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Dedicated to Professor Ky Fan, with my greatest admiration and esteem

As the reader can notice, the title of the present paper differs from that of
[3] only because the term connected replaces the term convex. This is not casual.
Indeed, it remains our aim to show, by means of a series of further applications,
the usefulness of our recent Theorem 2.3 of [6] which, in a certain sense, can be
regarded as a “connected” version of the famous Theorems 1′ and 2 of [3].

In the sequel, given a product space X × Y , we denote by pX and pY the
projections from X × Y onto X and Y , respectively. Moreover, if A ⊆ X × Y ,
then for every x ∈ X and y ∈ Y , we put

Ax = {v ∈ Y : (x, v) ∈ A} and Ay = {u ∈ X : (u, y) ∈ A}.

Also, when, in proper settings, they will appear, the symbols B, int(B), ∂B,
aff(B), and ri(B) will denote, respectively, the closure, the interior, the boundary,
the affine hull, and the relative interior (that is, the interior in aff(B)) of the
set B.

For the reader’s convenience, we recall the statement of Theorem 2.3 of [6]:

Theorem 1 ([6], Theorem 2.3). Let X, Y be two topological spaces, with
Y admitting a continuous bijection onto [0, 1], and let S, T be two subsets of
X ×Y , with S connected and, for each x ∈ X, Tx connected. Moreover, assume
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that either T y is open for each y ∈ Y , or Y is compact and T is closed. Then
at least one of the following assertions holds:

(α) pX(T ) 6= X.

(β) pY (S) 6= Y and {y ∈ Y : (pX(S)× {y}) ∩ T = ∅} 6= ∅.
(γ) S ∩ T 6= ∅.

Let us also recall the following result which is useful to recognize the con-
nectedness of a given set in a product space.

Proposition 1 ([6], Theorem 2.4). Let X, Y be two topological spaces and
let S be a subset of X × Y . Assume that at least one of the following four sets
of conditions is satisfied:

(γ1) pY (S) is connected, Sy is connected for each y ∈ Y , and Sx is open for
each x ∈ X;

(γ2) pY (S) is connected, X is compact, S is closed, and Sy is connected for
each y ∈ Y ;

(γ3) pX(S) is connected, Sx is connected for each x ∈ X, and Sy is open
for each y ∈ Y ;

(γ4) pX(S) is connected, Y is compact, S is closed and Sx is connected for
each x ∈ X.

Under such hypotheses, S is connected.

Then, thanks to Proposition 1, we have the following particular case of The-
orem 1:

Theorem 2 ([6], Theorem 2.5). Let X, Y be two topological spaces, with
Y admitting a continuous bijection onto [0, 1], and let S, T be two subsets of
X × Y . Assume that at least one of the following eight sets of conditions is
satisfied:

(δ1) pY (S) is connected, Sy is connected for each y ∈ Y , Sx is open for each
x ∈ X, Tx is connected for each x ∈ X, and T y is open for each y ∈ Y ;

(δ2) pY (S) is connected, Y is compact, Sy is connected for each y ∈ Y , Sx is
open for each x ∈ X, T is closed, and Tx is connected for each x ∈ X;

(δ3) pY (S) is connected, X is compact, S is closed, Sy is connected for each
y ∈ Y , Tx is connected for each x ∈ X, and T y is open for each y ∈ Y ;

(δ4) pY (S) is connected, X and Y are compact, S and T are closed, Sy is
connected for each y ∈ Y , and Tx is connected for each x ∈ X;

(δ5) pX(S) is connected, Sx and Tx are connected for each x ∈ X, and Sy

and T y are open for each y ∈ Y ;
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(δ6) pX(S) is connected, Y is compact, Sx is connected for each x ∈ X, Sy

is open for each y ∈ Y , T is closed, and Tx is connected for each x ∈ X;
(δ7) pX(S) is connected, Y is compact, S is closed, Sx and Tx are connected

for each x ∈ X, and T y is open for each y ∈ Y ;
(δ8) pX(S) is connected, Y is compact, S and T are closed, and Sx and Tx

are connected for each x ∈ X.

Then at least one of the following assertions holds:

(α) pX(T ) 6= X.

(β) pY (S) 6= Y and {y ∈ Y : (pX(S)× {y}) ∩ T = ∅} 6= ∅.
(γ) S ∩ T 6= ∅.

Before starting with our series of applications of Theorems 1 and 2, we point
out the following

Proposition 2. Let Y be a connected topological space admitting a contin-
uous bijection onto [0, 1]. Then there are exactly two distinct points u, v ∈ Y

such that the sets Y \ {u} and Y \ {v} are connected. Precisely, one has
{u, v} = {ϕ−1(0), ϕ−1(1)} for any continuous bijection ϕ : Y → [0, 1].

Proof. Let ϕ be any continuous bijection from Y onto [0, 1]. Let us show
that Y \{ϕ−1(0)} is connected. Arguing by contradiction, assume that there are
two non-empty, open, disjoint sets A,B such that A∪B = Y \{ϕ−1(0)} (note that
Y turns out to be Hausdorff). Since Y \A and Y \B are two (not singletons) closed
sets whose intersection (that is, {ϕ−1(0)}) and union (that is, Y ) are connected,
it follows that they are connected too ([5], p. 133). Consequently, ϕ(Y \A) and
ϕ(Y \B) are two non-degenerate subintervals of [0, 1] each of which contains 0.
Of course, this is against the fact that (Y \A) ∩ (Y \B) = {ϕ−1(0)}. Likewise,
it is seen that Y \ {ϕ−1(1)} is connected. Now, let z ∈ Y \ {ϕ−1(0), ϕ−1(1)}.
Then the sets ϕ−1([0, ϕ(z)[) and ϕ−1(]ϕ(z), 1]) are non-empty and open, and
their union is Y \ {z}. So, Y \ {z} is disconnected. This completes the proof.�

The points u, v in the statement of Proposition 2 will be called the extreme
points of Y .

Now, we start with the following

Theorem 3. Let X, Y be two topological spaces, with Y connected and
admitting a continuous bijection onto [0, 1], and let S be a connected subset of
X × Y . In addition, assume that either Sy is closed for each y ∈ Y , or S is
open and Y is compact. Finally, suppose that, for each x ∈ X, the set Y \Sx is
connected. Then, if u, v are the extreme points of Y , at least one of the following
assertions holds:
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(a) There exists x0 ∈ X such that Sx0 = Y.

(b) Su = ∅.
(c) Sv = ∅.

Moreover, if Su = ∅ (resp. Sv = ∅), then Sv = pX(S) (resp. Su = pX(S)).

Proof. Let ϕ be any continuous bijection from Y onto [0, 1]. By Proposition
2, we have {u, v} = {ϕ−1(0), ϕ−1(1)}. For instance, let u = ϕ−1(0) and v =
ϕ−1(1). Assume that (b) and (c) do not hold. Then one has u, v ∈ pY (S).
Hence, since pY (S) is connected, we have ϕ(pY (S)) = [0, 1], and so pY (S) = Y .
Now, put

T = (X × Y ) \ S.

It is seen at once that S, T satisfy the assumptions of Theorem 1. Consequently,
since (β) and (γ) are violated, (α) (that is, our present (a)) does hold.

Now, assume that Su = ∅. Let x ∈ pX(S). Since Y \ Sx is connected, [0, 1] \
ϕ(Sx) turns out to be a proper subinterval of [0, 1] containing 0. Consequently,
1 ∈ ϕ(Sx), that is, v ∈ Sx, and so x ∈ Sv, as desired. The claim with the roles
of u, v interchanged is proved in a similar way. �

In particular, applying Theorem 3, we get

Theorem 4. Let X be a compact topological space, Y ⊆ R an interval, and
S a closed subset of X × Y such that Y \ Sx is connected for each x ∈ X, and
Sy is connected for each y ∈ Y . Then either pY (S) 6= Y , or Sx0 = Y for some
x0 ∈ X.

Proof. Suppose that pY (S) = Y . Owing to the compactness of X, to
get our conclusion it suffices to show that the family {Sy}y∈Y has the finite
intersection property. So, let y1 < y2 < . . . < yn be n points in Y . Thanks to
Proposition 1 (case (γ2)), the set S ∩ (X× [y1, yn]) is connected. Then, applying
Theorem 3 in an obvious way, we get x∗ ∈ X such that [y1, yn] ⊆ Sx∗ . Hence,
x∗ ∈

⋂n
i=1 S

yi , as desired. �

Remark 1. Theorem 2 is particularly useful when the sections Sy are such
that after removing suitable subsets from them, they remain connected. In fact,
in such a case, generally either we are allowed to require the connectedness of the
sections Tx only for particular points x ∈ X, or we can bring out some suitable
qualitative property of S ∩ T . We now indicate two specific situations. For the
first of them, we need the following

Proposition 3. Let E be a Hausdorff topological vector space, A ⊆ E an
infinite-dimensional closed affine manifold, Ω ⊆ A a convex set whose interior
in A is non-empty, and K ⊆ E a relatively compact set. Then the set Ω \K is
connected.
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Proof. We first prove the proposition in the case where A = E. Let x, y ∈
int(Ω) \K. Fix a closed circled neighbourhood V of the origin such that

V + V ⊆ ((int(Ω) \K)− x) ∩ ((int(Ω) \K)− y).

Observe, in particular, that V is connected. Since E is infinite-dimensional, V
is not compact. Consequently, there is a net {yα} in V having no cluster point
in E. We claim that, for some α, the segment joining x and y + yα does not
meet K.

On the contrary, assume that, for each α, there is λα ∈ [0, 1] such that
λα(y + yα) + (1 − λα)x ∈ K. Now, consider a δ > 0 such that δ(y − x) ∈ V .
Thanks to our previous choices, it is seen that λα > δ. Since K is compact, the
net {λα(y+ yα) + (1− λα)x} admits a subnet, say {λαβ

(y+ yαβ
) + (1− λαβ

)x},
converging to a point z ∈ K. On the other hand, also the net {λαβ

} admits a
subnet, say {λαβγ

}, converging to a point λ ∈ [δ, 1]. Consequently, z − (1− λ)x
is the limit of {λαβγ

(y + yαβγ
)}. Hence, λ−1(z − (1 − λ)x) − y is the limit of

{yαβγ
}, and so it is a cluster point of {yα}, a contradiction.

Then let α be such that the segment, say S(x, y + yα), joining x and y + yα

does not meet K. Since int(Ω) is convex, we have S(x, y + yα) ⊆ int(Ω) \ K.
Therefore, S(x, y+yα)∪ (y+V ) is a connected subset of int(Ω)\K containing x
and y. This shows that int(Ω) \K is connected. Now, taking into account that
Ω = int(Ω), we have

int(Ω) \K ⊆ Ω \K ⊆ int(Ω) \K

and so Ω \K is connected.
Finally, to prove our proposition when A 6= E, it suffices to observe that, since

A is closed, K∩A is relatively compact in A and that A is affinely homeomorphic
to an infinite-dimensional Hausdorff topological vector space. �

We then have

Theorem 5. Let X be a non-empty set in a Hausdorff topological vector
space E, K a relatively compact subset of E, Y a connected topological space
admitting a continuous bijection onto [0, 1], and S, T two subsets of X × Y .
Assume that:

(i) Sy is convex, aff(Sy) is infinite-dimensional and closed in E, ri(Sy) is
non-empty for each y ∈ pY (S), and Sx is open in Y for each x ∈ X\K;

(ii) Tx is connected for each x ∈ X \K;
(iii) either T y \K is open in X \K for each y ∈ Y , or Y is compact and

T \ (K × Y ) is closed in (X \K)× Y .

Then at least one of the following assertions holds:

(a) X \ (K ∪ pX(T )) 6= ∅.
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(b) pY (S) 6= Y.

(c) For every set V ⊆ X × Y such that V y is relatively compact in E

for each y ∈ Y and Vx is closed in Y for each x ∈ X \ K, one has
(S \ (V ∪ (K × Y ))) ∩ T 6= ∅.

Proof. Assume that (a) and (b) do not hold. Let V be as in (c). Then, by
Proposition 3, (S \ (V ∪ (K ×Y )))y is non-empty and connected for each y ∈ Y ,
and (S\(V ∪(K×Y )))x is open for each x ∈ X \K. Hence, since Y is connected,
the sets S \ (V ∪ (K×Y )) and T \ (K×Y ) satisfy either (δ1) or (δ2) of Theorem
2, applied taking (X \K)×Y as product space. So, (S\(V ∪(K×Y )))∩T 6= ∅.�

The other situation to which we alluded in Remark 1 involves the covering
dimension in Rn. So, for each set A ⊆ Rn, we denote by dim(A) its covering
dimension ([2], p. 54).

Theorem 6. Let X ⊆ Rn be a non-empty set, Y a connected topological
space admitting a continuous bijection onto [0, 1], and S, T two subsets of X×Y .
Assume that:

(i) Sy is connected and open in Rn for each y ∈ Y , and Sx is open in Y

for each x ∈ X;
(ii) Tx is connected for each x ∈ X;
(iii) either T y is open in X for each y ∈ Y , or Y is compact and T is closed

in X × Y .

Then at least one of the following assertions holds:

(a) pX(T ) 6= X.
(b) pY (S) 6= Y .
(c) For every set V ⊆ X × Y such that dim(V y) ≤ n − 2 for each y ∈ Y

and Vx is closed in Y for each x ∈ X, one has (S \ V ) ∩ T 6= ∅.

Proof. The proof goes exactly as that of Theorem 5, with K = ∅. The only
difference is that, this time, the connectedness of each (S \ V )y follows directly
from a celebrated theorem of Mazurkiewicz ([2], p. 80). �

Proceeding in a way by now evident, we also get

Theorem 7. Let X, Y be as in Theorem 6, let S, T ⊆ X × Y , and let
K ⊆ X be such that dim(K) ≤ n− 2. Assume that:

(i) Sy is connected and open in Rn for each y ∈ Y , and Sx is open in Y

for each x ∈ X \K;
(ii) Tx is connected for each x ∈ X \K;
(iii) either T y \K is open in X \K for each y ∈ Y , or Y is compact and

T \ (K × Y ) is closed in (X \K)× Y .
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Then at least one of the following assertions holds:

(a) X \ (K ∪ pX(T )) 6= ∅.
(b) pY (S) 6= Y.

(c) (S \ (K × Y )) ∩ T 6= ∅.

Before stating our next result, we need the following

Proposition 4. Let Ω ⊆ Rn be a non-empty open connected set and A,
B two proper subsets of Ω, both closed in Ω, such that Ω = A ∪ B. Then
dim(A ∩B) ≥ n− 1.

Proof. If int(A)∩int(B)6= ∅, clearly one has dim(A ∩ B) = n ([2], p. 76).
So, let us assume that int(A) ∩ int(B) = ∅. Since A, B are closed in Ω, one has

Ω \ (A ∩B) ⊆ int(A) ∪ int(B).

On the other hand, since A,B are proper subsets of Ω, both int(A) and int(B)
meet Ω \ (A∩B). So, Ω \ (A∩B) is disconnected. At this point, our conclusion
follows directly from the already quoted theorem of Mazurkiewicz. �

Now, we are able to establish the following

Theorem 8. Let [a, b] be a compact real interval and T a subset of Rn×[a, b]
which is closed in pRn(T ) × [a, b]. Then, for every non-empty connected subset
X of pRn(T ) which is open in aff(X) and such that Tx is connected for each
x ∈ X, at least one of the following assertions holds:

(a) X ⊆ T a.

(b) X ⊆ T b.

(c) There exists some y ∈ ]a, b[ such that dim(T y ∩X) ≥ dim(X)− 1.

Proof. Assume that (a) and (b) do not hold. Put

Γ = X \ (T a ∪ T b).

We distinguish two cases.
First, suppose that Γ 6= ∅. Note that Γ is open in aff(X). Now, fix a

sequence {Yk} of (non-degenerate) compact subintervals of ]a, b[ such that ]a, b[
=

⋃
k∈N Yk. For each k ∈ N, put Vk =

⋃
y∈Yk

T y. By Theorem 7.1.16 of [4], the
set Vk is closed in pRn(T ). Clearly, one has Γ ⊆

⋃
k∈N Vk. Endowed with the

relative topology, Γ turns out to be a Baire space. Hence, there is some k∗ ∈ N
such that the interior of Vk∗ ∩ Γ in Γ, and so in aff(X), is non-empty. Choose a
non-empty connected set W ⊆ Vk∗ ∩ Γ which is open in aff(X). We claim that
there exists y0 ∈ Yk∗ such that dim(T y0 ∩W ) ≥ dim(W )− 1.

Arguing by contradiction, assume that dim(T y ∩W ) ≤ dim(W )− 2 for each
y ∈ Yk∗ . Put

S = (W × Yk∗) \ T.
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Then, thanks to the theorem of Mazurkiewicz, Sy is non-empty and connected
for each y ∈ Yk∗ . Consequently, we can apply Theorem 2 (case (δ2)) to the sets
S and T ∩ (W ×Yk∗), upon taking W ×Yk∗ as product space. But, recalling the
definition of W , we see that the conclusion of Theorem 2 does not hold, which
is absurd.

So, the claimed y0 actually exists. Observing that W ⊆ X and dim(W ) =
dim(X), we then have dim(T y0 ∩X) ≥ dim(X)− 1, which yields (c).

Now, suppose that X ⊆ T a ∪ T b. In other words, T a ∩ X and T b ∩ X are
proper subsets of X, both closed in X, whose union is X. Then, by Proposition
4, we have dim(T a ∩ T b ∩X) ≥ dim(X)− 1. But, if x ∈ T a ∩ T b ∩X, then since
Tx is connected, we have Tx = [a, b], that is to say, x ∈ T y for each y ∈ [a, b].
Hence, in the present case, we get dim(T y ∩ X) ≥ dim(X) − 1 even for each
y ∈ [a, b]. This completes the proof. �

Remark 2. In Theorem 8, the closedness assumption on T cannot be drop-
ped, in general. Indeed, if T is the graph of a bijection from R2 onto [0, 1],
taking, for instance, X = R2, none of (a), (b), (c) holds.

Here is an application of Theorem 8 to control theory. Let b be a positive real
number and let F be a given multifunction from [0, b]×Rn into Rn. We denote
by SF the set of all Carathéodory solutions of the problem x′ ∈ F (t, x), x(0) = 0
in [0, b]. That is to say,

SF = {u ∈ AC([0, b],Rn) : u′(t) ∈ F (t, u(t)) a.e. in [0, b], u(0) = 0}

where, of course, AC([0, b],Rn) denotes the space of all absolutely continuous
functions from [0, b] into Rn. For each t ∈ [0, b], put

AF (t) = {u(t) : u ∈ SF }.

In other words, AF (t) denotes the attainable set at time t. Also, put

VF =
⋃

t∈[0,b]

AF (t).

Finally, set

CF = {x ∈ Rn : {t ∈ [0, b] : x ∈ AF (t)} is connected}.

With these notations, we have the following

Theorem 9. Assume that F has non-empty compact convex values and
bounded range. Moreover, assume that F (·, x) is measurable for each x ∈ Rn

and that F (t, ·) is upper semicontinuous for a.e. t ∈ [0, b]. Then, for every non-
empty connected set X ⊆ VF ∩ CF which is open in aff(X) and different from
{0}, one has the following alternative: either

X ⊆ AF (b)
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or
dim(AF (t) ∩X) ≥ dim(X)− 1

for some t ∈ ]0, b[.

Proof. Put

T = {(x, t) ∈ Rn × [0, b] : x ∈ AF (t)}.

Under our assumptions, by a well-known result (see, for instance, Theorem 7.1
of [1]), the set T turns out to be closed. Now, our conclusion follows directly
from Theorem 9, taking into account that AF (0) = {0}. �

Remark 3. On the basis of Theorem 9, it would be interesting to investigate
the structure of the set CF .

The next result, another application of Theorem 2, concerns the existence of
Nash equilibrium points.

Theorem 10. Let X be a Hausdorff compact topological space, Y an arc,
and f , g two continuous real functions on X × Y such that, for each λ ∈ R,
x0 ∈ X, y0 ∈ Y , the sets {x ∈ X : f(x, y0) ≥ λ} and {y ∈ Y : g(x0, y) ≥ λ} are
connected. Then there exists (x∗, y∗) ∈ X × Y such that

f(x∗, y∗) = max
x∈X

f(x, y∗) and g(x∗, y∗) = max
y∈Y

g(x∗, y).

Proof. For each x ∈ X, y ∈ Y , put

α(x) = max
v∈Y

g(x, v) and β(y) = max
u∈X

f(u, y).

Next, consider the sets

S = {(x, y) ∈ X × Y : f(x, y) = β(y)}

and
T = {(x, y) ∈ X × Y : g(x, y) = α(x)}.

The continuity of f and g readily implies that S and T are closed. On the other
hand, for each x ∈ X, y ∈ Y , one has

Sy =
⋂
n∈N

{u ∈ X : f(u, y) ≥ β(y)− 1/n}

and
Tx =

⋂
n∈N

{v ∈ Y : g(x, v) ≥ α(x)− 1/n}.

So, by a classical result (see, for instance, [5], p. 170), Sy and Tx are connected
(and non-empty, of course). Consequently, thanks to Theorem 2 (case (δ4)), one
has S ∩ T 6= ∅. Plainly, any point in S ∩ T satisfies our conclusion. �

Remark 4. Compare Theorem 10 with Theorem 4 of [3].



246 B. Ricceri

The next result, suggested by the new approach recently proposed in [7], is
about the existence of zeros for certain operators.

Theorem 11. Let V be a topological space, X a real topological vector space
(with topological dual X∗), and Φ : V → X∗ an operator such that the set
{x ∈ X : v → 〈Φ(v), x〉 is continuous} is dense in X. Assume that there are a
continuous function u : [0, 1] → V , a continuous function α : [0, 1] → R, a lower
semicontinuous function f : X → [0, 1] and an upper semicontinuous function
g : X → [0, 1], with f(x) ≤ g(x) for all x ∈ X, such that 〈Φ(u(y)), x〉 6= α(y)
for every (x, y) ∈ X × [0, 1] satisfying y ∈ [f(x), g(x)]. Then the operator Φ
vanishes at some point of V .

Proof. Put

S = {(x, y) ∈ X × [0, 1] : 〈Φ(u(y)), x〉 = α(y)}

and
T = {(x, y) ∈ X × [0, 1] : y ∈ [f(x), g(x)]}.

Arguing by contradiction, assume that Φ(v) 6= 0 for all v ∈ V . In particular,
this implies that p[0,1](S) = [0, 1]. Also, observe that T is closed and S ∩ T = ∅.
Then, in view of Theorem 1, S must be disconnected. At this point, we can apply
Theorem 1 and Proposition 1 of [7] to the operator Φ ◦ u, and so Φ(u(y)) = 0
for some y ∈ [0, 1], a contradiction. �

We conclude with an application of Theorem 1 to compact mappings in
Banach spaces. First, we need the following

Proposition 5. Let X be a topological space, Y ⊆ R a compact interval,
and f : X × Y → R an upper semicontinuous function such that f(·, y) is
continuous for each y ∈ Y . Moreover, let λ ∈ R be such that

{y ∈ Y : f(x, y) > λ} 6= ∅

and
inf{y ∈ Y : f(x, y) ≥ λ} = inf{y ∈ Y : f(x, y) > λ}

for each x ∈ X. Then the function x→ inf{y ∈ Y : f(x, y) ≥ λ} is continuous.

Proof. For each x ∈ X, put

F (x) = {y ∈ Y : f(x, y) ≥ λ} and G(x) = {y ∈ Y : f(x, y) > λ}.

Our assumptions imply that the multifunction F is upper semicontinuous ([4],
Theorem 7.1.16) and that the multifunction G is lower semicontinuous (in fact,
its fibers are open). Consequently, the multifunction x → [inf F (x), supF (x)]
is upper semicontinuous and the multifunction x→ [inf G(x), supG(x)] is lower
semicontinuous ([4], Theorem 7.3.17). This readily implies that the function
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x → inf F (x) (resp. x → supF (x)) is lower (resp. upper) semicontinuous and
that the function x → inf G(x) (resp. x → supG(x)) is upper (resp. lower)
semicontinuous. The proof is complete. �

Remark 5. It is clear from the proof that Proposition 5 is still true replacing,
in the assumptions and in the conclusion, “inf” by “sup”.

Theorem 12. Let E be a Banach space, [a, b] a compact real interval, Ω a
non-empty open bounded subset of E, and f a continuous function from Ω ×
[a, b] into E, with relatively compact range. Assume that f(x, y) 6= x for all
(x, y) ∈ ∂Ω × [a, b] and that the Leray–Schauder index of f(·, a) is not zero.
Then, for every lower semicontinuous function ϕ : Ω → [a, b] and every upper
semicontinuous function ψ : Ω → [a, b] with ϕ(x) ≤ ψ(x) for all x ∈ Ω, there
exist x∗ ∈ Ω and y∗ ∈ [ϕ(x∗), ψ(x∗)] such that f(x∗, y∗) = x∗.

In addition, if for some sequence {λn} of positive real numbers with infn∈N λn

= 0, one has

inf{y ∈ [a, b] : ‖f(x, y)− x‖ ≥ λn} = inf{y ∈ [a, b] : ‖f(x, y)− x‖ > λn}

for each x ∈ Ω and n ∈ N for which

{y ∈ [a, b] : ‖f(x, y)− x‖ > λn} 6= ∅,

then there exists x0 ∈ Ω such that f(x0, y) = x0 for all y ∈ [a, b].

Proof. Thanks to the classical Leray–Schauder continuation principle (see,
for instance, [8], Theorem 14.C), there exists a compact connected set S ⊆
Ω × [a, b] such that p[a,b](S) = [a, b] and f(x, y) = x for all (x, y) ∈ S. Let ϕ,ψ
be as in the statement. Put

T = {(x, y) ∈ Ω× [a, b] : y ∈ [ϕ(x), ψ(x)]}.

Then, in view of Theorem 1, one has S ∩T 6= ∅, which yields the first conclusion
of the theorem.

Now, assume that there is some {λn} as in the statement. For each n ∈ N,
put

Vn = {(x, y) ∈ Ω× [a, b] : ‖f(x, y)− x‖ > λn}.

Observe that pΩ(Vn) 6= Ω. Indeed, if pΩ(Vn) = Ω, then in view of Proposition
5, the function x → inf{y ∈ [a, b] : ‖f(x, y) − x‖ ≥ λn} would be continuous
in Ω, and so, by Theorem 1 again, its graph should meet S, which is clearly
absurd. Then pick xn ∈ Ω such that ‖f(xn, y)−xn‖ ≤ λn for all y ∈ [a, b]. Since
f(Ω× [a, b]) is relatively compact and infn∈N λn = 0, the sequence {xn} admits
some convergent subsequence. Plainly, the limit of such a subsequence satisfies
the second conclusion of the theorem. �
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