. By applying the theory presented in Section 2 we are able to
consider another class of nonmonotone adhesive grippers. We note that the class
we will investigate next cannot be considered by means of the theory given in
[12]. Conversely, the class of adhesive effects described in [12], [25] is modelled by
a specific and complex class of hemivariational inequalities which is not included
in the formulation given by H.V.I.(A, f, j,Φ,K). In this sense, we enlarge the
theory applicable to robot hand grasping problems.

Let us consider a rigid object which is grasped by a robotic hand with n elastic
fingers. Besides the unilateral contact effects, frictional effects are also assumed
on the fingertip-object areas. Only hard fingers which prevent displacements of
the object in the normal and tangential directions with respect to the boundary
are considered here.

The external forces or torques applied on the reference point of the rigid
object are denoted by the vector

p = (p1, p2, p3,m1,m2,m3)t

(for the general three-dimensional case; in two-dimensional applications p1 and
m2, m3 disappear). With respect to a rectangular cartesian coordinate system
Ox1x2x3, we gather the rigid body displacements and rigid rotations into the
vector

u0 := (u0
1, u

0
2, u

0
3, φ

0
1, φ

0
2, φ

0
3)

t,

where the elements u0
i denote the rigid body displacements while φ0

i denote the
rigid body rotations. Regarding normal forces, they are gathered into the vector

rN := (rN1 , . . . , rNn
)t,

while friction forces and torques are gathered into the vector rT where

rT = (rT11, rT12, rT21, rT22, . . . , rTn1, rTn2)t.

As described in [2], [3], the relations that govern the object-gripper system are
given by the global equilibrium equations:

Gr = GNrN + GT rT ,

where the equilibrium matrix G is decomposed in a 6× n submatrix GN for the
normal contact reactions and a 6 × 2n submatrix GT for the frictional forces.
Compatibility conditions are given by the formula

uN + dN = u0
N ,
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where uN is the deformation of the fingertip, u0
N is the normal component of the

displacement of the object boundary at points adjacent to the fingertips and dN

is the possibly nonzero initial gap between the fingertips and the object.
By means of the principle of complementary virtual work, the relationship is

derived as follows: for every statically admissible pair (p, r) we have

ptu0 + rtu0
N = 0,

where u0 and u0
N are supposed to be virtual displacements.

In the direction normal to the surface, the unilateral contact effects between
fingertips and object couple uN and rN are described as follows: if contact occurs
then a nonnegative reaction arises, that is,

if uN + dN = u0
N then rN ≥ 0,

otherwise if contact is released then a zero reaction must be considered, i.e.

if uN + dN > u0
N then rN = 0.

We also assume the existence of a Coulomb law of dry friction connecting the
tangential (frictional) forces, exerted by the fingertips on the object with nor-
mal (contact) forces. Moreover, to achieve a linear complementarity formulation
of the above-described frictional contact gripper, we introduce a piecewise lin-
earization of the friction law by a polyhedral approximation of the friction cone
from the interior. We refer to [2] and [3] for more details concerning these con-
siderations.

A linear elastic finger behaviour is assumed next:

u = Fr,

where

u = (uN , uT )t, r = (rN , rT )t, F :=
(

FNN FNT

FTN FTT

)
.

Here F is the symmetric flexibility matrix which is composed by an n×n nonsin-
gular normal flexibility matrix FNN , the 2n×2n nonsingular tangential flexibility
matrix FTT and appropriate couple flexibility matrices FNT = F t

TN .
Finally, by making use of all these mechanical relations and the unilateral

boundary conditions, we obtain the following linear complementarity problem
(the complete calculations related to our problem are very long and out of
the scope of this paper. A detailed description of this model can be found
in A. M. Al-Fahed, G. E. Stavroulakis & P. D. Panagiotopoulos [3], G. E. Stav-
roulakis, D. Goeleven & P. D. Panagiotopoulos [25]):

w −Mz = b, w ≥ 0, z ≥ 0, wtz = 0,
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with

w = (yN , γ)t, z = (rN , λ)t,

b = (dN − FNT (BdT −Atp)−Gt
N (AdT − Up),−T t

T (BdT −Atp))t,

and

M :=

 
FNN − FNT (BFTN + AtGN )−Gt

N (AFTN + UGN ) T t
N − T t

T (BFTN + AtGN )

(FNT B + Gt
NA)TT T t

T BTT

!

with

B := (FTT )−1 − (FTT )−1Gt
T (GT (FTT )−1Gt

T )−1GT (FTT )−1,

At := (FTT )−1Gt
T (GT (FTT )−1Gt

T )−1,

U := −(GT (FTT )−1Gt
T )−1.

Here yN = uN−u0
N +dN , γ := µ|rN |−|rT |, µ is the coefficient of friction, λ is the

nonnegative slipping value associated with γ, dT is the initial tangential distance
between the fingertip and the potential point of contact, the matrices TN and
TT are the matrices of the linearized friction law (here for a vector x = {xi}, we
denote by |x| the vector {|xi|}). The linear complementarity problem is defined
on K := Rn+m

+ . Here m is equal to n × l for the hard-finger model where l is
the number of the facets of the linearized friction cone [2]. It is known [2] that
M is a positive semidefinite matrix.

We now extend the previous model to cover nonclassical fingertip-object in-
teraction effects by using the theory derived in Section 2. The possibility of
existing adhesive and unilateral effects with nonconvex yielding characteristics
on the fingertips will be included in our previous model (unilateral contact part
and adhesive part will be denoted by subscripts “u” and “a” respectively). In
the spirit of a decomposition in unilateral and adhesive parts, the notation yNu ,
rNu , γu, λu should be used in our previous relations. Nevertheless, for notational
simplicity, we avoided showing all these indices untill now that the classical fric-
tional contact problem has been formulated. We know that the unilateral effects
can be described by a linear complementarity problem which is also equivalent
to the following variational inequality:

(3.1) zu ∈ K: wt
u(v − zu) ≥ 0, ∀v ∈ K.

Let us consider the case where adhesive effects can be represented by nonconvex
yield surfaces in the (rN , λ) space. Let

rN = rNu , yN = yNu + yNa , λ = λu, γ = γu + γa.

Let yNa and γa be derived by

wa = wa,1 + wa,2,
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where

wa,1 ∈ −∂Φ(rN , λ),(3.2)

wa,2 ∈ −∂j(rN , λ).(3.3)

Here Φ : Rn+m → R is a proper convex and lower semicontinuous functional and
∂Φ denotes its convex subdifferential and j : Rn+m → R is a locally Lipschitz
functional and ∂j denotes its Clarke’s subdifferential. Law (3.2) contains as a
special case the case of adhesive rotational contact, as well as the case of zigzag
rotational and tangential law. See P. D. Panagiotopoulos [21] and J. J. Moreau
& P. D. Panagiotopoulos [18] for more details. Law (3.2) is a well-known convex
superpotential [17] which can be used to describe monotone tangential law.

We have

Φ(v)− Φ(z) + wt
a,1(v − z) ≥ 0, ∀v ∈ Rn+m,

and
j◦(z; v − z) + wt

a,2(v − z) ≥ 0, ∀v ∈ Rn+m.

We have
wt(v − u) = wt

a(v − u) + wt
u(v − u)

and thus our problem can be described by the following variational hemivaria-
tional inequality:

(3.4) z ∈ K: (Mz − b)t(v − u) + Φ(v)− Φ(u) + j◦(u; v − u) ≥ 0, ∀v ∈ K.

It is clear that R(M, b, j, Φ,K) is asymptotically compact since our problem is
stated in a finite-dimensional space. Moreover, we can prove (see [13] for more
details) that

R(M, b, j,Φ,K) ⊆ Ker(M + M t) ∩K \ {0}.
Therefore, a sufficient condition for the solvability of problem (3.4) is

〈b, e〉 < Φ∞(e) + J◦∞(e), ∀e ∈ Ker(M + M t) ∩K \ {0}.

Remark 6.

(i) For a thorough discussion concerning the role of such a condition in me-
chanics we refer to [1], [4], [5], [11], [25].

(ii) Several results concerning the estimation of the recession functional J◦∞
are stated in [13].
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Université de Limoges
87060 Limoges Cedex, FRANCE

E-mail address: adly@unilim.fr

thera@cix.cict.fr

Daniel Goeleven

FNRS

Facultés Notre Dame de la Paix
B-5000 Namur, BELGIQUE

E-mail address: dgoeleven@cc.fundp.ac.be

TMNA : Volume 5 – 1995 – No 2


